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ABSTRACT

In this paper, we develop SE3Set, an SE(3) equivariant hypergraph neural network
architecture tailored for advanced molecular representation learning. Hypergraphs
are not merely an extension of traditional graphs; they are pivotal for modeling
high-order relationships, a capability that conventional equivariant graph-based
methods lack due to their inherent limitations in representing intricate many-body
interactions. To achieve this, we first construct hypergraphs via proposing a new
fragmentation method that considers both chemical and three-dimensional spatial
information of molecular system. We then design SE3Set, which incorporates
equivariance into the hypergragh neural network. This ensures that the learned
molecular representations are invariant to spatial transformations, thereby provid-
ing robustness essential for accurate prediction of molecular properties. SE3Set has
shown performance on par with state-of-the-art (SOTA) models for small molecule
datasets like QM9 and MD17. It excels on the MD22 dataset, achieving a notable
improvement of approximately 20% in accuracy across all molecules, which high-
lights the prevalence of complex many-body interactions in larger molecules. This
exceptional performance of SE3Set across diverse molecular structures underscores
its transformative potential in computational chemistry, offering a route to more
accurate and physically nuanced modeling.

1 INTRODUCTION

Molecular representation (Mathews & Chaffee, 2012; David et al., 2020; Wigh et al., 2022) is pivotal
for cheminformatics (Fourches et al., 2010), impacting the prediction of molecular properties in drug
discovery and material science. Traditional descriptors like fingerprints capture basic structural and
energetic aspects of molecules by considering mainly one- and two-body interactions. However,
they often miss complex electronic correlations and collective behaviors important for understanding
phenomena such as chemical reactivity and protein folding. To address this, advanced methods that
include many-body interactions are crucial for a more comprehensive molecular characterization.
These methods enhance the predictive capabilities of computational models by more accurately
reflecting the intricate dynamics and properties of molecules, which are essential for a deeper
understanding of their functionality and reactivity in cheminformatics.

Graph neural networks (GNNs) (Zhou et al., 2020; Wu et al., 2020) a foundational tool for representing
structured data in molecular sciences molecular sciences with atoms as nodes and chemical bonds
as edges, respectively. GNN models excel in tasks ranging from property prediction to reaction
simulation (Do et al., 2019; Xiong et al., 2021; Reiser et al., 2022). GNNs can capture higher-
order molecular interactions through message passing (Gilmer et al., 2017) but face overfitting
and inefficiency challenges (Godwin et al., 2021; Rusch et al., 2023). Architectural improvements
in GNNs facilitate the modeling of complex interactions, overcoming some limitations of deep
networks (Gasteiger et al., 2019; Schütt et al., 2021; Batzner et al., 2022). Advances demonstrate
the potential of architectural enhancements in GNNs to represent complex interactions (Gasteiger
et al., 2020; 2021; Thölke & De Fabritiis, 2021; Batatia et al., 2022; Musaelian et al., 2023; Wang
et al., 2024), but efficiently integrating many-body interactions into these networks is an ongoing
challenge (Wang et al., 2023).
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To address the complexities of many-body interactions in molecular systems, hypergraphs offer a
compelling alternative to complex GNN architectures. Hypergraphs, with hyperedges connecting
multiple vertices, can naturally represent many-body phenomena like electronic delocalization and
collective vibrations. This allows for a more accurate modeling of molecular intricacies beyond the
limitations of traditional graphs. Integrating hypergraphs with machine learning, particularly through
Hypergraph Neural Networks (HGNNs), is an emerging research area. HGNNs manage the flow of
information across hyperedges, capturing complex multi-atom interactions and enriching molecular
representations. This technique promises to balance model expressiveness with computational
efficiency. By innately encoding many-body interactions, HGNNs stand to significantly advance
cheminformatics, offering a new approach to molecular property prediction and simulation that
resonates with the actual behavior of chemical systems.

In this work, we introduce SE3Set, an innovative approach that enhances traditional GNNs by
exploiting hypergraphs for modeling many-body interactions, while ensuring SE(3) equivariant
representations that remain consistent regardless of molecular orientation. Our key contributions are:

• A new fragmentation method for hypergraph construction that seamlessly integrates 2D
chemical and 3D spatial information, enriching the molecular structure representation.

• The deployment of hypergraph neural networks to capture many-body interactions, providing
a deeper insight into molecular behavior that surpasses conventional pairwise modeling.

• The incorporation of SE(3) equivariance within our hypergraph framework, guaranteeing
orientation-independent molecular representations.

• SE3Set underwent a comprehensive benchmarking process, exhibiting comparable outcomes
to state-of-the-art (SOTA) models on small molecule datasets QM9 and MD17. It demon-
strated exceptional performance on the larger molecule dataset MD22, where higher-order
interactions are more evident, surpassing SOTA models with a significant reduction in mean
absolute errors (MAEs) by an average of roughly 20%. This confirms SE3Set’s efficacy in
capturing the complexity of molecular representations.

These advances establish SE3Set as a formidable tool for molecular representation learning, with
implications for computational chemistry and beyond.

2 RELATED WORKS

2.1 GRAPH NEURAL NETWORKS

Message passing neural networks (MPNNs), a class of graph neural networks, are essential for
learning node features by transmitting information along graph edges, a process crucial for interpreting
structured data like molecules (Gilmer et al., 2017). Equivariant GNNs are especially important
for molecular modeling. They adopt either group representation methods, aligning architectures
to symmetry groups for improved interaction modeling (Thomas et al., 2018; Anderson et al.,
2019; Fuchs et al., 2020; Batzner et al., 2022; Liao & Smidt, 2022; Liao et al., 2023; Musaelian
et al., 2023), or direction-based methods that incorporate spatial information for accurate molecular
representations (Schütt et al., 2017; Kindermans & Müller, 2018; Coors et al., 2018; Gasteiger et al.,
2019; 2020; Schütt et al., 2021; Thölke & De Fabritiis, 2021; Gasteiger et al., 2021; Wang et al.,
2022; Du et al., 2024; Aykent & Xia, 2024; Wang et al., 2024) and have been engineered to handle
intricate up to five-body interactions (Wang et al., 2023).

2.2 HYPERGRAPH NEURAL NETWORKS

Hypergraph Neural Networks (HGNNs) enhance GNNs by incorporating multi-node hyperedges,
better capturing complexity in data from various domains. They advance GNNs’ binary interactions
with methods like clique expansion for compatibility with existing algorithms (Agarwal et al., 2005;
Zhou et al., 2006) and employ tensor techniques for improved hypergraph-based feature learning (Li
et al., 2013; Pearson & Zhang, 2014; Benson et al., 2017; Chien et al., 2021a; Tudisco et al., 2021).
While equivariant HGNNs adeptly handle node permutations, preserving data symmetries (Kim et al.,
2021; 2022a), they often miss 3D spatial transformations, crucial for physical system modeling. In
computational chemistry, hypergraph algorithms simulate complex behaviors and optimize molecules
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through hypergraph grammar (Cui et al., 2023; Tavakoli et al., 2022; Kajino, 2019), providing
multidimensional insights into molecular structures (Nachmani & Wolf, 2020; Chen et al., 2021;
Chen & Schwaller, 2023). Despite their promise, these methods still face hurdles in integrating
spatial information effectively.

