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ABSTRACT

Open-ended generation tasks require outputs to satisfy diverse and often implicit
task-specific evaluation rubrics. The sheer number of relevant rubrics leads to
prohibitively high verification costs and incomplete assessments of a response,
making reinforcement learning (RL) post-training with rubric-based rewards dif-
ficult to scale. This problem is exacerbated by the fact that often the best way
to combine these rubrics into one single reward is also highly prompt-specific.
We propose Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
a post-training approach that addresses these challenges via dynamic rubric ver-
ification. Our approach employs a large language model (LLM) as a critic that
dynamically identifies only the most likely failure modes (e.g., a factual error or
unhandled edge case), which are then verified by an external validator to optimize
both generator and critic jointly. By training both the generator and the critic,
this game enhances the critic’s error detection and the generator’s output quality
while reducing required verifications. Our experiments demonstrate that RLDCF
improves factual accuracy in text generation and correctness in code generation,
while also outperforming exhaustive verification and reward model methods. We
show that dynamic critics are more effective than fixed critics, showcasing the
potential of RLDCF for scaling RL post-training to free-form generation tasks.

1 INTRODUCTION

Post-training methods for large language models (LLMs) have progressed dramatically over the past
few years, from largely manual supervised fine-tuning (SFT) techniques that rely on a combination of
manual data curation (Radford et al., 2018; Brown et al., 2020; Shengyu et al., 2023) to reinforcement
learning (RL) methods that perform general preference-based optimization (Christiano et al., 2017;
Ouyang et al., 2022) or optimize task-specific notions of correctness (Zha et al., 2025). Despite these
remarkable results, RL post-training is limited to tasks with clear-cut success criteria (i.e., correctness
of an answer or preference of a human user), and it remains unclear how to post-train LLMs with RL
on tasks that require producing open-ended or free-form outputs that are hard to verify perfectly.

Perhaps the biggest challenge in building RL post-training methods for free-form generation tasks
is the lack of a solid reward function: outputs are typically expected to satisfy several task-specific
rubrics. In principle, a task designer could construct a reward by combining these rubrics, but both
enumerating and verifying them pose major scalability challenges (Min et al., 2023). For instance,
complex code generation requires testing countless edge cases (e.g., empty inputs or specific numbers).
Even if such criteria could be enumerated, knowing how to combine them remains difficult (e.g.,
should correctly handling even numbers outweigh handling primes?). While RLHF-trained reward
models or LLM-as-judge approaches (Christiano et al., 2017; Zheng et al., 2023) outsource the job of
merging rubrics to a learned or prompted reward model, this often leads to reward hacking (Ziegler
et al., 2019; Gao et al., 2023; Skalse et al., 2022; Eisenstein et al., 2023), since the best combination
is highly dependent on the prompt and the model being optimized. How can we then train LLMs on
free-form generation tasks with several (maybe uncountably many) rubrics?

We introduce Reinforcement Learning from Dynamic Critic Feedback (RLDCF), which formulates
the problem as an adversarial game between a generator and a critic. The critic is a learned model
that proposes a rubric (e.g., one test case) where the generator’s output is likely to fail, and an
external validator verifies this. Both models are trained jointly: the critic is rewarded when it correctly
pinpoints a rubric that the generator fails (verified by an external validator), while the generator
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Figure 1: Comparison of three post-training paradigms on a biography example (“Michael Jackson”).
(a) Enumerative verification explicitly extracts and checks every atomic fact before aggregating a
scalar reward, which is accurate but expensive. (b) Reward-model methods skip verification and
directly predict a scalar reward from a learned judge, which is efficient but prone to reward hacking.
In contrast, (c) RLDCF trains a learned critic to propose one likely-wrong fact (rubric) and verifies
it via an external validator. If the fact indeed fails, the critic receives reward 1 and the generator
0; otherwise the generator receives 1 and the critic 0. This dynamic, adversarial feedback yields
prompt-specific, verifiable, and scalable supervision for free-form generation tasks.

is rewarded when the critic is unable to do so. This formulation eliminates the need to enumerate
or verify all rubrics, significantly improving training scalability. At the same time, it ensures that
rewards are based on rubrics that are prompt-specific, adversarially chosen, and always on-policy.
Figure 1 illustrates how RLDCF achieves verification efficiency while maintaining accuracy through
adversarial critic-generator dynamics on a biography generation example.

We evaluate Reinforcement Learning from Dynamic Critic Feedback on factual text generation and
code generation, representing enumerable and non-enumerable verification scenarios, respectively.
On 8-sentence biography generation with Qwen3-8B, Reinforcement Learning from Dynamic Critic
Feedback achieves a FactScore of 0.889, surpassing FactTune-FS’s (Tian et al., 2024) 0.867, while
reducing verification calls by 5.7×. This efficiency gain scales with task complexity, from 4.4× for 4-
sentence to 5.7× for 8-sentence generation. In code generation, despite using only 9% of the training
data, Reinforcement Learning from Dynamic Critic Feedback achieves the highest average scores
on both base models: 53.2 on Qwen2.5-Coder-7B-Base and 56.6 on Qwen2.5-Coder-7B-Instruct,
outperforming prior methods AceCoder-RM and AceCoder-Rule (Zeng et al., 2025).

Our primary contribution is Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
a novel post-training paradigm that frames free-form LLM optimization as an adversarial game
between a generator and a learned critic, with an external validator providing ground-truth feedback.
This design avoids exhaustive rubric enumeration and mitigates reward hacking by producing task-
specific and on-policy training signals. In experiments, Reinforcement Learning from Dynamic Critic
Feedback consistently improves factual accuracy while reducing verification costs, and surpasses
prior methods on code generation—demonstrating scalable gains across both enumerable and non-
enumerable verification tasks.

2 PRELIMINARIES

Our goal is to train a generator that produces a free-form output meeting task requirements, without
manually enumerating every rubric. In this section, we formalize this problem, introduce notation,
and briefly discuss related concepts of reward models (Christiano et al., 2017; Ziegler et al., 2019;
Rafailov et al., 2023) and enumerative verification (Min et al., 2023; Trivedi et al., 2024; Saha et al.,
2025; Wang et al., 2024b; Xie et al., 2025), as illustrated in Figure 1. We then present our approach
in the next section.

