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Abstract

We study contrastive learning under the PAC learning framework. While a series of recent
works have shown statistical results for learning under contrastive loss, based either on the
VC-dimension or Rademacher complexity, their algorithms are inherently inefficient or not
implying PAC guarantees. In this paper, we consider contrastive learning of the fundamental
concept of linear representations. Surprisingly, even under such basic setting, the existence
of efficient PAC learners is largely open. We first show that the problem of contrastive
PAC learning of linear representations is intractable to solve in general. We then show
that it can be relaxed to a semi-definite program when the distance between contrastive
samples is measured by the ℓ2-norm. We then establish generalization guarantees based
on Rademacher complexity, and connect it to PAC guarantees under certain contrastive
large-margin conditions. To the best of our knowledge, this is the first efficient PAC learning
algorithm for contrastive learning.

1 Introduction

Contrastive learning has been a successful learning paradigm in modern machine learning (Gutmann &
Hyvärinen, 2010; Logeswaran & Lee, 2018). In general, it is assumed that a learner has access to an anchor
example x, a positive example y, and a number of negative examples {z1, . . . , zk}, and the goal of contrastive
learning is to learn a representation function f on the examples such that y is closer to x than all zi’s under
f .

Motivated by the empirical success of contrastive learning, there have been a surge of recent interests that
attempt to understand it from a theoretical perspective, primarily through the lens of Rademacher complexity
or that of VC-theory. For example, Arora et al. (2019) initiated the study of generalization ability of
contrastive learning by analyzing the Rademacher complexity of a commonly used contrastive loss, and
showed that under certain structural assumptions on the data, minimizing the unsupervised contrastive loss
leads to a low classification error. There were a few follow-up works in this line which aimed to understand
and improve the sample complexity; see e.g. (Ash et al., 2022; Awasthi et al., 2022; Lei et al., 2023).

Orthogonal to the Rademacher-based theory, a very recent work of Alon et al. (2024) proposed to study this
problem under the classical probably approximately correct (PAC) learning framework (Valiant, 1984). Unlike
prior works that assumed a rich structure for the data distribution in order to estimate the classification error
from contrastive loss, Alon et al. (2024) considered that there is an unknown distribution on the instances
and labels, where labels are produced by an unknown distance function. Tight bounds on sample complexity
were established for arbitrary distance functions, ℓp-distances, and tree metrics.

In this work, we follow the contrastive PAC learning framework of Alon et al. (2024). Let X ⊂ Rd be the
space of examples (i.e. image patches). An instance u is a tuple (x, y, z) ∈ X 3; thus we denote by U := X 3.
The label, b, of a tuple (x, y, z) is either −1 or 1; here, we write B := {−1, 1} as the label space. Let
H := {h : U → B} be a hypothesis class. Suppose that there is an unknown distribution D on U × B. We
are mainly interested in the realizable setting in this paper, namely, there exists an h∗ ∈ H, such that for
all (u, b) ∼ D, it holds almost surely that b = h∗(u). Now for any hypothesis h ∈ H, we can define its error
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rate as follows: errD(h) := Pr(u,b)∼D(h(u) ̸= b) = Pru∼DU
(h(u) ̸= h∗(u)), where DU denotes the marginal

distribution of D on U . We are now in the position to define the contrastive PAC learning problem.
Definition 1 (Contrastive PAC learning). Let ϵ, δ ∈ (0, 1) be a target error rate and failure probability,
respectively. An adversary EX(D, h∗) chooses a distribution DU on U and h∗ ∈ H and fixes them throughout
the learning process. Each time the learner requests a sample from the adversary, the adversary draws a
sample u from DU , labels it by b := h∗(u) and returns (u, b) to the learner. The goal of the learner is to find
a concept ĥ : U → B, such that with probability at least 1 − δ (over the random draws of samples and all
internal randomness of the learning algorithm), it holds that errD(ĥ) ≤ ϵ for all D, h∗.

