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ABSTRACT

Open-ended generation tasks require outputs to satisfy diverse and often implicit
task-specific evaluation rubrics. The sheer number of relevant rubrics leads to
prohibitively high verification costs and incomplete assessments of a response,
making reinforcement learning (RL) post-training with rubric-based rewards dif-
ficult to scale. This problem is exacerbated by the fact that often the best way
to combine these rubrics into one single reward is also highly prompt-specific.
We propose Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
a post-training approach that addresses these challenges via dynamic rubric ver-
ification. Our approach employs a large language model (LLM) as a critic that
dynamically identifies only the most likely failure modes (e.g., a factual error or
unhandled edge case), which are then verified by an external validator to optimize
both generator and critic jointly. By training both the generator and the critic,
this game enhances the critic’s error detection and the generator’s output quality
while reducing required verifications. Our experiments demonstrate that RLDCF
improves factual accuracy in text generation and correctness in code generation,
while also outperforming exhaustive verification and reward model methods. We
show that dynamic critics are more effective than fixed critics, showcasing the
potential of RLDCF for scaling RL post-training to free-form generation tasks.

1 INTRODUCTION

Post-training methods for large language models (LLMs) have progressed dramatically over the past
few years, from largely manual supervised fine-tuning (SFT) techniques that rely on a combination of
manual data curation (Radford et al., 2018; Brown et al., 2020; Shengyu et al., 2023) to reinforcement
learning (RL) methods that perform general preference-based optimization (Christiano et al., 2017;
Ouyang et al., 2022) or optimize task-specific notions of correctness (Zha et al., 2025). Despite these
remarkable results, RL post-training is limited to tasks with clear-cut success criteria (i.e., correctness
of an answer or preference of a human user), and it remains unclear how to post-train LLMs with RL
on tasks that require producing open-ended or free-form outputs that are hard to verify perfectly.

Perhaps the biggest challenge in building RL post-training methods for free-form generation tasks
is the lack of a solid reward function: outputs are typically expected to satisfy several task-specific
rubrics. In principle, a task designer could construct a reward by combining these rubrics, but both
enumerating and verifying them pose major scalability challenges (Min et al., 2023). For instance,
complex code generation requires testing countless edge cases (e.g., empty inputs or specific numbers).
Even if such criteria could be enumerated, knowing how to combine them remains difficult (e.g.,
should correctly handling even numbers outweigh handling primes?). While RLHF-trained reward
models or LLM-as-judge approaches (Christiano et al., 2017; Zheng et al., 2023) outsource the job of
merging rubrics to a learned or prompted reward model, this often leads to reward hacking (Ziegler
et al., 2019; Gao et al., 2023; Skalse et al., 2022; Eisenstein et al., 2023), since the best combination
is highly dependent on the prompt and the model being optimized. How can we then train LLMs on
free-form generation tasks with several (maybe uncountably many) rubrics?

We introduce Reinforcement Learning from Dynamic Critic Feedback (RLDCF), which formulates
the problem into as an adversarial game between a generator and a critic. The critic is a model
that identifies a single rubric (e.g., one test case) on which the generator’s output is likely to fail.
Both models are trained jointly: the critic is rewarded when it correctly pinpoints a rubric that the
generator fails (verified by an external validator), while the generator is rewarded when the critic is
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Figure 1: Overview of the RLDCF framework

unable to do so. This formulation eliminates the need to enumerate or verify all rubrics, significantly
improving training scalability. At the same time, it ensures that rewards are based on rubrics that are
prompt-specific, adversarially chosen, and always on-policy.

We evaluate Reinforcement Learning from Dynamic Critic Feedback on factual text generation and
code generation, representing enumerable and non-enumerable verification scenarios respectively. On
8-sentence biography generation, Reinforcement Learning from Dynamic Critic Feedback achieves a
FactScore of 0.889, surpassing FactTune-FS’s (Tian et al., 2024) 0.867, while reducing verification
calls by 5.7×. This efficiency gain scales with task complexity, from 4.4× for 4-sentence to 5.7× for
8-sentence generation. In code generation, despite using only 9% of the training data, Reinforcement
Learning from Dynamic Critic Feedback achieves the highest average scores on both base models:
53.2 on Qwen2.5-Coder-7B-Base and 56.6 on Qwen2.5-Coder-7B-Instruct, outperforming AceCoder
variants (Zeng et al., 2025).

Our primary contribution is RLDCF, a paradigm for training LLMs on free-form generation tasks. It
enhances factuality and code correctness while preventing reward hacking and reducing verification
costs, enabling robust optimization for diverse free-form generation tasks.

