

000 REINFORCEMENT LEARNING FROM DYNAMIC CRITIC 001 FEEDBACK FOR FREE-FORM GENERATIONS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Open-ended generation tasks require outputs to satisfy diverse and often implicit
010 task-specific evaluation rubrics. The sheer number of relevant rubrics leads to
011 prohibitively high verification costs and incomplete assessments of a response,
012 making reinforcement learning (RL) post-training with rubric-based rewards dif-
013 ficult to scale. This problem is exacerbated by the fact that often the best way
014 to combine these rubrics into one single reward is also highly prompt-specific.
015 We propose Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
016 a post-training approach that addresses these challenges via dynamic rubric ver-
017 ification. Our approach employs a large language model (LLM) as a critic that
018 dynamically identifies only the most likely failure modes (e.g., a factual error or
019 unhandled edge case), which are then verified by an external validator to optimize
020 both generator and critic jointly. By training both the generator and the critic,
021 this game enhances the critic’s error detection and the generator’s output quality
022 while reducing required verifications. Our experiments demonstrate that RLDCF
023 improves factual accuracy in text generation and correctness in code generation,
024 while also outperforming exhaustive verification and reward model methods. We
025 show that dynamic critics are more effective than fixed critics, showcasing the
026 potential of RLDCF for scaling RL post-training to free-form generation tasks.
027

028 1 INTRODUCTION 029

030 Post-training methods for large language models (LLMs) have progressed dramatically over the past
031 few years, from largely manual supervised fine-tuning (SFT) techniques that rely on a combination of
032 manual data curation (Radford et al., 2018; Brown et al., 2020; Shengyu et al., 2023) to reinforcement
033 learning (RL) methods that perform general preference-based optimization (Christiano et al., 2017;
034 Ouyang et al., 2022) or optimize task-specific notions of correctness (Zha et al., 2025). Despite these
035 remarkable results, RL post-training is limited to tasks with clear-cut success criteria (i.e., correctness
036 of an answer or preference of a human user), and it remains unclear how to post-train LLMs with RL
037 on tasks that require producing open-ended or free-form outputs that are hard to verify perfectly.
038

039 Perhaps the biggest challenge in building RL post-training methods for free-form generation tasks
040 is the lack of a solid reward function: outputs are typically expected to satisfy several task-specific
041 rubrics. In principle, a task designer could construct a reward by combining these rubrics, but both
042 enumerating and verifying them pose major scalability challenges (Min et al., 2023). For instance,
043 complex code generation requires testing countless edge cases (e.g., empty inputs or specific numbers).
044 Even if such criteria could be enumerated, knowing how to combine them remains difficult (e.g.,
045 should correctly handling even numbers outweigh handling primes?). While RLHF-trained reward
046 models or LLM-as-judge approaches (Christiano et al., 2017; Zheng et al., 2023) outsource the job of
047 merging rubrics to a learned or prompted reward model, this often leads to reward hacking (Ziegler
048 et al., 2019; Gao et al., 2023; Skalse et al., 2022; Eisenstein et al., 2023), since the best combination
049 is highly dependent on the prompt and the model being optimized. How can we then train LLMs on
free-form generation tasks with several (maybe uncountably many) rubrics?

050 We introduce Reinforcement Learning from Dynamic Critic Feedback (RLDCF), which formulates
051 the problem as an adversarial game between a generator and a *critic*. The critic is a learned model
052 that proposes a rubric (e.g., one test case) where the generator’s output is likely to fail, and an
053 external validator verifies this. Both models are trained jointly: the critic is rewarded when it correctly
pinpoints a rubric that the generator fails (verified by an external validator), while the generator

Figure 1: Comparison of three post-training paradigms on a biography example (“Michael Jackson”). **(a) Enumerative verification** explicitly extracts and checks every atomic fact before aggregating a scalar reward, which is accurate but expensive. **(b) Reward-model methods** skip verification and directly predict a scalar reward from a learned judge, which is efficient but prone to reward hacking. In contrast, **(c) RLDCF** trains a learned critic to propose one likely-wrong fact (*rubric*) and verifies it via an external validator. If the fact indeed fails, the critic receives reward 1 and the generator 0; otherwise the generator receives 1 and the critic 0. This dynamic, adversarial feedback yields prompt-specific, verifiable, and scalable supervision for free-form generation tasks.

is rewarded when the critic is unable to do so. This formulation eliminates the need to enumerate or verify all rubrics, significantly improving training scalability. At the same time, it ensures that rewards are based on rubrics that are prompt-specific, adversarially chosen, and always on-policy. Figure 1 illustrates how RLDCF achieves verification efficiency while maintaining accuracy through adversarial critic-generator dynamics on a biography generation example.

We evaluate Reinforcement Learning from Dynamic Critic Feedback on factual text generation and code generation, representing enumerable and non-enumerable verification scenarios, respectively. On 8-sentence biography generation with Qwen3-8B, Reinforcement Learning from Dynamic Critic Feedback achieves a FactScore of 0.889, surpassing FactTune-FS’s (Tian et al., 2024) 0.867, while reducing verification calls by $5.7\times$. This efficiency gain scales with task complexity, from $4.4\times$ for 4-sentence to $5.7\times$ for 8-sentence generation. In code generation, despite using only 9% of the training data, Reinforcement Learning from Dynamic Critic Feedback achieves the highest average scores on both base models: **53.2** on Qwen2.5-Coder-7B-Base and **56.6** on Qwen2.5-Coder-7B-Instruct, outperforming prior methods AceCoder-RM and AceCoder-Rule (Zeng et al., 2025).

Our primary contribution is Reinforcement Learning from Dynamic Critic Feedback (RLDCF), a novel post-training paradigm that frames free-form LLM optimization as an adversarial game between a generator and a learned critic, with an external validator providing ground-truth feedback. This design avoids exhaustive rubric enumeration and mitigates reward hacking by producing task-specific and on-policy training signals. In experiments, Reinforcement Learning from Dynamic Critic Feedback consistently improves factual accuracy while reducing verification costs, and surpasses prior methods on code generation—demonstrating scalable gains across both enumerable and non-enumerable verification tasks.

2 PRELIMINARIES

Our goal is to train a generator that produces a free-form output meeting task requirements, without manually enumerating every rubric. In this section, we formalize this problem, introduce notation, and briefly discuss related concepts of reward models (Christiano et al., 2017; Ziegler et al., 2019; Rafailov et al., 2023) and enumerative verification (Min et al., 2023; Trivedi et al., 2024; Saha et al., 2025; Wang et al., 2024b; Xie et al., 2025), as illustrated in Figure 1. We then present our approach in the next section.

Problem setup. We consider free-form generation tasks where outputs must satisfy many task-specific requirements, which we call rubrics. For instance, a biography generation task may require that each factual claim is correct, while a code generation task may require the program to handle all edge cases correctly. Formally, let \mathcal{S} be a distribution over prompts or instructions that may be

108 presented to an LLM. Given $s \in \mathcal{S}$, a generator LLM $\pi^g(a | s)$ is tasked with producing a textual
 109 output $a \in \mathcal{A}$. We choose to use standard notation typically used in RL (\mathcal{S} denoting the state space
 110 and \mathcal{A} denoting the action space) as we later present an RL training objective. Each instruction s is
 111 inherently associated with a set of rubrics (denoted as $\mathcal{C}(s)$), where each rubric $c \in \mathcal{C}(s)$ represents a
 112 verifiable property the output should satisfy, such as “*the claim about Newton’s birth year is correct*”
 113 for biography generation or “*the code handles null inputs*” for code generation.

114 We assume access to a binary verification function $R(s, a, c)$ that returns 1 if a generated output
 115 $a \sim \pi^g(\cdot | s)$ satisfies the rubric c on instruction s , and attains 0 otherwise. An output a is considered
 116 correct only when *all* rubrics $\mathcal{C}(s)$ associated with instruction s are satisfied. Our goal is to train
 117 $\pi^g(\cdot | s)$ to maximize the probability of producing fully correct outputs:

$$\pi_g^* := \arg \max_{\pi} \mathbb{E}_{s \sim \mathcal{S}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} \left[\prod_{c \in \mathcal{C}(s)} R(s, a, c) \right] \right]. \quad (1)$$

122 In constrained domains with a single, well-defined rubric (e.g., matching a reference solution
 123 in math reasoning), the optimization of object simplifies, allowing standard RL algorithms like
 124 PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024) to optimize the policy. However, such
 125 cases are rare in open-ended tasks with diverse rubrics. In these settings, $\mathcal{C}(s)$ can be extremely large
 126 or even unbounded, making Eq. 1 computationally intractable since every output must be checked
 127 against every rubric.

