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ABSTRACT

We present a unified pretraining framework to tackle different sub-tasks of human
motion analysis, including 3D pose estimation, skeleton-based action recognition,
and mesh recovery. The proposed framework is capable of utilizing all kinds of
human motion data resources, including motion capture data and in-the-wild videos.
During pretraining, the pretext task requires the motion encoder to recover the
underlying 3D motion from noisy partial 2D observations. The pretrained motion
representation thus acquires geometric, kinematic, and physical knowledge about
human motion and therefore can be easily transferred to multiple downstream tasks.
We implement the motion encoder with a novel Dual-stream Spatio-temporal
Transformer (DSTformer) neural network. It could capture long-range spatio-
temporal relationships among the skeletal joints comprehensively and adaptively,
exemplified by the lowest 3D pose estimation error so far when trained from scratch.
More importantly, the proposed framework achieves state-of-the-art performance
on all three downstream tasks by simply finetuning the pretrained motion encoder
with 1-2 linear layers, which demonstrates the versatility of the learned motion
representations. Code and pretrained models will be publicly available.

1 INTRODUCTION

Perceiving and understanding human activities have long been a core pursuit of machine intelligence.
To this end, researchers define various sub-tasks to abstract semantic representations from videos,
e.g. skeleton keypoints (Cao et al., 2017; Güler et al., 2018), action labels (Liu et al., 2019; Yan
et al., 2018), and surface meshes (Loper et al., 2015; Kocabas et al., 2020). While existing studies
have made significant progress in each of the sub-tasks, they tend to confine and model the problems
in a disjoint manner. For example, Graph Convolutional Networks (GCN) have been applied to
modeling spatio-temporal relationship of human joints in both 3D pose estimation (Ci et al., 2019;
Cai et al., 2019; Wang et al., 2020) and action recognition (Yan et al., 2018; Shi et al., 2019), but
their connections are barely explored. Intuitively, these models should all have learned to capture
typical human motion patterns despite being designed for different problems. Nonetheless, current
methods fail to mine and utilize such commonalities across the sub-tasks.

One major obstacle to unifying the sub-tasks of human motion analysis is data resource heterogeneity.
Mocap systems (Ionescu et al., 2014; Mahmood et al., 2019) offer high-fidelity 3D motion with
markers and sensors, but the appearances of captured videos are usually constrained to simple indoor
scenes. Action recognition datasets provide annotations of the action semantics, but they either
contain no human pose labels (Shao et al., 2020; Carreira & Zisserman, 2017) or feature limited
motion of daily activities (Liu et al., 2017a; Shahroudy et al., 2016; Liu et al., 2019). In-the-wild
human videos are massively accessible with diverse appearance and motion, but acquiring precise 2D
pose annotations needs non-trivial efforts (Andriluka et al., 2018), and getting ground-truth (GT) 3D
joint locations is almost impossible. Consequently, existing studies basically focus on one specific
sub-task using an isolated type of motion data.

In this paper, we introduce a new framework for human motion analysis across various sub-tasks,
as illustrated in Figure 1. It consists of a unified pretraining stage and a task-specific finetuning
stage, motivated by the recent successful practices in natural language processing (Devlin et al.,
2019; Raffel et al., 2020; Brown et al., 2020) and computer vision (He et al., 2022; Bao et al., 2022).
During pretraining, a motion encoder is trained to recover 3D human motion from corrupted 2D
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Figure 1: Framework overview. The proposed framework consists of two stages. During the
pretraining stage, we extract the 2D skeleton sequences from a variety of motion data sources.
We then corrupt the 2D skeletons by applying random masks and noises, from which the motion
encoder is trained to recover the 3D motion. At the finetuning stage, we adapt the learned motion
representations to different downstream tasks by jointly optimizing the pretrained motion encoder
and a few linear layers.

skeleton sequences, which could incorporate different kinds of human motion data sources. This
challenging pretext task intrinsically requires the motion encoder to i) infer the underlying 3D
human structures from its temporal movements; ii) recover the erroneous and missing observations.
In this way, the motion encoder captures the human motion commonsense such as joint linkages,
anatomical constraints, and temporal dynamics. In practice, we propose Dual-stream Spatio-temporal
Transformer (DSTformer) as the motion encoder to capture the long-range relationship among skeleton
keypoints. We suppose that the motion representations learned from large-scale and diversified data
resources could be shared by all the relevant downstream tasks and benefit their performance.
Therefore, for each downstream task, we adapt the pretrained motion representations with a simple
regression head using task-specific training data and supervisory signals.

In summary, the contributions of this work are three-fold: 1) We propose a unified pretraining method
to leverage the large-scale yet heterogeneous human motion sources and learn generalizable motion
representations. Our approach could take advantage of the precision of 3D mocap data and the
diversity of in-the-wild RGB videos at the same time. 2) We design a dual-stream Transformer
network with cascaded spatio-temporal self-attention blocks that serves as a general backbone for
human motion modeling. 3) The proposed unified pretraining approach empowers a versatile human
motion representation, which could be transferred to multiple downstream tasks even with scarce
labeled data. Without bells and whistles, our unified framework outperforms the state-of-the-art
methods on 3D pose estimation, skeleton-based action recognition, and mesh recovery, respectively.