2 PRELIMINARIES

Our goal is to train a generator that produces a free-form output meeting task requirements, without
manually enumerating every rubric. In this section, we formalize this problem, introduce notation,
and briefly discuss related concepts of reward models () and enumerative verification (). We then
present our approach in the next section.

Problem setup. We consider free-form generation tasks where outputs must satisfy many task-
specific requirements, which we call rubrics. For instance, a biography generation task may require
that each factual claim is correct, while a code generation task may require the program to handle
all edge cases correctly. Formally, let S be a distribution over prompts or instructions that may be
presented to an LLM. Given s ∈ S, a generator LLM πg(a | s) is tasked with producing a textual
output a ∈ A. We choose to use standard notation typically used in RL (S denoting the state space
and A denoting the action space) as we later present an RL training objective. Each instruction s is
inherently associated with a set of rubrics (denoted as C(s)), where each rubric c ∈ C(s) represents a
verifiable property the output should satisfy, such as “the claim about Newton’s birth year is correct”
for biography generation or “the code handles null inputs” for code generation.

We assume access to a binary verification function R(s, a, c) that returns 1 if a generated output
a ∼ πg(·|s) satisfies the rubric c on instruction s, and attains 0 otherwise. An output a is considered
correct only when all rubrics C(s) associated with instruction s are satisfied. Our goal is to train
πg(·|s) to maximize the probability of producing fully correct outputs:

π∗
g := argmax

π
Es∼S

Ea∼π(·|s)

[ ∏
c∈C(s)

R(s, a, c)
] . (1)

In constrained domains with a single, well-defined rubric (e.g., matching a reference solution
in math reasoning), the optimization of object simplifies, allowing standard RL algorithms like
PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024) to optimize the policy. However, such
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cases are rare in open-ended tasks with diverse rubrics. In these settings, C(s) can be extremely large
or even unbounded, making Eq. 1 computationally intractable since every output must be checked
against every rubric.

Reward models and enumerative verification. Most approaches to optimizing free-form generation
tackle the challenge of diverse rubrics through two paradigms. RLHF (Christiano et al., 2017) trains
a single proxy reward model from offline human preference data. While efficient, this optimization is
hard because the learned proxy is only as good as its coverage of the preference dataset. When the
generator explores beyond this support, the proxy can misalign (Gao et al., 2023), often necessitating
additional constraints like KL regularization to avoid collapse. These constraints stabilize training
but also limit exploration, making it difficult to scale to highly open-ended tasks (Dong et al., 2024).

Another approach is to enumerate the evaluation criteria and optimize their aggregate, either through
prompting (Min et al., 2023; Saha et al., 2025) or via preferences implicitly elicited from hu-
mans (Wang et al., 2024b; Mahan et al., 2024). While more faithful to the underlying rubrics (Trivedi
et al., 2024), this strategy is fundamentally limited: it assumes the evaluation set C(s) can be exhaus-
tively listed, which is unrealistic for complex tasks (e.g., all test cases for a nontrivial program). Even
when such enumeration is feasible, iterating over the entire set is computationally prohibitive, turning
optimization into an intractable verification bottleneck.

3 REINFORCEMENT LEARNING FROM DYNAMIC CRITIC FEEDBACK

We now introduce our RL post-training approach, called Reinforcement Learning from Dynamic
Critic Feedback (RLDCF) for training LLM generators on free-form tasks. Our goal is to provide
rewards while avoiding the scalability limits of enumerative verification and the misalignment of
static reward models. The core idea is to recast verification as a dynamic process guided by a learned
critic. Concretely, we frame training as a two-player game: given an output from the generator, the
critic proposes a rubric the output is likely to violate, while the generator aims to satisfy all such
rubrics. An external validator then adjudicates whether the output meets the proposed rubric, and
this supervision updates both generator and critic. In this way, verification becomes adaptive and
adversarial, tailored to the generator’s current weaknesses. We now formally derive this approach.

3.1 PROBLEM REFORMULATION

To derive our approach formally, our starting point is the objective of Equation 1, which requires a
generation to satisfy all rubrics in the set C(s): Since R(s, a, c) is an indicator function for each c,
we can rewrite the requirement that all rubrics are satisfied as a minimum over all rubrics as follows:

1{R(s, a, c) = 1, ∀c ∈ C(s)} = min
c∈C(s)

1{R(s, a, c) = 1}. (2)

Intuitively, the minimum selects the worst-case criterion, i.e., the first failure mode encountered by
the current model π. Substituting Equation 2 into Equation 1 gives:

π∗
g = argmax

π
Es∼S

[
Ea∼π(·|s)

[
min

c∈C(s)
R(s, a, c)

]]
. (3)