128 **Reward models and enumerative verification.** Most approaches to optimizing free-form generation
 129 tackle the challenge of diverse rubrics through two paradigms. RLHF (Christiano et al., 2017) trains
 130 a single proxy reward model from offline human preference data. While efficient, this optimization is
 131 hard because the learned proxy is only as good as its coverage of the preference dataset. When the
 132 generator explores beyond this support, the proxy can misalign (Gao et al., 2023), often necessitating
 133 additional constraints like KL regularization to avoid collapse. These constraints stabilize training
 134 but also limit exploration, making it difficult to scale to highly open-ended tasks (Dong et al., 2024).

135 Another approach is to enumerate the evaluation criteria and optimize their aggregate, either through
 136 prompting (Min et al., 2023; Saha et al., 2025) or via preferences implicitly elicited from hu-
 137 mans (Wang et al., 2024b; Mahan et al., 2024). While more faithful to the underlying rubrics (Trivedi
 138 et al., 2024), this strategy is fundamentally limited: it assumes the evaluation set $\mathcal{C}(s)$ can be exhaus-
 139 tively listed, which is unrealistic for complex tasks (e.g., all test cases for a nontrivial program). Even
 140 when such enumeration is feasible, iterating over the entire set is computationally prohibitive, turning
 141 optimization into an intractable verification bottleneck.

3 REINFORCEMENT LEARNING FROM DYNAMIC CRITIC FEEDBACK

144 We now introduce our RL post-training approach, called Reinforcement Learning from Dynamic
 145 Critic Feedback (RLDCF) for training LLM generators on free-form tasks. Our goal is to provide
 146 rewards while avoiding the scalability limits of enumerative verification and the misalignment of
 147 static reward models. The core idea is to recast verification as a dynamic process guided by a learned
 148 critic. Concretely, we frame training as a two-player game: given an output from the generator, the
 149 critic proposes a rubric the output is likely to violate, while the generator aims to satisfy all such
 150 rubrics. An external validator then adjudicates whether the output meets the proposed rubric, and
 151 this supervision updates both generator and critic. In this way, verification becomes adaptive and
 152 adversarial, tailored to the generator’s current weaknesses. We now formally derive this approach.

3.1 PROBLEM REFORMULATION

153 To derive our approach formally, our starting point is the objective of Equation 1, which requires a
 154 generation to satisfy all rubrics in the set $\mathcal{C}(s)$: Since $R(s, a, c)$ is an indicator function for each c ,
 155 we can rewrite the requirement that all rubrics are satisfied as a minimum over all rubrics as follows:

$$\mathbb{1}\{R(s, a, c) = 1, \forall c \in \mathcal{C}(s)\} = \min_{c \in \mathcal{C}(s)} \mathbb{1}\{R(s, a, c) = 1\}. \quad (2)$$

156 Intuitively, the minimum selects the worst-case criterion, i.e., the first failure mode encountered by
 157 the current model π . Substituting Equation 2 into Equation 1 gives:

$$\pi_g^* = \arg \max_{\pi} \mathbb{E}_{s \sim \mathcal{S}} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} \left[\min_{c \in \mathcal{C}(s)} R(s, a, c) \right] \right]. \quad (3)$$

162 However, this reformulation by itself does not make the optimization problem simpler: searching
 163 over $\mathcal{C}(s)$ is infeasible when $\mathcal{C}(s)$ is large or infinite (e.g., all possible test cases). To address this, we
 164 introduce a critic π^c , modeled as a stochastic policy that takes an instruction-generation pair (s, a) as
 165 input and outputs a rubric $c \in \mathcal{C}(s)$ in natural language, representing a verifiable property that may
 166 fail. An external validator then checks the proposed rubric. Then we can rewrite Equation 3 into the
 167 equivalent min-max form:

$$\pi^g = \arg \max_{\pi^c} \min_{\pi^c} \mathbb{E}_{s \sim \mathcal{S}} [\mathbb{E}_{a \sim \pi(\cdot|s)} \mathbb{E}_{c \sim \pi^c(\cdot|s, a)} [R(s, a, c)]] . \quad (4)$$

170 It can be shown that the solution π^g from Equation 4 is the same as that from Eq. (1), but now we
 171 bypass the need to enumerate all criteria over $\mathcal{C}(s)$ (Madry et al., 2018).

172 Pretty much like other mini-max optimization problems, we can solve the above optimization problem
 173 by iteratively updating π^g and π^c against each other. The optimization goal is to achieve a robust
 174 generator π^g that does well even according to the most adversarial critic, upon convergence. More
 175 details with respect to the practical optimization algorithm will be provided in Section 3.2.

177 3.2 PRACTICAL INSTANTIATION OF RLDCF

178 We now instantiate the two-player adversarial game from the previous section into a practical approach
 179 that we can use to train LLMs. As shown in Figure 1, we parameterize three task-agnostic components
 180 that interact with each other during RL training. Each component is instantiated differently based on
 181 the domain (as detailed in Section 4).

182 **Generator.** The generator π^g , is an LLM that is fine-tuned to produce an output $a \in \mathcal{A}$ for an
 183 instruction $s \in \mathcal{S}$. RLDCF samples multiple response generations from π^g for each instruction s . We
 184 train π^g to maximize the probability of producing outputs that satisfy all task-specific rubrics. The
 185 prompt for the generator is included in the Appendix A.1.

186 **Critic.** Our critic π^c is a pre-trained LLM π^c that RLDCF fine-tunes. Specifically, for each instruction
 187 s and a query generation output a , the critic is prompted to generate a natural language output
 188 representing a rubric c through auto-regressive decoding. The rubric c along with the instruction s and
 189 the generation a are then sent to the external validator to obtain a reward signal $R(s, a, c) \in \{0, 1\}$.
 190 The prompt for the adversarial critic is included in the Appendix A.2.

191 **Validator.** The validator is an external tool or process that can verify whether a generated response
 192 satisfies a rubric provided as input to it. The validator can be implemented in various ways depending
 193 on the domain, such as rule-based checkers or a software tool that evaluates a proposed code on a
 194 proposed test-case. Implementation details for specific tasks are discussed in the Appendix B.

195 **Updating the generator and critic.** At each training step, we sample instructions $s \in \mathcal{S}$ and
 196 have the generator π^g produce K candidate outputs a_1, \dots, a_K . For each (s, a_i) , the adversarial
 197 critic π^c proposes a criterion c_i , which is then checked by the validator to yield a binary reward
 198 $r_i \in \{0, 1\}$. This online feedback provides signals for both policies. Outputs with $r_i = 1$ are treated
 199 as positives (a^+) and those with $r_i = 0$ as negatives (a^-), and the generator is updated using the
 200 DPO loss (Rafailov et al., 2023) with respect to the reference generator π_{ref}^g :

$$\mathcal{L}(\pi^g; \pi_{\text{ref}}^g) = -\mathbb{E}_s \mathbb{E}_{(a^+, a^-)} \left[\log \sigma \left(\beta \log \frac{\pi^g(a^+|s)}{\pi_{\text{ref}}^g(a^+|s)} - \beta \log \frac{\pi^g(a^-|s)}{\pi_{\text{ref}}^g(a^-|s)} \right) \right] . \quad (5)$$

204 Similarly, for each (s, a) pair, we sample N criteria from π^c . Criteria rejected by the validator (invalid
 205 or satisfied by the generator) are treated as negatives (c^-), while valid, unsatisfied ones are positives
 206 (c^+). The critic is then updated with the same DPO objective relative to its reference policy π_{ref}^c :

$$\mathcal{L}(\pi^c; \pi_{\text{ref}}^c) = -\mathbb{E}_{s, a} \mathbb{E}_{(c^+, c^-)} \left[\log \sigma \left(\beta \log \frac{\pi^c(c^+|s, a)}{\pi_{\text{ref}}^c(c^+|s, a)} - \beta \log \frac{\pi^c(c^-|s, a)}{\pi_{\text{ref}}^c(c^-|s, a)} \right) \right] . \quad (6)$$

210 In this way, evaluation and improvement are unified: the critic adaptively identifies failure modes,
 211 the validator provides ground-truth feedback, and both generator and critic are jointly updated to
 212 improve over time. Note that we chose the DPO loss for its simplicity, though any online or offline
 213 RL approach could be used for policy optimization.