2 RELATED WORK

Learning Human Motion Representations. Early works formulate human motion with Hidden
Markov Models (Trabelsi et al., 2013; Lehrmann et al., 2014) and graphical models (Song et al.,
2001; Krüger et al., 2017). Kanazawa et al. (2019) design a temporal encoder and a hallucinator to
learn representations of 3D human dynamics. Zhang et al. (2019) predict future 3D dynamics in a
self-supervised manner. Sun et al. (2021) further incorporate action labels with an action memory
bank. From the action recognition perspective, a variety of pretext tasks are designed to learn a motion
representation, including future prediction (Su et al., 2020), jigsaw puzzle (Lin et al., 2020), skeleton-
contrastive (Thoker et al., 2021), speed change (Su et al., 2021), cross-view consistency (Linguo
et al., 2021), and contrast-reconstruction (Wang et al., 2021). Similar techniques are also used in
tasks like motion assessment (Nekoui & Cheng, 2021) and motion retargeting (Zhu et al., 2022).
These methods leverage homogeneous motion data, design corresponding pretext tasks, and apply
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them to a specific downstream task. In this work, we propose a unified pretrain-finetune framework to
incorporate heterogeneous data resources and demonstrate its versatility in various downstream tasks.

3D Human Pose Estimation. The 3D human pose estimation methods can be divided into two
categories. The first is to estimate 3D poses with CNN directly from images (Sun et al., 2018; Moon
et al., 2019; Zhou et al., 2019a). One limitation of these approaches is that there is a trade-off between
3D pose precision and appearance diversity under current data collection techniques. The second
category is to extract the 2D pose first, then lift the estimated 2D pose to 3D with a separate neural
network. The lifting can be achieved via Fully Connected Network (Martinez et al., 2017), Temporal
Convolutional Network (TCN) (Pavllo et al., 2019; Cheng et al., 2020b), GCN (Ci et al., 2019; Cai
et al., 2019; Wang et al., 2020), and Transformer (Zheng et al., 2021; Li et al., 2022; Zhang et al.,
2022). Our framework is built upon the second category as we use the proposed DSTformer to
accomplish the 2D-to-3D lifting pretext task.

Skeleton-based Action Recognition. Early works (Yao et al., 2012; Wang et al., 2013; Luvizon et al.,
2018) point out the intrinsic relationship between human pose estimation and action recognition.
Towards modeling the spatio-temporal relationship among human joints, previous studies employ
LSTM (Song et al., 2017; Zhu et al., 2016) and GCN (Yan et al., 2018; Li et al., 2019; Shi et al., 2019;
Liu et al., 2020b; Cheng et al., 2020a). Most recently, PoseConv3D (Duan et al., 2022b) proposes
to apply 3D-CNN on the stacked 2D joint heatmaps and achieves improved results. In addition to
the fully-supervised action recognition task, NTU-RGB+D-120 (Liu et al., 2019) brings attention
to the challenging one-shot action recognition problem. To this end, SL-DML (Memmesheimer
et al., 2021) applies deep metric learning to multi-modal signals. Sabater et al. (2021) explores
one-shot recognition in therapy scenarios with TCN. We demonstrate that the pretrained motion
representations could generalize well to action recognition tasks, and the pretrain-finetune framework
is a suitable solution for the one-shot challenges.

Human Mesh Recovery. Based on the parametric human models such as SMPL (Loper et al., 2015),
many research works (Kanazawa et al., 2018; Xu et al., 2019; Moon & Lee, 2020; Zhang et al.,
2021) focus on regressing the human mesh from a single image. Despite their promising per-frame
results, these methods yield jittery and unstable results (Kocabas et al., 2020) when applied to videos.
Several works (Sun et al., 2019b; Kanazawa et al., 2019; Kocabas et al., 2020; Choi et al., 2021)
take video clips as input and produce smoother results by exploiting the temporal cues. Another
common problem is that paired images and GT meshes are mostly captured in constrained scenarios,
which limits the generalization ability of the above methods. To that end, Pose2Mesh (Choi et al.,
2020) proposes to first extract 2D skeletons using an off-the-shelf pose estimator, then lift them to 3D
mesh vertices. We adopt the 2D skeletons as the intermediate representation and further extend them
to video inputs, which reduces the ambiguity and could further benefit from our pretrained motion
representations.

3 METHOD

3.1 OVERVIEW

As discussed in Section 1, our approach consists of two stages, namely unified pretraining and
task-specific finetuning. In the first stage, we train a motion encoder to complete the 2D-to-3D lifting
task, where we use the proposed DSTformer as the backbone. In the second stage, we finetune the
pretrained motion encoder and a few linear layers on the downstream tasks. We use 2D skeleton
sequences as input for both pretraining and finetuning because they could be reliably extracted from
all kinds of motion sources (Bogo et al., 2016; Mahmood et al., 2019; Andriluka et al., 2018; Newell
et al., 2016; Sun et al., 2019a), and is more robust to variations (Chen et al., 2019; Duan et al.,
2022b). Existing studies have shown the effectiveness of using 2D skeleton sequences for different
downstream tasks (Pavllo et al., 2019; Duan et al., 2022b; Choi et al., 2020; Tripathi et al., 2020). We
first introduce the architecture of DSTformer, and then describe the training scheme in detail below.

Figure 2 shows the network architecture for 2D-to-3D lifting. Given an input 2D skeleton sequence
x ∈ RT×J×Cin , we first project it to a high-dimensional feature F0 ∈ RT×J×Cf , then add learnable
spatial positional encoding PS

pos ∈ R1×J×Cf and temporal positional encoding PT
pos ∈ RT×1×Cf to it.

