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Abstract

Diffusion-MRI-based white matter (WM) tract segmentation plays an important role in
analyzing WM characteristics in healthy and diseased brains. The uncommon (novel) tract
segmentation is important to the success of clinical brain operation and the reduction of
postoperative complications. The massive WM tract annotations are time-consuming and
need experienced neuroanatomists. Novel tract segmentation using only one annotated scan
alleviates the above problems but is challenging. Existing fine-tuning-based studies achieve
promising results but suffer from the feature overlap problem. In the work, we propose an
uncertainty-distillation- and voxel-contrast-based one-shot novel WM tract segmentation
framework, which includes an uncertainty distillation module to transfer semantic segmen-
tation knowledge from base tracts to novel tracts and a voxel-wise multi-label contrastive
module to adjust the feature embedding space so as to alleviate the feature overlap problem.
We compare our method with several state-of-the-art (SOTA) methods that are designed to
predict novel tract segmentation. The experimental results demonstrate that our method
improves the one-shot segmentation accuracy of novel tracts in five experimental settings.

Keywords: Diffusion MRI, White Matter Tract Segmentation, Uncertainty-Distillation,
Contrastive Learning.

1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) based WM tract segmentation is impor-
tant in analyzing WM characteristics in healthy and diseased brains (Zhang et al., 2020,
2022). However, the current analysis is restricted by the number of tracts available from the
segmentation. Although some common tracts (base tracts, e.g., corticospinal tract) have
available annotations, many other uncommon tracts (novel tracts, e.g., superficial tracts)
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do not have sufficient annotations in clinical practice. To reduce the use of tract anno-
tations, fine-tuning-based semi-supervised studies transfer semantic knowledge from base
tracts to novel tracts to improve few-shot novel tract segmentation accuracy (Lu et al.,
2021; Liu et al., 2022; Lu et al., 2022). However, there may be a feature overlap problem
(Song et al., 2023) between base tracts and novel tracts in the feature embedding space,
which will reduce the segmentation performance of novel tracts. Single-label pixel-contrast
semantic segmentation method (Wang et al., 2021) achieves promising results but cannot
be introduced to WM tract segmentation, which is a multi-label voxel-wise classification
task (a voxel can be classified into different tracts because tract fibers may cross or overlap
together).

To this end, we propose an uncertainty-distillation- and voxel-contrast-based framework
for one-shot novel tract segmentation (Figure 1), which includes an uncertainty distillation
module and a voxel-wise multi-label contrastive module. In the uncertainty distillation
module, the base tract segmentation knowledge is transferred from the teacher model to
the student model. To alleviate the feature overlap problem, we design a multi-label voxel-
contrast module that pulls or pushes the pair of voxels according to their label similarity to
adjust the feature embedding space. We compare our proposed method with several SOTA
methods on the HCP dataset. Experimental results in five experimental settings prove that
our proposed method improves the one-shot segmentation accuracy of novel tracts.

Figure 1: The overview of our proposed method.

2. Methods and Experiments

Uncertainty Distillation Module. First, the teacher model trained with only base tract
labels is frozen and the LwF initialization (Li and Hoiem, 2017) is adopted to transfer the
existing base tract segmentation knowledge into the student model. Second, uncertainty
loss (Xu et al., 2023) is utilized to improve the distillation performance by filtering out
voxels that are not trustworthy. The uncertainty distillation loss is the dot product of
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the uncertainty map and the cross-entropy loss of the teacher model and base outputs of
the student model. The segmentation loss is the cross-entropy loss of novel outputs of the
student model and multi-labels.
Voxel-wise Multi-label Contrastive Module. We insert a project head into the student
model for the voxel-wise feature embeddings and adjust the distance between the embedding
of voxel pairs. Then, we pull the positive pairs closer and push the negative pairs further. We
identify positive/negative pairs by normalized voxel-label similarity and normalized voxel-
level feature distance. A voxel pair is defined as a negative pair if its feature distance is too
close relative to the voxel label similarity, and as a positive pair if the feature distance is too
far relative to the voxel label similarity. Set the voxel embedding be z and its corresponding
voxel-level multi-label be ŷ. Set Cpq = ŷTp · ŷq is the label similarity of a voxel-pair and
g(p) = {k|k ∈ 1, 2, ...,m+ n, k ̸= p} is a set of voxels except for the voxel p. The voxel-wise
multi-label contrastive loss LCL is as follow:

LCL
pq = −βpq log

e−d(zp,zq)/τ∑
k∈g(p)e

−d(zp,zk)/τ
, (1)

where the dynamic coefficient βpq =
Cpq∑

k∈g(p)Cpk
is the normalization of Cpq, d(·, ·) is the

Euclidean distance, and τ is a hyperparameter.
WM Tract Dataset and Hyperparameters. We use the dataset from (Wasserthal
et al., 2018), which contains 85 subjects (base training: novel training: testing = 63:1:21)
from the Human Connectome Project (HCP) (Van Essen et al., 2013). Each subject has
72 tract annotations, which been divided into base and novel tracts in the ratio of 5:1, 2:1,
1:1, 1:2, and 1:5. We use the multi-shell multi-tissue constrained spherical deconvolution
(CSD) method (Tournier et al., 2007) with all gradient directions for transforming dMRI
data to fiber orientation distribution function (fODF) peak data. Hyperparameter λ is 1
and τ is 1.
Quantitative Evaluation. As shown in Table 1, the comparison and ablation experiments
on five settings demonstrate the superiority of our proposed framework.

Table 1: Quantitative comparisons for one-shot novel tracts on the test set.
Method

Dice Score (%)
Base: Novel = 5:1 Base: Novel = 2:1 Base: Novel = 1:1 Base: Novel = 1:2 Base: Novel = 1:5

Comparison

TractSeg(Wasserthal et al., 2018) 0.48±0.76 3.16±11.9 1.86±9.55 1.87±8.95 1.40±7.57
VoxelMorph(Balakrishnan et al., 2019) 59.43±7.45 59.22±6.40 59.52±5.70 57.75±8.46 59.17±8.19

CFT(Lu et al., 2022) 63.90±14.68 54.70±19.28 58.22±18.84 50.37±23.70 51.29±27.12
IFT(Lu et al., 2022) 77.21±4.51 67.42±15.55 59.55±19.54 24.11±18.73 14.81±18.80

TractSeg-LE(Liu et al., 2022) 48.54±10.87 48.72±18.19 57.71±14.81 47.84±20.44 44.42±19.39

Ablation Study
Seg + Dis 77.68±5.18 74.13±5.58 72.33±7.98 69.73±17.64 69.26±17.73

Seg + Dis + CL (Ours) 78.24±4.97 75.34±4.80 74.98±5.77 71.03±16.01 70.54±16.11

3. Conclusion

In this work, we propose an uncertainty-distillation- and voxel-contrast-based framework
for one-shot tract segmentation. Comparison and ablation experiments in multiple exper-
imental settings demonstrate the effectiveness of our proposed method. Our framework
can be particularly valuable for studies with scarce tract labels (e.g., superficial white mat-
ter) or studies where high-quality annotations are difficult and expensive to obtain (e.g.,
high-resolution dMRI data).
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