214 **Algorithm summary.** Algorithm 1 summarizes the practical implementation of RLDCF. At a high
 215 level, the algorithm follows a standard online RL loop that alternates between policy evaluation and

216 **Algorithm 1** RLDCF

217 1: Initialize parameters $\pi^g, \pi^c, \pi_{\text{ref}}^g, \pi_{\text{ref}}^c$

218 2: **for** each iteration **do**

219 3: **## Policy Evaluation for Generator** π^g .

220 4: **for** each instruction s **do**

221 5: Generate K generations $a_1, \dots, a_K \sim \pi^g(\cdot|s)$

222 6: Sample a criterion from the adversarial critic for each generation $c_i \sim \pi^c(\cdot|s, a_i)$.

223 7: Construct a generator dataset $\mathcal{D}_s^g = \{(s, a_i, R(s, a_i, c_i))\}_{i=1}^K$

224 8: **## Policy Evaluation for Critic** π^c . ▷ Optional

225 9: **for** each instruction s , output a **do**

226 10: Generate N criteria $c_1, \dots, c_N \sim \pi^c(\cdot|s, a)$

227 11: Construct a critic dataset $\mathcal{D}_{(s,a)}^c = \{(s, a, R(s, a, c_j))\}_{j=1}^N$

228 12: **## Policy Improvement for Generator** π^g .

229 13: $\pi_{\text{new}}^g \leftarrow \pi^g$

230 14: **for** each update step **do** ▷ Equation 5

231 15: $\pi_{\text{new}}^g \leftarrow \pi_{\text{new}}^g - \nabla \mathcal{L}(\pi_{\text{new}}^g, \pi_{\text{ref}}^g)$

232 16: $\pi_{\text{ref}}^g \leftarrow \pi^g$

233 17: **## Policy Improvement for Critic** π^c . ▷ Optional

234 18: $\pi_{\text{new}}^c \leftarrow \pi^c$

235 19: **for** each update step **do** ▷ Equation 6

236 20: $\pi_{\text{new}}^c \leftarrow \pi_{\text{new}}^c - \nabla \mathcal{L}(\pi_{\text{new}}^c, \pi_{\text{ref}}^c)$

237 21: $\pi_{\text{ref}}^c \leftarrow \pi^c$

238 improvement. In each evaluation step, we sample generations from the current generator π^g , have the
 239 critic propose a criterion c , and obtain verification to assign rewards. These rewards are then used
 240 to update the generator with the DPO objective (Equation 5). Optionally, we also collect evaluation
 241 data for the critic by sampling multiple criteria per instruction–generation pair. The critic is then
 242 updated with its own DPO objective (Equation 6), allowing it to adaptively identify weaknesses in
 243 the generator and provide more effective learning signals.

4 EXPERIMENTS

244 We now evaluate our approach on two free-form generation tasks: factual text generation (§4.1)
 245 and code generation (§4.2). Factual text generation illustrates the enumerable-but-expensive regime,
 246 where all claims can in principle be verified but at a cost that scales with text length. This tests
 247 RLDCF’s ability to maintain verification quality while reducing calls. Code generation, by contrast,
 248 represents the non-enumerable regime, where exhaustive verification is impossible due to infinite
 249 corner cases and intractable formal checks (Church, 1936). Here, the goal is to expose critical failures
 250 through targeted critic proposals. Together, these tasks span the spectrum from costly-but-possible to
 251 fundamentally intractable verification, highlighting the broad applicability of RLDCF.

4.1 FACTUAL TEXT GENERATION

4.1.1 SETTINGS

252 **Evaluation data & metrics.** We follow Min et al. (2023); Tian et al. (2024) in adapting a factual
 253 text generation task in which the model should produce concise biographies for a given individual.
 254 We use 170 topics from the Wikipedia Biography Dataset (Lebret et al., 2016), split into 120 for
 255 training and 50 for testing. We use factual precision of the output (as defined by FactScore (Min et al.,
 256 2023)) as the primary metric, and also report the counts of correct and incorrect facts. To control for
 257 length, the model is instructed to generate either four or eight sentences. Since frequent calls to the
 258 external validator are costly, we additionally track the number of validator calls.

259 **Base models & baselines.** Our base generators are Qwen3-4B and Qwen3-8B. We compare against
 260 three baselines: (1) the original base models without task-specific training; (2) FactTune-FS (Tian
 261 et al., 2024), a widely used method for factual text generation to represent exhaustive verification
 262 using an external validator, FactScore, for all atomic facts; and (3) ArmoRM (Wang et al., 2024a),
 263 which represents the reward model based method that produces one reward score for the generated

270
271
272
273 Table 1: Performance comparison on factual text generation. RLDCF achieves the highest FactScore
274 across all settings while using fewer verification calls than FactTune-FS.
275

273 274 275 Method	4-sentence Generation				8-sentence Generation			
	# Corr↑	# Incorr↓	FS↑	Calls↓	# Corr↑	# Incorr↓	FS↑	Calls↓
Qwen3-4B								
Baseline	10.07	6.43	0.610	-	19.62	12.08	0.619	-
FactTune-FS	10.66	3.48	0.754	214,911	20.65	5.99	0.775	341,657
ArmoRM	14.54	8.69	0.626	-	21.02	10.02	0.677	-
RLDCF (Ours)	10.54	3.04	0.776	57,600	21.58	4.84	0.817	48,000
Qwen3-8B								
Baseline	12.65	5.53	0.696	-	22.51	11.97	0.653	-
FactTune-FS	13.31	3.63	0.786	168,735	25.10	3.84	0.867	438,949
ArmoRM	12.96	6.86	0.654	-	23.31	8.92	0.723	-
RLDCF (Ours)	13.14	3.37	0.796	38,400	24.33	3.03	0.889	76,800

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
189

324
 325
 326
 327
 328
 Figure 2(b) shows that RLDCF achieves the same level of factuality as FactTune-FS with far fewer
 329 verification calls (e.g., 67K vs. 368K to achieve 84%). This highlights the inefficiency of FactTune-
 330 FS, which repeatedly validates already correct facts, whereas RLDCF dynamically targets high-risk
 331 errors, yielding greater verification efficiency and scalability.

332
 333
 334
 335
 336
 Figure 2(c) measures exploration by tracking the KL divergence from the base model. Such deviation
 337 can usually be caused by either (1) improvements from the base model through effective exploration,
 338 or (2) reward hacking, in which the model overfits to the reward model and drafts without real quality
 339 gains. For RLDCF, KL increases alongside monotonic FactScore gains ($0.653 \rightarrow 0.889$), indicating
 340 productive exploration. In contrast, RL with a fixed offline reward model (ArmoRM) shows a rise
 341 in KL without the corresponding factuality gains, evidence of reward hacking. These dynamics
 342 complement Table 1: while both RLDCF and FactTune-FS improve factuality, RLDCF achieves
 343 comparable or higher FactScore with far fewer verification calls, whereas ArmoRM inflates output
 344 length without consistent accuracy due to its static reward.

345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 Table 2: Generator’s test accuracy across critic types.