However, this reformulation by itself does not make the optimization problem simpler: searching
over C(s) is infeasible when C(s) is large or infinite (e.g., all possible test cases). To address this,
we introduce a critic πc, modeled as a stochastic policy that generates the worst criterion c given the
instruction s and action a over rubrics conditioned on (s, a). Then we can rewrite Equation 3 into the
equivalent min-max form:

πg ← argmax
π

min
πc

Es∼S
[
Ea∼π(·|s)Ec∼πc(·|s,a) [R(s, a, c)]

]
. (4)

It can be shown that the solution πg from Equation 4 is the same as that from Eq. (1), but now we
bypass the need to enumerate all criteria over C(s) (Madry et al., 2018).

Pretty much like other mini-max optimization problems, we can solve the above optimization problem
by iteratively updating πg and πc against each other. The optimization goal is to achieve a robust
generator πg that does well even according to the most adversarial critic, upon convergence. More
details with respect to the practical optimization algorithm will be provided in Section 3.2.
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3.2 PRACTICAL INSTANTIATION OF RLDCF
We now instantiate the two-player adversarial game from the previous section into a practical approach
that we can use to train LLMs. As shown in Figure 1, we parameterize three task-agnostic components
that interact with each other during RL training. Each component is instantiated differently based on
the domain (as detailed in Section 4).

Generator. The generator πg, is an LLM that is fine-tuned to produce an output a ∈ A for an
instruction s ∈ S. RLDCF samples multiple response generations from πg for each instruction s.
We train πg to maximize the probability of producing outputs that satisfy all task-specific rubrics, as
detailed in Section 4. The prompt for the generator is included in the Appendix.

Critic. Our critic πc is a pre-trained LLM πc that RLDCF fine-tunes. Specifically, for each instruction
s and a query generation output a, the critic is prompted to generate a natural language output
representing a rubric c through auto-regressive decoding. The rubric c along with the instruction s and
the generation a are then sent to the external validator to obtain a reward signal R(s, a, c) ∈ {0, 1}.
The prompt for the adversarial critic is included in the Appendix.

Validator. The validator is an external tool or process that can verify whether a generated response
satisfies a rubric provided as input to it. The validator can be implemented in various ways depending
on the domain, such as rule-based checkers or a software tool that evaluates a proposed code on a
proposed test-case. Implementation details for specific tasks are discussed in the Appendix.

Updating the generator and critic. At each training step, we sample instructions s ∈ S and
have the generator πg produce K candidate outputs a1, . . . , aK . For each (s, ai), the adversarial
critic πc proposes a criterion ci, which is then checked by the validator to yield a binary reward
ri ∈ {0, 1}. This online feedback provides signals for both policies. Outputs with ri = 1 are treated
as positives (a+) and those with ri = 0 as negatives (a−), and the generator is updated using the
DPO loss (Rafailov et al., 2023) with respect to the reference generator πg

ref:

L(πg;πg
ref) = −EsE(a+,a−)

[
log σ

(
β log

πg(a+|s)
πg

ref(a
+|s)

− β log
πg(a−|s)
πg

ref(a
−|s)

)]
. (5)

Similarly, for each (s, a) pair, we sample N criteria from πc. Criteria rejected by the validator (invalid
or satisfied by the generator) are treated as negatives (c−), while valid, unsatisfied ones are positives
(c+). The critic is then updated with the same DPO objective relative to its reference policy πc

ref:

L(πc;πc
ref) = −Es,aE(c+,c−)

[
log σ

(
β log

πc(c+|s, a)
πc

ref(c
+|s, a)

− β log
πc(c−|s, a)
πc

ref(c
−|s, a)

)]
. (6)

In this way, evaluation and improvement are unified: the critic adaptively identifies failure modes,
the validator provides ground-truth feedback, and both generator and critic are jointly updated to
improve over time. Note that we chose the DPO loss for its simplicity, though any online or offline
RL approach could be used for policy optimization.

Algorithm summary. Algorithm 1 summarizes the practical implementation of RLDCF. At a high
level, the algorithm follows a standard online RL loop that alternates between policy evaluation and
improvement. In each evaluation step, we sample generations from the current generator πg , have the
critic propose a criterion c, and obtain verification to assign rewards. These rewards are then used
to update the generator with the DPO objective (Equation 5). Optionally, we also collect evaluation
data for the critic by sampling multiple criteria per instruction–generation pair. The critic is then
updated with its own DPO objective (Equation 6), allowing it to adaptively identify weaknesses in
the generator and provide more effective learning signals.