2.3 FRAGMENTATION METHODS

Fragmentation methods break down complex molecules for simpler ab initio QM computations of
properties, later combining these for a holistic view (Gordon et al., 2012; Collins & Bettens, 2015).
Leveraging the localized nature of chemical reactions, these techniques aim for scalable algorithms
suitable for large molecule analysis. While instrumental in computational pretraining (Du et al.,
2021; Kim et al., 2022b; Luong & Singh, 2023), they typically neglect the fusion of 2D structural
with 3D spatial data. Hence, we advocate for a refined fragmentation approach that merges chemical
properties with spatial context, potentially advancing hypergraph-based chemical modeling.

3 PRELIMINARIES

3.1 EQUIVARIANCE

Consider a function L that maps inputs from space X to outputs in space Y . L is called G-equivariant
if it preserves the symmetry of a group G across mappings, meaning for each g ∈ G, we have:

L ◦DX (g) = DY(g) ◦ L, (1)

where DX represents the group G’s action on X . This ensures that the function L reflects changes
made to inputs by G in its outputs.

3.2 HYPERGRAPH

Hypergraphs elegantly capture the essence of higher-order interactions among multiple entities,
making them an invaluable tool for representing complex relational data. Let G = (V,E) be a
hypergraph with N vertices and M hyperedges, where V represents a set of nodes and E is a set
of hyperedges. Distinguishing itself from a traditional graph, a hyperedge can encompass multiple
nodes, not limited to two, i.e. each hyperedge e ∈ E is a non-empty subset of V .

3.3 ALLSET

The AllSet framework (Chien et al., 2021b), an advanced HGNN model, addresses heuristic prop-
agation rule limitations in HGNNs by integrating Deep Sets (Zaheer et al., 2017) and Set Trans-
formers (Lee et al., 2019) principles. It uses task-optimized dual multiset functions that maintain
permutation invariance, crucial for hypergraph learning. The update rules in AllSet are:

Z(t+1),v
e,: = fV→E(Ve\v,X(t) ;Z(t),v

e,: , X(t)
v,: ), (2)

X(t+1)
v,: = fE→V(Ev,Z(t+1),v ;X(t)

v,: ). (3)

Here, fV→E and fE→V are the key multiset functions mapping node and hyperedge features. For
example, fV→E(S) = MLP

(∑
s∈S MLP(s)

)
is used in AllDeepSets. The notation Ve,X and Ev,Z

represent multisets of node and hyperedge features, respectively. The AllSet approach updates nodes
and hyperedges in the hypergraph by leveraging their features in conjunction with those of adjacent
hyperedges or nodes, enabling a rich representation of the hypergraph structure. The method could
differentiate node v from its multiset, allowing for sophisticated feature aggregation.

4 METHODS

We introduce the SE3Set model to leverage hypergraph neural networks for capturing complex
molecular interactions, integrating both 2D chemical and 3D spatial structures (Sec. 4.1). It builds
upon the AllSet framework (Chien et al., 2021b) and the Equiformer (Liao & Smidt, 2022). Upcoming
sections will delve into the specifics of molecular fragmentation and the SE3Set architecture.
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Figure 1: Folic acid fragmentation illustrated with CID 135398658 from PubChem. (a) Preprocessing
to identify cleavable bonds for fragmentation. (b) Initial fragments formed using BFS, color-coded
by functional groups (blue), rings (orange), and single atoms (green). (c) Fragments merged to satisfy
atom count criteria, detailed in C. (d) Expansion of fragments shown with directional arrows.
4.1 FRAGMENTATION ALGORITHM

To harness the power of hypergraph neural networks for molecular representations, we need to
map molecules onto hypergraph structures through a refined fragmentation algorithm. Our strategy
intertwines molecular topology and spatial geometry to create hyperedges that capture groups of
atoms, reflecting their functional and spatial characteristics. In crafting this fragmentation approach
for hypergraph-based molecular representation, the methodology must adhere to a set of fundamental
principles:

1. The design should merge topological chemistry with 3D structural data into a unified
hypergraph representation, ensuring hyperedges accurately embody the molecule’s chemical
and spatial properties.

2. Controlling fragment size is vital for the SE3Set model to balance capturing meaning-
ful interactions and computational efficiency. Optimal fragment sizes are key for model
performance and learning capabilities.

3. The fragmentation could only selectively break single bonds and must maintain functional
groups and ring integrity to preserving key chemical information critical for the molecule’s
properties and behavior.

4. Fragment overlap is essential to maintain functional group effects on local charge distribution
and to ensure hyperedge interaction within the SE3Set model for improved molecular
learning.

Before delving deeper into the specifics of our fragmentation method, it’s important to establish a
foundational understanding through key definitions and concepts,
Definition 4.1. The bond order represents the multiplicity or the number of shared electron pairs that
constitute a covalent bond between two atoms.

The bond order matrix B is an N ×N representation of bond strength between atoms in a molecule,
with higher bond order values indicating stronger bonds. This symmetric matrix (Bij = Bji) is
crucial for studying molecular structure and reactivity, capturing bond nuances including delocalized
and resonance bonds in computational chemistry.
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Our fragmentation algorithm improves molecular representations by combining bond order, functional
groups, and substructures, including SMARTS-identified smaller rings and merged adjacent groups.
Overcoming the drawbacks of non-overlapping fragmentation, it uses 3D spatial data and allows
overlaps, preserving local effects for precise charge distribution and enhancing hypergraph neural
network learning of molecular interactions.

Definition 4.2. A molecular fragment, denoted as F, is defined as a specific subset of atoms within
a molecule, characterized by being a cohesive assembly of predefined substructures linked in a
sequential concatenation.

Our fragmentation method meticulously dissects a given molecule into meaningful subsets of atoms,
and this process unfolds through four steps (corresponding to the pipeline in Fig. 1):

1. Pre-processing by analyzing the molecule’s bond order matrix to mask high-order bonds
and those within functional groups or rings, and merging adjacent functional groups for a
streamlined structural representation.

2. Core substructures are delineated from the remaining bonds using a Breadth-First Search
algorithm, establishing the basic units of the molecular framework.

3. These substructures are then aggregated into larger molecular fragments according to
predefined rules that maintain a minimum atom count within each fragment. This step could
be optional.

4. To enhance fragment connectivity, we expand each by incorporating adjacent groups, using
interaction strength metrics based on interatomic distances to guide this process. Here we
set the cutoff value denoted as cw of an interaction strength metrics to intercept the extended
fragment.

Furthermore, step 4 leads to a substantial computational overhead for hypergraph neural networks
when processing larger molecular systems. To enhance the efficiency of our model for such expansive
molecular systems, we introduce a revised strategy for step 4:

4* For each atom i, identify the neighboring atoms Ni that fall within a specified radial cutoff
rc. A fragment F is considered to be adjacent to atom i if there is an overlap of at least one
atom between F and Ni. For ease of reference, the set of fragments adjacent to atom i is
represented as NF

i , which implies that NF
i = {F|F ∩Ni ̸= ∅}.