Method	# Corr	# Incorr	FS
Base	19.62	12.08	0.619
Noisy Validator	19.84	12.83	0.607
Static Critic	17.77	3.77	0.825
Adversarial Critic	21.58	4.84	0.817

378 4.2 CODE GENERATION
379380 4.2.1 SETTINGS
381

382 **Evaluation data & metrics.** We evaluate code generation performance using widely studied
383 benchmarks: HumanEval (Base and Plus) (Chen et al., 2021; Liu et al., 2023), MBPP (Base and
384 Plus) (Austin et al., 2021; Liu et al., 2023), BigCodeBench (Zhuo et al., 2024), and LiveCodeBench
385 (V4) (Jain et al., 2025). We use Pass1 as a primary metric. For efficiency analysis, we also report
386 the number of test cases executed per successful solution. Note that, unlike factual verification,
387 where each check is expensive, unit tests in code generation are cheap to execute. The fundamental
388 bottleneck here is not the per-test cost but the non-enumerability of the test space. Therefore, test-case
389 count is reported only for completeness; the primary evaluation metric remains Pass@k.
390

391 **Base models & baselines.** For training data, we use the AceCode-87K-hard subset (Zeng et al.,
392 2025), consisting of approximately 22K problems. Our base generators include Qwen2.5-Coder-7B-
393 Base and Qwen2.5-Coder-7B-Instruct. We compare against three baselines: (1) the original base
394 models without training; (2) AceCoder-Rule, which employs RL with rule-based binary rewards from
395 test execution; and (3) AceCoder-RM, which uses RL with AceCodeRM-7B trained on approximately
396 300K preference pairs constructed from AceCode-87K dataset. Our RLDFC approach samples 2k
397 questions from the AceCode-87K-hard subset for training, generates $k = 8$ outputs per prompt
398 (which is consistent with the AceCoder setting) with $n = 2$ critic proposals per generation.
399

400 4.2.2 MAIN RESULTS
401

402 Table 3: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I),
403 and LiveCodeBench, using two different base models. RLDFC achieves the highest average score
404 across benchmarks.
405

Method	HumanEval		MBPP		BCB-C		BCB-I		LCB	Average
	Base	Plus	Base	Plus	Full	Hard	Full	Hard		
Base: Qwen2.5-Coder-7B-Base										
Baseline	83.5	79.3	80.4	69.3	45.8	16.2	40.2	14.2	28.7	50.8
AceCoder-RM	83.5	75.6	80.2	67.2	41.9	14.9	36.8	16.2	25.7	49.1
AceCoder-Rule	84.1	78.0	82.3	69.3	48.6	18.2	43.2	18.2	28.5	52.3
RLDFC (Ours)	85.7	80.6	82.4	71.6	50.3	20.9	42.1	16.9	28.7	53.2
Base: Qwen2.5-Coder-7B-Instruct										
Baseline	91.5	84.8	82.8	71.4	49.5	19.6	41.8	20.3	34.2	55.1
AceCoder-RM	89.0	84.1	86.0	72.8	50.4	18.9	42.0	19.6	35.0	55.3
AceCoder-Rule	90.9	84.8	84.1	71.7	50.9	23.0	43.3	19.6	34.9	55.9
RLDFC (Ours)	93.3	86.0	83.9	73.0	52.2	24.3	42.3	19.6	35.2	56.6

416 Table 6 summarizes results across five widely-used code generation benchmarks. Despite training
417 on only 2,000 problems (9% of the dataset used for AceCoder-RM and AceCoder-Rule), RLDFC
418 achieves the highest average scores: 53.2 using Qwen2.5-Coder-7B-Base and 56.6 using Qwen2.5-
419 Coder-7B-Instruct, consistently outperforming both enumerative method (AceCoder-Rule) and static
420 reward model method (AceCoder-RM) across the majority of benchmarks. We observe from Table 4
421 that AceCoder-RM not only fails to improve performance but can even degrade it under noisy
422 validation. For example, on HumanEval, performance drops from 91.5 to 89.0 despite using the
423 competitive reward model AceCoder-RM-7B, indicating reward hacking.
424

425 This fragility arises from the reward model trained on preference pairs from the AceCoder dataset,
426 which itself contains noisy and incomplete test cases (Zeng et al., 2025). During RL training, as
427 the generator's outputs drift away from the RM's fixed training distribution, these noisy supervision
428 signals are further amplified. The static RM cannot adapt, causing it to favor spurious correlations
429 rather than true correctness, leading the generator to exploit flaws in the reward signal.
430

431 RLDFC also suffers from the noisy dataset since we use a simulated solution as validator mentioned
432 in settings. Although the critic is also affected by noise, its continuous adaptation allows it to stay
433 aligned with the generator's changing behavior, preserving meaningful supervision. As a result,
434

432 RLDCF consistently improves performance across all benchmarks, even in noisy and imperfect
 433 validation environments, showing robustness to noisy validation.
 434

437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447 **Figure 4: Ablations on the static critic vs. adversarial critic.** Static critic’s detection accuracy
 448 degrades from 42.3% to 33.9% as the generator exploits its patterns, yielding minimal performance
 449 gains (+0.6%) compared to the adversarial critic’s continued improvement (+1.8%).
 450

451 4.2.3 ABLATION STUDY

452 We compare RLDCF with a variant that replaces the adversarially trained critic with a static critic to
 453 evaluate the necessity of dynamic adaptation. As shown in Figure 4, the static critic’s detection rate,
 454 defined by the fraction of test cases generated that correctly expose real errors, drops dramatically
 455 from 42.3% to 33.9% over three rounds, as the generator gradually learns to exploit its fixed detection
 456 patterns. In contrast, the adversarial critic maintains a stable detection rate greater than 39% by
 457 continuously adapting to the evolving behavior of the generator.

458 This degradation directly impacts performance: with the static critic, the generator plateaus at 92.1%
 459 Pass@1, while RLDCF reaches 93.3%. Further analysis shows that 73% of the static critic’s test cases
 460 in round 3 are minor variations of earlier ones, allowing the generator to avoid detection by simplifying
 461 or reducing outputs rather than truly fixing bugs. These results highlight that dynamic adaptation is
 462 essential for preventing reward hacking and driving real improvements in code correctness.
 463

464 5 RELATED WORKS

465 **Reward models.** One possibility for evaluating free-form and open-ended generations is to encode
 466 all criteria into a single scalar through a learnt reward model. This is usually achieved through
 467 learning from an offline dataset of human preferences (Christiano et al., 2017; Ziegler et al., 2019;
 468 Yi et al., 2019; Böhm et al., 2019; Rafailov et al., 2023) or absolute ratings (Cui et al., 2024; Wang
 469 et al., 2024c). Multi-objective reward models (Wang et al., 2024a; Dong et al., 2024; Ji et al., 2023)
 470 expose several fixed dimensions (e.g., truthfulness, honesty), improving interpretability but still
 471 relying on static, globally defined criteria. Our approach differs conceptually: instead of collapsing
 472 all rubrics into a single scalar or a fixed multi-objective vector, we learn a critic that dynamically
 473 proposes a verifiable rubric for each instance and grounds its supervision through an external validator.
 474 This yields a reward signal that is still scalar for RL optimization, but derived from an objectively
 475 checkable criterion rather than a static, unverified proxy, offering better alignment and reliability in
 476 open-ended tasks.

477 **Enumerative verifications for free-form generations.** To obtain a comprehensive and reliable
 478 evaluation of free-form generations, the standard practice is to enumerate a set of fine-grained
 479 criteria (Zhuge et al., 2024; Min et al., 2023; Saad-Falcon et al., 2024; Chang et al., 2024; Xie
 480 et al., 2025). While they can be automatically deposed by LLMs for easier domains (Min et al.,
 481 2023; Jing et al., 2024), extensive manual annotations are typically required for more complex
 482 domains such as travel planning (Xie et al., 2024), codebase generation (Zhao et al., 2025), and
 483 research reproduction (Starace et al., 2025). Dedicated computation and actions such as information
 484 retrieval (Min et al., 2023) and code execution (Zhuge et al., 2024; Starace et al., 2025) require
 485 manual rubric design or domain-specific validators (e.g., retrieval and code execution). Because all

486 rubrics must be checked for each output, verification cost scales roughly linearly with the number
 487 of possible rubrics and may still miss unlisted error types. In contrast, RLDCF replaces exhaustive
 488 enumeration with a learned critic that dynamically selects the most informative, verifiable failure
 489 mode for each instance. By verifying only this targeted rubric via an external validator, the method
 490 retains rubric-level faithfulness while substantially reducing evaluation cost and exposing diverse,
 491 on-policy errors that static checklists often overlook.

