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Abstract

Autoregressive large language models (LLMs)001
pre-trained by next token prediction are inher-002
ently proficient in generative tasks. However,003
their performance on knowledge-driven tasks004
such as factual knowledge querying remains un-005
satisfactory. Knowledge graphs (KGs), as high-006
quality structured knowledge bases, can pro-007
vide reliable knowledge for LLMs, potentially008
compensating for their knowledge deficiencies.009
Aligning LLMs with explicit, structured knowl-010
edge from KGs has been a challenge; previ-011
ous attempts either failed to effectively align012
knowledge representations or compromised the013
generative capabilities of LLMs, leading to less-014
than-optimal outcomes. This paper proposes015
KaLM, a Knowledge-aligned Language Mod-016
eling approach, which fine-tunes autoregres-017
sive LLMs to align with KG knowledge via the018
joint objective of explicit knowledge alignment019
and implicit knowledge alignment. The ex-020
plicit knowledge alignment objective aims to di-021
rectly optimize the knowledge representation of022
LLMs through dual-view knowledge graph con-023
trastive learning. The implicit knowledge align-024
ment objective focuses on incorporating tex-025
tual patterns of knowledge into LLMs through026
triple completion language modeling. Notably,027
our method achieves a significant performance028
boost in evaluations of knowledge-driven tasks,029
specifically embedding-based knowledge graph030
completion and generation-based knowledge031
graph question answering1.032

1 Introduction033

Large language models (LLMs) like PaLM 2 (Anil034

et al., 2023) and GPT-4 (Achiam et al., 2023) have035

recently made remarkable advancements in a wide036

range of natural language processing tasks (Li et al.,037

2022; Su et al., 2019). However, LLMs still face038

challenges in tasks requiring factual or domain-039

specific knowledge, resulting in unsatisfactory per-040

1Our code is available at https://anonymous.4open.
science/r/KaLM-ARR.

formance in knowledge-driven tasks. From the 041

perspective of knowledge representation, LLMs 042

serve as parametric knowledge bases, providing im- 043

plicit, non-deterministic knowledge, while knowl- 044

edge graphs (KGs) function as structured knowl- 045

edge bases, offering explicit, deterministic knowl- 046

edge. KGs, commonly organized as factual knowl- 047

edge triples describing relations between entities, 048

can serve as a reliable knowledge source for LLMs. 049

Aligning LLMs with KG knowledge can enhance 050

the knowledge reasoning capabilities of LLMs and 051

improve their performance on knowledge-driven 052

tasks, such as knowledge graph completion (KGC) 053

and knowledge graph question answering (KGQA). 054

Autoregressive LLMs pre-trained through next 055

token prediction tasks often exhibit limitations in 056

knowledge representation, leading to embeddings 057

that lack diversity and specificity. This limitation 058

becomes evident in tasks that demand distinctive 059

sentence embeddings, such as dense retrieval and 060

semantic search (Muennighoff, 2022; Ma et al., 061

2023). As demonstrated in Figure 1(a), the repre- 062

sentations generated by LLMs tend to be overly 063

homogeneous across different pieces of knowledge, 064

undermining their effectiveness in applications re- 065

quiring fine-grained semantic distinctions. 066

The concept of explicit knowledge alignment 067

is introduced to directly optimize the knowledge 068

representation within language models by devising 069

direct knowledge training objectives. This strategy 070

emerges in response to the observed degradation 071

in knowledge representation within autoencoder- 072

based pre-trained language models (PLMs), a phe- 073

nomenon termed representation anisotropy (Etha- 074

yarajh, 2019). This issue is characterized by the 075

clustering of learned token and sentence embed- 076

dings within a constrained area of the representa- 077

tion space, leading to a lack of distributional uni- 078

formity (Li et al., 2020). While previous efforts 079

to address representation anisotropy have largely 080

concentrated on promoting uniformity among to- 081
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Figure 1: Similarity matrix of knowledge representations of (a) LLaMA and (b) KaLM. The values denote the
cosine similarity between the head-relation embedding and tail embedding. The diagonal elements represent
positive <head-relation, tail> pairs from the same KG triple, which should maintain high similarity (darker color);
off-diagonal elements represent negative <head-relation, tail> pairs from different KG triples, which should have
lower similarity (lighter color). In an ideal setting, knowledge representations should be able to distinguish between
different triples, while maintaining alignment and uniformity of the representation, as shown in Figure 1(b).

