Under review as a conference paper at ICLR 2026

REINFORCEMENT LEARNING FROM DYNAMIC CRITIC
FEEDBACK FOR FREE-FORM GENERATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-ended generation tasks require outputs to satisfy diverse and often implicit
task-specific evaluation rubrics. The sheer number of relevant rubrics leads to
prohibitively high verification costs and incomplete assessments of a response,
making reinforcement learning (RL) post-training with rubric-based rewards dif-
ficult to scale. This problem is exacerbated by the fact that often the best way
to combine these rubrics into one single reward is also highly prompt-specific.
We propose Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
a post-training approach that addresses these challenges via dynamic rubric ver-
ification. Our approach employs a large language model (LLM) as a critic that
dynamically identifies only the most likely failure modes (e.g., a factual error or
unhandled edge case), which are then verified by an external validator to optimize
both generator and critic jointly. By training both the generator and the critic,
this game enhances the critic’s error detection and the generator’s output quality
while reducing required verifications. Our experiments demonstrate that RLDCF
improves factual accuracy in text generation and correctness in code generation,
while also outperforming exhaustive verification and reward model methods. We
show that dynamic critics are more effective than fixed critics, showcasing the
potential of RLDCEF for scaling RL post-training to free-form generation tasks.

1 INTRODUCTION

Post-training methods for large language models (LLMs) have progressed dramatically over the past
few years, from largely manual supervised fine-tuning (SFT) techniques that rely on a combination of
manual data curation (Radford et al., 2018; Brown et al., 2020; Shengyu et al., 2023) to reinforcement
learning (RL) methods that perform general preference-based optimization (Christiano et al., 2017,
Ouyang et al., 2022) or optimize task-specific notions of correctness (Zha et al., 2025). Despite these
remarkable results, RL post-training is limited to tasks with clear-cut success criteria (i.e., correctness
of an answer or preference of a human user), and it remains unclear how to post-train LLMs with RL
on tasks that require producing open-ended or free-form outputs that are hard to verify perfectly.

Perhaps the biggest challenge in building RL post-training methods for free-form generation tasks
is the lack of a solid reward function: outputs are typically expected to satisfy several task-specific
rubrics. In principle, a task designer could construct a reward by combining these rubrics, but both
enumerating and verifying them pose major scalability challenges (Min et al., 2023). For instance,
complex code generation requires testing countless edge cases (e.g., empty inputs or specific numbers).
Even if such criteria could be enumerated, knowing how to combine them remains difficult (e.g.,
should correctly handling even numbers outweigh handling primes?). While RLHF-trained reward
models or LLM-as-judge approaches (Christiano et al., 2017; Zheng et al., 2023) outsource the job of
merging rubrics to a learned or prompted reward model, this often leads to reward hacking (Ziegler
et al., 2019; Gao et al., 2023; Skalse et al., 2022; Eisenstein et al., 2023), since the best combination
is highly dependent on the prompt and the model being optimized. How can we then train LLMs on
free-form generation tasks with several (maybe uncountably many) rubrics?

We introduce Reinforcement Learning from Dynamic Critic Feedback (RLDCF), which formulates
the problem into as an adversarial game between a generator and a critic. The critic is a model
that identifies a single rubric (e.g., one test case) on which the generator’s output is likely to fail.
Both models are trained jointly: the critic is rewarded when it correctly pinpoints a rubric that the
generator fails (verified by an external validator), while the generator is rewarded when the critic is

Under review as a conference paper at ICLR 2026

Reward:0

Michael Jackson was a French songwriter born in Paris. He
S Actor rose to fame as a child star with his haunting melodies
Question: that captivated audiences across Europe. His unique ...

Tell me a

bio of
ichael - -
=B Critic - gl seteon e s, Externail Validator _5¢
(FactScore)
Reward:1

Figure 1: Overview of the RLDCF framework

unable to do so. This formulation eliminates the need to enumerate or verify all rubrics, significantly
improving training scalability. At the same time, it ensures that rewards are based on rubrics that are
prompt-specific, adversarially chosen, and always on-policy.

We evaluate Reinforcement Learning from Dynamic Critic Feedback on factual text generation and
code generation, representing enumerable and non-enumerable verification scenarios respectively. On
8-sentence biography generation, Reinforcement Learning from Dynamic Critic Feedback achieves a
FactScore of 0.889, surpassing FactTune-FS’s (Tian et al., 2024) 0.867, while reducing verification
calls by 5.7 x. This efficiency gain scales with task complexity, from 4.4 x for 4-sentence to 5.7 x for
8-sentence generation. In code generation, despite using only 9% of the training data, Reinforcement
Learning from Dynamic Critic Feedback achieves the highest average scores on both base models:
53.2 on Qwen2.5-Coder-7B-Base and 56.6 on Qwen2.5-Coder-7B-Instruct, outperforming AceCoder
variants (Zeng et al., 2025).

Our primary contribution is RLDCF, a paradigm for training LLMs on free-form generation tasks. It
enhances factuality and code correctness while preventing reward hacking and reducing verification
costs, enabling robust optimization for diverse free-form generation tasks.

2 PRELIMINARIES

Our goal is to train a generator that produces a free-form output meeting task requirements, without
manually enumerating every rubric. In this section, we formalize this problem, introduce notation,
and briefly discuss related concepts of reward models () and enumerative verification (). We then
present our approach in the next section.

Problem setup. We consider free-form generation tasks where outputs must satisfy many task-
specific requirements, which we call rubrics. For instance, a biography generation task may require
that each factual claim is correct, while a code generation task may require the program to handle
all edge cases correctly. Formally, let S be a distribution over prompts or instructions that may be
presented to an LLM. Given s € S, a generator LLM 79(a | s) is tasked with producing a textual
output a € A. We choose to use standard notation typically used in RL (S denoting the state space
and A denoting the action space) as we later present an RL training objective. Each instruction s is
inherently associated with a set of rubrics (denoted as C(s)), where each rubric ¢ € C(s) represents a
verifiable property the output should satisfy, such as “the claim about Newton’s birth year is correct”
for biography generation or “the code handles null inputs” for code generation.