We then use the sequence-to-sequence model DSTformer to calculate Fi ∈ RT×J×Cf (i = 1, . . . , N )
where N is the network depth. We apply a linear layer with tanh activation to FN to compute the
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Figure 2: Model architecture. We propose the Dual-stream Spatio-temporal Transformer (DST-
former) as a general backbone for human motion analysis. DSTformer consists of N dual-stream-
fusion modules. Each module contains two branches of spatial or temporal MHSA and MLP. The
Spatial MHSA models the connection among different joints within a timestep, while the Temporal
MHSA models the movement of one joint.

motion representation E ∈ RT×J×Ce . Finally, we apply a linear transformation to E to estimate 3D
motion X̂ ∈ RT×J×Cout . Here, T denotes the sequence length, and J denotes the number of body
joints. Cin, Cf, Ce, and Cout denote the channel numbers of input, feature, embedding, and output
respectively. We first introduce the basic building blocks of DSTformer, i.e. Spatial and Temporal
Blocks with Multi-Head Self-Attention (MHSA), and then explain the DSTformer architecture design.

3.2 NETWORK ARCHITECTURE

Spatial Block. Spatial MHSA (S-MHSA) aims at modeling the relationship among the joints within
the same time step. It is defined as

Spatial-MHSA(QS,KS,VS) = [head1; ...; headh]W
P
S , headi = softmax(

Qi
S(K

i
S)

T

√
dK

)Vi
S, (1)

where WP
S is a projection parameter matrix, h is the number of the heads, i ∈ 1, . . . , h. We utilize

self-attention to get the query QS, key KS, and value VS from input per-frame spatial feature
FS ∈ RJ×Ce for each headi,

Qi
S = FSW

(Q,i)
S , Ki

S = FSW
(K,i)
S , Vi

S = FSW
(V,i)
S , (2)

where W
(Q,i)
S , W(K,i)

S , W(V,i)
S are projection matrices, and dK is the dimension of KS. We apply

S-MHSA to features of different time steps in parallel. Residual connection and layer normalization
(LayerNorm) are used to the S-MHSA result, which is further fed into a multilayer perceptron (MLP),
and followed by a residual connection and LayerNorm following (Vaswani et al., 2017). We denote
the entire spatial block with MHSA, LayerNorm, MLP, and residual connections by S.

Temporal Block. Temporal MHSA (T-MHSA) aims at modeling the relationship across the time
steps for a body joint. Its computation process is similar with S-MHSA except that the MHSA is
applied to the per-joint temporal feature FT ∈ RT×Ce and parallelized over the spatial dimension.

Temporal-MHSA(QT,KT,VT) = [head1; ...; headh]W
P
T , headi = softmax(

Qi
T(K

i
T)

T

√
dK

)Vi
T, (3)

where i ∈ 1, . . . , h, QT, KT, VT are computed similar with Formula 2. We denote the entire temporal
block by T .

Dual-stream Spatio-temporal Transformer. Given spatial and temporal MHSA that captures the
intra-frame and inter-frame body joint interactions respectively, we assemble the basic building
blocks to fuse the spatial and temporal information in the flow. We design a dual-stream architecture
with the following guidelines: 1) The two streams could both model the comprehensive spatio-
temporal context. 2) The two streams are specialized for different spatio-temporal aspects. 3) The
two streams are fused together, and the fusion weights are dynamically balanced according to the
input spatio-temporal characteristics.

Therefore, we stack the spatial and temporal MHSA blocks in different orders, forming two parallel
computation branches. The output features of the two branches are fused using adaptive weights
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predicted by an attention regressor. The dual-stream-fusion module is then repeated for N times:

Fi = αi
ST ◦ T i

1 (Si
1(F

i−1)) +αi
TS ◦ Si

2(T i
2 (F

i−1)), i ∈ 1, . . . , N, (4)

where Fi denotes the feature embedding at depth i, ◦ denotes element-wise production. Orders of
S and T blocks are shown in Figure 2, and different blocks do not share weights. Adaptive fusion
weights αST,αTS ∈ RN×T×J are given by

αi
ST,α

i
TS = softmax(W([T i

1 (Si
1(F

i−1)),Si
2(T i

2 (F
i−1))])), (5)

where W is a learnable linear transformation. [, ] denotes concatenation.

3.3 UNIFIED PRETRAINING

We address two key challenges when designing the unified pretraining framework: 1) How to learn
a powerful motion representation with a universal pretext task. 2) How to utilize large-scale but
heterogeneous human motion data in all kinds of formats.

For the first challenge, we follow the pretrained models in language (Devlin et al., 2019; Raffel et al.,
2020; Brown et al., 2020) and vision (He et al., 2022; Bao et al., 2022) modeling to construct the
supervision signals, i.e. mask part of the input and use the encoded representations to reconstruct
the whole input. Note that such “cloze” task naturally exists in human motion analysis, that is to
recover the lost depth information from the 2D visual observations, i.e. 3D human pose estimation.
Inspired by this, we leverage the large-scale 3D mocap data (Mahmood et al., 2019) and design a
2D-to-3D lifting pretext task. We first extract the 2D skeleton sequences x by projecting the 3D
motion orthographically. Then, we corrupt x by randomly masking and adding noise to produce
the corrupted 2D skeleton sequences, which also resemble the 2D detection results as it contains
occlusions, detection failures, and errors. Both joint-level and frame-level masks are applied with
certain probabilities. We use the aforementioned motion encoder to get motion representation E and
reconstruct 3D motion X̂. We then compute the joint loss L3D between X̂ and GT 3D motion X. We
also add the velocity loss LO following previous works (Pavllo et al., 2019; Zhang et al., 2022). The
3D reconstruction losses are given by

L3D =

T∑
t=1

J∑
j=1

∥ X̂t,j −Xt,j ∥2, LO =

T∑
t=2

J∑
j=1

∥ Ôt,j −Ot,j ∥2, (6)

where Ôt = X̂t − X̂t−1, Ot = Xt −Xt−1.