ken representations, they often overlook the critical082

alignment of similar sentence representations (Su083

et al., 2021; Li et al., 2020; Su et al., 2022). More084

recent works advocate for integrating KG triples085

and using knowledge graph embedding losses to086

fine-tune PLMs, aiming to bolster their knowledge087

representation abilities (Shen et al., 2022; Wang088

et al., 2022b). Nonetheless, such approaches may089

limit themselves to optimizing at the token level or090

reduce the model to a mere text encoder, thereby091

diminishing its inherent generative capabilities.092

Conversely, implicit knowledge alignment lever-093

ages the pre-training or fine-tuning of language094

models with external knowledge sources, employ-095

ing the vanilla language modeling objective or its096

variations. This approach predominantly preserves097

the next token prediction framework, essentially re-098

taining the native text generation prowess of LLMs.099

In the realm of implicit knowledge alignment, the100

prevalent practice involves the fine-tuning of LLMs101

with KG triples and their textual descriptions, as102

opposed to directly altering the hidden knowl-103

edge representations (Chen et al., 2022; Yao et al.,104

2023). Nevertheless, the efficacy of these meth-105

ods on knowledge graph completion tasks remains106

substantially inferior when compared to strategies107

that directly fine-tune knowledge representations108

(Wang et al., 2022b,a). Intriguing findings from109

(Fu et al., 2023) reveal that fine-tuning PLMs with110

randomly unaligned KG triples can achieve per-111

formance on par with that obtained through fine- 112

tuning with aligned triples in various tasks, includ- 113

ing named entity recognition and relation classifi- 114

cation. Their findings suggest that the hidden states 115

of entities, whether infused with aligned or random 116

knowledge, exhibit remarkable similarity. Conse- 117

quently, existing implicit alignment methods fail to 118

effectively utilize the injected knowledge or accu- 119

rately discern the connection between newly intro- 120

duced knowledge and the model’s inherent knowl- 121

edge, culminating in suboptimal performance. 122

In this paper, we propose KaLM, a Knowledge- 123

aligned Language Modeling approach for aligning 124

LLMs with KG knowledge. Specifically, we use 125

KG triples and their textual descriptions to fine- 126

tune LLMs via the joint objective of explicit knowl- 127

edge alignment and implicit knowledge alignment. 128

The explicit knowledge alignment objective aims 129

to directly optimize the hidden representations of 130

knowledge in LLMs through dual-view knowledge 131

graph contrastive learning. We theoretically prove 132

and empirically show that this objective can facili- 133

tate knowledge representation alignment and alle- 134

viate representation anisotropy. For KG triples, we 135

consider tail entity description and the concatena- 136

tion of head entity description and relation descrip- 137

tion as two distinct views of the same knowledge. 138

The key insight is that: (1) representations of two 139

different views of the same knowledge (i.e., from 140

the same triple) should be pulled together, while (2) 141

2



representations of different knowledge (i.e., from142

different triples) should be pushed apart. The first143

term encourages semantically similar knowledge to144

remain close in the representation space, promoting145

knowledge representation alignment. The second146

term forces dissimilar knowledge to be as far apart147

as possible in the vector space, improving knowl-148

edge representation uniformity and mitigating rep-149

resentation anisotropy. As shown in Figure 1(b),150

our method can obtain the ideal knowledge repre-151

sentations that are both aligned and uniform.152

The implicit knowledge alignment objective fo-153

cuses on incorporating textual patterns of knowl-154

edge into LLMs through triple completion lan-155

guage modeling, which can maintain the gener-156

ative capability of LLMs and boost performance on157

knowledge inference tasks. We constructed a triple158

completion dataset based on the KG triples to fine-159

tune LLMs, improving their instruction-following160

ability and facilitating implicit knowledge align-161

ment. We also show the implicit knowledge align-162

ment objective can further boost knowledge repre-163

sentation performance. This confirms that both ex-164

plicit alignment and implicit alignment are crucial165

for knowledge alignment, as they both essentially166

require a deep understanding of knowledge.167

Our contributions are summarized as follows:168

• We introduce KaLM, a knowledge-aligned169

language modeling approach that aligns au-170

toregressive LLMs with KG knowledge via171

the joint objective of explicit knowledge align-172

ment and implicit knowledge alignment.173

• We theoretically prove and empirically demon-174

strate that the explicit knowledge alignment175

objective achieved through dual-view knowl-176

edge graph contrastive learning can facilitate177

knowledge representation alignment and alle-178

viate the issue of representation anisotropy.179

• The experimental results on knowledge-driven180

tasks demonstrate the effectiveness of KaLM.181

In the embedding-based KGC task, KaLM sig-182

nificantly improves Mean Rank and Hit@10183

metrics compared to previous state-of-the-art184

methods. In the generation-based KGQA task,185

KaLM achieves a notable improvement in an-186

swering accuracy compared to the base LLM.187

2 Related Work188

Our work is closely related to Knowledge Enhance-189

ment for LLMs and Representation Anisotropy of190

Language Models. A more detailed review of re- 191

lated work can be found in Appendix A. 192

Knowledge Enhancement for LLMs Knowl- 193

edge enhancement aims to incorporate factual and 194

domain-specific knowledge into LLMs to address 195

their knowledge deficiencies. This can be divided 196

into retrieval-based augmentation and training- 197

based integration. Retrieval-based knowledge aug- 198

mentation methods leverage external retrieval mod- 199

ules to provide additional knowledge, aiming to 200

improve the knowledge reasoning capability of 201

LLMs (Sun et al., 2023; Jiang et al., 2023). How- 202

ever, this approach may lead to knowledge conflicts 203

(Feng et al., 2023), where knowledge in LLMs 204

and knowledge in the retrieved documents are in- 205

consistent or the retrieved multiple documents are 206

contradictory. Training-based knowledge integra- 207

tion methods involve using KG triple descriptions 208

to pre-train or fine-tune LLMs, aiming to achieve 209

knowledge alignment. These methods can be di- 210

vided into explicit alignment (Wang et al., 2021b; 211

Yasunaga et al., 2022) and implicit alignment (Yao 212

et al., 2023; Zhang et al., 2023) based on whether 213

they directly optimize the knowledge representa- 214

tion. Nevertheless, prior methods have either sacri- 215

ficed the generative capability or lacked effective 216

representation alignment. Our approach enhances 217

the knowledge of LLMs via a unique joint objective 218

of explicit alignment and implicit alignment, im- 219

proving the quality of knowledge representations 220

and generative knowledge reasoning capabilities. 221

Representation Anisotropy of Language Models 222

PLMs have long been plagued by representation 223

anisotropy (Ethayarajh, 2019), where the learned 224

token and sentence embeddings are confined to a 225

narrow cone within the entire representation space. 226

The issue of representation anisotropy not only re- 227

sults in model degradation (Su et al., 2022) but 228

also leads to poor performance on discriminative 229

tasks. Previous work on alleviating representation 230

anisotropy has mainly focused on post-processing 231

techniques such as normalizing flows (Li et al., 232

2020) or whitening operations (Su et al., 2021). Su 233

et al. (2022) propose a contrastive training objective 234

to encourage learning isotropic token representa- 235

tions. However, these methods mainly improve the 236

isotropy of token representations without enhanc- 237

ing the discriminability of sentence representations. 238

Our method improves the token-level and sentence- 239

level representation anisotropy of LLMs through 240

dual-view knowledge graph contrastive learning, 241

and it has rigorous theoretical guarantees. 242
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3 Knowledge-aligned Autoregressive243