492
 493 **Outcome-reward RL for reasoning.** RL for LLM has been shown to significantly boost model
 494 performance in domains where the success of the final answer can be easily checked (OpenAI et al.,
 495 2024; Liang et al., 2025; Team et al., 2025; Lambert et al., 2025). This mostly includes the domains
 496 of math (Cobbe et al., 2021; Cui et al., 2025; Luo et al., 2025b; Yu et al., 2025), coding (Jimenez
 497 et al., 2024; Pan et al., 2024a; Wei et al., 2025; Luo et al., 2025a), but can be tricky for other
 498 domains like agent decision-making (Pan et al., 2024b; Zhai et al., 2024; Bai et al., 2024) and
 499 free-form generations (Min et al., 2023; Zhuge et al., 2024). However, RLDCF is designed to relax
 500 this requirement so that we can apply RL to more general domains where success cannot be easily
 501 verified, such as free-form generations.

502 **LLM-as-a-Judge.** Because of the common-sense and reasoning capabilities of pre-trained LLMs,
 503 they can directly be prompted to serve as a judge to evaluate free-form generations (Zheng et al., 2023;
 504 Yuan et al., 2025; Zhu et al., 2025). Their capabilities in evaluations can be further improved through
 505 explicit fine-tuning (Wang et al., 2024b; Yuan et al., 2025). They can also be more interpretable
 506 and robust by introducing a long Chain-of-Thought (CoT) reasoning to explicitly verify fine-grained
 507 criteria (Saha et al., 2025; Wang et al., 2024b; Trivedi et al., 2024). Beyond rubric-only judging,
 508 *generative verifiers* treat verification itself as next-token generation: they first produce verification
 509 rationales or counterevidence, and then score or select candidates (Zhang et al., 2025; Singhi et al.,
 510 2025; Setlur et al., 2025). These approaches, however, use the judge or verifier only as a static
 511 evaluator. They produce fixed judgments or explanations but do not learn adaptively from the
 512 generator’s evolving behaviors. In contrast, RLDCF treats the verifier as a learned critic policy within
 513 an adversarial training loop: the critic dynamically proposes which rubric to verify for each instance,
 514 receives direct feedback from an external validator, and updates jointly with the generator. This
 515 design transforms LLM-as-a-judge from a static scoring module into an active, on-policy agent that
 516 allocates verification effort where it is most informative.

517 6 CONCLUSION

518 We presented Reinforcement Learning from Dynamic Critic Feedback (RLDCF), a new post-training
 519 approach for open-ended tasks requiring diverse, task-specific rubrics, where exhaustive enumeration
 520 is infeasible and optimal reward design is unknown. RLDCF formulates training as an adversarial
 521 min-max game between a generator and a *critic*, a model that dynamically identifies the worst-case
 522 rubric for each output and verifies it externally. By jointly training both models, our approach
 523 bypasses the need for exhaustive verification or manual reward design while providing adaptive
 524 learning signals that prevent reward hacking. On the factual text generation task and code generation
 525 task, RLDCF outperforms competitive baselines with significantly lower verification cost. Ablation
 526 studies further confirm the critical role of components such as adversarial critic training.

527 While we evaluate RLDCF on two domains, we expect it to generalize broadly to other open-ended
 528 generation tasks where multiple evaluation criteria make exhaustive or rubric-by-rubric verification
 529 infeasible, such as story or scientific text generation. By adaptively selecting the most critical rubric
 530 at each step, RLDCF makes RL training practical for complex generation tasks that were previously
 531 intractable due to the combinatorial explosion of rubrics or the lack of universal reward functions.

533 7 REPRODUCABILITY AND ETHICS STATEMENTS

535 To facilitate reproducibility of our work, we have included core implementation code in the supple-
 536 mentary materials. For the FactScore and code generation benchmarks, we use the default settings
 537 from their respective official implementations. All experiments employ DPO (Direct Preference
 538 Optimization) training with consistent configurations across tasks. The datasets used in our exper-
 539 iments are publicly available: WikiBiography can be obtained from its official website, and the

540 Acecoder dataset is accessible through its official repository. We plan to release our complete code
 541 implementation publicly upon acceptance to further support reproducibility efforts.
 542

543 The primary goal of our method, Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
 544 is to enhance the quality of open-ended generations, such as to improve the factual accuracy of
 545 text generation and the correctness of code generation. We believe this is a positive contribution
 546 toward developing more reliable and trustworthy AI systems. However, we acknowledge the dual-use
 547 potential inherent in any powerful generative technology. While our aim is to reduce errors, an
 548 improved generator could still be misused to create convincing but harmful or misleading content
 549 if directed by malicious prompts. Similarly, the adversarial critic, designed to find flaws, could
 550 potentially be repurposed for malicious critique, or to align the generator in a direction misaligned
 551 with human values.

552 **REFERENCES**
 553

554 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 555 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
 556 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.

557 Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digril:
 558 Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL
 559 <https://arxiv.org/abs/2406.11896>.

560 Florian Böhm, Yang Gao, Christian M. Meyer, Ori Shapira, Ido Dagan, and Iryna Gurevych. Better
 561 rewards yield better summaries: Learning to summarise without references. In Kentaro Inui, Jing
 562 Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical
 563 Methods in Natural Language Processing and the 9th International Joint Conference on Natural
 564 Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019*, pp. 3108–
 565 3118. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1307. URL
 566 <https://doi.org/10.18653/v1/D19-1307>.

567 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 568 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 569 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 570 Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
 571 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCand-
 572 lish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
 573 learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
 574 and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual
 575 Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
 576 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html>.

577 Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Boookscore: A systematic exploration
 578 of book-length summarization in the era of llms. In *The Twelfth International Conference on
 579 Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
 580 URL <https://openreview.net/forum?id=7Ttk3RzDeu>.

581 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
 582 plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
 583 Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
 584 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
 585 Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
 586 Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
 587 Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
 588 Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
 589 Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
 590 Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
 591 models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

594 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 595 reinforcement learning from human preferences. *Advances in Neural Information Processing
 596 Systems*, 30:4299–4307, 2017. URL [https://papers.nips.cc/paper/2017/file/
 597 d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf](https://papers.nips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf).

598

599 Alonzo Church. A note on the entscheidungsproblem. *The journal of symbolic logic*, 1(1):40–41,
 600 1936.

601

602 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 603 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 604 Schulman. Training verifiers to solve math word problems, 2021. URL [https://arxiv.org/
 605 abs/2110.14168](https://arxiv.org/abs/2110.14168).

606

607 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
 608 Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: boosting
 609 language models with scaled AI feedback. In *Forty-first International Conference on Machine
 610 Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=B0orDpKHiJ>.

611

612 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
 613 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
 614 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
 615 Ding. Process reinforcement through implicit rewards, 2025. URL [https://arxiv.org/
 616 abs/2502.01456](https://arxiv.org/abs/2502.01456).

617

618 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
 619 Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online
 620 RLHF. *Trans. Mach. Learn. Res.*, 2024, 2024. URL [https://openreview.net/forum/
 621 id=a13aYUU9eU](https://openreview.net/forum?id=a13aYUU9eU).

622

623 Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
 624 Adam Fisch, Katherine Heller, Stephen Pfahl, Balaji Lakshminarayanan, Sanmi Koyejo, and
 625 Deepak Ramachandran. Helping or herding? reward model ensembles mitigate but do not eliminate
 626 reward hacking. arXiv:2312.09244, 2023. URL <https://arxiv.org/abs/2312.09244>.

627

628 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 629 *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
 630 USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 10835–10866. PMLR, 2023.
 631 URL <https://proceedings.mlr.press/v202/gao23h.html>.

632

633 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 634 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 635 evaluation of large language models for code. In *The Thirteenth International Conference on
 636 Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
 637 <https://openreview.net/forum?id=chfJJYC3iL>.

638

639 Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
 640 Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of LLM via a
 641 human-preference dataset. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
 642 Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual
 643 Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
 644 December 10 - 16, 2023*, 2023. URL [http://papers.nips.cc/paper_files/paper/
 645 2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html](http://papers.nips.cc/paper_files/paper/2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html).