Problem setup. We consider free-form generation tasks where outputs must satisfy many task-
specific requirements, which we call rubrics. For instance, a biography generation task may require
that each factual claim is correct, while a code generation task may require the program to handle
all edge cases correctly. Formally, let S be a distribution over prompts or instructions that may be
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presented to an LLM. Given s ∈ S, a generator LLM πg(a | s) is tasked with producing a textual
output a ∈ A. We choose to use standard notation typically used in RL (S denoting the state space
and A denoting the action space) as we later present an RL training objective. Each instruction s is
inherently associated with a set of rubrics (denoted as C(s)), where each rubric c ∈ C(s) represents a
verifiable property the output should satisfy, such as “the claim about Newton’s birth year is correct”
for biography generation or “the code handles null inputs” for code generation.

We assume access to a binary verification function R(s, a, c) that returns 1 if a generated output
a ∼ πg(·|s) satisfies the rubric c on instruction s, and attains 0 otherwise. An output a is considered
correct only when all rubrics C(s) associated with instruction s are satisfied. Our goal is to train
πg(·|s) to maximize the probability of producing fully correct outputs:

π∗
g := argmax

π
Es∼S

Ea∼π(·|s)

[ ∏
c∈C(s)

R(s, a, c)
] . (1)

In constrained domains with a single, well-defined rubric (e.g., matching a reference solution
in math reasoning), the optimization of object simplifies, allowing standard RL algorithms like
PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024) to optimize the policy. However, such
cases are rare in open-ended tasks with diverse rubrics. In these settings, C(s) can be extremely large
or even unbounded, making Eq. 1 computationally intractable since every output must be checked
against every rubric.

Reward models and enumerative verification. Most approaches to optimizing free-form generation
tackle the challenge of diverse rubrics through two paradigms. RLHF (Christiano et al., 2017) trains
a single proxy reward model from offline human preference data. While efficient, this optimization is
hard because the learned proxy is only as good as its coverage of the preference dataset. When the
generator explores beyond this support, the proxy can misalign (Gao et al., 2023), often necessitating
additional constraints like KL regularization to avoid collapse. These constraints stabilize training
but also limit exploration, making it difficult to scale to highly open-ended tasks (Dong et al., 2024).

Another approach is to enumerate the evaluation criteria and optimize their aggregate, either through
prompting (Min et al., 2023; Saha et al., 2025) or via preferences implicitly elicited from hu-
mans (Wang et al., 2024b; Mahan et al., 2024). While more faithful to the underlying rubrics (Trivedi
et al., 2024), this strategy is fundamentally limited: it assumes the evaluation set C(s) can be exhaus-
tively listed, which is unrealistic for complex tasks (e.g., all test cases for a nontrivial program). Even
when such enumeration is feasible, iterating over the entire set is computationally prohibitive, turning
optimization into an intractable verification bottleneck.

3 REINFORCEMENT LEARNING FROM DYNAMIC CRITIC FEEDBACK

We now introduce our RL post-training approach, called Reinforcement Learning from Dynamic
Critic Feedback (RLDCF) for training LLM generators on free-form tasks. Our goal is to provide
rewards while avoiding the scalability limits of enumerative verification and the misalignment of
static reward models. The core idea is to recast verification as a dynamic process guided by a learned
critic. Concretely, we frame training as a two-player game: given an output from the generator, the
critic proposes a rubric the output is likely to violate, while the generator aims to satisfy all such
rubrics. An external validator then adjudicates whether the output meets the proposed rubric, and
this supervision updates both generator and critic. In this way, verification becomes adaptive and
adversarial, tailored to the generator’s current weaknesses. We now formally derive this approach.

3.1 PROBLEM REFORMULATION

To derive our approach formally, our starting point is the objective of Equation 1, which requires a
generation to satisfy all rubrics in the set C(s): Since R(s, a, c) is an indicator function for each c,
we can rewrite the requirement that all rubrics are satisfied as a minimum over all rubrics as follows:

1{R(s, a, c) = 1, ∀c ∈ C(s)} = min
c∈C(s)

1{R(s, a, c) = 1}. (2)

Intuitively, the minimum selects the worst-case criterion, i.e., the first failure mode encountered by
the current model π. Substituting Equation 2 into Equation 1 gives:

π∗
g = argmax

π
Es∼S

[
Ea∼π(·|s)

[
min

c∈C(s)
R(s, a, c)

]]
. (3)
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However, this reformulation by itself does not make the optimization problem simpler: searching
over C(s) is infeasible when C(s) is large or infinite (e.g., all possible test cases). To address this, we
introduce a critic πc, modeled as a stochastic policy that takes an instruction–generation pair (s,a) as
input and outputs a rubric c ∈ C(s)in natural language, representing a verifiable property that may
fail. An external validator then checks the proposed rubric. Then we can rewrite Equation 3 into the
equivalent min-max form:

πg = argmax
π

min
πc

Es∼S
[
Ea∼π(·|s)Ec∼πc(·|s,a) [R(s, a, c)]

]
. (4)

It can be shown that the solution πg from Equation 4 is the same as that from Eq. (1), but now we
bypass the need to enumerate all criteria over C(s) (Madry et al., 2018).

Pretty much like other mini-max optimization problems, we can solve the above optimization problem
by iteratively updating πg and πc against each other. The optimization goal is to achieve a robust
generator πg that does well even according to the most adversarial critic, upon convergence. More
details with respect to the practical optimization algorithm will be provided in Section 3.2.

3.2 PRACTICAL INSTANTIATION OF RLDCF
We now instantiate the two-player adversarial game from the previous section into a practical approach
that we can use to train LLMs. As shown in Figure 1, we parameterize three task-agnostic components
that interact with each other during RL training. Each component is instantiated differently based on
the domain (as detailed in Section 4).

Generator. The generator πg, is an LLM that is fine-tuned to produce an output a ∈ A for an
instruction s ∈ S . RLDCF samples multiple response generations from πg for each instruction s. We
train πg to maximize the probability of producing outputs that satisfy all task-specific rubrics. The
prompt for the generator is included in the Appendix A.1.