We designate the application of step 4 as an explicit overlap and the application of step 4* as
an implicit overlap. These approaches introduce nuanced variations in the mathematical expressions
of our model, as reflected in the Eq. 8, Eq. 9, and Eq. 16. For the detailed step-by-step methodology,
please refer to Appendix A.

4.2 SE3SET

Building upon our aforementioned fragmentation algorithm, we now turn to outline the architecture of
SE3Set. SE3Set model, influenced by AllSet (Chien et al., 2021b) and built on the Equiformer (Liao
& Smidt, 2022), incorporates 3D spatial equivariance (proof refers to Appendix E) in our hypergraph
neural network, improving capture of many-body interactions for precise molecular structure repre-
sentation. SE3Set consists of an embedding layer, attention blocks, and an output head, as shown in
Fig. 2 (a).

4.2.1 EMBEDDING

As depicted in Fig. 2 (b), the embedding block generates detailed node and hyperedge features
reflecting molecular structures. Node features blend intrinsic properties with degree embeddings from
connected hyperedges, while hyperedge features aggregate node embeddings and the corresponding
relative position vectors depending on the node on which the hyperedge feature located. SH (Spherical
Harmonic) functions are used to project normalized relative position vectors r⃗ij between node i and
j into the irreducible representations (irreps) feature space with different order l, i.e. SH(r⃗ij) =

Y l
(

r⃗ij
∥r⃗ij∥

)
. The features are also mapped onto same l-order irreps space for SE3 equivariance and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

V2E Module

Layer Norm

Embedding

E2V Module

Output Head

Feed Forward

(a)

LinearLinear Linear

Linear

Rescale

Linear

Linear

Rescale

(b) {1} (c)

Linear Linear

Linear

Attenion Module

Linear

Reshape

LeakyReLU Gate

Linear

LinearSoftmax

Reshape

(d) 

(e) 

Linear

Linear

Linear

Attenion Module

(f) 

Linear LinearGate

(g) 

Linear

Linear

Linear

Linear

Reshape

LeakyReLU Gate

Linear Linear

Softmax

Reshape

Feed Forward

Layer Norm

Feed Forward

Layer Norm Layer Norm

Layer Norm

Layer Norm

Layer Norm

Feed Forward

Figure 2: Overall architecture of SE3Set. (a) SE3Set begins with node and hyperedge embeddings,
cycles through V2E and E2V attention modules for iterative updates, and concludes with normaliza-
tion and a feed-forward block for output. (b) Embedding. Atomic numbers and position vectors are
transformed into initial embeddings for nodes and hyperedges. (c) Attention Block. Merges feature
sets with positional or hyperedge data for feature processing. (d) Feed-Forward Block. Enhances
feature sets through a streamlined network. (e) V2E Module. Utilizes node features and their relative
positions to update hyperedge features. (f) E2V Module. Employs hyperedge features to refresh
node features, using tensor products (left) or summation (right) for updates. Symbols ⊗, ⊕, and ⊙ in
figures denote depth-wise tensor product, summation, and Hadamard multiplication, respectively. hα

i
represents hyperedge features, xi is for node features, superscript n indicates the number of updates,
and r⃗ij is the relative position vector between nodes i and j.
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updated separately. Hyperedges capture nodes’ positional relationships, assigning a distinct feature
hα
i to each node i in hyperedge Fα, reinforcing structural fidelity. Nodes xi integrate hyperedge

information, harmonizing uniqueness with interconnections. Attention mechanisms then refine node
and hyperedge interactions for accurate molecular and structural representation.

4.2.2 EQUIVARIANT HYPERGRAPH ATTENTION BLOCKS

As presented in Fig. 2 (c)-(f), the attention mechanism comprises two essential components: the
Vertex-to-Edge (V2E) and Edge-to-Vertex (E2V) attention blocks, based on the AllSet frame-
work (Chien et al., 2021b). The V2E block refines hyperedge features, while the E2V block updates
node features, both operating with an equivariant hypergraph attention mechanism. To improve
training and enable deeper network structures, we incorporate normalization layers and residual
connections to prevent gradient issues. The attention module’s output passes through a feed forward
block (Fig. 2 (d)), enhancing representation complexity. Node and hyperedge features maintain
equivariance to molecular geometry, preserving data symmetries and the integrity of representations,
thus boosting the model’s expressiveness in capturing complex structural interactions. (The concepts
of irreducible representations and tensor products can be referenced in the Appendix F.)

V2E attention The SE3Set model uses geometrically invariant attention weights aij , derived
from l = 0 irreps acting as scalars under geometric transformations. These weights are computed
from scalar features fij,l=0 using an MLP with LeakyReLU activation and softmax normalization,
reflecting node relationships within the hypergraph. Node and hyperedge features undergo non-linear
transformations represented by tensor products of irreps with quantum number l. The features
combine through direct tensor products (DTP), yielding non-linear values vij (Fig. 2 (c)). Hyperedge
features are updated by aggregating features from connected nodes, utilizing SH and radial basis
functions on hyperedge features. The model calculates initial features fα

ij and V2E attention weights
aαij via MLPs, with non-linear values vαij emerging from similar transformations.

tαij = (Linear(xi) + Linear(xj)) (4)

fα
ij = Linear(tαij ⊗DTP

w(∥r⃗ij∥) SH(r⃗ij)) (5)

aαij = Softmaxj(a⊤LeakyReLU(fα
ij,l=0)) (6)

vαij = Linear(Gate(fα
ij)⊗DTP

w(∥r⃗ij∥) SH(r⃗ij)) (7)

Ultimately, the SE3Set model updates hyperedge features hk
i by accumulating the weighted features of

nodes within the same hyperedge and applying a linear transformation to the aggregated information.
For the explicit overlap fragmentation method,

∆hα
i = Linear

 ∑
j:ni∈Fα∧nj∈Fα

aαijv
α
ij

 (8)

where ni denotes the node with index i and Fα denotes the fragment with index α as each fragment
could be considered as a hyperedge in the hypergraph. Due to the frequent occurrence of a high
number of explicitly overlapping atoms, this scenario commonly results in increased computational
complexity. Consequently, when adopting the implicit overlap approach, we may opt for an equation
of the form:

∆hα
i = Linear

 ∑
j:j∈Fα∧Fα∈NF

i

aαijv
α
ij

 (9)

where NF
i is delineated in step 4* of the implicit overlap method. This characteristic renders it a

more computationally efficient scheme for Vertex-to-Edge (V2E) attention mechanisms. The detailed
architecture of V2E attention block is shown in Fig. 2 (e).

E2V attention Following the V2E attention module, the E2V attention module (Fig. 2 (f)) updates
node features by transforming them with a tensor product of the updated hyperedge feature, followed
by a linear layer. Attention weights are then calculated using softmax-applied, LeakyReLU-activated

7
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features, ensuring node features are refined after hyperedge updates.

fα
i = Linear((Linear(xi)⊗DTP hα

i ) (10)

aαi = Softmaxα(a⊤LeakyReLU(fα
i,l=0)) (11)

These attention weights direct the synthesis of information, culminating in the calculated value:

vαi = Linear(Gate(fα
i )⊗DTP hα

i ). (12)

Furthermore, we propose an alternative method for constructing the E2V attention block as shown in
Fig. 2 (g).

fα
i = Linear(Linear(xi) + Linear(hα

i )) (13)

aαi = Softmaxα(a⊤LeakyReLU(fα
i,l=0)) (14)

vαi = Linear(Gate(fα
i )) (15)

However, practical experiments reveal that the previous method yields superior results, with detailed
findings presented in Sec. 5.3.