Language Modeling244

In this section, we introduce KaLM, a Knowledge-245

aligned Language Modeling approach for aligning246

LLMs with KG knowledge via the joint objective247

of explicit knowledge alignment and implicit knowl-248

edge alignment. The overview is shown in Figure 2.249

3.1 Notations and Preliminaries250

A KG G stores factual knowledge, denoted as G =251

(E ,R, T ,D). E and R are the set of entities and252

relations, respectively. D is the description set of253

all entities and relations. De and Dr are the textual254

description of entity e and relation r, respectively.255

T = {(h, r, t)|h, t ∈ E , r ∈ R} is the triple set. A256

triple (h, r, t) depicts the fact that there is a relation257

r between the head entity h and the tail entity t.258

3.2 Explicit Knowledge Alignment259

For KG triples, the textual description of the tail260

entity and the concatenation of the textual descrip-261

tions of the head entity and relation can be seen as262

two distinct views of the same knowledge. This263

inspires KaLM to align representations of two dis-264

tinct views of the same knowledge (i.e., from the265

same triple), while separating representations of266

different knowledge (i.e., from different triples).267

The LLM, denoted as ELLM , is fine-tuned with268

the dual-view knowledge graph contrastive learn-269

ing loss. The training corpus contains paired textual270

descriptions, {(Dhr,Dt)}Ni=1, where Dt is the tail271

entity description, and Dhr is the concatenation of272

the head entity description and relation description.273

Given a training pair (Dhr,Dt), the same ELLM274

is used to compute the embeddings of Dhr and Dt275

independently. Moreover, we prepend the [bos] to-276

ken to the beginning and append the [eos] token to277

the end of the textual description. The augmented278

input is fed into ELLM , and the hidden representa-279

tion corresponding to the [eos] token from the last280

layer is used as the final embedding of the input.281

ehr = ELLM ([bos]hr ⊕Dhr ⊕ [eos]hr),282

et = ELLM ([bos]t ⊕Dt ⊕ [eos]t),283

where ⊕ is the operation to concatenate two strings284

and Dhr = Dh ⊕Dr. For stable training, we adopt285

“[” as [bos]hr and “]” as [eos]hr, while using “{”286

as [bos]t and “}” as [eos]t.287

We utilize the knowledge graph contrastive learn-288

ing loss to directly optimize the knowledge repre-289

sentation of the LLM by encouraging semantically290

similar knowledge to stay close in the representa- 291

tion space and pushing dissimilar knowledge to be 292

far apart in the representation space. More specifi- 293

cally, we apply the InfoNCE loss with an additive 294

margin over the in-batch negatives to fine-tune the 295

model. The row-direction loss ℓr is calculated as 296

follows for a given positive training pair, and the 297

column-direction loss ℓc is defined similarly. 298

ℓr = − log
e(ϕ(ehr,et)−γ)/τ

e(ϕ(ehr,et)−γ)/τ +
∑N

i=1 e
ϕ(ehr,et′

i
)/τ

,

(1)

299

where N is the negative batch size, τ is the train- 300

able temperature that controls the strength of penal- 301

ties on hard negative samples, ϕ is the cosine sim- 302

ilarity function that measures the plausibility of a 303

triple, and γ is the additive margin that encourages 304

increasing the similarity score of positive pairs. 305

The training objective for explicit knowledge 306

alignment is the sum of the ℓr and the ℓc losses: 307

Lexp =
1

N
∑

(Dhr,Dt)

(ℓr + ℓc)/2. (2) 308

3.3 Implicit Knowledge Alignment 309

The implicit knowledge alignment objective fo- 310

cuses on incorporating textual patterns of knowl- 311

edge into the LLM to prevent catastrophic forget- 312

ting of previous knowledge and maintain its gen- 313

erative capability. We constructed an instruction- 314

tuning dataset based on the KG triple descriptions 315

to fine-tune the model through triple completion 316

language modeling. We also show that the implicit 317

knowledge alignment objective can bring perfor- 318

mance boosts on knowledge representation evalu- 319

ations. This indicates that explicit alignment and 320

implicit alignment are both imperative for effective 321

knowledge alignment, as they both essentially ne- 322

cessitate a profound understanding of knowledge. 323

We follow the recipe of Stanford Alpaca (Taori 324

et al., 2023) and use the provided template to con- 325

struct the instruction-tuning dataset. The instruc- 326

tion passed to the template, abbreviated as inst, 327

is: “Given the head entity and relation, write a tail 328

entity that completes the triple”. The input and 329

output are Dhr and Dt, respectively. The training 330

objective for implicit knowledge alignment is: 331

Limp =
1

M
∑

(Dhr,Dt)

− logP (Dt|inst,Dhr), (3) 332

where M is the instruction-tuning batch size. 333
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Figure 2: The overall framework of KaLM. Up: The explicit knowledge alignment objective (Lexp) aims to directly
optimize the knowledge representation of LLMs via dual-view knowledge graph contrastive learning. Down: The
implicit knowledge alignment objective (Limp) focuses on incorporating textual patterns of knowledge into LLMs
via triple completion language modeling. The final training objective is the weighted average of Lexp and Limp.

3.4 Knowledge-aligned Language Modeling334

The ultimate training objective of our proposed335

KaLM is the weighted average of Lexp and Limp:336

LKaLM = Lexp + λ · Limp, (4)337

where λ is a hyperparameter that adjusts the relative338

weight between them. Notably, this formulation339

allows us to use different batch sizes for explicit340

knowledge alignment (N ) and implicit knowledge341

alignment (M). Previous work has shown that a342

sufficiently large batch size is key to the success343

of contrastive representation learning (Chen et al.,344

2020). With Equation 4, we can significantly in-345

crease the explicit knowledge alignment batch size346

while keeping the implicit knowledge alignment347

batch size fixed to save computational resources.348

4 Theoretical Analysis349

We theoretically prove that the explicit knowledge350

alignment objective implemented through dual-351

view knowledge graph contrastive learning can fa-352

cilitate knowledge representation alignment and353

alleviate the issue of representation anisotropy.354

4.1 Dual-view Contrastive Learning for355

Knowledge Representation Alignment356

The outstanding performance of contrastive repre-357

sentation learning has attracted researchers to ana-358

lyze its underlying reasons for success from a theo-359

retical perspective. Wang and Isola (2020) identify360

alignment and uniformity as two key properties of 361

contrastive learning and propose two quantifiable 362

metrics to measure the quality of representations. 363

We concentrate on understanding the dual-view 364

knowledge graph contrastive learning loss from the 365

knowledge alignment and uniformity perspective. 366

To simplify the notation, we use f to denote ELLM . 367

Alignment computes the expected distance be- 368

tween positive pairs and encourages the learned 369

representations for positive pairs to be similar. Uni- 370

formity evaluates the even distribution of represen- 371

tations and encourages the separation of features 372

from randomly selected negative samples. 373

ℓalign(f ;α) ≜ E
(Dhr,Dt)∼ppos

[∥f(Dhr)− f(Dt)∥α2 ] , 374

ℓuniform(f ; t) ≜ log E
Di,Dj

i.i.d.∼ pdata

[
e−t∥f(Di)−f(Dj)∥22

]
, 375

where ppos denotes the distribution of positive pairs 376

{(Dhr,Dt)}Ni=1 and pdata represents the data dis- 377

tribution of textual descriptions {Di}Ni=1. 378

Since the learned knowledge representations are 379

L2-normalized, we have ϕ(ehr, et) = f(x)⊤f(y). 380

The additive margin γ encourages the model to 381

learn more robust features without affecting the 382

asymptotic analysis, thus we ignore it. For ease of 383

analysis, we reformulate the contrastive learning 384
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objective of Equation 1 and 2 as follows:385