We assume access to a binary verification function R(s, a, ¢) that returns 1 if a generated output
a ~ 79(+|s) satisfies the rubric ¢ on instruction s, and attains 0 otherwise. An output a is considered
correct only when all rubrics C(s) associated with instruction s are satisfied. Our goal is to train
m9(+|s) to maximize the probability of producing fully correct outputs:

T, := argmax Es s]anw(.‘s)[H R(s, a, c)} . ¢))
T ceC(s)
In constrained domains with a single, well-defined rubric (e.g., matching a reference solution

in math reasoning), the optimization of object simplifies, allowing standard RL algorithms like
PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024) to optimize the policy. However, such

Under review as a conference paper at ICLR 2026

cases are rare in open-ended tasks with diverse rubrics. In these settings, C(s) can be extremely large
or even unbounded, making Eq. 1 computationally intractable since every output must be checked
against every rubric.

Reward models and enumerative verification. Most approaches to optimizing free-form generation
tackle the challenge of diverse rubrics through two paradigms. RLHF (Christiano et al., 2017) trains
a single proxy reward model from offline human preference data. While efficient, this optimization is
hard because the learned proxy is only as good as its coverage of the preference dataset. When the
generator explores beyond this support, the proxy can misalign (Gao et al., 2023), often necessitating
additional constraints like KL regularization to avoid collapse. These constraints stabilize training
but also limit exploration, making it difficult to scale to highly open-ended tasks (Dong et al., 2024).

Another approach is to enumerate the evaluation criteria and optimize their aggregate, either through
prompting (Min et al., 2023; Saha et al., 2025) or via preferences implicitly elicited from hu-
mans (Wang et al., 2024b; Mahan et al., 2024). While more faithful to the underlying rubrics (Trivedi
et al., 2024), this strategy is fundamentally limited: it assumes the evaluation set C(s) can be exhaus-
tively listed, which is unrealistic for complex tasks (e.g., all test cases for a nontrivial program). Even
when such enumeration is feasible, iterating over the entire set is computationally prohibitive, turning
optimization into an intractable verification bottleneck.

3 REINFORCEMENT LEARNING FROM DYNAMIC CRITIC FEEDBACK

We now introduce our RL post-training approach, called Reinforcement Learning from Dynamic
Critic Feedback (RLDCF) for training LLM generators on free-form tasks. Our goal is to provide
rewards while avoiding the scalability limits of enumerative verification and the misalignment of
static reward models. The core idea is to recast verification as a dynamic process guided by a learned
critic. Concretely, we frame training as a two-player game: given an output from the generator, the
critic proposes a rubric the output is likely to violate, while the generator aims to satisfy all such
rubrics. An external validator then adjudicates whether the output meets the proposed rubric, and
this supervision updates both generator and critic. In this way, verification becomes adaptive and
adversarial, tailored to the generator’s current weaknesses. We now formally derive this approach.

3.1 PROBLEM REFORMULATION

To derive our approach formally, our starting point is the objective of Equation 1, which requires a
generation to satisfy all rubrics in the set C(s): Since R(s, a, ¢) is an indicator function for each c,
we can rewrite the requirement that all rubrics are satisfied as a minimum over all rubrics as follows:

1{R(s,a,c) =1,Ve € C(s)} = mcl(n) 1{R(s,a,c) =1}. (2)
ceC(s

Intuitively, the minimum selects the worst-case criterion, i.e., the first failure mode encountered by
the current model 7. Substituting Equation 2 into Equation 1 gives:

T, = arg mngSNS [EaNﬂ(.m {CIEHCI(I;) R(s, a,c)H . 3)

However, this reformulation by itself does not make the optimization problem simpler: searching
over C(s) is infeasible when C(s) is large or infinite (e.g., all possible test cases). To address this,
we introduce a critic 7¢, modeled as a stochastic policy that generates the worst criterion c given the
instruction s and action a over rubrics conditioned on (s, a). Then we can rewrite Equation 3 into the
equivalent min-max form:

79« argmax min Eg.s [anﬂ(.‘s)ECNﬂc(.Bﬂ) [R(&a,c)]] .)

It can be shown that the solution 79 from Equation 4 is the same as that from Eq. (1), but now we
bypass the need to enumerate all criteria over C(s) (Madry et al., 2018).

Pretty much like other mini-max optimization problems, we can solve the above optimization problem
by iteratively updating 79 and 7¢ against each other. The optimization goal is to achieve a robust
generator 79 that does well even according to the most adversarial critic, upon convergence. More
details with respect to the practical optimization algorithm will be provided in Section 3.2.

Under review as a conference paper at ICLR 2026

3.2 PRACTICAL INSTANTIATION OF RLDCF

We now instantiate the two-player adversarial game from the previous section into a practical approach
that we can use to train LLMs. As shown in Figure 1, we parameterize three task-agnostic components
that interact with each other during RL training. Each component is instantiated differently based on
the domain (as detailed in Section 4).

Generator. The generator 79, is an LLLM that is fine-tuned to produce an output ¢ € A for an
instruction s € §. RLDCF samples multiple response generations from 79 for each instruction s.
We train 79 to maximize the probability of producing outputs that satisfy all task-specific rubrics, as
detailed in Section 4. The prompt for the generator is included in the Appendix.

Critic. Our critic 7€ is a pre-trained LLM 7¢ that RLDCEF fine-tunes. Specifically, for each instruction
s and a query generation output a, the critic is prompted to generate a natural language output
representing a rubric ¢ through auto-regressive decoding. The rubric ¢ along with the instruction s and
the generation a are then sent to the external validator to obtain a reward signal R(s,a,c) € {0,1}.
The prompt for the adversarial critic is included in the Appendix.

Validator. The validator is an external tool or process that can verify whether a generated response
satisfies a rubric provided as input to it. The validator can be implemented in various ways depending
on the domain, such as rule-based checkers or a software tool that evaluates a proposed code on a
proposed test-case. Implementation details for specific tasks are discussed in the Appendix.