Then the node aggregates all the hyperedge features corresponding to itself to update the node feature,

Explicit overlap: ∆xi = Linear

( ∑
α:i∈Fα

aαi v
α
i

)
, (16)

Implicit overlap: ∆xi = Linear

 ∑
α:Fα∈NF

i

aαi v
α
i

 (17)

4.2.3 OUTPUT HEAD

The SE3Set model employs node features to generate predictions, using a feed-forward network to
transform these features into the target label’s irreps dimension. A summation strategy aggregates
node features into a single hypergraph-level representation, which is then processed by a linear layer
to output the model’s final predictions.

5 RESULTS

We tested our equivariant hypergraph neural network on QM9 (Ruddigkeit et al., 2012; Ramakrishnan
et al., 2014), MD17 (Chmiela et al., 2017) (see Appendix G), and MD22 (Chmiela et al., 2023)
to assess its molecular representation learning. QM9 and MD17 gauge small molecule property
prediction, while MD22 evaluates larger systems with complex many-body interactions (Wang et al.,
2023). An ablation study was also conducted to pinpoint the contributions of fragmentation and
architecture to our method’s performance, offering insights into the network’s efficacy and areas
for enhancement. In the Appendix H, we have also provided a detailed analysis of the model’s
complexity.

5.1 QM9

The QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) consists of 134k small organic
molecules calculated at the B3LYP/6-31G(2df, p) level. SE3Set, after training on 110k QM9
molecules and validation on 10k, achieves low mean absolute errors (MAEs) in 12 tasks, performing
on par with leading models, as detailed in Table 1. In small molecular systems, higher-order many-
body interactions are less pronounced, and as a result, SE3Set does not significantly outperform other
state-of-the-art (SOTA) models.

5.2 MD22

Recognizing the prominence of higher-order many-body interactions in larger molecules (Wang
et al., 2023), SE3Set was tested on the comprehensive MD22 dataset (Chmiela et al., 2023). This

8
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Table 1: A comparative analysis was performed to assess the Mean Absolute Errors (MAEs) on the
QM9 dataset when training SE3Set on a configuration comprising 110,000 training samples and
1,000 validation samples. Bolding shows the best model and underlining shows the second best
model and the underlining tilde shows third best model.

UNIT SCHNET DIMENET++ PAINN SPHERENET COMENET ET ALLEGRO VISNET QUINNET EQUIFORMER SE3SET

µ D 0.033 0.030 0.012 0.026 0.0245 0.011 - 0.010 0.771 0.011 0.011
α a3

0 0.235 0.044
::::
0.045 0.046 0.0452 0.059 - 0.041 0.047 0.046

:::::
0.045

HOMO meV 41 25 20 23 23 20 -
:::
17.3 20.4 15 15

LUMO meV 34 20 28 18 20 18 -
:::
14.8 17.6 14 13

GAP meV 63 33 46 32 32 36 - 31.7 28.2
::
30 29

R2 a2
0 0.073 0.331

::::
0.066 0.292 0.259 0.033 - 0.030 0.194 0.251 0.197

ZPVE meV 1.70
::::
1.21 1.28 1.12 1.20 1.84 - 1.56 1.26 1.26 1.40

U0 meV 14 6 5.85 6 6.59 6.15 4.7 4.23 7.6 6.59
:::
5.74

U meV 19 6 5.83 7 6.82 6.38 4.4 4.25 8.4 6.74
:::
5.69

H meV 14 7 5.98 6 6.86 6.16 4.4 4.52 7.8 6.63
:::
5.70

G meV 14 8 7.35 8 7.98 7.62 5.7 5.86 8.5 7.63
:::
6.63

Cv
kcal

mol·K 0.033 0.023 0.024 0.021 0.024 0.026 - 0.023 0.024 0.023 0.025

Table 2: A comparison of Mean Absolute Errors (MAEs) across various benchmarked models.
SE3Set is trained on the five molecules of MD22 dataset with specific number of training/validation.
Bolding shows the best model and underlining shows the second best model. The improvements
column shows the improvement of our model over the previous SOTA model in percentage terms.
The MAEs reflect the precision of energy predictions in units of kcal/mol and forces in units of
kcal/(mol·Å). The results of TorchMD-Net, Allegro, and Equiformer are extracted from Ref. Li et al.
(2024).

MOLECULE # TRAIN/VAL SGDML TORCHMD-NET ALLEGRO MACE EQUIFORMER VISNET QUINNET EQUIFORMER-LSRM VISNET-LSRM SE3SET IMPROVEMENTS

AC-ALA3-NHME 5500/500 ENERGY 0.3902 0.1121 0.1019 0.0620 0.0828 0.0796 0.084 0.0780 0.0654 0.0499 19.5%
FORCE 0.7968 0.1879 0.1068 0.0876 0.0804 0.0972 0.0681 0.0877 0.0902 0.0545 20.0%

DHA 7500/500 ENERGY 1.3117 0.1205 0.1153 0.1317 0.1788 0.1526 0.12 0.0878 0.0873 0.0826 5.4%
FORCE 0.7474 0.1209 0.0732 0.0646 0.0506 0.0668 0.0515 0.0534 0.0598 0.0360 28.9%

STACHYOSE 7500/500 ENERGY 4.0497 0.1393 0.2485 0.1244 0.1404 0.1283 0.23 0.1252 0.1055 0.0762 27.8%
FORCE 0.6744 0.1921 0.0971 0.0876 0.0635 0.0869 0.0543 0.0632 0.0767 0.0424 21.9%

AT-AT 2500/500 ENERGY 0.7235 0.1120 0.1428 0.1093 0.1309 0.1688 0.14 0.1007 0.0772 0.0585 24.2%
FORCE 0.6911 0.2036 0.0952 0.0992 0.0960 0.1070 0.0687 0.0811 0.0781 0.0556 19.1%

AT-AT-CG-CG 1500/500 ENERGY 1.3885 0.2072 0.3933 0.1578 0.1510 0.1995 0.38 0.1335 0.1135 0.1002 11.7%
FORCE 0.7028 0.3259 0.1280 0.1153 0.1252 0.1563 0.1273 0.1065 0.1063 0.0825 22.4%

dataset spans four classes of biomolecules and supramolecules, from a 42-atom peptide to a 370-atom
nanotube, with high-resolution sampling at 400-500 K using the PBE+MBD (Perdew et al., 1996;
Tkatchenko et al., 2012) framework for energy and force computations. Our fragmentation method,
which maintains functional groups and rings, selectively excludes structures like the Buckyball
catcher and Double-walled nanotube from MD22, thus concentrating on the other five molecular
types. We partition the training/test set following QuinNet (Wang et al., 2023). As Table 2 shows,
SE3Set outperforms other SOTA models in these cases, reducing MAEs by an average of 20%,
underscoring its exceptional ability to capture molecular intricacies. Moreover, our results indicate
that incorporating higher-order many-body interactions is crucial for representing the non-local
features of larger molecules within the MD22 dataset.