646

647 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 648 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth
 649 International Conference on Learning Representations*, 2024. URL [https://openreview.
 650 net/forum?id=VTF8yNQM66](https://openreview.net/forum?id=VTF8yNQM66).

648 Liqiang Jing, Ruosen Li, Yunmo Chen, and Xinya Du. Faithscore: Fine-grained evaluations of
 649 hallucinations in large vision-language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
 650 Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024,*
 651 *Miami, Florida, USA, November 12-16, 2024*, pp. 5042–5063. Association for Computational
 652 Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-EMNLP.290. URL <https://doi.org/10.18653/v1/2024.findings-emnlp.290>.

653

654 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 655 Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
 656 Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
 657 Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
 658 Pushing frontiers in open language model post-training, 2025. URL <https://arxiv.org/abs/2411.15124>.

659

660 Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data with
 661 application to the biography domain. In *Proceedings of the 2016 Conference on Empirical Methods*
 662 *in Natural Language Processing*, pp. 1203–1213, Austin, Texas, November 2016. Association
 663 for Computational Linguistics. doi: 10.18653/v1/D16-1128. URL <https://aclanthology.org/D16-1128>.

664

665 Wenfeng Liang, Xiaohong Zhang, Kai Wang, Rui Chen, Yiming Zhou, Mian Xiao, Rui Zhu, Ziheng
 666 Chen, Qing Wang, Hao Song, et al. Deepseek-r1: Incentivizing reasoning capability in large
 667 language models via reinforcement learning. arXiv:2501.12948, 2025. URL <https://arxiv.org/abs/2501.12948>.

668

669 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 670 chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
 671 URL <https://arxiv.org/abs/2305.01210>.

672

673 Michael Luo, Sijun Tan, Roy Huang, Xiaoxiang Shi, Rachel Xin, Colin Cai, Ameen Patel, Alpay
 674 Ariyak, Qingyang Wu, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully
 675 open-source 14b coder at o3-mini level. <https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349>
 676 2025a. Notion Blog.

677

678 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
 679 Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
 680 preview with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005b>
 681 2025b. Notion Blog.

682

683 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 684 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 685 *Learning Representations*, 2018.

686

687 Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 688 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models, 2024. URL
 689 <https://arxiv.org/abs/2410.12832>.

690

691 Sewon Min, Kalpesh Krishna, Xinxin Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
 692 Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
 693 precision in long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
 694 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 695 *EMNLP 2023, Singapore, December 6-10, 2023*, pp. 12076–12100. Association for Computational
 696 Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.741. URL <https://doi.org/10.18653/v1/2023.emnlp-main.741>.

697

698 OpenAI, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
 699 Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card, 2024.

700

701 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 702 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow

702 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 703 27744, 2022.

704

705 Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
 706 Training software engineering agents and verifiers with swe-gym, 2024a. URL <https://arxiv.org/abs/2412.21139>.

707

708 Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
 709 evaluation and refinement of digital agents, 2024b. URL <https://arxiv.org/abs/2404.06474>.

710

711 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
 712 standing by generative pre-training. 2018. OpenAI.

713

714 Rafael Rafailov, Aditi Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 715 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 716 in Neural Information Processing Systems*, 36:53728–53741, 2023.

717

718 Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: an automated
 719 evaluation framework for retrieval-augmented generation systems. In Kevin Duh, Helena Gómez-
 720 Adorno, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American
 721 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
 722 1: Long Papers)*, NAACL 2024, Mexico City, Mexico, June 16–21, 2024, pp. 338–354. Association
 723 for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.20. URL <https://doi.org/10.18653/v1/2024.naacl-long.20>.

724

725 Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to
 726 plan & reason for evaluation with thinking-lm-as-a-judge. *CoRR*, abs/2501.18099, 2025. doi: 10.
 727 48550/ARXIV.2501.18099. URL <https://doi.org/10.48550/arXiv.2501.18099>.

728

729 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 730 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

731

732 Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
 733 Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
 734 process verifiers for LLM reasoning. In *The Thirteenth International Conference on Learning
 735 Representations, ICLR 2025, Singapore, April 24–28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=A6Y7AqlzLW>.

736

737 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 738 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 739 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

740

741 Zhang Shengyu, Dong Linfeng, Li Xiaoya, Zhang Sen, Sun Xiaofei, Wang Shuhe, Li Jiwei, Runyi
 742 Hu, Zhang Tianwei, Fei Wu, et al. Instruction tuning for large language models: A survey.
 743 *arXiv preprint arXiv:2308.10792*, 2023. doi: 10.48550/ARXIV.2308.10792. URL <https://doi.org/10.48550/arXiv.2308.10792>.

744

745 Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
 746 Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
 747 verification for LLM reasoning. *CoRR*, abs/2504.01005, 2025. doi: 10.48550/ARXIV.2504.01005.
 748 URL <https://doi.org/10.48550/arXiv.2504.01005>.

749

750 Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defin-
 751 ing and characterizing reward gaming. In Sanmi Koyejo, S. Mohamed, A. Agar-
 752 wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-
 753 mation Processing Systems 35: Annual Conference on Neural Information Processing Sys-
 754 tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
 755 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/3d719fee332caa23d5038b8a90e81796-Abstract-Conference.html.

756 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
 757 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese,
 758 and Tejal Patwardhan. Paperbench: Evaluating ai's ability to replicate ai research, 2025. URL
 759 <https://arxiv.org/abs/2504.01848>.

760 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 761 Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
 762 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 763 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
 764 Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
 765 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
 766 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
 767 Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weinan Xiong,
 768 Weiran He, Weixiao Huang, Wenhai Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
 769 Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
 770 Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
 771 Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
 772 Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
 773 reinforcement learning with llms, 2025. URL <https://arxiv.org/abs/2501.12599>.

774 Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D. Manning, and Chelsea Finn. Fine-
 775 tuning language models for factuality. In *The Twelfth International Conference on Learning
 776 Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 777 <https://openreview.net/forum?id=WPZ2yPag4K>.

778 Prapti Trivedi, Aditya Gulati, Oliver Molenschot, Meghana Arakkal Rajeev, Rajkumar Ramamurthy,
 779 Keith Stevens, Tanveesh Singh Chaudhery, Jahnavi Jambholkar, James Zou, and Nazneen Rajani.
 780 Self-rationalization improves llm as a fine-grained judge, 2024. URL <https://arxiv.org/abs/2410.05495>.

781 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via
 782 multi-objective reward modeling and mixture-of-experts. In Yaser Al-Onaizan, Mohit Bansal, and
 783 Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024,
 784 Miami, Florida, USA, November 12-16, 2024*, pp. 10582–10592. Association for Computational
 785 Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-EMNLP.620. URL <https://doi.org/10.18653/v1/2024.findings-emnlp.620>.

786 Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
 787 Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught evaluators,
 788 2024b. URL <https://arxiv.org/abs/2408.02666>.

789 Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
 790 Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Helpsteer:
 791 Multi-attribute helpfulness dataset for steerlm. In Kevin Duh, Helena Gómez-Adorno, and
 792 Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter
 793 of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 794 Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 3371–3384. Association for
 795 Computational Linguistics, 2024c. doi: 10.18653/V1/2024.NAACL-LONG.185. URL <https://doi.org/10.18653/v1/2024.naacl-long.185>.

796 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 797 Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
 798 reinforcement learning on open software evolution, 2025. URL <https://arxiv.org/abs/2502.18449>.

799 Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
 800 Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In *Forty-first
 801 International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*.
 802 OpenReview.net, 2024. URL <https://openreview.net/forum?id=15XQzNkAOe>.

803 Yiqing Xie, Wenxuan Zhou, Pradyot Prakash, Di Jin, Yuning Mao, Quintin Fettes, Arya Talebzadeh,
 804 Sinong Wang, Han Fang, Carolyn Rosé, Daniel Fried, and Hejia Zhang. Improving model

810 factuality with fine-grained critique-based evaluator. *arXiv preprint arXiv:2410.18359*, 2025. doi:
 811 10.48550/arXiv.2410.18359. URL <https://arxiv.org/abs/2410.18359>. Version v3,
 812 last revised 2025-06-01.