Updating the generator and critic. At each training step, we sample instructions s € S and
have the generator 79 produce K candidate outputs ay, ..., ax. For each (s, a;), the adversarial
critic m¢ proposes a criterion ¢;, which is then checked by the validator to yield a binary reward
r; € {0,1}. This online feedback provides signals for both policies. Outputs with r; = 1 are treated
as positives (a™) and those with r; = 0 as negatives (a~), and the generator is updated using the
DPO loss (Rafailov et al., 2023) with respect to the reference generator 77

I(at 9I(a~
L(m9;7l) = —EEg+ o-) [loga(ﬁ log m — Blog M)] . 5)

ref ref

Similarly, for each (s, a) pair, we sample N criteria from 7¢. Criteria rejected by the validator (invalid
or satisfied by the generator) are treated as negatives (¢~), while valid, unsatisfied ones are positives
(¢T). The critic is then updated with the same DPO objective relative to its reference policy 7

7Tri:f(c+‘87a) 7Tr%f(07|sva)

c ¢ w¢(ct|s,a m(c” s, a
E(T{' ; ﬂ-ref) = —ES@E(C+,C,) |:10g o <ﬁ IOg M _ ﬁ IOg (|)):| . (6)
In this way, evaluation and improvement are unified: the critic adaptively identifies failure modes,
the validator provides ground-truth feedback, and both generator and critic are jointly updated to
improve over time. Note that we chose the DPO loss for its simplicity, though any online or offline

RL approach could be used for policy optimization.

Algorithm summary. Algorithm 1 summarizes the practical implementation of RLDCF. At a high
level, the algorithm follows a standard online RL loop that alternates between policy evaluation and
improvement. In each evaluation step, we sample generations from the current generator 79, have the
critic propose a criterion ¢, and obtain verification to assign rewards. These rewards are then used
to update the generator with the DPO objective (Equation 5). Optionally, we also collect evaluation
data for the critic by sampling multiple criteria per instruction—generation pair. The critic is then
updated with its own DPO objective (Equation 6), allowing it to adaptively identify weaknesses in
the generator and provide more effective learning signals.

4 EXPERIMENTS

We now evaluate our approach on two free-form generation tasks: factual text generation (§4.1)
and code generation (§4.2). Factual text generation illustrates the enumerable-but-expensive regime,
where all claims can in principle be verified but at a cost that scales with text length. This tests
RLDCF’s ability to maintain verification quality while reducing calls. Code generation, by contrast,
represents the non-enumerable regime, where exhaustive verification is impossible due to infinite
corner cases and intractable formal checks (Church, 1936). Here, the goal is to expose critical failures
through targeted critic proposals. Together, these tasks span the spectrum from costly-but-possible to
fundamentally intractable verification, highlighting the broad applicability of RLDCF.

Under review as a conference paper at ICLR 2026

Algorithm 1 RLDCF

. itiali g c 9 c
I: In1t1a11ze.parar.neters I, T, gy Trep
2: for each iteration do

3: ## Policy Evaluation for Generator 79.
4: for each instruction s do
5: Generate K generations aq, ...,ax ~ 79 (-|s)
6: Sample a criterion from the adversarial critic for each generation ¢; ~ 7¢(|s, a;).
7: . Construct a generator dataset DI = {(s, a;, R(s, a;,¢;))} <
8: ## Policy Evaluation for Critic 7¢. > Optional
9: for each instruction s, output a do
10 Generate N criteria ¢1, ...,cy ~ 7¢(+|s, a)
11: Construct a critic dataset Df; = {(s, a, R(s, a,)y
12: ## Policy Improvement for Generator 79.
13: T — 9
14: for each update step do
15: | Tiew < Tiew — VL(Tiew, Toe) > Equation 5
16: | 7wl w9
17: ## Policy Improvement for Critic 7¢. > Optional
18: My < T
19: for each update step do
20: | Toew ¢ Thow — VL(TC s TSp) > Equation 6
21: | mhp & T©

4.1 FACTUAL TEXT GENERATION

4.1.1 SETTINGS

Evaluation data & metrics. We follow (Min et al., 2023; Tian et al., 2024) in adapting a factual
text generation task in which the model should produce concise biographies for a given individual.
We use 170 topics from the Wikipedia Biography Dataset (Lebret et al., 2016), split into 120 for
training and 50 for testing. We use factual precision of the output (as defined by FactScore (Min et al.,
2023)) as the primary metric, and also report the counts of correct and incorrect facts. To control for
length, the model is instructed to generate either four or eight sentences (see Appendix ??). Since
frequent calls to the external validator are costly, we additionally track the number of validator calls.

Base models & baselines. Our base generators are Qwen3-4B and Qwen3-8B. We compare against
three baselines: (1) the original base models without task-specific training; (2) FactTune-FS (Tian
et al., 2024), a widely used method for factual text generation to represent exhaustive verification
using an external validator, FactScore, for all atomic facts; and (3) ArmoRM (Wang et al., 2024a),
which represents the reward model based method that produces one reward score for the generated
output. Both the generator and critic are initialized from the same backbone models (Qwen3-4B
and Qwen3-8B) to ensure fairness. We use FactScore as an external validator, i.e., FactScore checks
whether a critic-proposed fact appears in the biography and is correct according to Wikipedia. All
methods are trained with multiple rounds of DPO updates, where the generator produces 10 outputs
per prompt and the critic proposes 4 rubrics per output.

4.1.2 RESULTS

Table 1 shows that RLDCF achieves the highest factuality scores across model sizes and output lengths,
while using significantly fewer verification calls. For instance, on Qwen3-8B with eight-sentence
generation, it reaches a FactScore of 0.889, outperforming FactTune-FS (0.867) and ArmoRM (0.723),
but with only 77k verification calls compared to 439k for FactTune-FS. This efficiency gap grows
with output length: FactTune-FS requires 4.4 x more verification calls in the four-sentence setting
(169k vs. 39k) and 5.7 x more in the eight-sentence setting (439k vs. 77k). This shows that RLDCF
scales more efficiently as the generation complexity increases.

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on factual text generation. RLDCF achieves the highest FactScore
across all settings while using fewer verification calls than FactTune-FS.