5.3 ABLATION STUDIES

Figure 3: Ablation studies on the QM9 dataset’s HOMO
task (units: meV). The variable cw represents the threshold
for expansion in the fourth step of fragmentation, guided
by the fragment bond order defined in Eq. 18. The term
BRICS denotes another fragmentation method implemented
in RDKits. Additionally, the E2V summation refers to the
architectural framework specified from Eq. 13 to Eq. 15.

To better understand SE3Set, we con-
duct ablation studies focusing on
fragmentation and model architec-
ture. For explicit overlap fragmen-
tation method, we explore how differ-
ent fragmentation techniques affects
SE3Set’s training and compare with
the non-overlapping BRICS (Degen
et al., 2008; Landrum et al., 2020)
strategy on QM9’s homo energy task.
As Fig. 3 indicates, tests on QM9’s
homo energy task showed SE3Set’s
robustness to cw variations in frag-
mentation method. The results Our
method surpasses BRICS demon-
strates the importance of hyperedge
interaction. Furthermore, we per-
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Table 3: The MAE for energy (unit: kcal/mol) and forces (unit: kcal/mol · Å) on the AT-AT-CG-CG
dataset using 3 layers SE3Set with different cutoff radii (rc) in the implicit overlap method.

IMPLICIT rc(Å) 4.0 5.0 6.0

ENERGY 0.2123 0.1153 0.1103
FORCE 0.1559 0.1019 0.0937

formed ablation studies on the model architecture. Among two design variants in the E2V attention
section, the one using tensor product interactions between nodes and hyperedges proved superior,
emphasizing the value of our tensor product-based mechanism and architecture design in enhancing
molecular property predictions. Additionally, a 6-layer SE3Set model outperformed its 3-layer
counterpart.

Unlike the explicit overlap method, the fragment size of implicit overlap method depends on the
choice of rc. We tests the effect of rc on the model training results on the AT-AT-CG-CG molecule of
the MD22 dataset (Table 3). The SE3Set performs better when using higher rc as it will include more
fragments to generate implicit overlaps. The effect of rc on fragment size is more pronounced for the
implicit method than for the explicit method, but it gives a good performance for different parameters
comparing with the baseline models.

6 CONCLUSION

In conclusion, this study demonstrate the efficacy of SE3Set, a cutting-edge hypergraph neural
network architecture, in the realm of molecular representation learning. By meticulously crafting a
fragmentation method that coalesces two-dimensional chemical knowledge with three-dimensional
spatial information, we establish a robust foundation for constructing hypergraphs that faithfully
capture the complex nature of molecular structures. The SE3Set architecture, drawing inspiration
from the AllSet framework and the Equiformer, adeptly processing these hypergraphs and preserving
the essential invariances and symmetries. SE3Set demonstrates performance comparable to SOTA
models in small molecular systems and significantly outperforms SOTA models in large molecular
systems where higher-order many-body interactions are pronounced. The results of our research
affirm the potential of SE3Set to model high-order many-body interactions, providing a powerful tool
for molecular representation.
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APPENDIX

A DETAILS OF FRAGMENTATION STEPS

Based on the design principles in Sec. 4.1, the detailed step-by-step methodology of explicit overlap
fragmentation method is shown as follows,

1. The pre-processing step begins by analyzing the given molecule through its bond order
matrix, denoted as B. Identify and mask bonds that are part of functional groups or rings,
as well as those with a bond order of Bij ⩾ 2. Functional groups are then identified
using predefined SMARTS patterns for accurate matching. To achieve a more generalized
representation of functional groups, topologically adjacent functional groups are merged into
a single entity. This aggregation allows to focus on specific subfunctional groups that are
of particular interest, simplifying the complexity of the molecular structure for subsequent
analysis.

2. Following the masking of selected bonds, the Breadth-First Search (BFS) algorithm is
employed to reconstruct the substructures, denoted as {S}, from the remaining unmasked
bonds. These groups represent the core structural units of the molecule as discussed at the
outset of this section.

3. Consolidate the previously identified groups {S} into larger molecular fragments, applying
a set of predefined rules to guide the merging process. These rules are meticulously designed
to ensure that each resulting fragment, now denoted as {F}, contains at least a minimum
specified number of atoms. For a comprehensive understanding of the merging criteria, one
can refer to the detailed rules outlined in C.

4. Extend each fragment {F} by incorporating adjacent groups from {S} to enrich the connec-
tivity between molecular fragments, thus intentionally creating regions of overlap among
the fragments. This expansion is controlled by a cutoff threshold, denoted as cw, which
is typically a function based on interatomic distances. the fragment bond order (Lendvay,
2000; Bridgeman & Empson, 2006), symbolized by Wfs, is used to quantitatively assess the
interaction strength between a fragment Fi and an adjacent substructure Sj . This method
reflects the interaction strength based on the proximity of atoms in different fragments,
expressed by the following equation:

Wfs =
∑

i∈Ff ,j∈Ss

exp

(
−
(dij − deij) · deij

(0.25 Å)2

)
, (18)

where dij represents the interatomic distance between atoms i and j, and deij stands for
the equilibrium distance typically expected for such a bond. This equation is utilized to
determine which substructures should be included in the expansion of a fragment, based
on the strength of their interactions as governed by the distance function. Additionally, in
alignment with Pauling’s concept of "chemist’s bond order" (Lendvay, 2000), an alternative
method is introduced to calculate the bond order using a single exponential function,

Wfs =
∑

i∈Ff ,j∈Ss

exp
(
−(dij − deij)

)
, (19)

where Wfs encapsulates the bond order between atoms belonging to a fragment Ff and a
substructure Ss. In this context, dij signifies the actual measured distance between atom i
and atom j. The term deij refers to the theoretical equilibrium covalent bond length, which
is estimated by summing the empirical covalent radii of the two atoms involved, given by:

deij = rzi + rzj , (20)

where rzi is the empirical covalent radius of an atom with atomic number zi. This function
provides a simplified yet effective representation of bond order, allowing us to gauge the
bonding interactions within the molecular structure with respect to the proximity of the
atoms.

The implicit overlap fragmentation method only change the step 4, the details of the changed fourth
step has been spelled out in 4.1.
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B FUNCTIONAL GROUPS SMARTS

In the initial phase of our fragmentation approach, we identify functional groups using
the SMARTS pattern matching language. In Table 4, we present the complete list of
SMARTS patterns utilized, which have been expanded upon from the default set found
within the Open Force Field toolkit (Mobley et al., 2018; Wagner et al., 2024) (ac-
cessible at: https://github.com/openforcefield/openff-fragmenter/blob/
main/openff/fragmenter/data/default-functional-groups.json).

Table 4: SMARTS patterns for functional groups employed in the preprocessing stage of fragmenta-
tion.