One example of the hypothesis class is H = {h : (x, y, z) 7→ sign
(∥∥f(x) − f(z)

∥∥
p

−
∥∥f(x) − f(y)

∥∥
p

)
}, where

both f(·) and p are to be learned from samples. This is a contrastive PAC learning problem considered
in Alon et al. (2024). We note that since learning distance functions is inherently challenging, the PAC
guarantees of Alon et al. (2024) were established only for finite domains, i.e. |X | is finite, and the learning
algorithm is inherently inefficient. On the other side, Arora et al. (2019) and many of its follow-up works
such as Awasthi et al. (2022); Lei et al. (2023) considered a fixed and known distance function, e.g. p = 2,
and aimed to learn the representation function f(·) among a certain family. This makes the problem more
tractable, though in general, it is still inefficient due to the non-convexity of the contrastive loss – only
convergence to stationary points is known (Yuan et al., 2022). In addition, the approaches in this line were
not immediately implying PAC guarantees.

In this paper, we investigate the contrastive PAC learning problem for fixed p = 2 and we aim to develop
computationally efficient algorithms with PAC guarantees. Our setup is thus interpolating Arora et al. (2019)
and Alon et al. (2024). Despite the relatively new setup, it is surprising that even efficient contrastive PAC
learning for linear representation functions on Rd is largely open. Indeed, as to be shown later, this is already
a non-trivial problem from the computational perspective.

From now on, we will focus on the very fundamental class of linear representation functions:

F = {fW : x 7→ Wx, W ∈ W}. (1.1)

In the above, W can be certain constraint set such as the Frobenius ball. We will discuss in more detail the
choice of W and related results later. Denote

gW (x, y, z) := ∥Wx − Wz∥2
2 − ∥Wx − Wy∥2

2 . (1.2)

Now we can spell out the hypothesis class to be learned:

H =
{

hW : (x, y, z) 7→ sign
(
gW (x, y, z)

)
, W ∈ W

}
. (1.3)

1.1 Main results

Our main results for contrastive PAC learning of (1.3) is as follows.
Theorem 2 (Theorem 10, informal). Suppose that b · gW ∗(x, y, z) ≥ 1 for all (x, y, z, b) ∼ D. There exists
an algorithm A satisfying the following. By drawing poly(1/ϵ, log 1/δ) samples from D, with probability 1 − δ,
A outputs a hypothesis Ŵ such that errD(Ŵ ) ≤ ϵ. In addition, A runs in poly(1/ϵ, log 1/δ) time.

We remark that the condition b·gW ∗(x, y, z) ≥ 1 is similar to the large-margin condition for learning halfspaces.
Such large-margin condition was broadly assumed to analyze performance of learning algorithms such as
Perceptron (Rosenblatt, 1958) and boosting (Schapire & Freund, 2012). Our condition is adapted to the
contrastive samples, and we will call it contrastive large-margin condition. The constant 1 therein can be
readily replaced by a margin parameter γ > 0, which will then lead to a sample complexity proportional to
1/γ2 by our analysis. This is standard in learning theory (Anthony & Bartlett, 1999). However, to keep our
results concise, we do not pursue it here.

Our sample complexity in Theorem 2 omits dependence on other quantities such as the magnitude of samples
and the size of the constraint set W. A complete description can be found in Theorem 10.
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What we really hope to highlight in the informal version is that we developed a polynomial-time algorithm
that PAC learns a fundamental concept class from contrastive samples, and this is the first efficient PAC
learner in the literature.

1.2 Overview of our techniques

We first view the contrastive PAC learning problem as binary classification, as suggested in (1.3). We then
apply standard learning principles such as empirical risk minimization with a suitable loss function. It turns
out, however, that the quadratic form of gW makes the problem inherently intractable even under the hinge
loss function. We thus make use of the property that quadratic functions can be linearized by introducing
a new matrix variable, which turns the problem into a semi-definite program (SDP) that can be solved in
polynomial time. In order to analyze the error rate, we establish generalization bounds via Rademacher
complexity on the SDP. We then show that with the contrastive large-margin condition, the empirical risk
goes to zero on the target concept W ∗. This implies that the error rate of a solution of the SDP can be as
small as ϵ. Lastly, we apply eigenvalue decomposition on the SDP solution to obtain a linear representation,
which completes the proof.