4-sentence Generation 8-sentence Generation
Method # CorrT #Incorr] FS1 Calls] # Corrt # Incorr] FSt Calls|]
Owen3-4B
Baseline 10.07 6.43 0.610 - 19.62 12.08 0.619 -
FactTune-FS 10.66 348 0.754 214911 20.65 5.99 0.775 341,657
ArmoRM 14.54 8.69 0.626 - 21.02 10.02 0.677 -
RLDCEF (Ours) 10.54 3.04 0.776 57,600 21.58 4.84 0.817 48,000
QOwen3-8B
Baseline 12.65 5.53 0.696 - 22.51 11.97 0.653 -
FactTune-FS 13.31 3.63 0.786 168,735 25.10 3.84 0.867 438,949
ArmoRM 12.96 6.86 0.654 - 23.31 8.92 0.723 -
RLDCEF (Ours) 13.14 3.37 0.796 38,400 24.33 3.03 0.889 76,800
RLDCF ----=--- Factune-FS ----+--- ArmoRM

0.90 0.90 0.90

0.851 0.85 1 _/’,\"' 0.851
[S
G 0.80 0.80 1 i 0.80 1
ng ,-/
E 0.75 1 0.75 1 /’/ 0.75 1

0.70 0.70 1 // 0.70 1

0.65 1 - . . 0.65 - - - - 0.65 -4 . ; ; ; ;

0 5 10 15 0 100k 200k 300k 400k 500k 00 01 02 03 04 05
Round Verification Calls KL Divergence
(a) Training Dynamics (b) Verification Efficiency (c) Exploration Behavior

Figure 2: Comparison of training dynamics, verification efficiency, and exploration behavior for
RLDCEF, FactTune-FS, and ArmoRM on the Qwen3-8B model with 8-sentence generation.

RLDCEF’s improvements throughout training. Figure 2 shows how the generator’s accuracy
evolves over training, measured along three axes: training epoch, number of verification calls, and
KL divergence from the base model. In Figure 2(a), RLDCF shows a slight initial drop in FactScore
(from 0.653 to 0.641). At this early stage, the critic has not yet learned to identify the most obvious
errors, so the “mistakes” it proposes are often minor or even incorrect. As a result, the generator
receives weak targeted training signals, and factuality temporarily degrades. After several rounds, the
critic improves at detecting mistakes, which in turn accelerates generator learning. Once this dynamic
stabilizes, the generator’s factuality gradually, ultimately reaching 0.889, outperforming FactTune-FS
(0.867). This two-phase process illustrates how RLDCF evolves from weak initial supervision to
highly efficient, targeted verification.

Figure 2(b) shows that RLDCF achieves the same level of factuality as FacTune-FS with far fewer
verification calls (e.g., 67K vs. 368K to achieve 84%). This highlights the inefficiency of FactTune-
FS, which repeatedly validates already correct facts, whereas RLDCF dynamically targets high-risk
errors, yielding greater verification efficiency and scalability.

Figure 2(c) measures exploration by tracking the KL divergence from the base model. Such deviation
can usually be caused by either (1) improvements from the base model through effective exploration,
or (2) reward hacking, in which the model overfits to the reward model and drafts without real quality
gains. For RLDCF, KL increases alongside monotonic FactScore gains (0.653 — 0.889), indicating
productive exploration. In contrast, RL with a fixed offline reward model (ArmoRM) shows a rise
in KL without the corresponding factuality gains, evidence of reward hacking. These dynamics
complement Table 1: while both RLDCF and FactTune-FS improve factuality, RLDCF achieves
comparable or higher FactScore with far fewer verification calls, whereas ArmoRM inflates output
length without consistent accuracy due to its static reward.

Under review as a conference paper at ICLR 2026

Table 2: Generator’s test accuracy across critic types.

Method # Corr # Incorr FS
Base 19.62 12.08 0.619
Noisy Validator 19.84 12.83 0.607
Static Critic 17.77 3.77 0.825
Adversarial Critic 21.58 484 0.817
——e—— Critic Accuracy ---#--- Static Critic ——e—— Adversarial Critic
68
—_ 0.8 1
9
< 66 c 0.7 1
8 3 061
g 64 E 0.5
© 0.4
O |
£ 62 0.3
o
P I S S S N S S S 02{ w—=®~%
0 2 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8 9 10 11 12
Epoch Epoch
(a) Critic Accuracy (b) Mean Return

Figure 3: Critic Accuracy Evolution (Left) and Mean Return during training (Right).

Ablation Study. We compare RLDCF with two ablated variants to isolate the factors driving its
effectiveness. In the first, we replace the external validator’s outputs with random correctness labels
to assess the role of validator reliability. In the second, we freeze the critic model, referred to as
a static critic rather than training it adversarially with the generator, to evaluate the importance of
adversarial joint training.

As shown in Table 2, noisy validation destabilizes training and reduces performance below the base
model, highlighting the importance of reliable validation. The static critic achieves a superficially high
FactScore by generating fewer facts, reducing both correct and incorrect facts, unlike the adversarially
trained critic that increases correct facts while reducing errors. This indicates that the static critic
inflates precision rather than genuine factual improvement. In general, these results highlight that
both reliable external verification and a dynamically adapting critic are crucial: Without either, the
generator fails to achieve meaningful gains in factual accuracy, validating the core design of RLDCF.

4.2 CODE GENERATION
4.2.1 SETTINGS

Evaluation data & metrics. We evaluate code generation performance using widely studied
benchmarks: HumanEval (Base and Plus) (Chen et al., 2021; Liu et al., 2023), MBPP (Base and
Plus) (Austin et al., 2021; Liu et al., 2023), BigCodeBench (Zhuo et al., 2024), and LiveCodeBench
(V4) (Jain et al., 2025). We use Pass1 as a primary metric. For efficiency analysis, we also report the
number of test cases executed per successful solution.