For the second challenge, we notice that 2D skeletons could serve as a universal medium as they can
be extracted from all sorts of motion data sources. We further incorporate in-the-wild RGB videos
into the 2D-to-3D lifting framework for unified pretraining. For RGB videos, the 2D skeletons x
could be given by manual annotation (Andriluka et al., 2018) or 2D pose estimator (Cao et al., 2017;
Sun et al., 2019a), and the depth channel of the extracted 2D skeletons is intrinsically “masked”.
Similarly, we add extra masks and noises to degrade x (if x already contains detection noise, only
masking is applied). As 3D motion GT X is not available for these data, we apply a weighted 2D
re-projection loss which is calculated by

L2D =

T∑
t=1

J∑
j=1

δt,j∥x̂t,j − xt,j∥2, (7)

where x̂ is the 2D orthographical projection of the estimated 3D motion X̂, and δ ∈ RT×J is given
by visibility annotation or 2D detection confidence.

The total pretraining loss is computed by

L = L3D + λOLO︸ ︷︷ ︸
for 3D data

+ L2D︸︷︷︸
for 2D data

, (8)

where λO is a constant coefficient to balance the training loss.
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Table 1: Quantitative comparison of 3D human pose estimation. Numbers are MPJPE (mm) on
Human3.6M. T denotes the clip length used by the method. We select the best results reported by
each work. † denotes using HRNet (Sun et al., 2019a) for 2D detection.

MPJPE T Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg
Martinez et al. (2017) ICCV’17 1 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Pavlakos et al. (2018) CVPR’18 1 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Ci et al. (2019) ICCV’19 1 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Xu & Takano (2021) CVPR’21 1 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Pavllo et al. (2019) CVPR’19 243 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Cai et al. (2019) ICCV’19 7 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Yeh et al. (2019) NeurIPS’19 243 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
Liu et al. (2020a) CVPR’20 243 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
Cheng et al. (2020b) AAAI’20 † 128 36.2 38.1 42.7 35.9 38.2 45.7 36.8 42.0 45.9 51.3 41.8 41.5 43.8 33.1 28.6 40.1
Wang et al. (2020) ECCV’20 † 96 38.2 41.0 45.9 39.7 41.4 51.4 41.6 41.4 52.0 57.4 41.8 44.4 41.6 33.1 30.0 42.6
Zheng et al. (2021) ICCV’21 81 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Wehrbein et al. (2021) ICCV’21 † 200 38.5 42.5 39.9 41.7 46.5 51.6 39.9 40.8 49.5 56.8 45.3 46.4 46.8 37.8 40.4 44.3
Li et al. (2022) CVPR’22 351 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Zhang et al. (2022) CVPR’22 † 243 36.7 39.0 36.5 39.4 40.2 44.9 39.8 36.9 47.9 54.8 39.6 37.8 39.3 29.7 30.6 39.8
Ours (Scratch) 243 36.3 38.7 38.6 33.6 42.1 50.1 36.2 35.7 50.1 56.6 41.3 37.4 37.7 25.6 26.5 39.2
Ours (Pretrained) 243 36.1 37.5 35.8 32.1 40.3 46.3 36.1 35.3 46.9 53.9 39.5 36.3 35.8 25.1 25.3 37.5

3.4 TASK-SPECIFIC FINETUNING

The feature embedding E serves as a 3D-aware and temporal-aware motion representation. For
downstream tasks, we adopt the minimalist design principle, i.e. implementing a shallow downstream
network and training without bells and whistles. In practice, we use an extra linear layer or an MLP
with one hidden layer. We then finetune the whole network end-to-end.

3D Pose Estimation. As we utilize 2D-to-3D lifting as the pretext task, we simply reuse the whole
pretraining network (motion encoder + linear). During finetuning, the input 2D skeletons are estimated
from videos without extra masks or noises.

Skeleton-based Action Recognition. We simply perform a global average pooling over different
persons and timesteps. The result is then fed into an MLP with one hidden layer. The network is
trained with cross-entropy classification loss. For one-shot learning, we apply a linear layer after the
pooled features to extract clip-level action representation. We introduce the detailed setup of one-shot
learning in Section 4.4.

Human Mesh Recovery. We use SMPL (Loper et al., 2015) model to represent the human mesh and
regress its parameters. The SMPL model consists of pose parameters θ ∈ R72 and shape parameters
β ∈ R10, and calculates the 3D mesh as M(θ, β) ∈ R6890×3. To regress the pose parameters for
each frame, we feed the motion embeddings E to an MLP with one hidden layer and get θ̂ ∈ RT×72.
To estimate shape parameters, considering that the human shape over a video sequence is supposed to
be consistent, we first perform an average pooling of E over the temporal dimension and then feed it
into another MLP to regress a single β̂ and then expand it to the entire sequence as β̂ ∈ RT×10. The
shape MLP has the same architecture as the pose regression one, and they are initialized with the
mean shape and pose, respectively, as in (Kocabas et al., 2020). The overall loss is computed as

L = λm
3DL

m
3D + λθLθ + λβLβ , (9)

where each term is calculated as
Lm

3D = ∥X̂m −Xm∥1, Lθ = ∥θ̂ − θ∥1, Lβ = ∥β̂ − β∥1. (10)

Note that each 3D pose in motion Xm at frame t is regressed from mesh vertices by Xm
t =

JM(θt,βt), where J ∈ RJ×6890 is a pre-defined matrix (Bogo et al., 2016). λm
3D, λθ and λβ

are constant coefficients to balance the training loss.

4 EXPERIMENTS

4.1 IMPLEMENTATION

We implement the proposed motion encoder DSTformer with depth N = 5, number of heads h = 8,
feature size Cf = 256, embedding size Ce = 512. For pretraining, we use sequence length T = 243.
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Table 2: Quantitative comparison of skeleton-based action recognition accuracy. (Left) Cross-
subject and Cross-view recognition accuracy on NTU-RGB+D. (Right) One-shot recognition accuracy
on NTU-RGB+D-120. All results are top-1 accuracy (%).