Lexp(f ; τ,N ) ≜ E
(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdata− log
ef(Dhr)

⊤f(Dt)/τ

ef(Dhr)⊤f(Dt)/τ +
N∑
i=1

ef(Dhr)⊤f(Dt
′
i)/τ

 ,

(5)

386

Following Wang and Isola (2020), we analyze387

the asymptotics of the objective in Equation 5.388

Theorem 1 (Asymptotics of Lexp). For tempera-389

ture τ > 0, as the number of negative samples390

N → ∞, the normalized dual-view knowledge391

graph contrastive loss in Equation 5 converges to392

lim
N→∞

Lexp(f ; τ,N )− logN =

− 1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

(6)

393

We have the following conclusions:394

1. By pulling together the representations of two395

different views of the same knowledge, the first396

term of Equation 6 is minimized, and the en-397

coder ELLM is perfectly knowledge-aligned.398

2. Assuming the perfect uniform knowledge en-399

coder ELLM exists, it precisely minimizes the400

second term of Equation 6 by pushing away401

the representations of different knowledge.402

Proof. See Appendix.403

4.2 Alleviation of Representation Anisotropy404

We then prove that the dual-view knowledge graph405

contrastive learning objective can directly alleviate406

representation anisotropy and improve the discrim-407

inability of knowledge representations.408

Let E be the sentence embedding matrix of409

{Di}Ni=1, where the i-th row of E is ei. Following410

Ethayarajh (2019), the sentence-level representa-411

tion anisotropy value of {Di}Ni=1 is defined as:412

anisotropy{D} =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej .

(7)413

We can further derive the following theorem.414

Theorem 2 (Alleviation of Anisotropy). When 415

pdata is uniform over finite samples {Di}Ni=1, the 416

second term of Equation 6 is the upper bound of 417

the sentence-level anisotropy of {Di}Ni=1, i.e., 418

E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]

≥ N − 1

τN
· anisotropy{D} +

1

τN
.

(8) 419

We have the following result: By optimizing the 420

second term of Equation 6, we essentially minimize 421

the upper bound of the sentence-level anisotropy 422

of corpus {Di}Ni=1, thereby directly alleviating the 423

representation anisotropy problem. 424

Proof. See Appendix. 425

5 Experiments 426

In this section, we assess the effectiveness of KaLM 427

in knowledge alignment. The experimental setup 428

is outlined in 5.1. In 5.2 and 5.3, we present results 429

on knowledge graph completion (KGC) and knowl- 430

edge graph question answering (KGQA). In 5.4, we 431

provide further analysis of knowledge representa- 432

tion and present case studies of KGQA generations. 433

5.1 Experimental Setup 434

Datasets. We use WN18RR (Dettmers et al., 2018) 435

and FB15k-237 (Toutanova and Chen, 2015) as the 436

KGs for knowledge alignment training. WN18RR 437

and FB15k-237 are derived from WordNet and 438

Freebase, respectively (Bordes et al., 2013). We use 439

the information provided by KG-BERT (Yao et al., 440

2019) for textual descriptions. Following Wang 441

et al. (2022a), we add an inverse triple (t, r−1, h) 442

for each triple (h, r, t) in the triple set, where r−1 443

is the inverse relation of the original relation r. 444

Model Training. We choose LLaMA-2-7B (Tou- 445

vron et al., 2023) as the base LLM and fine-tune it 446

via the joint objective of explicit knowledge align- 447

ment and implicit knowledge alignment. To save 448

computational resources for parameter-efficient 449

fine-tuning, we use LoRA (Hu et al., 2021) to fine- 450

tune the feed-forward network of the model. 451

Evaluation Details. Experiments mainly focus on 452

two aspects: knowledge representation assessment 453

and knowledge inference evaluation. For knowl- 454

edge representation assessment, we evaluate the 455

embedding-based KGC task and illustrate the alle- 456

viation of representation anisotropy. We report five 457

automated metrics: Mean Rank (MR), Mean Re- 458

ciprocal Rank (MRR), and Hit@k (k ∈ {1, 3, 10}). 459
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Table 1: Embedding-based KGC results on WN18RR and FB15k-237. Baseline results are from their papers.

Method WN18RR FB15k-237
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

structure-based methods
TransE 2300 0.243 0.043 0.441 0.532 323 0.279 0.198 0.376 0.441
DistMult 7000 0.444 0.412 0.470 0.504 512 0.281 0.199 0.301 0.446
RotatE 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
description-based methods (autoencoder PLMs)
KG-BERT 97 0.216 0.041 0.302 0.524 153 - - - 0.420
StAR 51 0.401 0.243 0.491 0.709 117 0.296 0.205 0.322 0.482
C-LMKE 72 0.598 0.480 0.675 0.806 183 0.404 0.324 0.439 0.556
SimKGC - 0.671 0.587 0.731 0.817 - 0.333 0.246 0.362 0.510
description-based methods (autoregressive LLMs)
LLaMA 15969 0.010 0.004 0.010 0.020 5359 0.006 0.002 0.004 0.012
KaLM (Ours) 19 0.554 0.402 0.650 0.848 114 0.299 0.202 0.323 0.502
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Figure 3: Comparison of generative knowledge infer-
ence performance between LLaMA and KaLM. ↑ means
higher is better and ↓ means lower is better.