4 EXPERIMENTS

We now evaluate our approach on two free-form generation tasks: factual text generation (§4.1)
and code generation (§4.2). Factual text generation illustrates the enumerable-but-expensive regime,
where all claims can in principle be verified but at a cost that scales with text length. This tests
RLDCF’s ability to maintain verification quality while reducing calls. Code generation, by contrast,
represents the non-enumerable regime, where exhaustive verification is impossible due to infinite
corner cases and intractable formal checks (Church, 1936). Here, the goal is to expose critical failures
through targeted critic proposals. Together, these tasks span the spectrum from costly-but-possible to
fundamentally intractable verification, highlighting the broad applicability of RLDCF.
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Algorithm 1 RLDCF

1: Initialize parameters πg, πc, πg
ref, π

c
ref

2: for each iteration do
3: ## Policy Evaluation for Generator πg .
4: for each instruction s do
5: Generate K generations a1, ..., aK ∼ πg(·|s)
6: Sample a criterion from the adversarial critic for each generation ci ∼ πc(·|s, ai).
7: Construct a generator dataset Dg

s = {(s, ai, R(s, ai, ci))}Ki=1
8: ## Policy Evaluation for Critic πc. ▷ Optional
9: for each instruction s, output a do

10: Generate N criteria c1, ..., cN ∼ πc(·|s, a)
11: Construct a critic dataset Dc

(s,a) = {(s, a,R(s, a, cj))}Nj=1

12: ## Policy Improvement for Generator πg .
13: πg

new ← πg

14: for each update step do
15: πg

new ← πg
new −∇L(πg

new, π
g
ref) ▷ Equation 5

16: πg
ref ← πg

17: ## Policy Improvement for Critic πc. ▷ Optional
18: πc

new ← πc

19: for each update step do
20: πc

new ← πc
new −∇L(πc

new, π
c
ref) ▷ Equation 6

21: πc
ref ← πc

4.1 FACTUAL TEXT GENERATION

4.1.1 SETTINGS

Evaluation data & metrics. We follow (Min et al., 2023; Tian et al., 2024) in adapting a factual
text generation task in which the model should produce concise biographies for a given individual.
We use 170 topics from the Wikipedia Biography Dataset (Lebret et al., 2016), split into 120 for
training and 50 for testing. We use factual precision of the output (as defined by FactScore (Min et al.,
2023)) as the primary metric, and also report the counts of correct and incorrect facts. To control for
length, the model is instructed to generate either four or eight sentences (see Appendix ??). Since
frequent calls to the external validator are costly, we additionally track the number of validator calls.

Base models & baselines. Our base generators are Qwen3-4B and Qwen3-8B. We compare against
three baselines: (1) the original base models without task-specific training; (2) FactTune-FS (Tian
et al., 2024), a widely used method for factual text generation to represent exhaustive verification
using an external validator, FactScore, for all atomic facts; and (3) ArmoRM (Wang et al., 2024a),
which represents the reward model based method that produces one reward score for the generated
output. Both the generator and critic are initialized from the same backbone models (Qwen3-4B
and Qwen3-8B) to ensure fairness. We use FactScore as an external validator, i.e., FactScore checks
whether a critic-proposed fact appears in the biography and is correct according to Wikipedia. All
methods are trained with multiple rounds of DPO updates, where the generator produces 10 outputs
per prompt and the critic proposes 4 rubrics per output.

4.1.2 RESULTS

Table 1 shows that RLDCF achieves the highest factuality scores across model sizes and output lengths,
while using significantly fewer verification calls. For instance, on Qwen3-8B with eight-sentence
generation, it reaches a FactScore of 0.889, outperforming FactTune-FS (0.867) and ArmoRM (0.723),
but with only 77k verification calls compared to 439k for FactTune-FS. This efficiency gap grows
with output length: FactTune-FS requires 4.4× more verification calls in the four-sentence setting
(169k vs. 39k) and 5.7× more in the eight-sentence setting (439k vs. 77k). This shows that RLDCF
scales more efficiently as the generation complexity increases.
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Table 1: Performance comparison on factual text generation. RLDCF achieves the highest FactScore
across all settings while using fewer verification calls than FactTune-FS.