1.3 Roadmap

A concrete problem setup as well as a collection of useful notations are presented in Section 2. In Section 3,
we elaborate on our algorithm and the theoretical guarantees. Section 4 concludes this paper and proposes a
few open questions.

2 Preliminaries

The PAC learning framework was proposed by Valiant (1984). Let U and B be the instance and label space,
respectively. It is assumed that there is an underlying distribution D on U × B such that all samples are
drawn from D. Let H be a hypothesis class that maps U to B. The error rate of h ∈ H is defined as
errD(h) := Pr(u,b)∼D(h(u) ̸= b). Under the realizable setting, there exists a target hypothesis h∗ ∈ H, such
that with probability 1, b = h∗(u) for (u, b) ∼ D.

In contrastive learning, an instance u ∈ U is often a tuple of the form u = (x, y, z), where x, y, z are from
X ⊂ Rd. For example, X can be the space of image patches with size d, and u consists of three image patches.
More generally, u may contain a number of patches x, y, z1, . . . , zk, where the zi’s are often referred to as
negative examples in the literature and y is referred to as positive example. In our main results, we did
not pursue such generalization to keep our algorithm and theory concise. However, it is known that such
extension is possible and we will illustrate it in Section 3.

With U = X 3 and B = {−1, 1} in mind, a sample (x, y, z, b) of contrastive learning should be interpreted
as follows: if b = 1, it indicates that y is closer to x than z is to; otherwise, z is closer to x. More formally,
there exists a distance function ρ∗ : X × X → R≥0, such that h∗(x, y, z) = sign(ρ∗(x, z) − ρ∗(x, y)). We note
that Alon et al. (2024) aimed to learn such general distance functions over a finite domain, while most prior
works assumed certain parameterized form such as ρ∗(x, y) = ∥Wx − Wy∥2

2, as in this work. Once we confine
ourselves to the specific distance function, we can think of the mapping Wx as a new representation of x.
Thus, sometimes the problem of contrastive learning is also regarded as representation learning. Denote

gW (x, y, z) = ∥Wx − Wz∥2
2 − ∥Wx − Wy∥2

2 . (2.1)

Observe that h∗(x, y, z) = sign(gW ∗(x, y, z)).

As typical in machine learning, one may want to impose certain constraint on W in order to prevent overfitting.
Of particular interest would be the Frobenius-norm ball WF = {W ∈ Rd′×d : ∥W∥F ≤ rF }, the ℓ1-norm ball
W1 = {W ∈ Rd′×d : ∥W∥1 ≤ r1} for sparsity, or the nuclear-norm ball W∗ = {W ∈ Rd′×d : ∥W∥∗ ≤ r∗}
for low-rankness. Different constraints will lead to different generalization bounds, which will be shown in
Section 3.
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For a square matrix M , we write tr(M) for its trace. The inner product of two matrices A and B with same
size is defined as ⟨A, B⟩ := tr(A⊤B), where sometimes we simply write as A · B. In addition to the matrix
norms that are just mentioned, we may also use the spectral norm; it is denoted by ∥M∥.

We will mainly be interested in the hinge loss as a surrogate function to the error rate. Denote

L(W ; U) = max{0, 1 − W ⊤W · U}, L̃(G; U) = max{0, 1 − G · U}. (2.2)

The W , G, and U will be matrices in this paper.

Let F be a class of real-valued functions on U × B and S = {si}n
i=1 be a sample set of U × B. The empirical

Rademacher complexity of S under F is defined as R(F ◦ S) := 1
nEσ supf∈F σi · f(si), where σ = (σ1, . . . , σn)

is the Rademacher random vector.