Method X-Sub X-View
ST-GCN (Yan et al., 2018) AAAI’18 81.5 88.3
2s-AGCN (Shi et al., 2019) CVPR’19 88.5 95.1
MS-G3D (Liu et al., 2020b) CVPR’20 91.5 96.2

Shift-GCN (Cheng et al., 2020a) CVPR’20 90.7 96.5
CrosSCLR (Linguo et al., 2021) CVPR’21 86.2 92.5

MCC (Pretrained) (Su et al., 2021) ICCV’21 89.7 96.3
SCC (Pretrained) (Yang et al., 2021b) ICCV’21 88.0 94.9

UNIK (Pretrained) (Yang et al., 2021a) BMVC’21 86.8 94.4
CTR-GCN (Chen et al., 2021) ICCV’21 92.4 96.8

PoseConv3D (Duan et al., 2022b) CVPR’22 93.1 95.7
Ours (Scratch) 87.6 93.4

Ours (Pretrained) 92.8 97.1

Method Accuracy
ST-LSTM + AvgPool (Liu et al., 2017b) 42.9

ST-LSTM + FC (Liu et al., 2017c) 42.1
ST-LSTM + Attention (Liu et al., 2017c) 41.0

APSR (Liu et al., 2019) 45.3
TCN OneShot (Sabater et al., 2021) 46.5

SL-DML (Memmesheimer et al., 2021) 50.9
Skeleton-DML (Memmesheimer et al., 2022) 54.2

Ours (Scratch) 61.0
Ours (Pretrained) 67.4

The pretrained model could handle different input lengths thanks to the Transformer-based backbone.
During finetuning, we set the backbone learning rate to be 0.1× of the new layer learning rate. We
introduce the experiment datasets in the following sections respectively. Please refer to Appendix A.1
for more experimental details.

4.2 PRETRAINING

We collect diverse and realistic 3D human motion from two datasets, Human3.6M (Ionescu et al.,
2014) and AMASS (Mahmood et al., 2019). Human3.6M (Ionescu et al., 2014) is a commonly used
indoor dataset for 3D human pose estimation which contains 3.6 million video frames of professional
actors performing daily actions. Following previous works (Martinez et al., 2017; Pavllo et al.,
2019), we use subjects 1, 5, 6, 7, 8 for training, and subjects 9, 11 for testing. AMASS (Mahmood
et al., 2019) integrates most existing marker-based Mocap datasets (Advanced Computing Center
for the Arts and Design; Aristidou et al., 2019; Lab; Troje, 2002; Carnegie Mellon University; Bogo
et al., 2017; Ltd.; Ghorbani et al., 2020; Chatzitofis et al., 2020; Sigal et al., 2010; Mandery et al.,
2015; Loper et al., 2014; Müller et al., 2007; Akhter & Black, 2015; Hoyet et al., 2012; Trumble
et al., 2017) and parameterizes them with a common representation. We do not use the videos or
2D detection results of the two datasets during pretraining; instead, we use orthographic projection
to get the uncorrupted 2D skeletons. We further incorporate two in-the-wild RGB video datasets
PoseTrack (Andriluka et al., 2018) (annotated) and InstaVariety (Kanazawa et al., 2019) (unannotated)
for higher motion diversity. We align the body keypoint definitions with Human3.6M and calibrate
the camera coordinates to pixel coordinates following (Ci et al., 2020). We randomly zero out 15%
joints, and sample noises from a mixture of Gaussian and uniform distributions (Chang et al., 2019).
We first train on 3D data only for 30 epochs, then train on both 3D data and 2D data for 50 epochs,
following the curriculum learning practices (Bengio et al., 2009; Wang et al., 2022).

4.3 3D POSE ESTIMATION

We evaluate the 3D pose estimation performance on Human3.6M (Ionescu et al., 2014) and report
the mean per joint position error (MPJPE) in millimeters, which measures the average distance
between the predicted joint positions and the GT after aligning the root joint. We use the Stacked
Hourglass (SH) networks (Newell et al., 2016) to extract the 2D skeletons from videos, and finetune
the entire network on Human3.6M (Ionescu et al., 2014) training set. In addition, we train a separate
model of the same architecture, but with random initialization rather than pretrained weights. Both
of our models outperform the state-of-the-art methods, as shown in Table 1. The model trained
from scratch demonstrates the effectiveness of the proposed DSTformer in terms of learning 3D
geometric structures and temporal dynamics. The proposed pretraining stage additionally lowers the
error, which proves the advantage of the unified pertaining framework.

4.4 SKELETON-BASED ACTION RECOGNITION

We further explore the possibility to learn action semantics with the pretrained motion representations.
We use the human action dataset NTU-RGB+D (Shahroudy et al., 2016) which contains 57K videos
of 60 action classes, and we follow the data splits Cross-subject (X-Sub) and Cross-view (X-View).
The dataset has an extended version, NTU-RGB+D-120 (Liu et al., 2019), which contains 114K
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Table 3: Quantitative comparison of human mesh recovery on Human3.6M and 3DPW datasets.
On the 3DPW dataset, models are separately compared based on whether using 3DPW training data
or not. † denotes using 3DPW training data.