Base models & baselines. For training data, we use the AceCode-87K-hard subset (Zeng et al.,
2025), consisting of approximately 22K problems. Our base generators include Qwen2.5-Coder-7B-
Base and Qwen2.5-Coder-7B-Instruct. We compare against three baselines: (1) the original base
models without training; (2) AceCoder-Rule, which employs RL with rule-based binary rewards from
test execution; and (3) AceCoder-RM, which uses RL with AceCodeRM-7B trained on approximately
300K preference pairs constructed from AceCode-87K dataset. Our RLDCF approach samples 2k
questions from the AceCode-87K-hard subset for training, generates & = 8 outputs per prompt
(which is consistent with the Acecoder setting) with n = 2 critic proposals per generation.

Under review as a conference paper at ICLR 2026

Table 3: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I),
and LiveCodeBench, using two different base models. RLDCF achieves the highest average score
across benchmarks.

Method HumanEval MBPP BCB-C BCB-1 LCB Average

Base Plus Base Plus Full Hard Full Hard

Base: Qwen2.5-Coder-7B-Base

Baseline 83,5 793 804 693 458 162 402 142 287 50.8
AceCoder-RM 835 756 802 672 419 149 368 162 257 49.1
AceCoder-Rule 84.1 78.0 823 693 486 182 432 182 285 523
RLDCF (Ours) 85.7 80.6 824 716 503 209 421 169 287 53.2

Base: Qwen2.5-Coder-7B-Instruct

Baseline 91.5 848 828 714 495 196 418 203 342 55.2
AceCoder-RM 89.0 84.1 86.0 728 504 189 420 19.6 35.0 553
AceCoder-Rule 909 84.8 841 71.7 509 23.0 433 196 349 55.9
RLDCF (Ours) 933 86.0 839 730 522 243 423 19.6 352 56.6

4.2.2 MAIN RESULTS

Table 3 summarizes results across five widely-used code generation benchmarks. Despite training
on only 2,000 problems (9% of the dataset used for AceCoder-RM and AceCoder-Rule), RLDCF
achieves the highest average scores: 53.2 using Qwen2.5-Coder-7B-Base and 56.6 using Qwen2.5-
Coder-7B-Instruct, consistently outperforming both enumerative method (AceCoder-Rule) and static
reward model method (AceCoder-RM) across the majority of benchmarks. We observe from Table 4
that AceCoder-RM not only fails to improve performance but can even degrade it under noisy
validation. For example, on HumanEval, performance drops from 91.5 to 89.0 despite using the
competetive reward model Acecoder-RM-7B, indicating reward hacking.

This fragility arises from the reward model trained on preference pairs from the AceCoder dataset,
which itself contains noisy and incomplete test cases (Zeng et al., 2025). During RL training, as
the generator’s outputs drift away from the RM’s fixed training distribution, these noisy supervision
signals are further amplified. The static RM cannot adapt, causing it to favor spurious correlations
rather than true correctness, leading the generator to exploit flaws in the reward signal.

RLDCEF also suffers from the noisy dataset since we use a simulated solution as validator mentioned
in settings. Although the critic is also affected by noise, its continuous adaptation allows it to stay
aligned with the generator’s changing behavior, preserving meaningful supervision. As a result,
RLDCEF consistently improves performance across all benchmarks, even in noisy and imperfect
validation environments, showing robustness to noisy validation.

---#--- Static Critic ——e—— Adversarial Critic
9
c 44 0.9301
o
B 42
¥} (]
@ 40 5 0.9251
o O
c i (9]
s 0.920 1
- .
g 361
o
0 341 0.915 1
1 2 3 4 5 0 1 2 3 4 5
Round Round
(a) Detection Precision (b) HumanEval Pass@1

Figure 4: Ablations on the static critic vs. adversarial critic. Static critic’s detection accuracy
degrades from 42.3% to 33.9% as the generator exploits its patterns, yielding minimal performance
gains (92.1%) compared to the adversarial critic’s continued improvement (93.3%).

8

Under review as a conference paper at ICLR 2026

4.2.3 ABLATION STUDY

We compare RLDCF with a variant that replaces the adversarially trained critic with a static critic to
evaluate the necessity of dynamic adaptation. As shown in Figure 4, the static critic’s detection rate,
defined by the fraction of test cases generated that correctly expose real errors, drops dramatically
from 42.3% to 33.9% over three rounds, as the generator gradually learns to exploit its fixed detection
patterns. In contrast, the adversarial critic maintains a stable detection rate greater than 39% by
continuously adapting to the evolving behavior of the generator.

This degradation directly impacts performance: with the static critic, the generator plateaus at 92.1%
Pass@ 1, while RLDCF reaches 93.3%. Further analysis shows that 73% of the static critic’s test cases
in round 3 are minor variations of earlier ones, allowing the generator to avoid detection by simplifying
or reducing outputs rather than truly fixing bugs. These results highlight that dynamic adaptation is
essential for preventing reward hacking and driving real improvements in code correctness.

5 RELATED WORKS

Reward models. One possibility for evaluating free-form and open-ended generations is to encode
all criteria into a single scalar through a learnt reward model. This is usually achieved through
learning from an offline dataset of human preferences (Christiano et al., 2017; Ziegler et al., 2019;
Yi et al,, 2019; Bohm et al., 2019; Rafailov et al., 2023) or absolute ratings (Cui et al., 2024; Wang
et al., 2024¢). Multi-objective reward models (Wang et al., 2024a; Dong et al., 2024; Ji et al., 2023)
with a small pre-defined set of criteria such as truthfulness and honesty have also been introduced
to improve robustness and interpretability. In comparison, our work considers a dynamic set of
generation-dependent criteria to perform more precise and reliable evaluations for each individual
generation.