3 Algorithms and Performance Guarantees

Let S = {(xi, yi, zi, bi)}n
i=1 be a set of samples independently drawn from D, where the tuple (xi, yi, zi) ∈ U

and bi ∈ B. Recall that we study the realizable PAC learning. Thus there exists an unknown W ∗ ∈ H such
that for all (x, y, z, b) ∼ D, b = gW ∗(x, y, z).

At first glance, one may seek a hypothesis W ∈ H that minimizes the empirical risk. That is,

min
W ∈W

1
n

n∑
i=1

1[bi · gW (xi, yi, zi) < 0], (3.1)

where 1[E] is the indicator function which outputs 1 if the event E occurs and 0 otherwise.

Since gW (·) is quadratic in W , it is easy to show by algebraic calculation that:
Lemma 3. ∥Wx − Wy∥2

2 = ⟨W ⊤W, (x − y)(x − y)⊤⟩.

Therefore, let
Ui = bi · ((xi − zi)(xi − zi)⊤ − (xi − yi)(xi − yi)⊤). (3.2)

We can obtain
bi · gW (xi, yi, zi) = ⟨W ⊤W, Ui⟩.

Plugging the above into (3.1) gives

min
W ∈W

1
n

n∑
i=1

1[⟨W ⊤W, Ui⟩ < 0]. (3.3)

Unfortunately, solving the above program is intractable, due to the 1) non-convexity of the 0/1-loss, and 2)
the quadratic formula with respect to W . In the following, we propose approaches based on semi-definite
programming, that is solvable in polynomial time.

First, by standard technique, we could alternatively minimize the hinge loss:

min
W ∈W

1
n

n∑
i=1

L(W ; Ui), (3.4)

where L(·; ·) was defined in (2.2). We note that Verma & Branson (2015) also studied the above loss function
in the context of Mahalanobis distance metrics, and they obtained statistical sample complexity. Observe
that the problem may still be non-convex, since Ui may have negative eigenvalues – this is in stark contrast
to learning from standard examples. Since the non-convexity comes from the quadratic term W ⊤W , we
consider replacing the variable W ⊤W with a new variable G. Hence, ⟨G, Ui⟩ is a linear function with respect
to G, turning the objective function into convex. This is a well-known technique that has been used in many
contexts (Williamson & Shmoys, 2011; d’Aspremont et al., 2007).
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Suppose that based on the fact W ∈ W, we obtain a constraint set G ⊃ {W ⊤W : W ∈ W}. As far as G is
constructed as convex, the overall program becomes convex. Note that such convex set G always exists, and
the minimal is called convex hull (Boyd & Vandenberghe, 2004). The empirical risk minimization program
that we are going to analyze is given as follows:

min
G∈G

1
n

n∑
i=1

L̃(G; Ui), (3.5)

where L̃(·; ·) was defined in (2.2).

3.1 Rademacher complexity

We provide bounds on the Rademacher complexity of (3.5) for two popular choices of W (and thus G).

3.1.1 Frobenius-norm ball

We first consider the Frobenius-norm ball, one of the most widely used constraints in machine learning. That
is, W = WF := {W ∈ Rd′×d : ∥W∥F ≤ rF } for some parameter rF > 0. Here and after, the subscript of W
and r is used only to identify the type of constraints. Since G = W ⊤W , by singular value decomposition, it
is not hard to show that ∥G∥∗ ≤ r2

F where ∥·∥∗ denotes the nuclear norm (also known as the trace norm).
Therefore, we can choose

G = G∗ := {G ∈ Rd×d : G ⪰ 0, ∥G∥∗ ≤ r2
F }. (3.6)

Lemma 4. Consider the function class Θ∗ := {θ : U 7→ L̃(G; U), G ∈ G∗}. Let S = {Ui}n
i=1 and assume

maxUi∈S ∥Ui∥ ≤ α. Then the empirical Rademacher complexity

R(Θ∗ ◦ S) ≤ r2
F · α ·

√
log d

n
.