Hit@k measures the proportion of entities correctly460

ranked in the top k. In the KGC task, we compare461

our method with description-based and structure-462

based methods. Description-based methods in-463

clude KG-BERT (Yao et al., 2019), StAR (Wang464

et al., 2021a), C-LMKE (Wang et al., 2022b), and465

SimKGC (Wang et al., 2022a). Structured-based466

methods include TransE (Bordes et al., 2013), Dist-467

Mult (Yang et al., 2015), and RotatE (Sun et al.,468

2018). For knowledge inference evaluation, we469

evaluate the generation-based KGQA task and ana-470

lyze the PPL metric and MMLU score (Hendrycks471

et al., 2020). We report the prediction accuracy472

over entities, relations, and triples. We also provide473

case studies of KGQA generation results.474

More details about datasets, training, evaluation,475

and ablation studies can be found in the Appendix.476

5.2 Knowledge Representation Assessment477

The embedding-based KGC results are shown in478

Table 1. The base LLaMA failed to accomplish this479

task, with all metrics lagging far behind. On the480

WN18RR dataset, our method surpasses prior meth-481

(a) LLaMA (b) KaLM

Figure 4: Similarity matrix on the Wikitext-103 test set.
From top-left to bottom-right, element (i, j) denotes the
cosine similarity between the i-th and the j-th sentence.

ods by a substantial margin in terms of MR and 482

Hit@10. Other metrics fall slightly short of state- 483

of-the-art methods, yet remain competitive. The 484

performance of KaLM on the FB15k-237 dataset 485

is slightly inferior, but it still achieves the best MR. 486

Previous description-based methods generally per- 487

form poorly on the FB15k-237 dataset, possibly 488

due to the absence of effective textual descriptions. 489

An example relation description from FB15k-237 is 490

“/music/artist/origin”, which is quite vague and ab- 491

stract. SimKGC uses a large batch size through in- 492

tricate negative sampling methods and incorporates 493

neighbor description augmentation and neighbor- 494

based re-ranking techniques. C-LMKE uses self- 495

adversarial negative sampling and utilizes extra 496

entity degree information. These additional tricks 497

enable SimKGC and C-LMKE to achieve higher 498

performance. Using a larger batch size and more 499

techniques can further improve other metrics of 500

KaLM. Overall, the results reveal that KaLM no- 501

tably enhances the quality of knowledge represen- 502

tation, bringing performance boosts in KGC tasks. 503
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Given the head entity and relation, write a tail entity 
that completes the triple: [tail entity], [inverse relation]

head entity
prediction salvinia salviniaceae white goods refrigerator

  

Given the head entity and relation, write a tail entity 
that completes the triple: [head entity], [relation]

tail entity
prediction salvinia salvinia refrigerator white goods

 

Is this true: [head] [relatin] [tail]? Please choose your 
answer from: ''Yes, this is true'' or ''No, this is not true''.

triple
classification

No, this is 
not true.

Yes, this is 
true.

Yes, this is 
true.

Yes, this is 
true.

  

What is the relation between [head entity] and [tail 
entity]? Please choose your answer from: [relation list].

relation
prediction

synset dom-
ain topic of

member 
meronym

instance 
hypernym

synset dom-
ain topic of

  

Prompts with Instruciton and Input Fields Task Name

LLaMA KaLM LLaMA KaLM

Generations for Triple 1: 
<salviniaceae, member 

meronym, salvinia>

Generations for Triple 2: 
<refrigerator, hypernym, 

white goods>

Figure 5: Case studies of LLaMA and KaLM on the KGQA task. Note that the head entity, relation, and tail entity
are denoted by different colors. The mark indicates the correct answer, while signifies an incorrect answer.

5.3 Knowledge Inference Evaluation504

The generation-based KGQA results are depicted in505

Figure 3. The base LLaMA performs poorly in en-506

tity prediction and relation prediction. Our method507

demonstrates a significant performance boost in all508

generation-based KGQA tasks, including head/tail509

entity prediction, relation prediction, and triple clas-510

sification. Furthermore, despite a slight increase in511

perplexity (PPL) scores on Wikitext-103 (Merity512

et al., 2016) test set, our method still shows compet-513

itive performance in the MMLU test. The results514

demonstrate that KaLM achieves effective knowl-515

edge alignment, bringing in significantly improved516

KGQA performance while preserving the original517

generative and knowledge inference capabilities.518

5.4 Visualization of Knowledge519

Representation and Case Studies520

We provide visualization results to illustrate521

knowledge representation improvements. Fig-522

ure 4 shows the sentence similarity matrix of523

LLaMA and KaLM on Wikitext-103 test set. The524

diagonal elements denote the similarity of the same525

sentence, so the values are always 1. From color in-526

tensity, it is evident that KaLM learns more discrim-527

inative sentence representations, while LLaMA as-528

signs high similarity for arbitrary sentences. The529

sentences are organized by celebrities and their ca-530

reers, thus there should also be a high similarity531

between adjacent sentences. This phenomenon is532

reflected in the similarity matrix of KaLM in Fig-533

ure 4(b), manifested in the smaller matrices with534

darker colors along the diagonal. More concretely,535

numerical analysis shows that after training with536

our method, the sentence-level anisotropy value537

significantly decreased from 0.83 to 0.21.538

We present KGQA generation cases to demon- 539

strate knowledge inference enhancements. Fig- 540

ure 5 illustrates concrete examples of KGQA gen- 541

eration results on the WN18RR dataset. We 542

showcase the responses generated by LLaMA and 543

KaLM for four tasks involving head entity predic- 544

tion, relation prediction, tail entity prediction, and 545

triple classification. The prompt templates for each 546

subtask are shown in the second column of Figure 5, 547

where the “inverse relation” is the original relation 548

description with a prefix word “inverse” and the 549

“relation list” consists of all relations concatenated 550

by the symbol “|”. We display the generated an- 551

swers for triple <salviniaceae, member meronym, 552

salvinia> and triple <refrigerator, hypernym, white 553

goods>. The base LLaMA frequently gives wrong 554

answers and tends to identify keywords from the in- 555

put prompts for prediction. In contrast, our method 556

can understand the questions and correctly answer 557

various KGQA tasks in most cases. 558

6 Conclusion 559

In this work, we show that the subpar performance 560

of LLMs on knowledge-driven tasks stems from a 561

lack of effective knowledge alignment. We present 562

KaLM, a novel knowledge-aligned language mod- 563

eling approach for aligning autoregressive LLMs 564

with KG knowledge. Specifically, we identify two 565

imperative objectives to achieve knowledge align- 566

ment: explicit knowledge alignment and implicit 567

knowledge alignment. We conducted comprehen- 568

sive experiments and analyses on embedding-based 569

KGC and generation-based KGQA. Experimental 570

results demonstrate that our method achieves ef- 571

fective knowledge alignment and consistently im- 572

proves performance on knowledge-driven tasks. 573
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Limitations574