Enumerative verifications for free-form generations. To obtain a comprehensive and reliable
evaluation of free-form generations, the standard practice is to enumerate a set of fine-grained
criteria (Zhuge et al., 2024; Min et al., 2023; Saad-Falcon et al., 2024; Chang et al., 2024). While
they can be automatically deposed by LLMs for easier domains (Min et al., 2023; Jing et al.,
2024), extensive manual annotations are typically required for more complex domains such as travel
planning (Xie et al., 2024), codebase generation (Zhao et al., 2025), and research reproduction (Starace
et al., 2025). Dedicated computation and actions such as information retrieval (Min et al., 2023) and
code execution (Zhuge et al., 2024; Starace et al., 2025) are often needed to validate each individual
criterion, causing the cost of checklist-style verification to grow rapidly as task complexity increases.
In addition, such methods risk not covering certain types of errors and limit the potential for genuine
quality improvement. In contrast, RLDCF adaptively identifies the most informative and critical
verifiable failure modes for each instance, providing targeted feedback that covers essential errors
without relying on exhaustive or rigidly predefined checks, while also keeping verification cost
manageable.

6 CONCLUSION

We presented Reinforcement Learning from Dynamic Critic Feedback (RLDCF), a new post-training
approach for open-ended tasks requiring diverse, task-specific rubrics, where exhaustive enumeration
is infeasible and optiomal reward design is unknown. RLDCF formulates training as an adversarial
min-max game between a generator and a critic, a model that dynamically identifies the worst-case
rubric for each output and verifies it externally. By jointly training both models, our approach
bypasses the need for exhaustive verification or manual reward design while providing adaptive
learning signals that prevent reward hacking. On the factual text generation task and code generation
task, RLDCF outperforms competitive baselines with significantly lower verification cost. Ablation
studies further confirm the critical role of components such as adversarial critic training.

While we evaluate RLDCF on two domains, we expect it to generalize broadly to other open-ended
generation tasks where multiple evaluation criteria make exhaustive or rubric-by-rubric verification
infeasible, such as story or scientific text generation. By adaptively selecting the most critical rubric
at each step, RLDCF makes RL training practical for complex generation tasks that were previously
intractable due to the combinatorial explosion of rubrics or the lack of universal reward functions.

Under review as a conference paper at ICLR 2026

7 REPRODUCABILITY AND ETHICS STATEMENTS

To facilitate reproducibility of our work, we have included core implementation code in the supple-
mentary materials. For the FactScore and code generation benchmarks, we use the default settings
from their respective official implementations. All experiments employ DPO (Direct Preference
Optimization) training with consistent configurations across tasks. The datasets used in our exper-
iments are publicly available: WikiBiography can be obtained from its official website, and the
Acecoder dataset is accessible through its official repository. We plan to release our complete code
implementation publicly upon acceptance to further support reproducibility efforts.

The primary goal of our method, Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
is to enhance the quality of open-ended generations, such as to improve the factual accuracy of
text generation and the correctness of code generation. We believe this is a positive contribution
toward developing more reliable and trustworthy Al systems. However, we acknowledge the dual-use
potential inherent in any powerful generative technology. While our aim is to reduce errors, an
improved generator could still be misused to create convincing but harmful or misleading content
if directed by malicious prompts. Similarly, the adversarial critic, designed to find flaws, could
potentially be repurposed for malicious critique.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Florian Bohm, Yang Gao, Christian M. Meyer, Ori Shapira, Ido Dagan, and Iryna Gurevych. Better
rewards yield better summaries: Learning to summarise without references. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 3108—
3118. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1307. URL
https://doi.org/10.18653/v1/D19-1307.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8acl42f64a-Abstract.html.

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Booookscore: A systematic exploration
of book-length summarization in the era of llms. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=7Ttk3RzDeu.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

10

https://arxiv.org/abs/2108.07732
https://doi.org/10.18653/v1/D19-1307
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=7Ttk3RzDeu
https://arxiv.org/abs/2107.03374

Under review as a conference paper at ICLR 2026

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30:4299-4307, 2017. URL https://papers.nips.cc/paper/2017/file/
d5e2c0adad503c91£91df240d0cd4ed49-Paper.pdf.

Alonzo Church. A note on the entscheidungsproblem. The journal of symbolic logic, 1(1):40-41,
1936.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: boosting
language models with scaled Al feedback. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=BOorDpKH1J.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online
RLHF. Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview.net/forum?
id=al3aYUU%eU.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’ Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Balaji Lakshminarayanan, Sanmi Koyejo, and
Deepak Ramachandran. Helping or herding? reward model ensembles mitigate but do not eliminate
reward hacking. arXiv:2312.09244, 2023. URL https://arxiv.org/abs/2312.09244.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 10835-10866. PMLR, 2023.
URL https://proceedings.mlr.press/v202/gao23h.html.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=chfJJYC3iL.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of LLM via a
human-preference dataset. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/
2023 /hash/4dbb61lcb68671ledcdca3712d70083b9f-Abstract—-Datasets__
and_Benchmarks.html.

Ligiang Jing, Ruosen Li, Yunmo Chen, and Xinya Du. Faithscore: Fine-grained evaluations of
hallucinations in large vision-language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
Miami, Florida, USA, November 12-16, 2024, pp. 5042-5063. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024. FINDINGS-EMNLP.290. URL https://doi.org/
10.18653/v1/2024.findings—emnlp.290.

Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data with
application to the biography domain. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 1203—1213, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1128. URL https://aclanthology.
org/D16-1128/.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by

chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

11

https://papers.nips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://papers.nips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=a13aYUU9eU
https://openreview.net/forum?id=a13aYUU9eU
https://arxiv.org/abs/2312.09244
https://proceedings.mlr.press/v202/gao23h.html
https://openreview.net/forum?id=chfJJYC3iL
http://papers.nips.cc/paper_files/paper/2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/v1/2024.findings-emnlp.290
https://doi.org/10.18653/v1/2024.findings-emnlp.290
https://aclanthology.org/D16-1128/
https://aclanthology.org/D16-1128/
https://arxiv.org/abs/2305.01210

Under review as a conference paper at ICLR 2026

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Frianken, Chelsea Finn, and Alon Albalak. Generative reward models, 2024. URL
https://arxiv.org/abs/2410.12832.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pp. 12076-12100. Association for Computational
Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.741. URL https://doi.org/10.
18653/v1/2023.emnlp-main.741.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730—
27744, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. OpenAlL

Rafael Rafailov, Aditi Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: an automated
evaluation framework for retrieval-augmented generation systems. In Kevin Duh, Helena Gémez-
Adorno, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 338-354. Association
for Computational Linguistics, 2024. doi: 10.18653/V1/2024. NAACL-LONG.20. URL https:
//doi.org/10.18653/v1/2024.naacl-1long.20.

Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to
plan & reason for evaluation with thinking-1lm-as-a-judge. CoRR, abs/2501.18099, 2025. doi: 10.
48550/ARXIV.2501.18099. URL https://doi.org/10.48550/arXiv.2501.18099.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=A6Y7AqlzLW.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Zhang Shengyu, Dong Linfeng, Li Xiaoya, Zhang Sen, Sun Xiaofei, Wang Shuhe, Li Jiwei, Runyi
Hu, Zhang Tianwei, Fei Wu, et al. Instruction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792, 2023. doi: 10.48550/ARXIV.2308.10792. URL https:
//doi.org/10.48550/arXiv.2308.10792.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for LLM reasoning. CoRR, abs/2504.01005, 2025. doi: 10.48550/ARXIV.2504.01005.
URL https://doi.org/10.48550/arXiv.2504.01005.

12

https://arxiv.org/abs/2410.12832
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2024.naacl-long.20
https://doi.org/10.18653/v1/2024.naacl-long.20
https://doi.org/10.48550/arXiv.2501.18099
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=A6Y7AqlzLW
https://openreview.net/forum?id=A6Y7AqlzLW
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.48550/arXiv.2308.10792
https://doi.org/10.48550/arXiv.2308.10792
https://doi.org/10.48550/arXiv.2504.01005

Under review as a conference paper at ICLR 2026

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defin-
ing and characterizing reward gaming. In Sanmi Koyejo, S. Mohamed, A. Agar-
wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
3d719fee332caa23d5038b8a9%0e81796-Abstract-Conference.html.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese,
and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research, 2025. URL
https://arxiv.org/abs/2504.01848.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D. Manning, and Chelsea Finn. Fine-
tuning language models for factuality. In The Tielfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=WPZ2yPag4K.

Prapti Trivedi, Aditya Gulati, Oliver Molenschot, Meghana Arakkal Rajeev, Rajkumar Ramamurthy,
Keith Stevens, Tanveesh Singh Chaudhery, Jahnavi Jambholkar, James Zou, and Nazneen Rajani.
Self-rationalization improves llm as a fine-grained judge, 2024. URL https://arxiv.org/
abs/2410.05495.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via
multi-objective reward modeling and mixture-of-experts. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
Miami, Florida, USA, November 12-16, 2024, pp. 10582-10592. Association for Computational
Linguistics, 2024a. doi: 10.18653/V1/2024. FINDINGS-EMNLP.620. URL https://doi.
org/10.18653/v1/2024.findings—emnlp.620.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught evaluators,
2024b. URL https://arxiv.org/abs/2408.02666.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Helpsteer:
Multi-attribute helpfulness dataset for steerlm. In Kevin Duh, Helena Gémez-Adorno, and
Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 3371-3384. Association for
Computational Linguistics, 2024¢. doi: 10.18653/V1/2024 NAACL-LONG.185. URL https:
//doi.org/10.18653/v1/2024.naacl-1long.185.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=15XQzNkAOe.

Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessandra Cervone, Tagyoung Chung, Behnam Heday-
atnia, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tiir. Towards coherent and engaging
spoken dialog response generation using automatic conversation evaluators. In Kees van Deemter,
Chenghua Lin, and Hiroya Takamura (eds.), Proceedings of the 12th International Conference
on Natural Language Generation, INLG 2019, Tokyo, Japan, October 29 - November 1, 2019,
pp. 65-75. Association for Computational Linguistics, 2019. doi: 10.18653/V1/W19-8608. URL
https://aclanthology.org/W19-8608/.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. Self-rewarding language models, 2025. URL https://arxiv.org/abs/
2401.10020.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. ACECODER:
acing coder RL via automated test-case synthesis. In Wanxiang Che, Joyce Nabende, Ekaterina

13

http://papers.nips.cc/paper_files/paper/2022/hash/3d719fee332caa23d5038b8a90e81796-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/3d719fee332caa23d5038b8a90e81796-Abstract-Conference.html
https://arxiv.org/abs/2504.01848
https://openreview.net/forum?id=WPZ2yPag4K
https://arxiv.org/abs/2410.05495
https://arxiv.org/abs/2410.05495
https://doi.org/10.18653/v1/2024.findings-emnlp.620
https://doi.org/10.18653/v1/2024.findings-emnlp.620
https://arxiv.org/abs/2408.02666
https://doi.org/10.18653/v1/2024.naacl-long.185
https://doi.org/10.18653/v1/2024.naacl-long.185
https://openreview.net/forum?id=l5XQzNkAOe
https://aclanthology.org/W19-8608/
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020

Under review as a conference paper at ICLR 2026

Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, pp. 12023-12040. Association for Computational Linguistics, 2025. URL
https://aclanthology.org/2025.acl-1long.587/.

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S. Boning, and Dina Katabi.
RI tango: Reinforcing generator and verifier together for language reasoning. arXiv preprint
arXiv:2505.15034,2025. URL https://arxiv.org/abs/2505.15034.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025. URL https://openreview.net/forum?id=Ccwp4tFEtE.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T. Chiu, Claire Cardie, Matthias Gallé, and Alexander M.
Rush. Commit0: Library generation from scratch. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=MMwaQEVsAg.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models are
scalable judges. In The Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.
net/forum?id=xsELpEPn4A.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi,
Vikas Chandra, and Jiirgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents, 2024.
URL https://arxiv.org/abs/2410.10934.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2024. URL https://arxiv.org/abs/2406.15877.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019.
URL https://arxiv.org/abs/1909.08593.

A VALIDATOR IMPLEMENTATION DETAILS

A.1 FACTSCORE

We follow a strict validation process to ensure both authenticity and factual accuracy. In the first
stage, the critic outputs both a suspected erroneous fact and the sentence number containing it. To
prevent exploitation through information injection, we use textual entailment checking to verify that
the proposed fact genuinely appears in the specified sentence. In the second stage, for proposals
passing authenticity checks, we reuse FactScore’s atomic fact verification component, which queries
Wikipedia knowledge base to provide binary verification of individual factual claims, returning true
or false based on external verification.