Proof. Let σ = (σ1, . . . , σn) be the Rademacher random variable. By the contraction property of Rademacher
complexity, we have

n · R(Θ∗ ◦ S) = Eσ sup
G∈G∗

n∑
i=1

σi max{0, 1 − G · Ui}

≤ Eσ sup
G∈G∗

n∑
i=1

σiG · Ui

≤ r2
F · max

Ui∈S
∥Ui∥ ·

√
n log d,

where the last inequality follows from Kakade et al. (2012) (see Table 1 therein). The result follows by noting
that the spectral norm of Ui is assumed to be upper bounded by α.

Recall that Ui was defined in (3.2). Suppose that the example space X is a subset of a bounded ℓ2-norm ball,
say X ⊂ {x : ∥x∥2 ≤ κ}. Then we can show that

∥Ui∥ ≤ ∥xi − yi∥2
2 + ∥xi − zi∥2

2 ≤ 2κ2.

Thus setting α = 2κ2 in Lemma 4 gives the following:
Corollary 5. Consider the function class Θ∗ := {θ : U 7→ L̃(G; U), G ∈ G∗}. Suppose X ⊂ {x : ∥x∥2 ≤ κ}
and let S = {Ui}n

i=1 be a draw of sample set from X 3. Then

R(Θ∗ ◦ S) ≤ 2r2
F · κ2 ·

√
log d

n
.
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3.1.2 ℓ1-norm ball (sparsity)

Now we consider that the linear representation matrix W is constrained by an ℓ1-norm, which typically
promotes sparsity patterns (Tibshirani, 1996; Chen et al., 1998; Candès & Tao, 2005). That is, W = WF :=
{W ∈ Rd′×d : ∥W∥1 ≤ r1} for some parameter r1 > 0. Now we derive the ℓ1-norm for W ⊤W . To do so, let
us write W in a column form: W = (w1, . . . , wd) where wi denotes the i-th column of W . It follows that∥∥∥W ⊤W

∥∥∥
1

=
∑

1≤i,j≤d

∣∣wi · wj

∣∣
≤

∑
1≤i,j≤d

∥wi∥1 ·
∥∥wj

∥∥
∞

=
∑

1≤j≤d

∥∥wj

∥∥
∞

∑
1≤i≤d

∥wi∥1

≤
∑

1≤j≤d

∥∥wj

∥∥
1 · r1 ≤ r2

1.

This suggests that we could choose

G = G1 := {G ∈ Rd×d : G ⪰ 0, ∥G∥1 ≤ r2
1}. (3.7)

Lemma 6. Consider the function class Θ1 := {θ : U 7→ L̃(G; U), G ∈ G1}. Let S = {Ui}n
i=1 and assume

maxUi∈S ∥Ui∥∞ ≤ α. Then the empirical Rademacher complexity

R(Θ1 ◦ S) ≤ r2
1 · α ·

√
4 log(2d)

n
.

Proof. For a matrix M , let M⃗ be the vector obtained by concatenating all columns of M .

Let σ = (σ1, . . . , σn) be the Rademacher random variable. By the contraction property of Rademacher
complexity, we have

n · R(Θ1 ◦ S) = Eσ sup
G∈G1

n∑
i=1

σi max{0, 1 − G · Ui}

≤ Eσ sup
G∈G1

n∑
i=1

σiG · Ui

= Eσ sup
G∈G1

n∑
i=1

σiG⃗ · U⃗i

≤ r2
1 · α ·

√
2n log(2d2),

where the last inequality follows from Lemma 26.11 of Shalev-Shwartz & Ben-David (2014). Dividing both
sides by n completes the proof.

Suppose that X ⊂ {x : ∥x∥∞ ≤ κ}. Then we can show that

∥Ui∥∞ ≤ ∥xi − yi∥2
∞ + ∥xi − zi∥2

∞ ≤ 2κ2.