Critic. Our critic πc is a pre-trained LLM πc that RLDCF fine-tunes. Specifically, for each instruction
s and a query generation output a, the critic is prompted to generate a natural language output
representing a rubric c through auto-regressive decoding. The rubric c along with the instruction s and
the generation a are then sent to the external validator to obtain a reward signal R(s, a, c) ∈ {0, 1}.
The prompt for the adversarial critic is included in the Appendix A.2.

Validator. The validator is an external tool or process that can verify whether a generated response
satisfies a rubric provided as input to it. The validator can be implemented in various ways depending
on the domain, such as rule-based checkers or a software tool that evaluates a proposed code on a
proposed test-case. Implementation details for specific tasks are discussed in the Appendix B.

Updating the generator and critic. At each training step, we sample instructions s ∈ S and
have the generator πg produce K candidate outputs a1, . . . , aK . For each (s, ai), the adversarial
critic πc proposes a criterion ci, which is then checked by the validator to yield a binary reward
ri ∈ {0, 1}. This online feedback provides signals for both policies. Outputs with ri = 1 are treated
as positives (a+) and those with ri = 0 as negatives (a−), and the generator is updated using the
DPO loss (Rafailov et al., 2023) with respect to the reference generator πg

ref:

L(πg;πg
ref) = −EsE(a+,a−)

[
log σ

(
β log

πg(a+|s)
πg

ref(a
+|s)

− β log
πg(a−|s)
πg

ref(a
−|s)

)]
. (5)

Similarly, for each (s, a) pair, we sample N criteria from πc. Criteria rejected by the validator (invalid
or satisfied by the generator) are treated as negatives (c−), while valid, unsatisfied ones are positives
(c+). The critic is then updated with the same DPO objective relative to its reference policy πc

ref:

L(πc;πc
ref) = −Es,aE(c+,c−)

[
log σ

(
β log

πc(c+|s, a)
πc

ref(c
+|s, a)

− β log
πc(c−|s, a)
πc

ref(c
−|s, a)

)]
. (6)

In this way, evaluation and improvement are unified: the critic adaptively identifies failure modes,
the validator provides ground-truth feedback, and both generator and critic are jointly updated to
improve over time. Note that we chose the DPO loss for its simplicity, though any online or offline
RL approach could be used for policy optimization.

Algorithm summary. Algorithm 1 summarizes the practical implementation of RLDCF. At a high
level, the algorithm follows a standard online RL loop that alternates between policy evaluation and
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Algorithm 1 RLDCF

1: Initialize parameters πg, πc, πg
ref, π

c
ref

2: for each iteration do
3: ## Policy Evaluation for Generator πg .
4: for each instruction s do
5: Generate K generations a1, ..., aK ∼ πg(·|s)
6: Sample a criterion from the adversarial critic for each generation ci ∼ πc(·|s, ai).
7: Construct a generator dataset Dg

s = {(s, ai, R(s, ai, ci))}Ki=1
8: ## Policy Evaluation for Critic πc. ▷ Optional
9: for each instruction s, output a do

10: Generate N criteria c1, ..., cN ∼ πc(·|s, a)
11: Construct a critic dataset Dc

(s,a) = {(s, a,R(s, a, cj))}Nj=1

12: ## Policy Improvement for Generator πg .
13: πg

new ← πg

14: for each update step do
15: πg

new ← πg
new −∇L(πg

new, π
g
ref) ▷ Equation 5

16: πg
ref ← πg

17: ## Policy Improvement for Critic πc. ▷ Optional
18: πc

new ← πc

19: for each update step do
20: πc

new ← πc
new −∇L(πc

new, π
c
ref) ▷ Equation 6

21: πc
ref ← πc

improvement. In each evaluation step, we sample generations from the current generator πg , have the
critic propose a criterion c, and obtain verification to assign rewards. These rewards are then used
to update the generator with the DPO objective (Equation 5). Optionally, we also collect evaluation
data for the critic by sampling multiple criteria per instruction–generation pair. The critic is then
updated with its own DPO objective (Equation 6), allowing it to adaptively identify weaknesses in
the generator and provide more effective learning signals.

4 EXPERIMENTS

We now evaluate our approach on two free-form generation tasks: factual text generation (§4.1)
and code generation (§4.2). Factual text generation illustrates the enumerable-but-expensive regime,
where all claims can in principle be verified but at a cost that scales with text length. This tests
RLDCF’s ability to maintain verification quality while reducing calls. Code generation, by contrast,
represents the non-enumerable regime, where exhaustive verification is impossible due to infinite
corner cases and intractable formal checks (Church, 1936). Here, the goal is to expose critical failures
through targeted critic proposals. Together, these tasks span the spectrum from costly-but-possible to
fundamentally intractable verification, highlighting the broad applicability of RLDCF.

4.1 FACTUAL TEXT GENERATION

4.1.1 SETTINGS

Evaluation data & metrics. We follow Min et al. (2023); Tian et al. (2024) in adapting a factual
text generation task in which the model should produce concise biographies for a given individual.
We use 170 topics from the Wikipedia Biography Dataset (Lebret et al., 2016), split into 120 for
training and 50 for testing. We use factual precision of the output (as defined by FactScore (Min et al.,
2023)) as the primary metric, and also report the counts of correct and incorrect facts. To control for
length, the model is instructed to generate either four or eight sentences. Since frequent calls to the
external validator are costly, we additionally track the number of validator calls.
Base models & baselines. Our base generators are Qwen3-4B and Qwen3-8B. We compare against
three baselines: (1) the original base models without task-specific training; (2) FactTune-FS (Tian
et al., 2024), a widely used method for factual text generation to represent exhaustive verification
using an external validator, FactScore, for all atomic facts; and (3) ArmoRM (Wang et al., 2024a),
which represents the reward model based method that produces one reward score for the generated
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Table 1: Performance comparison on factual text generation. RLDCF achieves the highest FactScore
across all settings while using fewer verification calls than FactTune-FS.