Method Input
Human3.6M 3DPW

MPVE MPJPE PA-MPJPE MPVE MPJPE PA-MPJPE
HMR (Kanazawa et al., 2018) CVPR’18 image - 88.0 56.8 - 130.0 81.3
SPIN (Kolotouros et al., 2019a) ICCV’19 image - - 41.1 116.4 96.9 59.2
Pose2Mesh (Choi et al., 2020) ECCV’20 2D pose 83.9 64.9 46.3 - 88.9 58.3

I2L-MeshNet (Moon & Lee, 2020) ECCV’20 image 68.1 55.7 41.1 110.1 93.2 57.7
PyMAF (Zhang et al., 2021) ICCV’21 image - 57.7 40.5 110.1 92.8 58.9

TemporalContext(Arnab et al., 2019) CVPR’19 video - 77.8 54.3 - - 72.2
HMMR (Kanazawa et al., 2019) CVPR’19 video - - 56.9 139.3 116.5 72.6
DSD-SATN(Sun et al., 2019b) ICCV’19 video - 59.1 42.4 - - 69.5
VIBE(Kocabas et al., 2020) CVPR’20 video - 65.9 41.5 113.4 93.5 56.5
TCMR (Choi et al., 2021) CVPR’21 video - 62.3 41.1 111.3 95.0 55.8

Ours (Scratch) 2D motion 76.7 61.9 44.6 113.9 100.0 61.9
Ours (Pretrained) 2D motion 65.5 54.1 34.8 99.7 85.5 51.7

MEVA(Luo et al., 2020) ACCV’20 † video - 76.0 53.2 - 86.9 54.7
VIBE(Kocabas et al., 2020) CVPR’20 † video - 65.6 41.4 99.1 82.9 51.9
TCMR (Choi et al., 2021) CVPR’21 † video - - - 102.9 86.5 52.7

Ours (Pretrained) † 2D motion 66.0 54.3 35.2 94.2 80.9 49.1

videos of 120 action classes. We follow the suggested One-shot action recognition protocol on
NTU-RGB+D-120. For both datasets, we use HRNet (Sun et al., 2019a) to extract 2D skeletons
following (Duan et al., 2022b). Similarly, we train a scratch model with random initialization for
comparison. All the models are evaluated without ensemble. As Table 2 shows, our methods are
comparable or superior to the state-of-the-art approaches. Notably, the pretraining stage accounts for
a large performance gain.

In addition, we study the one-shot setting which is of practical importance. In real-world deployment,
action recognition in certain scenarios (e.g. education, sports, healthcare) are highly demanded.
However, only scarce annotations are available for the novel action classes that are unseen in the
public datasets. As proposed in (Liu et al., 2019), we report the results on the evaluation set of 20
novel classes using only 1 labeled video for each class. The auxiliary set contains the other 100
classes, and all samples of these classes can be used for learning. We train the model on the auxiliary
set using the supervised contrastive learning technique (Khosla et al., 2020). For a batch of auxiliary
data, samples of the same class are pulled together, while samples of different classes are pushed
away in the action embedding space. During the evaluation, we calculate the cosine distance between
the test examples and the exemplars, and use 1-nearest neighbor to determine the class. Table 2
illustrates that the proposed models outperform state-of-the-art by a considerable margin. It is also
worth noting the pretrained model achieves optimal performance with only 1-2 epochs of finetuning.
The results imply that the pretraining stage indeed helps to learn a good motion representation which
could generalize to novel downstream tasks even with limited data annotations.

4.5 HUMAN MESH RECOVERY

We conduct experiments on Human3.6M (Ionescu et al., 2014) and 3DPW (von Marcard et al., 2018)
datasets. For Human3.6M, we follow the conventional training and test split (Martinez et al., 2017)
as in Section 4.2. For 3DPW, we add COCO (Lin et al., 2014) dataset for training following (Choi
et al., 2020). We report results with and without the 3DPW training set as in (Kocabas et al.,
2020; Choi et al., 2021). Following the common practice (Kanazawa et al., 2018; Kolotouros et al.,
2019b; Kocabas et al., 2020), we report MPJPE (mm) and PA-MPJPE (mm) of 14 joints obtained by
JM(θ, β). PA-MPJPE calculates MPJPE after aligning with GT in translation, rotation, and scale.
We further report the mean per vertex error (MPVE) (mm) of the mesh M(θ, β), which measures the
average distance between the estimated and GT vertices after aligning the root joint.

As shown in Table 3, our pretrained version outperforms all the previous methods on the Human3.6M
dataset for all metrics. We further evaluate the generalization ability of our approach on the 3DPW
dataset, a challenging in-the-wild benchmark. Without using the 3DPW training set, our method
with pretrained motion representations surpasses all previous works by a notable margin, especially
in MPVE and MPJPE (improved by around 10mm). When using additional 3DPW training data,
our method further reduces the estimation errors and constantly outperforms previous methods.
The performance advantage demonstrates the benefits of the unified pretraining framework and the

8



Under review as a conference paper at ICLR 2023

Table 4: Comparison of different pretraining settings. The pretrained networks are separately
finetuned and evaluated on downstream tasks. We report results of 3D Pose and Mesh on Human3.6M,
Action on NTU-RGB+D.

Pretrain Noise Mask 2D Data MPJPE (3D Pose)↓ MPVE (Mesh)↓ Accuracy (Action)↑
- - - - 39.2mm 76.7mm 87.2%
✓ - - - 38.8mm 70.6mm 89.4%
✓ ✓ - - 38.1mm 68.4mm 90.7%
✓ ✓ ✓ - 37.4mm 67.8mm 91.9%
✓ ✓ ✓ ✓ 37.5mm 65.5mm 92.8%

Table 5: Ablation study of partial finetuning. The networks are separately finetuned and evaluated
on downstream tasks with backbone frozen. We report results of 3D Pose on Human3.6M, Mesh
on Human3.6M and 3DPW (without 3DPW training set), and Action on NTU-RGB+D and NTU-
RGB+D-120.