Therefore, specifying α = 2κ2 in the above lemma gives the following corollary.
Corollary 7. Consider the function class Θ1 := {θ : U 7→ L̃(G; U), G ∈ G1}. Suppose X ⊂ {x : ∥x∥∞ ≤ κ}
and let S = {Ui}n

i=1 be a draw of sample set from X 3. Then

R(Θ1 ◦ S) ≤ 2r2
1 · κ2 ·

√
4 log(2d)

n
.
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3.2 PAC guarantees

We analyze the PAC guarantees under a new type of margin condition, which we call the contrastive
large-margin condition.
Definition 8 (Contrastive large-margin condition). We say that the data distribution D satisfies the
contrastive large-margin condition if there exists W ∗ ∈ W, such that for all (x, y, z, b) ∼ D, the following
holds with probability 1: b(∥W ∗x − W ∗z∥2

2 − ∥W ∗x − W ∗y∥2
2) ≥ 1.

Geometrically, this condition ensures that there is a non-trivial separation between positive examples and
negative examples for any given anchor x. It follows that when the condition is satisfied, (3.4) attains an
optimal objective value of 0. Since the feasible set of convex program of (3.5) contains that of (3.4), it is
easy to get the following.
Lemma 9. Assume that the contrastive large-margin condition holds. Then there exists Ĝ ∈ G, such that the
objective value of (3.5) at Ĝ equals 0.

Now we can prove the main result of this section, the PAC guarantees.
Theorem 10. Assume that the contrastive large-margin condition is satisfied for some W ∗ ∈ W, and G
is such that G ⊃ {W ⊤W : W ∈ W}. Let Ĝ ∈ G be an optimal solution to (3.5) and let Ĝ = V ΣV ⊤ be its
eigenvalue decomposition. Let Ŵ := Σ1/2V ⊤. Then by drawing contrastive sample set S = {(xi, yi, zi, bi)}n

i=1,
with probability at least 1 − δ, it holds that

errD(Ŵ ) ≤ 2R(Θ ◦ S) + 5c

√
2 log(8/δ)

n
,

where c := supG∈G,U∈U

∣∣∣L̃(G; U)
∣∣∣. When G is a convex set, our algorithm runs in polynomial time.

Proof. Let Θ := {θ : U 7→ L̃(G; U), G ∈ G}. Let c := supG∈G,U∈U×B

∣∣∣L̃(G; U)
∣∣∣.

We apply standard uniform concentration via Rademacher complexity (Bartlett & Mendelson, 2002) to obtain
that with probability 1 − δ,

EU∼DL̃(Ĝ; U) ≤ EU∼DL(W ∗; U) + 2R(Θ ◦ S) + 5c

√
2 log(8/δ)

n
.

In view of the contrastive large-margin condition, we have L(W ∗; U) = 0. On the other hand, we always have

L̃(G; U) ≥ 1[Ĝ · U < 0].

This implies

EU∼D1[Ĝ · U < 0] ≤ 2R(Θ ◦ S) + 5c

√
2 log(8/δ)

n
. (3.8)

Now recall that U = b
(
(x − z)(x − z)⊤ − (x − y)(x − y)⊤)

as in (3.2), and Ĝ = Ŵ ⊤Ŵ by the eigenvalue
decomposition. Therefore,

Ĝ · U = b ·
( ∥∥∥Ŵx − Ŵz

∥∥∥2

2
−

∥∥∥Ŵx − Ŵy
∥∥∥2

2

)
.

Thus, (3.8) is equivalent to

errD(Ŵ ) ≤ 2R(Θ ◦ S) + 5c

√
2 log(8/δ)

n
. (3.9)

The proof is complete.

Theorem 10, in allusion to the Rademacher complexity bounds in Section 3.1, lead to the sample complexity
bounds for efficient contrastive PAC learning.
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Corollary 11. Assume same conditions as in Theorem 10. Consider Θ = Θ∗ as in Corollary 5. Suppose
X ⊂ {x : ∥x∥2 ≤ κ}. Then by drawing n =

( 5+5r2
F κ2

ϵ

)2 log 8d
δ contrastive samples from D, we have

errD(Ŵ ) ≤ ϵ with probability 1 − δ, where Ŵ is defined in Theorem 10.