4-sentence Generation 8-sentence Generation

Method # Corr↑ # Incorr↓ FS↑ Calls↓ # Corr↑ # Incorr↓ FS↑ Calls↓

Qwen3-4B
Baseline 10.07 6.43 0.610 - 19.62 12.08 0.619 -
FactTune-FS 10.66 3.48 0.754 214,911 20.65 5.99 0.775 341,657
ArmoRM 14.54 8.69 0.626 - 21.02 10.02 0.677 -
RLDCF (Ours) 10.54 3.04 0.776 57,600 21.58 4.84 0.817 48,000

Qwen3-8B
Baseline 12.65 5.53 0.696 - 22.51 11.97 0.653 -
FactTune-FS 13.31 3.63 0.786 168,735 25.10 3.84 0.867 438,949
ArmoRM 12.96 6.86 0.654 - 23.31 8.92 0.723 -
RLDCF (Ours) 13.14 3.37 0.796 38,400 24.33 3.03 0.889 76,800
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Figure 2: Comparison of training dynamics, verification efficiency, and exploration behavior for
RLDCF, FactTune-FS, and ArmoRM on the Qwen3-8B model with 8-sentence generation.

RLDCF’s improvements throughout training. Figure 2 shows how the generator’s accuracy
evolves over training, measured along three axes: training epoch, number of verification calls, and
KL divergence from the base model. In Figure 2(a), RLDCF shows a slight initial drop in FactScore
(from 0.653 to 0.641). At this early stage, the critic has not yet learned to identify the most obvious
errors, so the “mistakes” it proposes are often minor or even incorrect. As a result, the generator
receives weak targeted training signals, and factuality temporarily degrades. After several rounds, the
critic improves at detecting mistakes, which in turn accelerates generator learning. Once this dynamic
stabilizes, the generator’s factuality gradually, ultimately reaching 0.889, outperforming FactTune-FS
(0.867). This two-phase process illustrates how RLDCF evolves from weak initial supervision to
highly efficient, targeted verification.

Figure 2(b) shows that RLDCF achieves the same level of factuality as FacTune-FS with far fewer
verification calls (e.g., 67K vs. 368K to achieve 84%). This highlights the inefficiency of FactTune-
FS, which repeatedly validates already correct facts, whereas RLDCF dynamically targets high-risk
errors, yielding greater verification efficiency and scalability.

Figure 2(c) measures exploration by tracking the KL divergence from the base model. Such deviation
can usually be caused by either (1) improvements from the base model through effective exploration,
or (2) reward hacking, in which the model overfits to the reward model and drafts without real quality
gains. For RLDCF, KL increases alongside monotonic FactScore gains (0.653→ 0.889), indicating
productive exploration. In contrast, RL with a fixed offline reward model (ArmoRM) shows a rise
in KL without the corresponding factuality gains, evidence of reward hacking. These dynamics
complement Table 1: while both RLDCF and FactTune-FS improve factuality, RLDCF achieves
comparable or higher FactScore with far fewer verification calls, whereas ArmoRM inflates output
length without consistent accuracy due to its static reward.
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Table 2: Generator’s test accuracy across critic types.

Method # Corr # Incorr FS

Base 19.62 12.08 0.619
Noisy Validator 19.84 12.83 0.607
Static Critic 17.77 3.77 0.825
Adversarial Critic 21.58 4.84 0.817
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Figure 3: Critic Accuracy Evolution (Left) and Mean Return during training (Right).

Ablation Study. We compare RLDCF with two ablated variants to isolate the factors driving its
effectiveness. In the first, we replace the external validator’s outputs with random correctness labels
to assess the role of validator reliability. In the second, we freeze the critic model, referred to as
a static critic rather than training it adversarially with the generator, to evaluate the importance of
adversarial joint training.

As shown in Table 2, noisy validation destabilizes training and reduces performance below the base
model, highlighting the importance of reliable validation. The static critic achieves a superficially high
FactScore by generating fewer facts, reducing both correct and incorrect facts, unlike the adversarially
trained critic that increases correct facts while reducing errors. This indicates that the static critic
inflates precision rather than genuine factual improvement. In general, these results highlight that
both reliable external verification and a dynamically adapting critic are crucial: Without either, the
generator fails to achieve meaningful gains in factual accuracy, validating the core design of RLDCF.

4.2 CODE GENERATION

4.2.1 SETTINGS

Evaluation data & metrics. We evaluate code generation performance using widely studied
benchmarks: HumanEval (Base and Plus) (Chen et al., 2021; Liu et al., 2023), MBPP (Base and
Plus) (Austin et al., 2021; Liu et al., 2023), BigCodeBench (Zhuo et al., 2024), and LiveCodeBench
(V4) (Jain et al., 2025). We use Pass1 as a primary metric. For efficiency analysis, we also report the
number of test cases executed per successful solution.