FUNCTIONAL GROUPS NAME SMARTS

HYDRAZINE [NX3:1][NX3:2]
HYDRAZONE [NX3:1][NX2:2]
NITRIC OXIDE [N:1]-[O:2]
AMIDE [#7:1][#6:2](=[#8:3]), [NX3:1][CX3:2](=[OX1:3])[NX3:4]
AMIDE NEGATIVE ION [#7:1][#6:2](-[O-:3])
ALDEHYDE [CX3H1:1](=[O:2])[#6:3]
SULFOXIDE [#16X3:1]=[OX1:2], [#16X3+:1][OX1-:2]
SULFONYL [#16X4:1](=[OX1:2])=[OX1:3]
SULFINIC ACID [#16X3:1](=[OX1:2])[OX2H,OX1H0-:3]
SULFONIC ACID [#16X4:1](=[OX1:2])(=[OX1:3])[OX2H,OX1H0-:4]
SULFINAMIDE [#16X4:1](=[OX1:2])(=[OX1:3])([NX3R0:4])
PHOSPHINE OXIDE [PX4:1](=[OX1:2])([#6:3])([#6:4])([#6:5])
PHOSPHONATE [P:1](=[OX1:2])([OX2H,OX1-:3])([OX2H,OX1-:4])
PHOSPHATE [PX4:1](=[OX1:2])([#8:3])([#8:4])([#8:5])
CARBOXYLIC ACID [CX3:1](=[O:2])[OX1H0-,OX2H1:3]
NITRO [NX3+:1](=[O:2])[O-:3], [NX3:1](=[O:2])=[O:3]
ESTER [CX3:1](=[O:2])[OX2H0:3]
TRI-HALIDE [#6:1]([F,CL,I,BR:2])([F,CL,I,BR:3])([F,CL,I,BR:4])
HYDROXYL [#8:1]-[#1:2]

C MERGE PROCESS OF FRAGMENTATION

During the third step of our fragmentation method, we introduce a strategy to enlarge substructures,
ensuring that each initial fragment contains at least nmin atoms, with nmin being a predefined integer.
To maintain permutation invariance for a molecule, we incorporate weights, Wfs, to guide the
sequence of merging. The process is outlined in the pseudocode (Algorithm 1). The calculation
of W is based on either Eq. 18 or Eq. 19. By considering the sum of bond orders to other groups,
we assess each group’s centrality. The groups are then ordered first by the number of atoms they
contain, followed by the summation of their bond orders, ensuring that the fragmentation merge
process is permutation invariant when following this specified sequence. The algorithm then assists
smaller groups in merging with others to achieve a size of at least nmin atoms. Initially, we consider
topologically adjacent groups with the fewest atoms. If a target group lacks topological neighbors, we
proceed to merge based on the bond order from W . We introduce a threshold cis that allows a group
to remain isolated if it is significantly distant from others. It should be noted that isolated groups may
not meet the minimum atom number requirement; however, they could be further expanded in the
subsequent fragmentation step, depending on the chosen thresholds for cis and cw (refer to Sec. 4.1).
Overall, this algorithm ensures a permutation invariant merging process.

D DISTRIBUTION OF FRAGMENTATION DATASET

Different parameters used in the fragmentation process can lead to a variety of hyperedges, which in
turn result in distinct hypergraphs utilized for training our model. To illustrate the variances attributed
to different fragmentation parameters or methods (such as BRICS implemented in RDKit (Degen
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Algorithm 1 Pseudo code of fragmentation merge step.
Input: groups {G}, minimum atoms number nmin, maximum atoms number nmax, Topological
bond order matrix B, isolated threshold cis
m = |{G}|
Isolate groups {GI} = {}
Calculate fragmentation bond order matrix WGiGj .
Sort {G} in descending order based on the following attributes: number of atoms,∑

G′,G′ ̸=G WGG′ .
repeat

Pop last fragment as Gk from {G}
for i = m− 1 to 1 do
a = MAX_INT,merge_idx = −1
if any Bij ⩾ 1, i ∈ Gij ∈ Gk and |Gi| < a and a+ |Gi| ⩽ nmax then

a = |Gi|,merge_idx = i
end if

end for
if merge_idx == −1 then

for i = m− 1 to 1 do
if any WGiGk

⩾ cis and |Gi| < a then
a = |Gi|,merge_idx = −1

end if
end for

end if
if merge_idx ̸= −1 then

Merge Gk to Gmerge_idx
Resort {G} by the same priority and update W .

else
Add {Gk} to {GI}

end if
until |{Gk}| ⩾ nmin

{F} = {G} ∪ {GI}

et al., 2008; Landrum et al., 2020)), we use the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan
et al., 2014) to demonstrate how the data distributions attached to hypergraphs may change.

The impact of adjusting fragmentation parameters on the composition of hyperedges can be observed
in Fig. 4. Altering the expansion threshold cw within a certain range has a minimal effect on fragment
expansion. However, when utilizing the Lendvay bond order (Eq. 18), fragments tend to comprise
fewer atoms compared to when using the Exponential bond order (Eq. 19). This difference is likely
due to the more gradual decline in the exponential function, which results in a greater cumulative
contribution to the weights Wfs.

Our ablation study (Sec. 5.3) also includes a comparison with the BRICS fragmentation method.
Fragments generated by the BRICS method are observed to contain significantly fewer atoms since
this approach does not create overlapping regions between different fragments.

E PROOF OF SE(3) EQUIVARIANCE

The SE3Set consists of the basic modules including linear, depth-wise tensor product, gate activation
and layer normalization. Here we will prove the SE3 equivariance for these modules. As the inputs
of SE3Set are all invariant to translation in 3D Euclidean space, we only need to prove the SO(3)
equivariance.

Let g ∈ SO(3) and the D denotes the group representation of SO(3). Besides, we denote the irreps
feature as f , and f l denotes the kth feature vector in irreducible representations space of SO(3) with l
order.

17
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(a) (b)

(c) (d)

(f) (g)

(e)

(h) (i) (j)

Figure 4: Distribution of fragments in QM9 dataset. (a) Fragment Count Distribution. The distribution
remains consistent regardless of the value of cw or the bond order calculation method employed. (b)
Molecule Size vs. Fragment Count Distribution. Generally, the more atoms molecule has, the more
fragments will generate. It is also invariant for cw or bond order calculation scheme. Average Atom
Count per Fragment Distribution (c) cw = 0.1, (d) cw = 0.05, (e) cw = 0.01 for Lendvay bond order
and (f) cw = 0.4 and (g) cw = 0.2 for exponential bond order, respectively. (h) BRICS Fragment
Count Distribution. (i) BRICS Molecule Size vs. Fragment Count Distribution (j) BRICS Average
Atom Count per Fragment.

Linear Linear module deploys separated linear operations for each l in the irreps feature. For each l,
we consider the output channel f lk. Then we have

f lj = Linear(f l) =
∑
k

wl
kjf

l
k (21)
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where wl
kj denotes the linear combination weight. When acting D(g) at the input f l, we can find that

(f lj)
′ = Linear(D(g)f l) (22)

=
∑
k

wl
kjD(g)f lk (23)

= D(g)
∑
k

wl
kjf

l
k (24)

= D(g)f lj (25)

Therefore, the linear module is SO(3) equivariant.