4-sentence Generation 8-sentence Generation

Method # Corr↑ # Incorr↓ FS↑ Calls↓ # Corr↑ # Incorr↓ FS↑ Calls↓

Qwen3-4B
Baseline 10.07 6.43 0.610 - 19.62 12.08 0.619 -
FactTune-FS 10.66 3.48 0.754 214,911 20.65 5.99 0.775 341,657
ArmoRM 14.54 8.69 0.626 - 21.02 10.02 0.677 -
RLDCF (Ours) 10.54 3.04 0.776 57,600 21.58 4.84 0.817 48,000

Qwen3-8B
Baseline 12.65 5.53 0.696 - 22.51 11.97 0.653 -
FactTune-FS 13.31 3.63 0.786 168,735 25.10 3.84 0.867 438,949
ArmoRM 12.96 6.86 0.654 - 23.31 8.92 0.723 -
RLDCF (Ours) 13.14 3.37 0.796 38,400 24.33 3.03 0.889 76,800

output. Both the generator and critic are initialized from the same backbone models (Qwen3-4B
and Qwen3-8B) to ensure fairness. We use FactScore as an external validator, i.e., FactScore checks
whether a critic-proposed fact appears in the biography and is correct according to Wikipedia. All
methods are trained with multiple rounds of DPO updates, where the generator produces 10 outputs
per prompt and the critic proposes 4 rubrics per output.

4.1.2 RESULTS

Table 1 shows that RLDCF achieves the highest factuality scores across model sizes and output lengths,
while using significantly fewer verification calls. For instance, on Qwen3-8B with eight-sentence
generation, it reaches a FactScore of 0.889, outperforming FactTune-FS (0.867) and ArmoRM (0.723),
but with only 77k verification calls compared to 439k for FactTune-FS. This efficiency gap grows
with output length: FactTune-FS requires 4.4× more verification calls in the four-sentence setting
(169k vs. 39k) and 5.7× more in the eight-sentence setting (439k vs. 77k). This shows that RLDCF
scales more efficiently as the generation complexity increases.
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Figure 2: Comparison of training dynamics, verification efficiency, and exploration behavior for
RLDCF, FactTune-FS, and ArmoRM on the Qwen3-8B model with 8-sentence generation.

RLDCF’s improvements throughout training. Figure 2 shows how the generator’s accuracy
evolves over training, measured along three axes: training epoch, number of verification calls, and
KL divergence from the base model. In Figure 2(a), RLDCF shows a slight initial drop in FactScore
(from 0.653 to 0.641). At this early stage, the critic has not yet learned to identify the most obvious
errors, so the “mistakes” it proposes are often minor or even incorrect. As a result, the generator
receives weak targeted training signals, and factuality temporarily degrades. After several rounds, the
critic improves at detecting mistakes, which in turn accelerates generator learning. Once this dynamic
stabilizes, the generator’s factuality gradually, ultimately reaching 0.889, outperforming FactTune-FS
(0.867). This two-phase process illustrates how RLDCF evolves from weak initial supervision to
highly efficient, targeted verification.
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Figure 2(b) shows that RLDCF achieves the same level of factuality as FacTune-FS with far fewer
verification calls (e.g., 67K vs. 368K to achieve 84%). This highlights the inefficiency of FactTune-
FS, which repeatedly validates already correct facts, whereas RLDCF dynamically targets high-risk
errors, yielding greater verification efficiency and scalability.

Figure 2(c) measures exploration by tracking the KL divergence from the base model. Such deviation
can usually be caused by either (1) improvements from the base model through effective exploration,
or (2) reward hacking, in which the model overfits to the reward model and drafts without real quality
gains. For RLDCF, KL increases alongside monotonic FactScore gains (0.653→ 0.889), indicating
productive exploration. In contrast, RL with a fixed offline reward model (ArmoRM) shows a rise
in KL without the corresponding factuality gains, evidence of reward hacking. These dynamics
complement Table 1: while both RLDCF and FactTune-FS improve factuality, RLDCF achieves
comparable or higher FactScore with far fewer verification calls, whereas ArmoRM inflates output
length without consistent accuracy due to its static reward.

Table 2: Generator’s test accuracy across critic types.

Method # Corr # Incorr FS

Base 19.62 12.08 0.619
Noisy Validator 19.84 12.83 0.607
Static Critic 17.77 3.77 0.825
Adversarial Critic 21.58 4.84 0.817

1 2 3 4 5 6 7 8 9 10 11 12
Epoch

(b) Mean Return
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Figure 3: Average validator outcomes on suspicious facts proposed by the critic during factual
biography generation. Higher values indicate that the critic more often misjudges correct facts (i.e.,
weaker supervision).

Ablation Study. We compare RLDCF with two ablated variants to isolate the factors driving its
effectiveness. In the first, we replace the external validator’s outputs with random correctness labels
to assess the role of validator reliability. In the second, we freeze the critic model, referred to as
a static critic rather than training it adversarially with the generator, to evaluate the importance of
adversarial joint training.

As shown in Table 2, noisy validation destabilizes training and reduces performance below the base
model, highlighting the importance of reliable validation. The static critic achieves a superficially high
FactScore by generating fewer facts, reducing both correct and incorrect facts, unlike the adversarially
trained critic that increases correct facts while reducing errors. This indicates that the static critic
inflates precision rather than genuine factual improvement. Figure 3 further illustrates these dynamics.
The static critic’s validator outcomes quickly rise to about 0.81, showing that the generator quickly
learns to evade its fixed patterns. In contrast, the adversarial critic’s outcomes grow much more
slowly and reach a lower level of about 0.6 by round 16, indicating that it continues to surface genuine
errors and sustain learning pressure. In general, these results highlight that both reliable external
verification and a dynamically adapting critic are crucial: Without either, the generator fails to achieve
meaningful gains in factual accuracy, validating the core design of RLDCF.
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4.2 CODE GENERATION

4.2.1 SETTINGS

Evaluation data & metrics. We evaluate code generation performance using widely studied
benchmarks: HumanEval (Base and Plus) (Chen et al., 2021; Liu et al., 2023), MBPP (Base and
Plus) (Austin et al., 2021; Liu et al., 2023), BigCodeBench (Zhuo et al., 2024), and LiveCodeBench
(V4) (Jain et al., 2025). We use Pass1 as a primary metric. For efficiency analysis, we also report
the number of test cases executed per successful solution. Note that, unlike factual verification,
where each check is expensive, unit tests in code generation are cheap to execute. The fundamental
bottleneck here is not the per-test cost but the non-enumerability of the test space. Therefore, test-case
count is reported only for completeness; the primary evaluation metric remains Pass@k.