Base models & baselines. For training data, we use the AceCode-87K-hard subset (Zeng et al.,
2025), consisting of approximately 22K problems. Our base generators include Qwen2.5-Coder-7B-
Base and Qwen2.5-Coder-7B-Instruct. We compare against three baselines: (1) the original base
models without training; (2) AceCoder-Rule, which employs RL with rule-based binary rewards from
test execution; and (3) AceCoder-RM, which uses RL with AceCodeRM-7B trained on approximately
300K preference pairs constructed from AceCode-87K dataset. Our RLDCF approach samples 2k
questions from the AceCode-87K-hard subset for training, generates k = 8 outputs per prompt
(which is consistent with the Acecoder setting) with n = 2 critic proposals per generation.
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Table 3: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I),
and LiveCodeBench, using two different base models. RLDCF achieves the highest average score
across benchmarks.

Method HumanEval MBPP BCB-C BCB-I LCB Average
Base Plus Base Plus Full Hard Full Hard

Base: Qwen2.5-Coder-7B-Base
Baseline 83.5 79.3 80.4 69.3 45.8 16.2 40.2 14.2 28.7 50.8
AceCoder-RM 83.5 75.6 80.2 67.2 41.9 14.9 36.8 16.2 25.7 49.1
AceCoder-Rule 84.1 78.0 82.3 69.3 48.6 18.2 43.2 18.2 28.5 52.3
RLDCF (Ours) 85.7 80.6 82.4 71.6 50.3 20.9 42.1 16.9 28.7 53.2

Base: Qwen2.5-Coder-7B-Instruct
Baseline 91.5 84.8 82.8 71.4 49.5 19.6 41.8 20.3 34.2 55.2
AceCoder-RM 89.0 84.1 86.0 72.8 50.4 18.9 42.0 19.6 35.0 55.3
AceCoder-Rule 90.9 84.8 84.1 71.7 50.9 23.0 43.3 19.6 34.9 55.9
RLDCF (Ours) 93.3 86.0 83.9 73.0 52.2 24.3 42.3 19.6 35.2 56.6

4.2.2 MAIN RESULTS

Table 3 summarizes results across five widely-used code generation benchmarks. Despite training
on only 2,000 problems (9% of the dataset used for AceCoder-RM and AceCoder-Rule), RLDCF
achieves the highest average scores: 53.2 using Qwen2.5-Coder-7B-Base and 56.6 using Qwen2.5-
Coder-7B-Instruct, consistently outperforming both enumerative method (AceCoder-Rule) and static
reward model method (AceCoder-RM) across the majority of benchmarks. We observe from Table 4
that AceCoder-RM not only fails to improve performance but can even degrade it under noisy
validation. For example, on HumanEval, performance drops from 91.5 to 89.0 despite using the
competetive reward model Acecoder-RM-7B, indicating reward hacking.

This fragility arises from the reward model trained on preference pairs from the AceCoder dataset,
which itself contains noisy and incomplete test cases (Zeng et al., 2025). During RL training, as
the generator’s outputs drift away from the RM’s fixed training distribution, these noisy supervision
signals are further amplified. The static RM cannot adapt, causing it to favor spurious correlations
rather than true correctness, leading the generator to exploit flaws in the reward signal.

RLDCF also suffers from the noisy dataset since we use a simulated solution as validator mentioned
in settings. Although the critic is also affected by noise, its continuous adaptation allows it to stay
aligned with the generator’s changing behavior, preserving meaningful supervision. As a result,
RLDCF consistently improves performance across all benchmarks, even in noisy and imperfect
validation environments, showing robustness to noisy validation.
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Figure 4: Ablations on the static critic vs. adversarial critic. Static critic’s detection accuracy
degrades from 42.3% to 33.9% as the generator exploits its patterns, yielding minimal performance
gains (92.1%) compared to the adversarial critic’s continued improvement (93.3%).
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4.2.3 ABLATION STUDY

We compare RLDCF with a variant that replaces the adversarially trained critic with a static critic to
evaluate the necessity of dynamic adaptation. As shown in Figure 4, the static critic’s detection rate,
defined by the fraction of test cases generated that correctly expose real errors, drops dramatically
from 42.3% to 33.9% over three rounds, as the generator gradually learns to exploit its fixed detection
patterns. In contrast, the adversarial critic maintains a stable detection rate greater than 39% by
continuously adapting to the evolving behavior of the generator.

This degradation directly impacts performance: with the static critic, the generator plateaus at 92.1%
Pass@1, while RLDCF reaches 93.3%. Further analysis shows that 73% of the static critic’s test cases
in round 3 are minor variations of earlier ones, allowing the generator to avoid detection by simplifying
or reducing outputs rather than truly fixing bugs. These results highlight that dynamic adaptation is
essential for preventing reward hacking and driving real improvements in code correctness.