Depth-wise Tensor-product Tensor product is an equivariant operation for D(g)

D(g)(f lk1
⊗ f lk2

) = (D(g)f lk1
)⊗ (D(g)f lk2

) (26)

The depth-wise tensor product differs from the tensor product only in that one order l vector in out
irreps feature depends only on one order l′ feature, where l′ is equal to or different from l. Hence the
SO(3) equivariance still holds for depth-wise tensor product.

Gate As the l = 0 vector is invariant for D(g), we have

Gate(D(g)f0k ) = Activation(D(g)f0k ) (27)

= Activation(f0k ) (28)

= D(g)Activation(f0k ) (29)

= D(g)Gate(f0k ) (30)

We use the non-linear output from the Activation(D(g)f0k1
) (i.e. Sigmoid in SE3Set) as the weight

which multiplies l > 0 vector to implement the gate function. Thus for l > 0, we also have

Gate(D(g)f lk1
) = Activation(D(g)f0k′)D(g)f lk1

(31)

= Activation(f0k1
)D(g)f lk1

(32)

= D(g)Gate(f lk1
) (33)

So the gate function is SO(3) equivariant for all l vector.

Layer Normalization For l = 0, as it is SO(3) invariant, the general layer normalization is adapted

LN(f0k ) =

(
f0k − µ

RMSC(∥f0∥)

)
γ + β (34)

where C denotes the channel number corresponding and ∥ · ∥ denotes the 2-norm for each channel
vector. µ is the mean value of f0. Learnable weight γ and learnable bias β are also deployed. The
module is SO(3) invariant as f0k is SO(3) invariant. The layer normalization for l > 0 vector has the
following form

LN(f lk) =

(
f lk

RMSC(∥f l∥)

)
γ (35)

We can prove the module is SO(3) equivariant as

LN(D(g)f lk) =

(
D(g)f lk

RMSC(∥D(g)f l∥)

)
γ (36)

=

(
D(g)f lk

RMSC(∥f l∥)

)
γ (37)

= D(g)LN(f lk) (38)

F CONCEPTS OF IRREPS FEATURES AND TENSOR PRODUCT

Irreps features The SE3Set model utilizes the special orthogonal group SO(3) to capture
three-dimensional rotational symmetries in molecular structures. This approach is similar to
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Equiformer (Liao & Smidt, 2022; Liao et al., 2023).It employs irreducible representations (irreps) of
SO(3), parameterized by an integer l, which correspond to spherical harmonics (SH) functions Y m

l .
These functions imbue feature vectors with rotational information, ensuring the model’s equivariance
to rotations and enabling consistent geometric property analysis. This approach is key to the model’s
ability to accurately represent and predict molecular and other rotationally invariant systems.

Tensor product To boost the model’s expressive power, we consider interactions between irrep
features of different angular momenta l through the tensor product, which merges two irreps l1 and l2
into a new irrep with angular momentum l3. This is achieved using Clebsch-Gordan coefficients in
an expansion weighted by wm1,m2

.

f l3
m3

= (f l1
m1

⊗ f l2
m2

)m3

=
∑

m1,m2

wm1,m2
Cl3,m3

l1,m1, l2,m2
f l1
m1

f l2
m2

. (39)

To reduce complexity, a depth-wise tensor product ⊗DTP is adopted from the Equiformer (Liao &
Smidt, 2022; Liao et al., 2023), utilizing internal weights to streamline computations. Input-dependent
tensor product weights are denoted as ⊗DTP

w , ensuring computational efficiency while preserving
equivariance for feature interactions.

G RESULTS OF MD17

The MD17 dataset (Chmiela et al., 2017) features a wide variety of molecular configurations simulated
at 500 K, with high-resolution trajectories and labeled with energies and forces from the PBE+vdW-
TS method (Perdew et al., 1996; Tkatchenko et al., 2012). SE3Set’s performance on this dataset
is shown in Table 5. SE3Set outperforms Equiformer in accuracy, highlighting its refined force
calculation capabilities. In small molecular systems, higher-order many-body interactions are less
pronounced, and as a result, SE3Set does not significantly outperform other state-of-the-art (SOTA)
models.

Table 5: A comparison of Mean Absolute Errors (MAEs) across various benchmarked models.
SE3Set is trained on the MD17 dataset with a configuration of 950 training samples and 50 validation
samples. Bolding shows the best model and underlining shows the second best model and the
underlining tilde shows third best model. The MAEs reflect the precision of energy predictions in
units of kcal/mol and forces in units of kcal/(mol·Å).

SCHNET DIMENET PAINN ET GEMNET NEQUIP (l=3) VISNET QUINNET EQUIFORMER SE3SET

ASPIRIN
ENERGY 0.37 0.204 0.167 0.123 - 0.131 0.116 0.119

:::::
0.122 0.130

FORCE 1.35 0.499 0.338 0.253 0.217 0.184 0.155 0.145 0.152
:::::
0.153

ETHANOL
ENERGY 0.08 0.064 0.064 0.052 - 0.051 0.051 0.050 0.051 0.054
FORCE 0.39 0.230 0.224 0.109 0.085 0.071 0.060 0.060 0.067

:::::
0.062

MALONALDEHYDE
ENERGY 0.13 0.104 0.091 0.077 - 0.076 0.075 0.078 0.074 0.074
FORCE 0.66 0.383 0.319 0.169 0.155 0.129 0.100 0.097 0.125

:::::
0.103

NAPHTHALENE
ENERGY 0.16 0.122 0.116 0.085 - 0.113 0.085

::::
0.101 0.085 0.113

FORCE 0.58 0.215 0.077 0.061 0.051 0.039 0.039 0.039 0.046 0.039

SALICYLIC ACID
ENERGY 0.20 0.134 0.116 0.093 - 0.106 0.092

::::
0.101 0.099 0.108

FORCE 0.85 0.374 0.195 0.129 0.125
:::::
0.090 0.084 0.080

:::::
0.090

:::::
0.090

TOLUENE
ENERGY 0.12 0.102 0.095 0.074 - 0.092 0.074 0.080

:::::
0.085 0.093

FORCE 0.57 0.216 0.094 0.067 0.060
:::::
0.046 0.039 0.039 0.048

:::::
0.046

URACIL
ENERGY 0.14 0.115 0.106 0.095 - 0.104 0.095

::::
0.096 0.099 0.103

FORCE 0.56 0.301 0.139 0.095 0.097 0.076 0.062 0.062 0.076
:::::
0.067

H COMPLEXITY ANALYSIS

The computational complexity mainly depends on V2E module and E2V module.

The V2E module aggregates the information from each atom in one fragment to generate atom-wise
hyperedge feature. Considering the system are split into m fragments and each fragment has ni atoms,
this module includes

∑m
i ni(ni − 1) pair-wise message for attention architecture. Actually, this
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Table 6: The inference speed (unit: iterations/s) of SE3Set with different cw or rc. The tests on MD22
dataset only use the AT-AT-CG-CG subset.

DATASET
EXPLICIT cw IMPLICIT rc

0.1 0.05 0.01 4.0 5.0 6.0

INFERENCE SPEED
QM9 11.60 11.54 11.37 - - -

MD22 (AT-AT-CG-CG) 2.62 2.29 1.68 2.92 2.90 2.87

number depends on the fragment hyperparameter nmin and nmax, in particular for explicit overlap
method, also on cw. For explicit overlap method, this module would have higher complexity than
implicit overlap method because the explicit overlap has more average atoms number in one fragment.