Base models & baselines. For training data, we use the AceCode-87K-hard subset (Zeng et al.,
2025), consisting of approximately 22K problems. Our base generators include Qwen2.5-Coder-7B-
Base and Qwen2.5-Coder-7B-Instruct. We compare against three baselines: (1) the original base
models without training; (2) AceCoder-Rule, which employs RL with rule-based binary rewards from
test execution; and (3) AceCoder-RM, which uses RL with AceCodeRM-7B trained on approximately
300K preference pairs constructed from AceCode-87K dataset. Our RLDCF approach samples 2k
questions from the AceCode-87K-hard subset for training, generates k = 8 outputs per prompt
(which is consistent with the Acecoder setting) with n = 2 critic proposals per generation.

4.2.2 MAIN RESULTS

Table 3: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I),
and LiveCodeBench, using two different base models. RLDCF achieves the highest average score
across benchmarks.

Method HumanEval MBPP BCB-C BCB-I LCB Average
Base Plus Base Plus Full Hard Full Hard

Base: Qwen2.5-Coder-7B-Base
Baseline 83.5 79.3 80.4 69.3 45.8 16.2 40.2 14.2 28.7 50.8
AceCoder-RM 83.5 75.6 80.2 67.2 41.9 14.9 36.8 16.2 25.7 49.1
AceCoder-Rule 84.1 78.0 82.3 69.3 48.6 18.2 43.2 18.2 28.5 52.3
RLDCF (Ours) 85.7 80.6 82.4 71.6 50.3 20.9 42.1 16.9 28.7 53.2

Base: Qwen2.5-Coder-7B-Instruct
Baseline 91.5 84.8 82.8 71.4 49.5 19.6 41.8 20.3 34.2 55.1
AceCoder-RM 89.0 84.1 86.0 72.8 50.4 18.9 42.0 19.6 35.0 55.3
AceCoder-Rule 90.9 84.8 84.1 71.7 50.9 23.0 43.3 19.6 34.9 55.9
RLDCF (Ours) 93.3 86.0 83.9 73.0 52.2 24.3 42.3 19.6 35.2 56.6

Table 6 summarizes results across five widely-used code generation benchmarks. Despite training
on only 2,000 problems (9% of the dataset used for AceCoder-RM and AceCoder-Rule), RLDCF
achieves the highest average scores: 53.2 using Qwen2.5-Coder-7B-Base and 56.6 using Qwen2.5-
Coder-7B-Instruct, consistently outperforming both enumerative method (AceCoder-Rule) and static
reward model method (AceCoder-RM) across the majority of benchmarks. We observe from Table 4
that AceCoder-RM not only fails to improve performance but can even degrade it under noisy
validation. For example, on HumanEval, performance drops from 91.5 to 89.0 despite using the
competetive reward model Acecoder-RM-7B, indicating reward hacking.

This fragility arises from the reward model trained on preference pairs from the AceCoder dataset,
which itself contains noisy and incomplete test cases (Zeng et al., 2025). During RL training, as
the generator’s outputs drift away from the RM’s fixed training distribution, these noisy supervision
signals are further amplified. The static RM cannot adapt, causing it to favor spurious correlations
rather than true correctness, leading the generator to exploit flaws in the reward signal.

RLDCF also suffers from the noisy dataset since we use a simulated solution as validator mentioned
in settings. Although the critic is also affected by noise, its continuous adaptation allows it to stay
aligned with the generator’s changing behavior, preserving meaningful supervision. As a result,
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RLDCF consistently improves performance across all benchmarks, even in noisy and imperfect
validation environments, showing robustness to noisy validation.
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Figure 4: Ablations on the static critic vs. adversarial critic. Static critic’s detection accuracy
degrades from 42.3% to 33.9% as the generator exploits its patterns, yielding minimal performance
gains (+0.6%) compared to the adversarial critic’s continued improvement (+1.8%).

4.2.3 ABLATION STUDY

We compare RLDCF with a variant that replaces the adversarially trained critic with a static critic to
evaluate the necessity of dynamic adaptation. As shown in Figure 4, the static critic’s detection rate,
defined by the fraction of test cases generated that correctly expose real errors, drops dramatically
from 42.3% to 33.9% over three rounds, as the generator gradually learns to exploit its fixed detection
patterns. In contrast, the adversarial critic maintains a stable detection rate greater than 39% by
continuously adapting to the evolving behavior of the generator.

This degradation directly impacts performance: with the static critic, the generator plateaus at 92.1%
Pass@1, while RLDCF reaches 93.3%. Further analysis shows that 73% of the static critic’s test cases
in round 3 are minor variations of earlier ones, allowing the generator to avoid detection by simplifying
or reducing outputs rather than truly fixing bugs. These results highlight that dynamic adaptation is
essential for preventing reward hacking and driving real improvements in code correctness.

5 RELATED WORKS

Reward models. One possibility for evaluating free-form and open-ended generations is to encode
all criteria into a single scalar through a learnt reward model. This is usually achieved through
learning from an offline dataset of human preferences (Christiano et al., 2017; Ziegler et al., 2019;
Yi et al., 2019; Böhm et al., 2019; Rafailov et al., 2023) or absolute ratings (Cui et al., 2024; Wang
et al., 2024c). Multi-objective reward models (Wang et al., 2024a; Dong et al., 2024; Ji et al., 2023)
expose several fixed dimensions (e.g., truthfulness, honesty), improving interpretability but still
relying on static, globally defined criteria. Our approach differs conceptually: instead of collapsing
all rubrics into a single scalar or a fixed multi-objective vector, we learn a critic that dynamically
proposes a verifiable rubric for each instance and grounds its supervision through an external validator.
This yields a reward signal that is still scalar for RL optimization, but derived from an objectively
checkable criterion rather than a static, unverified proxy, offering better alignment and reliability in
open-ended tasks.