Backbone MPJPE (3D Pose) ↓ MPVE (Mesh)↓ MPVE (Mesh)↓ Accuracy (Action) ↑ Accuracy (Action) ↑
(Human3.6M) (3DPW) (NTU-RGB+D X-View) (NTU-RGB+D-120 1-Shot)

Random 404.4mm 114.4mm 155.9mm 47.6% 46.8%
Pretrained 40.3mm 77.1mm 108.4mm 85.4% 60.7%

learned motion representations. Note that most previous works (Kanazawa et al., 2018; Kolotouros
et al., 2019a; Kocabas et al., 2020; Luo et al., 2020; Choi et al., 2021) use more datasets other
than COCO (Lin et al., 2014) for training, such as LSP (Johnson & Everingham, 2010), MPI-INF-
3DHP (Mehta et al., 2017), etc.

4.6 ABLATION STUDIES

We present and compare different choices of pretraining and finetuning. More ablation studies are
appended in Appendix A.2 due to space limits, including model architecture, finetuning learning
curves, and different mask ratios.

Pretraining Strategies. We evaluate how different pretraining strategies influence the performance
of downstream tasks. Starting from the scratch baseline, we apply the proposed strategies one by one.
As shown in Table 4, a vanilla 2D-to-3D pretraining stage brings benefits to all the downstream tasks.
Introducing corruptions additionally improves the learned motion embeddings. Unified pretraining
with in-the-wild videos enjoy higher motion diversity, which further helps several downstream tasks.

Partial Finetuning. In addition to end-to-end finetuning, we experiment to freeze the motion
encoder backbone and only train the downstream network for each subtask. In order to verify the
effectiveness of the pretrained motion representations, we compare the pretrained motion encoder
and a randomly initialized motion encoder. The results are shown in Table 5. It can be seen that
based on the frozen pretrained motion representations, our method could still achieve competitive
performance on multiple downstream tasks. The performance advantages over the random initialized
ones demonstrate that generalizable motion representations are learned via pretraining. In real-world
applications, it is often desirable to simultaneously obtain predictions for multiple sub-tasks (e.g.
action + mesh). Existing methods require separate models to handle specific sub-tasks. Pretraining
and partial finetuning make it possible for all the downstream tasks to share the same backbone,
which largely reduces the computation overhead.

5 CONCLUSION

In this paper, we present a framework to unify various sub-tasks related to human motion with the
pretrain-finetune paradigm. We design the 2D-to-3D lifting pretext task for pretraining on large-
scale human motion data. We also propose the DSTformer as a universal human motion encoder.
Experimental results on multiple benchmarks demonstrate the effectiveness of our method. As for
the limitations, by now this work mainly focuses on learning from the skeletons of a single person.
Future work may explore fusing the learned motion representations with image features and explicitly
model human interactions.
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Ethics Statement. We use open datasets in our experiments following their licensing requirements.
Our method handles the detected keypoints, using neither human appearances nor biometrics. With
proper usage, the proposed method could be beneficial to society (e.g. elderly fall detection).

Reproducibility Statement. We report the necessary details to reproduce the experimental results
in Section 4.1 and Appendix A.1, including network architectures, training hyperparameters, and
dataset processing steps.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

Setup. We implement the proposed model with PyTorch (Paszke et al., 2019). All the experiments
are conducted on a Linux machine with 8 NVIDIA V100 GPUs, which is intended for accelerating
pretraining. A single GPU is usually sufficient for finetuning and inference.

Pretraining. For AMASS (Mahmood et al., 2019), we first render the parameterized human
model SMPL+H (Romero et al., 2017), then extract 3D keypoints with a pre-defined regression
matrix (Bogo et al., 2016). We extract 3D keypoints from Human3.6M (Ionescu et al., 2014) by
camera projection (Ci et al., 2020). We sample motion clips with length T = 243 for 3D mocap
data. For 2D data, we utilize the provided annotations of PoseTrack (Andriluka et al., 2018). We
further include 2D motion from an unannotated video dataset InstaVariety (Kanazawa et al., 2019)
extracted by OpenPose (Cao et al., 2017). Since the valid sequence lengths for in-the-wild videos
are much shorter, we use T = 30 (PoseTrack) and T = 81 (InstaVariety). We set the input channels
Cin = 3 (x, y coordinates and confidence) following (Yan et al., 2018; Duan et al., 2022b). Random
horizontal flipping is applied as data augmentation. The whole network is trained for 80 epochs with
learning rate 0.0005 and batch size 64 using an Adam (Kingma & Ba, 2014) optimizer. The weights
of the loss terms are λO = 20. We set the 2D skeleton masking ratio = 15%, same as BERT (Devlin
et al., 2019). More specifically, we use 10% frame-level masks and 5% joint-level masks. We vary
the proportion of the two types of masks and only observe marginal differences. We follow (Chang
et al., 2019) to fit a mixture of distributions and sample per-joint noises from it. To keep the noise
smooth and avoid severe jittering, we first sample the noise z ∈ RTK×J for TK = 27 keyframes,
then upsample it to z′ ∈ RT×J , and add a small temporal gaussian noise N (0, 0.0022).

3D Pose Estimation. The 2D skeletons are provided by 2D pose estimator trained on MPII (An-
driluka et al., 2014) and Human3.6M (Ionescu et al., 2014) following the common practice (Ci et al.,
2020; Pavllo et al., 2019). For training from scratch, we train for 60 epochs with learning rate 0.0005
and batch size 32. For finetuning, we load the pretrained weights and train with learning rate 0.0003
and batch size 32.