813

814 Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessandra Cervone, Tagyoung Chung, Behnam Heday-
 815 atnia, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tür. Towards coherent and engaging
 816 spoken dialog response generation using automatic conversation evaluators. In Kees van Deemter,
 817 Chenghua Lin, and Hiroya Takamura (eds.), *Proceedings of the 12th International Conference
 818 on Natural Language Generation, INLG 2019, Tokyo, Japan, October 29 - November 1, 2019*,
 819 pp. 65–75. Association for Computational Linguistics, 2019. doi: 10.18653/V1/W19-8608. URL
<https://aclanthology.org/W19-8608/>.

820

821 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 822 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 823 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 824 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 825 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
 826 llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

827

828 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
 829 and Jason Weston. Self-rewarding language models, 2025. URL <https://arxiv.org/abs/2401.10020>.

830

831 Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhui Chen. ACECODER:
 832 acing coder RL via automated test-case synthesis. In Wanxiang Che, Joyce Nabende, Ekaterina
 833 Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the
 834 Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria,
 835 July 27 - August 1, 2025*, pp. 12023–12040. Association for Computational Linguistics, 2025. URL
<https://aclanthology.org/2025.acl-long.587/>.

836

837 Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S. Boning, and Dina Katabi.
 838 RI tango: Reinforcing generator and verifier together for language reasoning. *arXiv preprint
 839 arXiv:2505.15034*, 2025. URL <https://arxiv.org/abs/2505.15034>.

840

841 Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
 842 Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as
 843 decision-making agents via reinforcement learning, 2024. URL <https://arxiv.org/abs/2405.10292>.

844

845 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 846 Generative verifiers: Reward modeling as next-token prediction. In *The Thirteenth International
 847 Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenRe-
 848 view.net, 2025. URL <https://openreview.net/forum?id=Ccwp4tFETE>.

849

850 Wenting Zhao, Nan Jiang, Celine Lee, Justin T. Chiu, Claire Cardie, Matthias Gallé, and Alexander M.
 851 Rush. Commit0: Library generation from scratch. In *The Thirteenth International Conference on
 852 Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
<https://openreview.net/forum?id=MMwaQEvsAg>.

853

854 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 855 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 856 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

857

858 Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models are
 859 scalable judges. In *The Thirteenth International Conference on Learning Representations, ICLR
 860 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=xsELpEPn4A>.

861

862 Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbulin, Yunyang
 863 Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi,
 Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents, 2024.
 URL <https://arxiv.org/abs/2410.10934>.

864 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
865 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
866 Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
867 Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
868 David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
869 Leandro von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
870 and complex instructions, 2024. URL <https://arxiv.org/abs/2406.15877>.

871 Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
872 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019.
873 URL <https://arxiv.org/abs/1909.08593>.

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 Appendices

919 A PROMPTS

920
 921 This section lists the exact prompts used for the **generator model** and **critic model** during data
 922 creation and training. They correspond to the input format described in Section 3.2 of the main paper.
 923

924 A.1 GENERATOR PROMPT

925 Factual Text Generation

926 System message: You are an AI assistant that provides accurate and concise biographies of individuals.
 927 Each biography should be exactly four sentences long, highlighting key aspects of the person's life,
 928 achievements, and significance.

929 User message: Write a biography of topic.

930 Code Generation

931 The generator input exactly matches the problem statement provided in
 932 TIGER-Lab/AceCode-87K-hard without modification.

933 User message:
 934 {problem_statement_from_AceCode-87K-hard}

935 A.2 CRITIC PROMPT

936 Factual Text Generation

937 System message:
 938 You are a factual checker. Based on your existing knowledge,
 939 identify exactly one sentence that contains the most clearly
 940 verifiable factual error in the paragraph.
 941 Return your answer in **exactly three lines**:
 942 reason: < briefly explaining what is wrong >
 943 sentence: N N is the number of the most incorrect sentence
 944 (positive integer)
 945 error_fact: F a brief clause (no more than 8 words) capturing the
 946 wrong claim from that sentence

947 User message:
 948 Here is an example to show the task.
 949 Find the sentence that contains the most clearly verifiable factual error
 950 in the paragraph about Albert Einstein.

951 Example paragraph:
 952 [1] Albert Einstein was awarded the Nobel Prize in Physics in 1921 for
 953 his discovery of the photoelectric effect.
 954 [2] He was born in New York City, United States, and later moved to
 955 Europe where he continued his studies.
 956 [3] Einstein developed the theory of relativity, revolutionizing our
 957 understanding of space, time, and gravity.
 958 [4] His famous equation describes the equivalence of mass and energy.

959 Expected answer:
 960 reason: Einstein was actually born in Ulm, Germany, not New York City.
 961 sentence: 2
 962 error_fact: Albert Einstein was born in New York City.