14

https://aclanthology.org/2025.acl-long.587/
https://arxiv.org/abs/2505.15034
https://openreview.net/forum?id=Ccwp4tFEtE
https://openreview.net/forum?id=MMwaQEVsAg
https://openreview.net/forum?id=xsELpEPn4A
https://openreview.net/forum?id=xsELpEPn4A
https://arxiv.org/abs/2410.10934
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/1909.08593

Under review as a conference paper at ICLR 2026

A.2 ACECODER

Since the AceCoder dataset lacks reference solutions to prevent data contamination, we construct
reliable verification anchors by using Qwen2.5-Coder-7B-Instruct to generate solutions for 2000
problems. We filter these solutions using original test cases, retaining only those highly accurate
answers (achieving 99.7% accuracy) to serve as simulated ground truth for test case validation.
Our validation protocol follows a systematic approach where the critic identifies potential errors by
proposing specific test cases that expose code failures. We first execute the critic’s test case on the
reference solution to obtain the expected output, then execute the same test case on the generated code
to obtain the actual output. Finally, we compare these outputs and return R(s,a,c) = 1 if outputs match
and O if they differ, with execution failures also indicating detected errors. The AceCoder dataset
contains noise in GPT-40 generated test cases, which introduces some bias in our reference-based
validator but reflects realistic imperfections in verification tools.

B ACTOR PROMPT

B.1 FACTSCORE (FACTUAL TEXT GENERATION)

System message:

You are an AI assistant that provides accurate and concise biographies of individual.
Each biography should be exactly four sentences long, highlighting key aspects of th
person’s life, achievements, and significance.

User message:
Write a biography of {topic}.

B.2 CODE GENERATION

The actor input exactly matches the problem statement provided in
TIGER-Lab/AceCode-87K-hard without modification.

User message:
{problem_statement_from_ AceCode-87K-hard}

C CRITIC PROMPT

C.1 FACTSCORE (FACTUAL TEXT CRITIC)

System message:

You are a factual checker. Based on your existing knowledge,
identify exactly one sentence that contains the most clearly
verifiable factual error in the paragraph.

Return your answer in xxexactly three linesxx:

reason: < briefly explaining what is wrong >
sentence: N + N is the number of the most incorrect sentence (positive int
error_fact: F + a brief clause (no more than 8 words) capturing the wrong clair

from that sentence

User message:

Here is an example to show the task.

Find the sentence that contains the most clearly verifiable factual error
in the paragraph about Albert Einstein.

Example paragraph:

[1] Albert Einstein was awarded the Nobel Prize in Physics in 1921 for his discovery
[2] He was born in New York City, United States, and later moved to Europe where he
[3] Einstein developed the theory of relativity, revolutionizing our understanding o:
[4] His famous equation describes the equivalence of mass and energy.

15

Under review as a conference paper at ICLR 2026

Expected answer:

reason: Einstein was actually born in Ulm, Germany, not New York City.
sentence: 2

error_fact: Albert Einstein was born in New York City.

Now apply the same procedure to the paragraph below about {topic}.

Paragraph:
{numbered_paragraph}

Answer:

C.2 CODE GENERATION CRITIC

System message:
You are a code critic. Analyze code for bugs and generate failing test cases.
Strictly follow the format with <think> and <testcase> tags.

User message:
Analyze the given problem and generated code to find a test case
that would cause the code to fail.

Problem: {question}

Generated code:

‘Y'python

{code}

First, think through potential bugs and edge cases in <think> </think> tags.

Then output exactly ONE failing test case inside <testcase> tags using this format:

Option A (CALL format)

<testcase> CALL: func_name (argl, arg2, kw=val) </testcase>
Option B (STDIN format)

<testcase> STDIN: <raw input here> </testcase>

Do NOT include expected outputs or explanations.
{optional_examples_block}

D RELATED WORK

LLM-as-a-Judge. Because of the common-sense and reasoning capabilities of pre-trained LLMs,
they can directly be prompted to serve as a judge to evaluate free-form generations (Zheng et al., 2023;
Yuan et al., 2025; Zhu et al., 2025). Their capabilities in evaluations can be further improved through
explicit fine-tuning (Wang et al., 2024b; Yuan et al., 2025). They can also be more interpretable
and robust by introducing a long Chain-of-Thought (CoT) reasoning to explicitly verify fine-grained
criteria (Saha et al., 2025; Wang et al., 2024b; Trivedi et al., 2024). Beyond rubric-only judging,
generative verifiers treat verification itself as next-token generation: they first produce verification
rationales or counterevidence, and then scoreor select candidates (Zhang et al., 2025; Singhi et al.,
2025; Setlur et al., 2025). RLDCEF further strengthens the verification of individual criteria by
allocating computational resources to perform explicit actions, such as information gathering and
code execution, enabling more powerful verification capabilities.

16

Under review as a conference paper at ICLR 2026

E LM USAGE STATEMENT

During the preparation of this submission, the authors utilized large language models (LLMs) to
assist with editing, including improving grammar, phrasing, and clarity. LLMs were also used to
help summarize and structure paragraphs based on the authors’ own notes and drafts. The authors
meticulously reviewed, revised, and take full responsibility for all content, ensuring its scientific
accuracy and originality.

17

	Introduction
	Preliminaries
	Reinforcement Learning from Dynamic Critic Feedback
	Problem Reformulation
	Practical Instantiation of RLDCF

	Experiments
	Factual Text Generation
	Settings
	Results

	Code generation
	Settings
	Main Results
	Ablation Study

	Related Works
	Conclusion
	Reproducability and Ethics Statements
	Validator Implementation Details
	FactScore
	Acecoder

	Actor Prompt
	FactScore (Factual Text Generation)
	Code Generation

	Critic Prompt
	FactScore (Factual Text Critic)
	Code Generation Critic

	Related Work
	LM Usage Statement