5 RELATED WORKS

Reward models. One possibility for evaluating free-form and open-ended generations is to encode
all criteria into a single scalar through a learnt reward model. This is usually achieved through
learning from an offline dataset of human preferences (Christiano et al., 2017; Ziegler et al., 2019;
Yi et al., 2019; Böhm et al., 2019; Rafailov et al., 2023) or absolute ratings (Cui et al., 2024; Wang
et al., 2024c). Multi-objective reward models (Wang et al., 2024a; Dong et al., 2024; Ji et al., 2023)
with a small pre-defined set of criteria such as truthfulness and honesty have also been introduced
to improve robustness and interpretability. In comparison, our work considers a dynamic set of
generation-dependent criteria to perform more precise and reliable evaluations for each individual
generation.

Enumerative verifications for free-form generations. To obtain a comprehensive and reliable
evaluation of free-form generations, the standard practice is to enumerate a set of fine-grained
criteria (Zhuge et al., 2024; Min et al., 2023; Saad-Falcon et al., 2024; Chang et al., 2024). While
they can be automatically deposed by LLMs for easier domains (Min et al., 2023; Jing et al.,
2024), extensive manual annotations are typically required for more complex domains such as travel
planning (Xie et al., 2024), codebase generation (Zhao et al., 2025), and research reproduction (Starace
et al., 2025). Dedicated computation and actions such as information retrieval (Min et al., 2023) and
code execution (Zhuge et al., 2024; Starace et al., 2025) are often needed to validate each individual
criterion, causing the cost of checklist-style verification to grow rapidly as task complexity increases.
In addition, such methods risk not covering certain types of errors and limit the potential for genuine
quality improvement. In contrast, RLDCF adaptively identifies the most informative and critical
verifiable failure modes for each instance, providing targeted feedback that covers essential errors
without relying on exhaustive or rigidly predefined checks, while also keeping verification cost
manageable.

6 CONCLUSION

We presented Reinforcement Learning from Dynamic Critic Feedback (RLDCF), a new post-training
approach for open-ended tasks requiring diverse, task-specific rubrics, where exhaustive enumeration
is infeasible and optiomal reward design is unknown. RLDCF formulates training as an adversarial
min-max game between a generator and a critic, a model that dynamically identifies the worst-case
rubric for each output and verifies it externally. By jointly training both models, our approach
bypasses the need for exhaustive verification or manual reward design while providing adaptive
learning signals that prevent reward hacking. On the factual text generation task and code generation
task, RLDCF outperforms competitive baselines with significantly lower verification cost. Ablation
studies further confirm the critical role of components such as adversarial critic training.

While we evaluate RLDCF on two domains, we expect it to generalize broadly to other open-ended
generation tasks where multiple evaluation criteria make exhaustive or rubric-by-rubric verification
infeasible, such as story or scientific text generation. By adaptively selecting the most critical rubric
at each step, RLDCF makes RL training practical for complex generation tasks that were previously
intractable due to the combinatorial explosion of rubrics or the lack of universal reward functions.
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7 REPRODUCABILITY AND ETHICS STATEMENTS

To facilitate reproducibility of our work, we have included core implementation code in the supple-
mentary materials. For the FactScore and code generation benchmarks, we use the default settings
from their respective official implementations. All experiments employ DPO (Direct Preference
Optimization) training with consistent configurations across tasks. The datasets used in our exper-
iments are publicly available: WikiBiography can be obtained from its official website, and the
Acecoder dataset is accessible through its official repository. We plan to release our complete code
implementation publicly upon acceptance to further support reproducibility efforts.

The primary goal of our method, Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
is to enhance the quality of open-ended generations, such as to improve the factual accuracy of
text generation and the correctness of code generation. We believe this is a positive contribution
toward developing more reliable and trustworthy AI systems. However, we acknowledge the dual-use
potential inherent in any powerful generative technology. While our aim is to reduce errors, an
improved generator could still be misused to create convincing but harmful or misleading content
if directed by malicious prompts. Similarly, the adversarial critic, designed to find flaws, could
potentially be repurposed for malicious critique.
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A VALIDATOR IMPLEMENTATION DETAILS

A.1 FACTSCORE

We follow a strict validation process to ensure both authenticity and factual accuracy. In the first
stage, the critic outputs both a suspected erroneous fact and the sentence number containing it. To
prevent exploitation through information injection, we use textual entailment checking to verify that
the proposed fact genuinely appears in the specified sentence. In the second stage, for proposals
passing authenticity checks, we reuse FactScore’s atomic fact verification component, which queries
Wikipedia knowledge base to provide binary verification of individual factual claims, returning true
or false based on external verification.
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A.2 ACECODER