Proof. We just need to compute the supremum of
∣∣∣L̃(G; U)

∣∣∣. It turns out that
∣∣∣L̃(G; U)

∣∣∣ ≤ 1 + |G · U | ≤
1 + ∥G∥∗ · ∥U∥ ≤ 1 + r2

F κ2. The result follows by plugging this upper bound and the Rademacher complexity
in Corollary 5 into Theorem 10.

Corollary 12. Assume same conditions as in Theorem 10. Consider Θ = Θ1 as in Corollary 7. Suppose
X ⊂ {x : ∥x∥∞ ≤ κ}. Then by drawing n =

( 5+5r2
1κ2

ϵ

)2 log 8d
δ contrastive samples from D, we have

errD(Ŵ ) ≤ ϵ with probability 1 − δ, where Ŵ is defined in Theorem 10.

Proof. Again, we only need to compute the supremum of
∣∣∣L̃(G; U)

∣∣∣. It turns out that
∣∣∣L̃(G; U)

∣∣∣ ≤ 1+|G · U | ≤
1 + ∥G∥1 · ∥U∥∞ ≤ 1 + r2

1κ2. The result follows by plugging this upper bound and the Rademacher complexity
in Corollary 7 into Theorem 10.

We remark that both Θ∗ and Θ1 are convex sets, thus our PAC guarantees are obtained from a computationally
efficient algorithm, i.e. the convex program (3.5).

3.3 Extension to multiple negative examples

One important extension of our contrastive PAC learning framework is to consider multiple negative samples,
which are commonly used in practice and its importance has been broadly studied (Ash et al., 2022; Awasthi
et al., 2022; Lei et al., 2023). That is, suppose the label b = 1, in addition to the anchor example x and
a positive example y, a learner collects k negative examples z1, . . . , zk. Together, these serve as a sample
u := (x, y, z1, . . . , zk, 1). Therefore, the instance space U = X k+2 while the label space remains same as
before. The learning paradigm still follows from Definition 1. More generally, one can think of an instance
as (x, u1, . . . , uk+1) and a label b ∈ {1, . . . , k + 1} that specifies the index among all ui’s that is closest to x.
Since we can always reorder the examples u1, . . . , uk+1 such that the closest example is arranged at the first
place, without loss of generality, we will always assume b = 1 and the example following x is closest, which
we denote as y, and the remaining examples are denoted by z1, . . . , zk. This is also a notation typically seen
in the literature.

Now given a set of contrastive samples S = {(xi, yi, zi1, . . . , zik, bi)}n
i=1 where the samples are independently

drawn from D, we aim to establish PAC guarantees as the case k = 1. For any i, we know by the realizability
assumption that ∥W ∗xi − W ∗yi∥2 ≤

∥∥W ∗xi − W ∗zij

∥∥
2 for all 1 ≤ j ≤ k. Define

Uij = (xi − zij)(xi − zij)⊤ − (xi − yi)(xi − yi)⊤. (3.10)

By Lemma 3, we have ⟨(W ∗)⊤W ∗, Uij⟩ ≥ 0 for all 1 ≤ j ≤ k. This is equivalent to
min1≤j≤k⟨(W ∗)⊤W ∗, Uij⟩ ≥ 0. Thus, a natural empirical risk, based on hinge loss, is as follows:

min
W ∈W

1
n

n∑
i=1

max{0, 1 − min
1≤j≤k

⟨W ⊤W, Uij⟩}. (3.11)

As discussed in the preceding subsection, the above program is non-convex, and we will consider SDP as
convex relaxation. This gives the following program:

min
G∈G

1
n

n∑
i=1

max{0, 1 − min
1≤j≤k

⟨G, Uij⟩}. (3.12)

Consider the function class Q = {qG : (x, y, z1, . . . , zk) 7→ max{0, 1 − min1≤j≤k G · U·j}, G ∈ G}, where
U·j = (x − zj)(x − zj)⊤ − (x − y)(x − y)⊤. Let c := supG∈G,(x,y,z1,...,zk)∈X k+2