There are several future directions to improve this575

work. Firstly, due to the limitation of computa-576

tional resources, we only utilized LLaMA-2-7B as577

the base model to train and evaluate our method.578

Evaluations on larger-scale LLMs, such as the 13B579

and 70B models, can further validate the effective-580

ness of our approach. Secondly, in the current ver-581

sion, we use a simple linear combination of explicit582

alignment loss and implicit alignment loss as the583

final training objective for knowledge-aligned lan-584

guage modeling. Further investigations into various585

forms of loss combinations remain to be explored586

to maximize the utility of knowledge-aligned lan-587

guage modeling. Finally, we can delve into the588

performance of the knowledge representations ob-589

tained from knowledge-aligned language model-590

ing in cross-domain applications such as retrieval-591

augmented generation, to gain broader insights into592

the generalization capabilities of our approach.593
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A More Detailed Review of Related Work786

This work focuses on fine-tuning autoregressive787

LLMs to align with KG knowledge. Our work inter-788

sects with the following research areas: Knowledge789

Enhancement for LLMs, Knowledge Graph Com-790

pletion, Contrastive Representation Learning, and791

Representation Anisotropy of Language Models.792

A.1 Knowledge Enhancement for LLMs793

Knowledge enhancement aims to incorporate fac-794

tual and domain-specific knowledge into LLMs795

to address their knowledge deficiencies. This can796

be divided into retrieval-based knowledge augmen-797

tation and training-based knowledge integration.798

Retrieval-based knowledge augmentation methods799

leverage external retrieval modules to provide addi-800

tional knowledge, aiming to improve the knowl-801

edge reasoning capability of LLMs (Sun et al.,802

2023; Jiang et al., 2023). However, this approach803

may lead to knowledge conflicts (Feng et al., 2023),804

where the knowledge in LLMs and the knowl-805

edge in the retrieved documents are inconsistent or806

the retrieved multiple documents are contradictory.807

Training-based knowledge integration methods in-808

volve using the textual descriptions of KG triples809

to pre-train or fine-tune LLMs, aiming to achieve810

knowledge alignment. These methods can be cate-811

gorized into explicit alignment (Wang et al., 2021b;812

Yasunaga et al., 2022) and implicit alignment (Yao813

et al., 2023; Zhang et al., 2023) based on whether814

they directly optimize the knowledge representa-815

tion. Nevertheless, these methods have either sacri-816

ficed the generative capability or lacked effective817

representation alignment. Our approach enhances818

the knowledge of LLMs via a unique joint objective819

of explicit alignment and implicit alignment, im-820

proving the quality of knowledge representations821

and generative knowledge reasoning capabilities.822

A.2 Knowledge Graph Completion823

Knowledge graph completion (KGC) refers to in-824

ferring missing triples from an incomplete KG,825

which can be used to evaluate the knowledge rea-826

soning ability and knowledge representation quality827

of LLMs. Existing KGC methods can be catego-828

rized into structure-based and description-based.829

Structure-based methods represent entities and re-830

lations as fixed-dimensional vector embeddings831

and use scoring functions to assess the plausibility832

of triples (Bordes et al., 2013; Sun et al., 2019).833

Description-based methods further incorporate the834

textual descriptions of KG triples and leverage pre- 835

trained language models to learn knowledge repre- 836

sentations of entities and relations (Yao et al., 2019; 837

Shen et al., 2022; Wang et al., 2022b). However, 838

structure-based methods fail to generalize to un- 839

seen entities and relations, while description-based 840

methods lack interpretability and exhibit lower effi- 841

ciency when dealing with extremely large KGs. 842

A.3 Contrastive Representation Learning 843

Contrastive learning has demonstrated remarkable 844

success in learning representations across various 845

domains (Chen et al., 2020; Liu et al., 2021; Gunel 846

et al., 2020). The goal is to learn representations 847

that capture shared information between positive 848

pairs while remaining invariant to perturbing noise. 849

The commonly used contrastive learning objectives 850

share a standardized design involving a softmax 851

function over cosine similarity of paired features, 852

with a temperature parameter to control the penalty 853

strength on hard negative samples. Wang and Isola 854

(2020) propose understanding contrastive learning 855

through the lens of alignment and uniformity on the 856

hypersphere. Wang and Liu (2021) show that tem- 857

perature in the contrastive loss controls the strength 858

of penalties over negative samples. 859

A.4 Representation Anisotropy of Language 860

Models 861

PLMs have long been plagued by representation 862

anisotropy (Ethayarajh, 2019), where the learned 863

token and sentence representations are confined to a 864

narrow cone within the entire representation space. 865

The issue of representation anisotropy not only re- 866

sults in model degradation (Su et al., 2022) but also 867

leads to poor performance on discriminative tasks 868

(Muennighoff, 2022). Previous work on alleviat- 869

ing representation anisotropy has mainly focused 870

on post-processing techniques such as normalizing 871

flows (Li et al., 2020) or whitening operations (Su 872

et al., 2021) to obtain isotropic representations. Su 873

et al. (2022) propose a contrastive training objective 874

to encourage learning isotropic token representa- 875

tions. However, these methods mainly improve the 876

isotropy of token representations without enhanc- 877

ing the discriminability of sentence representations. 878

Our method improves the token-level and sentence- 879

level representation anisotropy of LLMs through 880

dual-view knowledge graph contrastive learning, 881

and it has rigorous theoretical guarantees. 882
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B Proofs for Theoretical Analysis883

In this section, we present proofs for theorems in884

Sections 4.1 and 4.2 of the main paper.885

B.1 Proof of Theorem 1 in Section 4.1886

Recall the reformulated dual-view knowledge887

graph contrastive learning objective (Equation 5):888

Lexp(f ; τ,N ) ≜ E
(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdata− log
ef(Dhr)

⊤f(Dt)/τ

ef(Dhr)⊤f(Dt)/τ +
N∑
i=1

ef(Dhr)⊤f(Dt
′
i)/τ

 .

889

From the symmetry of p, we can derive:890

Lexp(f ; τ,N ) =

E
(Dhr,Dt)∼ppos

[
−f(Dhr)

⊤f(Dt)/τ
]
+ E

(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdata[
log

(
ef(Dhr)

⊤f(Dt)/τ +

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

)]
.