Enumerative verifications for free-form generations. To obtain a comprehensive and reliable
evaluation of free-form generations, the standard practice is to enumerate a set of fine-grained
criteria (Zhuge et al., 2024; Min et al., 2023; Saad-Falcon et al., 2024; Chang et al., 2024; Xie
et al., 2025). While they can be automatically deposed by LLMs for easier domains (Min et al.,
2023; Jing et al., 2024), extensive manual annotations are typically required for more complex
domains such as travel planning (Xie et al., 2024), codebase generation (Zhao et al., 2025), and
research reproduction (Starace et al., 2025). Dedicated computation and actions such as information
retrieval (Min et al., 2023) and code execution (Zhuge et al., 2024; Starace et al., 2025) require
manual rubric design or domain-specific validators (e.g., retrieval and code execution). Because all
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rubrics must be checked for each output, verification cost scales roughly linearly with the number
of possible rubrics and may still miss unlisted error types. In contrast, RLDCF replaces exhaustive
enumeration with a learned critic that dynamically selects the most informative, verifiable failure
mode for each instance. By verifying only this targeted rubric via an external validator, the method
retains rubric-level faithfulness while substantially reducing evaluation cost and exposing diverse,
on-policy errors that static checklists often overlook.

Outcome-reward RL for reasoning. RL for LLM has been shown to significantly boost model
performance in domains where the success of the final answer can be easily checked (OpenAI et al.,
2024; Liang et al., 2025; Team et al., 2025; Lambert et al., 2025). This mostly includes the domains
of math (Cobbe et al., 2021; Cui et al., 2025; Luo et al., 2025b; Yu et al., 2025), coding (Jimenez
et al., 2024; Pan et al., 2024a; Wei et al., 2025; Luo et al., 2025a) , but can be tricky for other
domains like agent decision-making (Pan et al., 2024b; Zhai et al., 2024; Bai et al., 2024) and
free-form generations (Min et al., 2023; Zhuge et al., 2024). However, RLDCF is designed to relax
this requirement so that we can apply RL to more general domains where success cannot be easily
verified, such as free-form generations.

LLM-as-a-Judge. Because of the common-sense and reasoning capabilities of pre-trained LLMs,
they can directly be prompted to serve as a judge to evaluate free-form generations (Zheng et al., 2023;
Yuan et al., 2025; Zhu et al., 2025). Their capabilities in evaluations can be further improved through
explicit fine-tuning (Wang et al., 2024b; Yuan et al., 2025). They can also be more interpretable
and robust by introducing a long Chain-of-Thought (CoT) reasoning to explicitly verify fine-grained
criteria (Saha et al., 2025; Wang et al., 2024b; Trivedi et al., 2024). Beyond rubric-only judging,
generative verifiers treat verification itself as next-token generation: they first produce verification
rationales or counterevidence, and then score or select candidates (Zhang et al., 2025; Singhi et al.,
2025; Setlur et al., 2025). These approaches, however, use the judge or verifier only as a static
evaluator. They produce fixed judgments or explanations but do not learn adaptively from the
generator’s evolving behaviors. In contrast, RLDCF treats the verifier as a learned critic policy within
an adversarial training loop: the critic dynamically proposes which rubric to verify for each instance,
receives direct feedback from an external validator, and updates jointly with the generator. This
design transforms LLM-as-a-judge from a static scoring module into an active, on-policy agent that
allocates verification effort where it is most informative.

6 CONCLUSION

We presented Reinforcement Learning from Dynamic Critic Feedback (RLDCF), a new post-training
approach for open-ended tasks requiring diverse, task-specific rubrics, where exhaustive enumeration
is infeasible and optiomal reward design is unknown. RLDCF formulates training as an adversarial
min-max game between a generator and a critic, a model that dynamically identifies the worst-case
rubric for each output and verifies it externally. By jointly training both models, our approach
bypasses the need for exhaustive verification or manual reward design while providing adaptive
learning signals that prevent reward hacking. On the factual text generation task and code generation
task, RLDCF outperforms competitive baselines with significantly lower verification cost. Ablation
studies further confirm the critical role of components such as adversarial critic training.

While we evaluate RLDCF on two domains, we expect it to generalize broadly to other open-ended
generation tasks where multiple evaluation criteria make exhaustive or rubric-by-rubric verification
infeasible, such as story or scientific text generation. By adaptively selecting the most critical rubric
at each step, RLDCF makes RL training practical for complex generation tasks that were previously
intractable due to the combinatorial explosion of rubrics or the lack of universal reward functions.

7 REPRODUCABILITY AND ETHICS STATEMENTS

To facilitate reproducibility of our work, we have included core implementation code in the supple-
mentary materials. For the FactScore and code generation benchmarks, we use the default settings
from their respective official implementations. All experiments employ DPO (Direct Preference
Optimization) training with consistent configurations across tasks. The datasets used in our exper-
iments are publicly available: WikiBiography can be obtained from its official website, and the
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Acecoder dataset is accessible through its official repository. We plan to release our complete code
implementation publicly upon acceptance to further support reproducibility efforts.

The primary goal of our method, Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
is to enhance the quality of open-ended generations, such as to improve the factual accuracy of
text generation and the correctness of code generation. We believe this is a positive contribution
toward developing more reliable and trustworthy AI systems. However, we acknowledge the dual-use
potential inherent in any powerful generative technology. While our aim is to reduce errors, an
improved generator could still be misused to create convincing but harmful or misleading content
if directed by malicious prompts. Similarly, the adversarial critic, designed to find flaws, could
potentially be repurposed for malicious critique, or to align the generator in a direction misaligned
with human values.
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Appendices
A PROMPTS

This section lists the exact prompts used for the generator model and critic model during data
creation and training. They correspond to the input format described in Section 3.2 of the main paper.

A.1 GENERATOR PROMPT

Factual Text Generation

System message: You are an AI assistant that provides accurate and concise biographies of individuals.
Each biography should be exactly four sentences long, highlighting key aspects of the person’s life,
achievements, and significance.

User message: Write a biography of topic.

Code Generation

The generator input exactly matches the problem statement provided in
TIGER-Lab/AceCode-87K-hard without modification.