Since the AceCoder dataset lacks reference solutions to prevent data contamination, we construct
reliable verification anchors by using Qwen2.5-Coder-7B-Instruct to generate solutions for 2000
problems. We filter these solutions using original test cases, retaining only those highly accurate
answers (achieving 99.7% accuracy) to serve as simulated ground truth for test case validation.
Our validation protocol follows a systematic approach where the critic identifies potential errors by
proposing specific test cases that expose code failures. We first execute the critic’s test case on the
reference solution to obtain the expected output, then execute the same test case on the generated code
to obtain the actual output. Finally, we compare these outputs and return R(s,a,c) = 1 if outputs match
and 0 if they differ, with execution failures also indicating detected errors. The AceCoder dataset
contains noise in GPT-4o generated test cases, which introduces some bias in our reference-based
validator but reflects realistic imperfections in verification tools.

B ACTOR PROMPT

B.1 FACTSCORE (FACTUAL TEXT GENERATION)

System message:
You are an AI assistant that provides accurate and concise biographies of individuals.
Each biography should be exactly four sentences long, highlighting key aspects of the
person’s life, achievements, and significance.

User message:
Write a biography of {topic}.

B.2 CODE GENERATION

The actor input exactly matches the problem statement provided in
TIGER-Lab/AceCode-87K-hard without modification.

User message:
{problem_statement_from_AceCode-87K-hard}

C CRITIC PROMPT

C.1 FACTSCORE (FACTUAL TEXT CRITIC)

System message:
You are a factual checker. Based on your existing knowledge,
identify exactly one sentence that contains the most clearly
verifiable factual error in the paragraph.
Return your answer in **exactly three lines**:
reason: < briefly explaining what is wrong >
sentence: N ← N is the number of the most incorrect sentence (positive integer)
error_fact: F ← a brief clause (no more than 8 words) capturing the wrong claim

from that sentence

User message:
Here is an example to show the task.
Find the sentence that contains the most clearly verifiable factual error
in the paragraph about Albert Einstein.

Example paragraph:
[1] Albert Einstein was awarded the Nobel Prize in Physics in 1921 for his discovery of the photoelectric effect.
[2] He was born in New York City, United States, and later moved to Europe where he continued his studies.
[3] Einstein developed the theory of relativity, revolutionizing our understanding of space, time, and gravity.
[4] His famous equation describes the equivalence of mass and energy.
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Expected answer:
reason: Einstein was actually born in Ulm, Germany, not New York City.
sentence: 2
error_fact: Albert Einstein was born in New York City.

Now apply the same procedure to the paragraph below about {topic}.

Paragraph:
{numbered_paragraph}

Answer:

C.2 CODE GENERATION CRITIC

System message:
You are a code critic. Analyze code for bugs and generate failing test cases.
Strictly follow the format with <think> and <testcase> tags.

User message:
Analyze the given problem and generated code to find a test case
that would cause the code to fail.

Problem: {question}

Generated code:
‘‘‘python
{code}
‘‘‘
First, think through potential bugs and edge cases in <think> </think> tags.
Then output exactly ONE failing test case inside <testcase> tags using this format:

Option A (CALL format)
<testcase> CALL: func_name(arg1, arg2, kw=val) </testcase>
Option B (STDIN format)
<testcase> STDIN: <raw input here> </testcase>

Do NOT include expected outputs or explanations.
{optional_examples_block}

D RELATED WORK

LLM-as-a-Judge. Because of the common-sense and reasoning capabilities of pre-trained LLMs,
they can directly be prompted to serve as a judge to evaluate free-form generations (Zheng et al., 2023;
Yuan et al., 2025; Zhu et al., 2025). Their capabilities in evaluations can be further improved through
explicit fine-tuning (Wang et al., 2024b; Yuan et al., 2025). They can also be more interpretable
and robust by introducing a long Chain-of-Thought (CoT) reasoning to explicitly verify fine-grained
criteria (Saha et al., 2025; Wang et al., 2024b; Trivedi et al., 2024). Beyond rubric-only judging,
generative verifiers treat verification itself as next-token generation: they first produce verification
rationales or counterevidence, and then scoreor select candidates (Zhang et al., 2025; Singhi et al.,
2025; Setlur et al., 2025). RLDCF further strengthens the verification of individual criteria by
allocating computational resources to perform explicit actions, such as information gathering and
code execution, enabling more powerful verification capabilities.
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E LM USAGE STATEMENT

During the preparation of this submission, the authors utilized large language models (LLMs) to
assist with editing, including improving grammar, phrasing, and clarity. LLMs were also used to
help summarize and structure paragraphs based on the authors’ own notes and drafts. The authors
meticulously reviewed, revised, and take full responsibility for all content, ensuring its scientific
accuracy and originality.
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