963 Now apply the same procedure to the paragraph below about {topic}.

964 Paragraph:

```

972 {numbered_paragraph}
973
974 Answer:
975
976 Code Generation
977
978 System message:
979 You are a code critic. Analyze code for bugs and generate failing test
980 cases.
981 Strictly follow the format with <think> and <testcase> tags.
982
983 User message:
984 Analyze the given problem and the generated code to find a test case that
985 would cause the code to fail.
986
987 Problem: {question}
988
989 Generated code:
990 '''python
991 {code}
992 '''
993 First, think through potential bugs and edge cases in <think> </think>
994 tags.
995 Then output exactly ONE failing test case inside <testcase> tags using
996 this format:
997
998 Option A (CALL format)
999 <testcase> CALL: func_name(arg1, arg2, kw=val) </testcase>
1000 Option B (STDIN format)
1001 <testcase> STDIN: <raw input here> </testcase>
1002
1003 Do NOT include expected outputs or explanations.
1004 {optional_examples_block}
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```

B VALIDATOR IMPLEMENTATION DETAILS

This section provides the detailed design of the validator used in our training pipeline, corresponding to Section 3.2 of the main paper.

B.1 FACTUAL TEXT GENERATION

We follow a strict validation process to ensure both authenticity and factual accuracy. In the first stage, the critic outputs both a suspected erroneous fact and the sentence number containing it. To prevent exploitation through information injection, we use textual entailment checking to verify that the proposed fact genuinely appears in the specified sentence. In the second stage, for proposals passing authenticity checks, we reuse FactScore’s atomic fact verification component, which queries Wikipedia knowledge base to provide binary verification of individual factual claims, returning true or false based on external verification.

B.2 CODE GENERATION

Since the AceCoder dataset lacks reference solutions to prevent data contamination, we construct reliable verification anchors by using Qwen2.5-Coder-7B-Instruct to generate solutions. We filter these solutions using original test cases, retaining only those highly accurate answers (achieving 99.7% accuracy) to serve as simulated ground truth for test case validation. Our validation first execute the critic’s test case on the reference solution to obtain the expected output, then execute the same test case on the generated code to obtain the actual output. Finally, we compare these outputs and return $R(s, a, c) = 1$ if outputs match and 0 if they differ, with execution failures also indicating detected errors. The AceCoder dataset contains noise in GPT-4o generated test cases,

1026 which introduces some bias in our reference-based validator but reflects realistic imperfections in
 1027 verification tools.
 1028

1029

1030

C ANALYSIS OF K AND N

1031

1032

1033 This section clarifies the roles of the hyperparameters K and N in RLDCF and explains why their
 1034 values differ between the factual and code generation experiments.
 10351036 In RLDCF, the parameter K controls how many candidate outputs are sampled for each prompt.
 1037 A larger K increases candidate diversity and raises the probability that, for the same instruction,
 1038 at least one candidate passes all critic checks while another fails at least one. This is essential for
 1039 constructing non-degenerate preference pairs for DPO, since each pair requires both a “chosen” and
 1040 a “rejected” candidate. The hyperparameter N specifies how many criteria or testcases the critic
 1041 proposes for each candidate. A larger N expands the critic’s search space and enables it to discover
 1042 more potential failure modes. However, this comes with two main drawbacks: fewer candidates pass
 1043 all checks (which reduces preference pairs available for training generator), and verification costs
 1044 increase substantially. Additionally, an excessively large N may introduce redundant checks without
 1045 meaningful benefits.1046 For factual text generation, we set $K = 10$, following the configuration used in FactTune-FS, our
 1047 main baseline. For code generation, we use $K = 8$, consistent with the AceCoder setup. Thus, the
 1048 difference in K is not arbitrary; it adheres to the standard experimental settings established in prior
 1049 work.

1050

1051

1052

1053

1054

1055

1056

1057

1058

D QUANTIFICATION OF UNCERTAINTY

1059

1060

1061

1062

1063

Table 4: Factual text generation on 8-sentence biographies with the Qwen3-4B backbone, with results
 shown as mean \pm standard deviation across three runs.

Method	8-sentence Generation			
	# Corr \uparrow	# Incorr \downarrow	FS \uparrow	Calls \downarrow
Qwen3-4B				
Baseline	19.03 \pm 0.41	12.05 \pm 0.19	0.616 \pm 0.006	-
FactTune-FS	21.67 \pm 0.79	5.66 \pm 0.48	0.793 \pm 0.017	402,781 \pm 52,264
ArmoRM	22.51 \pm 1.00	9.39 \pm 0.58	0.705 \pm 0.013	-
RLDCF (Ours)	21.45 \pm 0.31	4.37 \pm 0.48	0.831 \pm 0.016	70,667 \pm 20,072

1071

1072

1073

1074

1075

1076

1077

1078

1079

We report variability across random seeds for the factual text generation experiment. For each method, we run training with three different random seeds (affecting data shuffling and sampling of generator candidates) and report the mean and standard deviation of the metrics. Table 5 summarizes the results for the 8-sentence biography setting with Qwen3-4B as the base model. We observe that RLDCF consistently improves the number of correct biographies and the overall FactScore compared to the baselines, while using substantially fewer verification calls than FactTune-FS. The standard deviations are relatively small, indicating that the performance gains are robust across independent runs.

1080 E BACKBONE ROBUSTNESS
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
10921093
1094
1095
1096
1097

1098 To examine whether the effectiveness of RLDCF depends on a particular model family, we conducted
1099 additional experiments using an alternative generator/critic backbone, LLaMA-3.1-8B-Instruct. The
1100 training setup strictly follows the configuration used in the Qwen experiments. Figure 5 shows
1101 the resulting training dynamics. We observe the same qualitative behavior as in the Qwen-based
1102 experiments: RLDCF consistently improves factual correctness during training while requiring fewer
1103 verification calls than FactTune-FS, consistent with the trend observed in the main paper; moreover, in
1104 the high-KL regime, RLDCF achieves substantially greater gains in factual accuracy compared to the
1105 ArmoRM method.

1106 F MEDICALQA
1107
11081109 Table 5: Factual text generation on 8-sentence Medical Question with the Qwen3-4B backbone.
1110

Method	8-sentence Generation			
	# Corr↑	# Incorr↓	FS↑	Calls↓
Qwen3-4B				
Baseline	34.0	3.38	0.909	-
FactTune-FS	34.2	1.99	0.945	524329
ArmoRM	35.1	2.36	0.937	-
RLDCF (Ours)	35.2	1.67	0.955	76800

1111 RLDCF achieves the highest factual accuracy while requiring 6.8x fewer verification calls than
1112 FactTune-FS, mirroring the efficiency gains observed in the biography experiments.
1113

1114 These results reinforce that RLDCF is not tied to a particular text domain. It successfully im-
1115 proves factuality in a medical correctness setting with substantially different linguistic and semantic
1116 structures.
1117

1134 **G CROSS-FAMILY**
11351136
1137 Table 6: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I), and
1138 LiveCodeBench, Using a different model (GPT-4O) to generate reference solutions, the results show
1139 that RLDCF still achieves a similar level of average performance improvement across all benchmarks.

Method	HumanEval		MBPP		BCB-C		BCB-I		LCB	Average
	Base	Plus	Base	Plus	Full	Hard	Full	Hard		
Base: Qwen2.5-Coder-7B-Instruct										
Baseline	91.5	84.8	82.8	71.4	49.5	19.6	41.8	20.3	34.2	55.1
RLDCF (Qwen)	93.3	86.0	83.9	73.0	52.2	24.3	42.3	19.6	35.2	56.6
RLDCF (GPT-4o)	92.1	85.4	83.9	73.2	52.2	23.6	42.5	20.3	35.5	56.5

1147
1148 **H QUALITATIVE CASE STUDIES**
11491150
1151 This section presents additional qualitative examples illustrating the behavior of the critic before and
1152 after adversarial training.
11531154
1155 **H.1 FACTUAL TEXT GENERATION CASE STUDY**
11561157 **Generator output(numbered)**

- [1] Amina Wadud is a prominent Islamic scholar and theologian based in the United States.
- [2] She is known for her groundbreaking work in Islamic studies, particularly in reinterpreting Islamic texts for modern, gender-inclusive contexts.
- [3] Wadud has been a leading voice in the movement toward a more inclusive and progressive understanding of Islamic law and theology.
- [4] She is a professor at the University of Durham and has held academic positions at several other institutions.
- [5] Wadud is widely recognized for her advocacy of women's religious and social rights within Islam.
- [6] She is the first woman to lead a Friday prayer in a major American mosque.
- [7] Her research and writings challenge traditional interpretations of Islamic law and promote gender equality.
- [8] Wadud has been an influential figure in interfaith dialogue and religious pluralism.

1173
1174 **Initial Critic Output**

```
1176 reason: Amina Wadud is not a prominent Islamic scholar based in the
1177 United States.
1178 sentence: 1
1179 error_fact: Amina Wadud is a prominent Islamic scholar based in the
1180 United States.
```

1181
1182 **Trained Critic Output**

```
1183 reason: The Friday prayer Amina Wadud led took place in a church hall in
1184 New York, not in a mosque.
1185 sentence: 6
1186 error_fact: Amina Wadud led this Friday prayer in a major American mosque
1187 in the United States.
```

1188
1189

H.2 CODE GENERATION CASE STUDY

1190

Code Question

1191

You are tasked with implementing a function that simulates the behavior of a drawing application by managing a canvas. The canvas is represented by a 2D grid of pixels, where each pixel can be either empty (0) or filled (1). Your function should handle the following operations: 1) Resize the canvas to a new width and height, filling the new area with empty pixels. 2) Fill the entire canvas with a specified color (1 for filled, 0 for empty). 3) Clear the canvas by setting all pixels back to empty (0). Implement a single function called 'manage_canvas' that takes the following parameters: 'canvas' (a list of lists representing the initial canvas), 'operation' (a string indicating the operation: 'resize', 'fill', or 'clear'), and 'params' (a tuple with parameters for the operation). The function should return the modified canvas after performing the specified operation. The function should not access any external resources.

1204

1205

Generator output

1206

```
from typing import List, Tuple, Union

def manage_canvas(
    canvas: List[List[int]],
    operation: str,
    params: Tuple[Union[int, float, bool]]
) -> List[List[int]]:
    """Manage the canvas based on the specified operation and parameters
    """
    if operation == 'resize':
        # params = (new_width, new_height)
        new_width, new_height = params
        new_canvas = [[0] * new_width for _ in range(new_height)]
        return new_canvas

    elif operation == 'fill':
        # params = (fill_value,)
        fill_value, = params
        return [[fill_value] * len(row) for row in canvas]

    elif operation == 'clear':
        return [[0] * len(row) for row in canvas]

    else:
        raise ValueError("Invalid operation")
```

1227

Initial Critic Output

1228

```
<think>
1. The function supports a 'resize' operation that changes the canvas to
   (new_width, new_height).
2. Typical boundary cases include an empty canvas and zero or negative
   dimensions.
</think>
< testcase> CALL: manage_canvas([], 'resize', (2, 2)) </ testcase>
```

1236

Trained Critic Output

1237

1238

```
<think>
1. The code does not handle the 'resize' operation correctly. It
   initializes a new canvas with the correct dimensions but does not
   copy the existing canvas's data into the new canvas. This could
   result in a canvas with only empty pixels after resizing.
```

```
1242
1243 2. This behavior contradicts the problem description, where 'resize' is
1244     expected to preserve existing pixels and only fill newly created
1245     areas with 0, as in a normal drawing application.
1246     </think>
1247 <testcase> CALL: manage_canvas([[1, 1], [1, 1]], 'resize', (3, 3)) </
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
```