User message:
{problem_statement_from_AceCode-87K-hard}

A.2 CRITIC PROMPT

Factual Text Generation

System message:
You are a factual checker. Based on your existing knowledge,
identify exactly one sentence that contains the most clearly
verifiable factual error in the paragraph.
Return your answer in **exactly three lines**:
reason: < briefly explaining what is wrong >
sentence: N N is the number of the most incorrect sentence
(positive integer)
error_fact: F a brief clause (no more than 8 words) capturing the
wrong claim from that sentence

User message:
Here is an example to show the task.
Find the sentence that contains the most clearly verifiable factual error
in the paragraph about Albert Einstein.

Example paragraph:
[1] Albert Einstein was awarded the Nobel Prize in Physics in 1921 for

his discovery of the photoelectric effect.
[2] He was born in New York City, United States, and later moved to

Europe where he continued his studies.
[3] Einstein developed the theory of relativity, revolutionizing our

understanding of space, time, and gravity.
[4] His famous equation describes the equivalence of mass and energy.

Expected answer:
reason: Einstein was actually born in Ulm, Germany, not New York City.
sentence: 2
error_fact: Albert Einstein was born in New York City.

Now apply the same procedure to the paragraph below about {topic}.

Paragraph:
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{numbered_paragraph}

Answer:

Code Generation

System message:
You are a code critic. Analyze code for bugs and generate failing test
cases.
Strictly follow the format with <think> and <testcase> tags.

User message:
Analyze the given problem and the generated code to find a test case that
would cause the code to fail.

Problem: {question}

Generated code:
‘‘‘python
{code}
‘‘‘
First, think through potential bugs and edge cases in <think> </think>
tags.
Then output exactly ONE failing test case inside <testcase> tags using
this format:

Option A (CALL format)
<testcase> CALL: func_name(arg1, arg2, kw=val) </testcase>
Option B (STDIN format)
<testcase> STDIN: <raw input here> </testcase>

Do NOT include expected outputs or explanations.
{optional_examples_block}

B VALIDATOR IMPLEMENTATION DETAILS

This section provides the detailed design of the validator used in our training pipeline, corresponding
to Section 3.2 of the main paper.

B.1 FACTUAL TEXT GENERATION

We follow a strict validation process to ensure both authenticity and factual accuracy. In the first
stage, the critic outputs both a suspected erroneous fact and the sentence number containing it. To
prevent exploitation through information injection, we use textual entailment checking to verify that
the proposed fact genuinely appears in the specified sentence. In the second stage, for proposals
passing authenticity checks, we reuse FactScore’s atomic fact verification component, which queries
Wikipedia knowledge base to provide binary verification of individual factual claims, returning true
or false based on external verification.

B.2 CODE GENERATION

Since the AceCoder dataset lacks reference solutions to prevent data contamination, we construct
reliable verification anchors by using Qwen2.5-Coder-7B-Instruct to generate solutions. We filter
these solutions using original test cases, retaining only those highly accurate answers (achieving
99.7% accuracy) to serve as simulated ground truth for test case validation. Our validation first
execute the critic’s test case on the reference solution to obtain the expected output, then execute
the same test case on the generated code to obtain the actual output. Finally, we compare these
outputs and return R(s, a,c) = 1 if outputs match and 0 if they differ, with execution failures also
indicating detected errors. The AceCoder dataset contains noise in GPT-4o generated test cases,
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which introduces some bias in our reference-based validator but reflects realistic imperfections in
verification tools.

C ANALYSIS OF K AND N

This section clarifies the roles of the hyperparameters K and N in RLDCF and explains why their
values differ between the factual and code generation experiments.

In RLDCF, the parameter K controls how many candidate outputs are sampled for each prompt.
A larger K increases candidate diversity and raises the probability that, for the same instruction,
at least one candidate passes all critic checks while another fails at least one. This is essential for
constructing non-degenerate preference pairs for DPO, since each pair requires both a “chosen” and
a “rejected” candidate. The hyperparameter N specifies how many criteria or testcases the critic
proposes for each candidate. A larger N expands the critic’s search space and enables it to discover
more potential failure modes. However, this comes with two main drawbacks: fewer candidates pass
all checks (which reduces preference pairs available for training generator), and verification costs
increase substantially. Additionally, an excessively large N may introduce redundant checks without
meaningful benefits.

For factual text generation, we set K = 10, following the configuration used in FactTune-FS, our
main baseline. For code generation, we use K = 8, consistent with the AceCoder setup. Thus, the
difference in K is not arbitrary; it adheres to the standard experimental settings established in prior
work.

The choice of N is primarily determined by the structure of the underlying verification space. In the
factual generation task, the rubric space used by FactScore is large and semantically diverse, and
the biography dataset itself is relatively small. Therefore, a moderately larger N helps the critic
explore a broader range of failure modes. In contrast, the code generation dataset contains over 2,000
problems, and the unit tests used as criteria are typically deterministic. As a result, a smaller N is
already sufficient to generate a large number of informative preference pairs.

D QUANTIFICATION OF UNCERTAINTY

Table 4: Factual text generation on 8-sentence biographies with the Qwen3-4B backbone, with results
shown as mean ± standard deviation across three runs.

8-sentence Generation

Method # Corr↑ # Incorr↓ FS↑ Calls↓

Qwen3-4B
Baseline 19.03 ± 0.41 12.05 ± 0.19 0.616 ± 0.006 -
FactTune-FS 21.67 ± 0.79 5.66 ± 0.48 0.793 ± 0.017 402,781 ± 52,264
ArmoRM 22.51 ± 1.00 9.39 ± 0.58 0.705 ± 0.013 -
RLDCF (Ours) 21.45 ± 0.31 4.37 ± 0.48 0.831 ± 0.016 70,667 ± 20,072

We report variability across random seeds for the factual text generation experiment. For each method,
we run training with three different random seeds (affecting data shuffling and sampling of generator
candidates) and report the mean and standard deviation of the metrics. Table 5 summarizes the
results for the 8-sentence biography setting with Qwen3-4B as the base model. We observe that
RLDCF consistently improves the number of correct biographies and the overall FactScore compared
to the baselines, while using substantially fewer verification calls than FactTune-FS. The standard
deviations are relatively small, indicating that the performance gains are robust across independent
runs.
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E BACKBONE ROBUSTNESS
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Figure 5: Comparison of training dynamics, verification efficiency, and exploration behavior for
RLDCF, FactTune-FS, and ArmoRM on the LLaMA-3.1-8B-Instruct model with 8-sentence genera-
tion.