891

Note that we can have the following limits almost892

surely by the strong law of large numbers (SLLN):893

lim
N→∞

log

ef(Dhr)
⊤f(Dt)/τ

N
+

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

N


= log E

D−
i ∼pdata

f(D−
i )

⊤f(Di)/τ.

894

Then we can derive the following limits:895

lim
N→∞

Lexp(f ; τ,N )− logN

= E
(Dhr,Dt)∼ppos

[
−f(Dhr)

⊤f(Dt)/τ
]

+ lim
N→∞

E
(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdatalog
ef(Dhr)

⊤f(Dt)/τ

N
+

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

N




= E
(Dhr,Dt)∼ppos

[
−f(Dhr)

⊤f(Dt)/τ
]

896

897

+ E

 lim
N→∞

log

ef(Dhr)
⊤f(Dt)/τ

N
+

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

N




= −1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

898

We now finish the proof of Theorem 1. 899

lim
N→∞

Lexp(f ; τ,N )− logN =

− 1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

900

B.2 Proof of Theorem 2 in Section 4.2 901

Recall the asymptotics of the explicit knowledge 902

alignment objective when the number of negative 903

samples approaches infinity (Equation 6): 904

lim
N→∞

Lexp(f ; τ,N )− logN =

− 1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

905

Recall the definition of sentence-level anisotropy 906

value of corpus {Di}Ni=1 (Equation 7): 907

anisotropy{D} =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej . 908

We can further derive the inequality below from the 909

second term of Equation 6 with Jensen’s inequality 910

when pdata is uniform over finite samples {Di}Ni=1: 911
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E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]

=
1

N

N∑
i=1

log

 1

N

N∑
j=1

ee
⊤
i ej/τ


≥ 1

τN2

N∑
i=1

N∑
j=1

e⊤i ej

=
1

τN2

 N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej +N


=

N − 1

τN
· 1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej +
1

τN

=
N − 1

τN
· anisotropy{D} +

1

τN
.

912

We now finish the proof of Theorem 2.913

E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]

≥ N − 1

τN
· anisotropy{D} +

1

τN
.
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C Further Details about Implementation915

and Experimental Setup916

C.1 Dataset Details917

WN18RR and FB15k-237 are commonly used KGs918

derived from WordNet and Freebase, respectively919

(Bordes et al., 2013). They have been carefully920

constructed to prevent test set leakage by removing921

inverse relations. We use these datasets for training922

and evaluation. The statistics are shown in Table 2.923

Table 2: Statistics of the datasets.

Dataset #Entity #Relation #Train #Valid #Test

WN18RR 40, 943 11 86, 835 3, 034 3, 134
FB15k-237 14, 541 237 272, 115 17, 535 20, 466

C.2 KaLM Implementation Details924

We choose LLaMA-2-7B as the base LLM and fine-925

tune it through the training objective in Equation 4.926

We use varying batch sizes for explicit knowledge927

alignment and implicit knowledge alignment. For928

WN18RR, we use a batch size of 24 for explicit929

alignment and 4 for implicit alignment. For FB15k-930

237, the batch sizes are 40 for explicit alignment931

and 6 for implicit alignment. To save computing932

resources for parameter-efficient fine-tuning, we 933

use the LoRA (Hu et al., 2021) method to fine-tune 934

the gate_proj, up_proj, and down_proj modules 935

in the feed-forward network of the model. We 936

conducted all training on NVIDIA 3090 × 4 GPUs. 937

The hyper-parameters utilized for training KaLM 938

are enumerated in Table 3. 939

Table 3: Hyper-parameters for training KaLM.

Hyper-parameters WN18RR FB15k-237

epochs 20 10
max-description-length 50 50

max-language-modeling-length 256 256
explicit-alignment-batch-size 24 40
implicit-alignment-batch-size 4 6

lora-module ffn ffn
lora-alpha 16.0 16.0

lora-drouout 0.05 0.05
lora-rank 8 8

learning-rate 1e-4 1e-4
LR-sheduler-type cosine cosine

weight-decay 0.001 0.001
gradient-checkpointing True True

optimizer AdamW AdamW
AdamW-beta1 0.9 0.9
AdamW-beta2 0.999 0.999

bf16 True True

C.3 More Details about Evaluations 940

For the embedding-based KGC task, we report five 941

automated metrics: Mean Rank (MR), Mean Re- 942

ciprocal Rank (MRR), and Hit@k (k ∈ {1, 3, 10}). 943

MR is the mean rank of all test triplets and MRR de- 944

notes the average reciprocal rank of all test triplets. 945

Hit@k measures the proportion of entities correctly 946

ranked in the top k. Following previous work, our 947

method is evaluated under the filtering setting (Bor- 948

des et al., 2013), where the scores of all true triples 949

in the training, validation, and testing set are ig- 950

nored. For the generation-based KGQA task, we 951

report the prediction accuracy over head entities, 952

tail entities, relations, and relation classifications. 953

D Addition Experimental Results 954

In this section, we provide more experimental re- 955

sults and present concrete ablation studies. 956

D.1 More Visualizations on Knowledge 957

Representation 958

We present more knowledge representation results 959

to demonstrate the effectiveness of KaLM in knowl- 960

edge alignment. Figure 6 displays the sentence sim- 961

ilarity matrix of several similar entity descriptions 962
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Figure 6: Similarity matrix of selected similar entity descriptions from the WN8RR dataset.