Skeleton-based Action Recognition. We use the 2D skeleton sequences extracted with HRNet (Sun
et al., 2019a) provided by PYSKL (Duan et al., 2022a). We then upsample the skeleton sequences to
a uniform length T = 243. For NTU-RGB+D, the DSTformer output after global average pooling
is fed into an MLP including dropout p = 0.5, a hidden layer of 2048 channels, BatchNorm, and
ReLU. We train for 200 epochs with learning rate 0.001 and batch size 32 for training from scratch.
We set learning rate 0.0001 for the backbone, and learning rate 0.001 for the downstream MLP for
finetuning. For one-shot recognition on NTU-RGB+D-120, we apply dropout p = 0.1, and use a
linear layer to get action representation of size 2048. We train with batch size 16, and each batch
includes 8 action pairs. Samples from the same action class are set as positives against the negatives
from the remainder of the batch. We use the supervised contrastive loss (Khosla et al., 2020) with
temperature 0.1.

Human Mesh Recovery. For the Human3.6M dataset, we use the same 2D skeleton sequences
as the 3D pose estimation task. The SMPL ground-truth (GT) parameters are fitted with SMPLify-
X (Pavlakos et al., 2019) provided by (Moon & Lee, 2020). For the 3DPW dataset, we obtain its
detected 2D skeleton sequences from DarkPose (Zhang et al., 2020) provided by (Choi et al., 2020).
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Table 6: Comparison of model architecture design. All the methods are trained on Human3.6M
from scratch and measured by MPJPE (mm).

Method Depth(N ) Heads(h) Channels(Ce) Basic Module MPJPE
(a) 5 8 512 S-T 40.3
(b) 5 8 512 T-S 41.2
(c) 5 8 512 S + T 41.8
(d) 5 8 512 ST-MHSA 41.5
(e) 5 8 512 S-T + T-S (Average) 39.6
(f) 5 8 512 S-T + T-S (Adaptive) 39.2
(g) 4 8 512 S-T + T-S (Adaptive) 39.7
(h) 6 8 512 S-T + T-S (Adaptive) 40.4
(i) 5 6 512 S-T + T-S (Adaptive) 39.6
(j) 5 10 512 S-T + T-S (Adaptive) 39.5
(k) 5 8 256 S-T + T-S (Adaptive) 40.4

Figure 3: Learning curves of finetuning and training from scratch. We visualize the training
process on the three downstream tasks respectively.

The SMPL GT parameters of 3DPW are obtained using IMUs (von Marcard et al., 2018). For 3DPW
benchmark, we use Human3.6M and COCO (Lin et al., 2014) datasets for training, following (Choi
et al., 2020). The pseudo-GT SMPL parameters of COCO are provided by (Joo et al., 2021). 3DPW
training data is used optionally according to different settings. Following (Kolotouros et al., 2019a;
Kocabas et al., 2020), we use the 6D continuous rotation representations (Zhou et al., 2019b) instead
of original axis angles when estimating pose parameters. The shape and pose MLPs are the same,
including one hidden layer of 2048 channels, BatchNorm, and ReLU. We sample motion clips with
length T = 81 and stride 27 for both datasets. We train the whole network end-to-end for 140
epochs with batch size 32, with learning rates 0.0001 for the backbone, and 0.001 for the downstream
network, respectively.

A.2 ADDITIONAL ABLATION STUDIES

Model Architecture. We first study the design choices of DSTformer and report the results in Table
6. From (a) to (f), we compare the different structures of basic Transformer modules. (a) and (b)
are single stream versions with different orders. (c) limits each stream to either temporal or spatial
modeling before fusion. (d) directly connects S-MHSA and T-MHSA without the MLP in between.
(e) replaces the adaptive fusion with average pooling on two streams. (f) is the proposed DSTformer
design. For all the variants, we control the total number of self-attention blocks to be the same, so
the network capacity would not be the defining factor. The result confirms our design principles
that both streams should be capable and meanwhile complementary, as introduced in Section 3.2.
In addition, we find out that pairing each self-attention block with an MLP is crucial, as it could
project the learned feature interactions and bring nonlinearity. From (g) to (k), we trial different
model sizes. In general, we optimize the model architecture design based on their performance for
the 3D human pose estimation task when trained from scratch, and apply the design to all the tasks
without additional adjustment.

Finetune vs Scratch. We compare the training progress of finetuning the pretrained model and
training from scratch. As Figure 3 shows, models initialized with pretrained weights enjoy better
performance and faster convergence on all three downstream tasks. It indicates that the model learns
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Figure 4: Ablation study of pretraining mask ratios. For each mask ratio, We test the Human3.6M
MPJPE of the pretrained models with/without finetuning respectively.

transferable knowledge about human motion during pretraining, facilitating the learning of multiple
downstream tasks.

Mask Ratio. We study the effect of different masking ratios on both pretraining and downstream
finetuning. We measure the performance by MPJPE on the Human3.6M test set. Frame-level mask
and joint-level mask are fixed to 2 : 1. As Figure 4 shows, when the masking ratio is less than 45%,
the pretrained models could learn 2D-to-3D lifting well, and pretraining improves the finetuning
performance (better than the scratch baseline). As we continue to increase the masking ratio, the
pretrained models perform much worse at 2D-to-3D lifting, and pretraining is no longer beneficial
for the finetuning performance. Our observation is slightly different from MAE (He et al., 2022)
where a high masking ratio (75%) works well. One possible explanation is that skeletons are highly
abstract representations of human motion. A high masking ratio leaves too few cues to complete the
whole sequence, therefore the model tends to overfit. It is also worth noting that in our pretraining
task (2D-to-3D lifting), the depth channel ( 13 of original data) is intrinsically masked.
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