To examine whether the effectiveness of RLDCF depends on a particular model family, we conducted
additional experiments using an alternative generator/critic backbone, LLaMA-3.1-8B-Instruct. The
training setup strictly follows the configuration used in the Qwen experiments. Figure 5 shows
the resulting training dynamics. We observe the same qualitative behavior as in the Qwen-based
experiments: RLDCF consistently improves factual correctness during training while requiring fewer
verification calls than Factune-FS, consistent with the trend observed in the main paper; moreover, in
the high-KL regime, RLDCF achieves substantially greater gains in factual accuracy compared to the
ArmoRM method.

F MEDICALQA

Table 5: Factual text generation on 8-sentence Medical Question with the Qwen3-4B backbone.

8-sentence Generation

Method # Corr↑ # Incorr↓ FS↑ Calls↓

Qwen3-4B
Baseline 34.0 3.38 0.909 -
FactTune-FS 34.2 1.99 0.945 524329
ArmoRM 35.1 2.36 0.937 -
RLDCF (Ours) 35.2 1.67 0.955 76800

RLDCF achieves the highest factual accuracy while requiring 6.8× fewer verification calls than
FactTune-FS, mirroring the efficiency gains observed in the biography experiments.

These results reinforce that RLDCF is not tied to a particular text domain. It successfully im-
proves factuality in a medical correctness setting with substantially different linguistic and semantic
structures.
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G CROSS-FAMILY

Table 6: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I), and
LiveCodeBench, Using a different model (GPT-4O) to generate reference solutions, the results show
that RLDCF still achieves a similar level of average performance improvement across all benchmarks.

Method HumanEval MBPP BCB-C BCB-I LCB Average
Base Plus Base Plus Full Hard Full Hard

Base: Qwen2.5-Coder-7B-Instruct
Baseline 91.5 84.8 82.8 71.4 49.5 19.6 41.8 20.3 34.2 55.1
RLDCF (Qwen) 93.3 86.0 83.9 73.0 52.2 24.3 42.3 19.6 35.2 56.6
RLDCF (GPT-4o) 92.1 85.4 83.9 73.2 52.2 23.6 42.5 20.3 35.5 56.5

H QUALITATIVE CASE STUDIES

This section presents additional qualitative examples illustrating the behavior of the critic before and
after adversarial training.

H.1 FACTUAL TEXT GENERATION CASE STUDY

Generator output(numbered)

[1] Amina Wadud is a prominent Islamic scholar and theologian based in
the United States.

[2] She is known for her groundbreaking work in Islamic studies,
particularly in reinterpreting Islamic texts for modern, gender-
inclusive contexts.

[3] Wadud has been a leading voice in the movement toward a more
inclusive and progressive understanding of Islamic law and theology.

[4] She is a professor at the University of Durham and has held academic
positions at several other institutions.

[5] Wadud is widely recognized for her advocacy of women’s religious and
social rights within Islam.

[6] She is the first woman to lead a Friday prayer in a major American
mosque.

[7] Her research and writings challenge traditional interpretations of
Islamic law and promote gender equality.

[8] Wadud has been an influential figure in interfaith dialogue and
religious pluralism.

Initial Critic Output

reason: Amina Wadud is not a prominent Islamic scholar based in the
United States.

sentence: 1
error_fact: Amina Wadud is a prominent Islamic scholar based in the

United States.

Trained Critic Output

reason: The Friday prayer Amina Wadud led took place in a church hall in
New York, not in a mosque.

sentence: 6
error_fact: Amina Wadud led this Friday prayer in a major American mosque

in the United States.
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H.2 CODE GENERATION CASE STUDY

Code Question

You are tasked with implementing a function that simulates the behavior
of a drawing application by managing a canvas. The canvas is
represented by a 2D grid of pixels, where each pixel can be either
empty (0) or filled (1). Your function should handle the following
operations: 1) Resize the canvas to a new width and height, filling
the new area with empty pixels. 2) Fill the entire canvas with a
specified color (1 for filled, 0 for empty). 3) Clear the canvas by
setting all pixels back to empty (0). Implement a single function
called ‘manage_canvas‘ that takes the following parameters: ‘canvas‘
(a list of lists representing the initial canvas), ‘operation‘ (a
string indicating the operation: ’resize’, ’fill’, or ’clear’), and ‘
params‘ (a tuple with parameters for the operation). The function
should return the modified canvas after performing the specified
operation. The function should not access any external resources.

Generator output

from typing import List, Tuple, Union

def manage_canvas(
canvas: List[List[int]],
operation: str,
params: Tuple[Union[int, float, bool]]

) -> List[List[int]]:
"""Manage the canvas based on the specified operation and parameters
."""
if operation == ’resize’:

# params = (new_width, new_height)
new_width, new_height = params
new_canvas = [[0] * new_width for _ in range(new_height)]
return new_canvas

elif operation == ’fill’:
# params = (fill_value,)
fill_value, = params
return [[fill_value] * len(row) for row in canvas]

elif operation == ’clear’:
return [[0] * len(row) for row in canvas]

else:
raise ValueError("Invalid operation")

Initial Critic Output

<think>
1. The function supports a ’resize’ operation that changes the canvas to

(new_width, new_height).
2. Typical boundary cases include an empty canvas and zero or negative

dimensions.
</think>

<testcase> CALL: manage_canvas([], ’resize’, (2, 2)) </testcase>

Trained Critic Output

</think>
1. The code does not handle the ’resize’ operation correctly. It

initializes a new canvas with the correct dimensions but does not
copy the existing canvas’s data into the new canvas. This could
result in a canvas with only empty pixels after resizing.
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2. This behavior contradicts the problem description, where ’resize’ is
expected to preserve existing pixels and only fill newly created
areas with 0, as in a normal drawing application.

</think>
<testcase> CALL: manage_canvas([[1, 1], [1, 1]], ’resize’, (3, 3)) </

testcase>
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