For each atom, the E2V module aggregates all the hyperedge features that an atom possesses. Thus
the calculated pair-wise message number depends on the number of fragments per atom shared,
corresponding to the introduced overlap degrees. Then the computational complexity of explicit
overlap method in this modules depends on the cw for explicit overlap method and rc for implicit
overlap method.

To give a general approximate complexity, we consider a system with N atoms. When using explicit
overlap method, if the system has m fragments with average nexp atoms in one fragment, the V2E
module’s complexity will be O(mn2

exp) according to the previous analysis. For E2V module, the
number of fragments to which each atom belongs on average can be represented as mnexp/N . Thus
the complexity will be O(mnexp) when considering N atoms.

Similarly, for the implicit overlap method, the complexity of V2E module will be O(nFnimpN),
where nF represents the average number of neighbor fragments within cutoff per atom and nimp
denotes the average atoms in one fragment. And the complexity of E2V module is O(nFN).

Compare to the explicit overlap method, the implicit overlap method has lower computational
complexity. As we can approximate that nFnimp ≈ nexp (overlap degree is similar) and determine
mnimp = N (implicit overlap method has same fragment number m but without extra count of atoms
in nimp). On the other hand we can determine mnexp ⩾ N as the explicit overlap will count atoms
more times. Hence the complexity of explicit overlap method has higher complexity than implicit
overlap on V2E Module according to the deduction below

mn2
exp ⩾ Nnexp ≈ nFnimpN (40)

mnexp ≈ mnFnimp ≈ nFN (41)

To better support the analysis, we have tested the inference speed of SE3Set on part of QM9 and
MD22 datasets as shown in Table 6. Larger fragments, with smaller cw, reduce speed, more so in
larger molecules. Speed drops with increased fragment size (smaller cw or larger rc), and the explicit
overlap method is slower than the implicit, leading to our preference for the latter in MD22. This
highlights the need to optimize fragment size for a trade-off between detailed interaction capture and
speed, particularly in big molecular systems. Additionally, the explicit overlap method is slower than
implicit overlap method, which confirms our previous analysis.

Moreover, we have evaluates the inference time with different baseline models. The results in Figure
5 shows SE3Set runs slightly slower than the other models. This is reasonable as we have included
more pairwise node information in our hypergraph. The improvement in our model’s performance
indicates that our model requires further optimization to achieve a better balance between efficiency
and performance.

I TRAINING DETAILS

This section outlines the training specifics, encompassing the fragmentation parameters, SE3Set
hyperparameters, and certain implementation nuances utilized in our experimental setup.

Our dataset construction is founded on PyTorch Geometric (Fey & Lenssen, 2019) augmented with
our fragmentation process (Sec. 4.1). Due to inconsistencies in molecular topology identified through
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Figure 5: Inference speeds of different models on the MD22 dataset in units iteration/s. The average
inference speeds were calculated for each molecule dataset. All tests were performed on a single
Tesla A100 80G. The SE3Set includes 3 layers and different cutoff is set (4 Å and 6 Å) for NeuqIP.
The other models. The other models use parameter configurations that corresponded to the results
reported in their respective studies.

RDKit’s sanitization routine (Landrum et al., 2020), 1,403 data points were excised from the original
dataset. We designated 110,000 data points for the training set and 10,000 for the validation set,
selected at random.

We used an explicit overlap scheme on the QM9 and MD17 datasets because of their relatively small
molecular systems. We implemented two distinct schemes for calculating fragment bond orders,
following either Eq. 18 or Eq. 19. The parameters for fragmentation are detailed below. Given that
the MD17 molecules are relatively small, the merge step in the fragmentation process was not actually
utilized. However, we present the fragmentation parameters here for the sake of completeness.

Besides, we adopt an implicit overlap scheme on the MD22 dataset to reduce computational resource
consumption. The details of cutoff rc introduced in 4* can be found in Table 8.

On QM9 and MD17 dataset, our model was trained using a single Tesla V100 GPU with 32GB of
memory, except for the 6-layer model employing the exponential bond order on QM9 dataset, which
was trained on two Tesla V100 GPUs with 32GB each. For MD22 dataset, our model was trained on
a single Tesla A100 GPU with 80GB of memory.

We selected l = 2 for our irreducible representations (irreps) feature, which includes both node and
hypergraph features. For the radial basis function (RBF), we utilized Gaussian basis functions or
Bessel basis functions for the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) and
exponential basis functions for the MD17 dataset and MD22 dataset (Chmiela et al., 2017). Details
could be found in Table 7 and Table 9.
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Table 7: Hyper-parameters for fragmentation. The expand threshold does not work for models
training on MD22 dataset because they adapt implicit overlap scheme.

BOND ORDER METHODS BOND ORDER BY LENDVAY (18) FRGMENTATION BY EXPONENTIAL (19)

MINIMUM ATOMS NUMBER nmin 2 2
MAXIMUM ATOMS NUMBER nmax 6 6
ISOLATED THRESHOLD (cis) 0.1 0.4
EXPAND THRESHOLD (cw) 0.1 0.2, 0.4

Table 8: Hyper-parameters for step 4* of implicit overlap scheme in MD22 experiments.

MOLECULES AC-ALA3-NHME DHA STACHYOSE AT-AT AT-AT-CG-CG

DISTANCE CUTOFF rc (Å) 5.0 4.0 4.0 6.0 6.0

Table 9: Hyper-parameters for training SE3Set model. In the context of hyperparameter settings for
dimensions, the symbols e and o are used to denote even and odd parity, respectively.

QM9 MD17 MD22
HYPER-PARAMETERS VALUE OR DISCRIPTIONS VALUE OR DISCRIPTIONS VALUE OR DISCRIPTIONS

OPTIMIZER nmin ADAMW ADAMW ADAMW
LEARNING RATE SCHEDULER COSINE COSINE COSINE
WARM UP EPOCHSnmax 5 10 10
MINIMUM LEARNING RATE 1.0× 10−6 1.0× 10−6 1.0× 10−6

BATCH SIZE 32, 128 8 8
NUMBER OF EPOCHS 400 1500 1500
WEIGHT DECAY 5.0× 10−3 1.0× 10−6 1.0× 10−6

DROPOUT RATE 0.1 0.0 0.0
RBF CUTOFF (Å) 42.0 MAX DISTANCE OF USED ATOM PAIRS
NUMBER OF BASIS 128(GAUSSIAN), 8(BESSEL) 32(EXPONENTIAL) 32(EXPONENTIAL)
NUMBER OF BLOCKS 3, 6 3, 6 6
NODE EMBEDDING DIMENSION [(128, 0e), (64, 1o), (32, 2e)]
HYPEREDGE EMBEDDING DIMENSION [(128, 0e), (64, 1o), (32, 2e)]
ATTENTION HEAD DIMENSION [(32, 0e), (16, 1o), (8, 2e)]
FEED FORWARD DIMENSION [(384, 0e), (192, 1o), (96, 2e)]
OUTPUT FEATURE DIMENSION [(512, 0e)]
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