Entity Name Entity Desctription

unseeable unseeable, impossible or nearly impossible to see; imperceptible by the eye; "the invisible 
man"; "invisible rays"; "an invisible hinge"; "invisible mending"

unperceivable unperceivable, impossible or difficult to perceive by the mind or senses; "an imperceptible 
drop in temperature"; "an imperceptible nod"; "color is unperceivable to the touch"

sound sound, financially secure and safe; "sound investments"; "a sound economy"

healthy healthy, having or indicating good health in body or mind; free from infirmity or disease; 
"a rosy healthy baby"; "staying fit and healthy"

same same, closely similar or comparable in kind or quality or quantity or degree; "curtains the 
same color as the walls"; "mother and son have the same blue eyes"

equal equal, having the same quantity, value, or measure as another; "on equal terms"; "all men 
are equal before the law"

untrusty untrusty, not worthy of trust or belief; "an untrustworthy person"
unfaithful unfaithful, not true to duty or obligation or promises; "an unfaithful lover"

maintain maintain, keep in a certain state, position, or activity; e.g., "keep clean"; "hold in place"; 
"She always held herself as a lady"; "The students keep me on my toes"

sustain sustain, lengthen or extend in duration or space; "We sustained the diplomatic negotiations 
as long as possible"; "prolong the treatment of the patient"; "keep up the good work"

Figure 7: Selected entities and their corresponding textual descriptions.

from the WN8RR dataset. Detailed information963

about entity names and descriptions can be found964

in Figure 7. It is evident that KaLM can obtain965

more distinguishable knowledge representations,966

where the similarity between related entities (diag-967

onal elements) is high, while the similarity between968

unrelated entities (off-diagonal elements) is low.969

D.2 Detailed analysis of Representation970

Anisotropy971

We further analyze the sentence-level representa-972

tion anisotropy on the Wikitext-103 test set using973

model checkpoints trained on the WN18RR dataset.974

The sentence-level anisotropy value for a given975

corpus {Di}Ni=1 is defined in Equation 7, where a976

lower anisotropy value indicates better discrimina- 977

tive characteristics of sentence representations. 978

Figure 8 plots the anisotropy value over different 979

layers for LLaMA and KaLM. We can observe 980

that the anisotropy value of LLaMA consistently 981

remains at a relatively high level, suggesting that 982

the base LLM suffers from severe representation 983

anisotropy issues. In contrast, our proposed KaLM 984

notably mitigates this issue, with the anisotropy 985

values decreasing gradually as the depth of the 986

model increases, and dropping significantly from 987

0.5 to 0.2 at the output layer. The anisotropy values 988

of the last layer for LLaMA and KaLM show that 989

after training with our method, the sentence-level 990
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Figure 8: layer-wise analysis of anisotropy. The ver-
tical axis represents the sentence-level representation
anisotropy value on the Wikitext-103 test set, while the
horizontal axis denotes the number of model layers.
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Figure 9: epoch-wise analysis of anisotropy. The ver-
tical axis represents the sentence-level representation
anisotropy value on the Wikitext-103 test set, while the
horizontal axis denotes the number of training epochs.

anisotropy value significantly decreased from 0.83991

to 0.21. The results indicate that our method can992

effectively reduce the anisotropy of representations993

across layers in LLMs, resulting in a significant994

improvement in knowledge representation.995

Figure 9 analyzes the changes in anisotropy val-996

ues during the model training process. The results997

show that the anisotropy values decrease rapidly af-998

ter a few epochs of training and eventually stabilize999

at a low level. We assume that the initial epochs of1000

training have completed the preliminary alignment1001

of knowledge representation, while the subsequent1002

training epochs mainly focus on integrating explicit1003

and implicit representations.1004

D.3 Ablation Studies1005

In this section, we ablate the settings that led to the1006

design of our final model, including loss weights,1007

fine-tuning modules, and training epochs.1008

In Table 4, we train the model using different1009

loss weights (i.e., the λ parameter in Equation 4)1010

and analyze its performance on the KGC task. Note1011

that this experiment is conducted solely for ablation1012

analysis, thus only 10 training epochs are used. Ex-1013

perimental results reveal that incorporating the im-1014

plicit knowledge alignment objective (i.e., λ > 0)1015

generally leads to better performance in KGC, indi-1016

cating further improvement in knowledge represen-1017

tation. The best performance in KGC is achieved1018

when λ = 0.1. The results confirm that both ex-1019

plicit alignment and implicit alignment are crucial1020

for knowledge alignment, as they both essentially1021

require a deep understanding of knowledge.1022

In Table 5, we fine-tune different modules of the1023

Table 4: KGC results with different λ in Equation 4.

Method WN18RR
MR MRR H@1 H@3 H@10

KaLM (λ = 0) 21.2 0.512 0.355 0.611 0.815
KaLM (λ = 0.01) 19.8 0.510 0.352 0.604 0.818
KaLM (λ = 0.1) 20.1 0.517 0.359 0.615 0.825
KaLM (λ = 1.0) 21.6 0.500 0.336 0.596 0.806

model using the LoRA (Hu et al., 2021) method and 1024

analyze their performance on KGC tasks and PPL 1025

evaluations. Note that this experiment is conducted 1026

solely for ablation analysis, hence only 10 epochs 1027

of training were performed. “att” indicates fine- 1028

tuning only the attention module, “ffn” indicates 1029

fine-tuning only the feed-forward network, and “att- 1030

ffn” indicates fine-tuning both the attention module 1031

and the feed-forward network simultaneously. The 1032

results show that fine-tuning with the “att-ffn” ap- 1033

proach achieves the best KGC performance, but it 1034

also leads to higher PPL values, suggesting that the 1035

model’s generation capability may be significantly 1036

compromised. Therefore, as a compromise, we 1037

choose the “ffn” fine-tuning approach, maintaining 1038

moderate knowledge representation performance 1039

while preserving the original generation capability. 1040

Table 5: KGC results and PPL evaluation results when
fine-tuning different network modules with LoRA.

Method WN18RR PPLMR MRR H@1 H@3 H@10
KaLM (att) 21.9 0.47.5 0.331 0.580 0.784 5.03
KaLM (ffn) 20.1 0.517 0.359 0.615 0.825 4.96
KaLM (att-ffn) 19.5 0.525 0.371 0.619 0.831 5.07

In Table 6, we fine-tune the model using differ- 1041
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ent numbers of training epochs and analyze their1042

performance on KGC tasks. This experiment is1043

mainly conducted to investigate whether additional1044

training epochs can lead to further improvement1045

in knowledge representations. The experimental1046

results show that using more training epochs can1047

continuously improve the performance of KaLM on1048

the KGC task, resulting in higher MRR and Hit@k1049

metrics. However, this also comes with more com-1050

putational resource consumption. Therefore, we1051

opted for a moderate number of training epochs.1052

Table 6: KGC results with different training epochs.

Method WN18RR
MR MRR H@1 H@3 H@10

KaLM (epoch=10) 20.1 0.517 0.359 0.615 0.825
KaLM (epoch=20) 19.6 0.554 0.402 0.650 0.848
KaLM (epoch=30) 21.9 0.576 0.427 0.673 0.854
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