∣∣qG(x, y, z1, . . . , zk)
∣∣ and denote

8
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Ĝ a global optimum of (3.12). Write u = (x, y, z1, . . . , zk). Then standard concentration results tell that

Eu∼DqĜ(u) ≤ Eu∼DqG∗(u) + 2R(Q ◦ S) + 5c

√
2 log(8/δ)

n
,

where G∗ = (W ∗)⊤W ∗. Under the contrastive large-margin condition, we have qG∗(u) = 0. Thus, it
remains to bound the empirical Rademacher complexity R(Q ◦ S). To this end, we think of the function
qG ∈ Q as a composition of two functions: qG = q̃ ◦ q̄G, where q̄G(u) = (G · U·1, . . . , G · U·k) ∈ Rk and
q̃(v1, . . . , vk) = max{0, 1 − min1≤j≤k vj}. By Corollary 4 of Maurer (2016), we have

n · R(Q ◦ S) ≤
√

2LEσ sup
G∈G

n∑
i=1

k∑
j=1

σijG · Uij , (3.13)

where L denotes the Lipschitz constant of q̃.

When G = G∗ and X ⊂ {x : ∥x∥2 ≤ κ}, we have shown that the expectation on right-hand side is less
than

√
nk log d · r2

F κ2. Therefore, it remains to estimate L. Observe that q̃ can further be thought of as
q̃(t) = max{0, 1 − t} and t = min1≤j≤k vj . The Lipschitz constant of t with respect to (v1, . . . , vk) is upper
bounded by 1. Thus, L = 1.

Putting together gives

Eu∼DqĜ(u) ≤ 2
√

2r2
F κ2

√
k log d

n
+ 5c

√
2 log(8/δ)

n
(3.14)

when G = G∗. We note that c = 1 + r2
F κ2 by algebraic calculation.

Lastly, similar to the proof of Theorem 10, the above implies PAC guarantee of Ŵ with Ĝ = Ŵ ⊤Ŵ .

4 Conclusion and Open Questions

In this paper, we studied the power of convex relaxations for contrastive PAC learning. We showed that even
for learning linear representations via contrastive learning, the problem is generally intractable, which is in
stark contrast to the classic problem of PAC learning linear models. We then proposed a convex program
based on techniques from semi-definite programming. Under a contrastive large-margin condition, we proved
that the solution to the convex program enjoys PAC guarantees.

This is the first work that establishes PAC guarantees for contrastive learning for arbitrary domain, while the
very recent work is confined to finite domains (and considers a more involved learning scenario). Our convex
relaxation techniques seem suitable for the ℓ2-distance between contrastive samples. An important question
is whether there exists more general approach to dealing with other distance metrics such as the ℓ1-distance.
We expect that this is possible, since ℓ1-norm is closely related to a family of linear functions by introducing
additional variables. Another important question is whether it is possible to learn nonlinear representation
functions, for example, the family of polynomial threshold functions or neural networks. We conjecture that
learning neural networks from contrastive samples is rather challenging, since the optimization landscape for
linear classes is already drastically changed with contrastive samples. On the algorithmic design front, it
appears that one needs to carefully design convex surrogate functions whenever the underlying representation
functions are modified. Does there exist a principled approach that guides the design, and is it necessary to
consider convex surrogate functions for the problem? In the literature of PAC learning halfspaces, there have
been a rich set of algorithmic results showing that one may optimize certain non-convex loss functions whose
stationary point really enjoys PAC guarantees (Diakonikolas et al., 2020; Zhang et al., 2020; Shen, 2021a;
2025). Can we show similar results for contrastive PAC learning? In particular, can we design non-convex
loss functions that may serve as a proxy to (3.1) and that a good stationary point can be efficiently found?
We believe that our work will serve as a first step towards these questions. Lastly, it is known that in practice,
the contrastive examples and labels can both be noisy. Is it possible to develop noise-tolerant algorithms for
contrastive PAC learning, by extending ideas from algorithmic robustness (Diakonikolas & Kane, 2019; Shen
& Zhang, 2021; Shen, 2021b; 2023)?

9
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