
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCEMENT LEARNING FROM DYNAMIC CRITIC
FEEDBACK FOR FREE-FORM GENERATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-ended generation tasks require outputs to satisfy diverse and often implicit
task-specific evaluation rubrics. The sheer number of relevant rubrics leads to
prohibitively high verification costs and incomplete assessments of a response,
making reinforcement learning (RL) post-training with rubric-based rewards dif-
ficult to scale. This problem is exacerbated by the fact that often the best way
to combine these rubrics into one single reward is also highly prompt-specific.
We propose Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
a post-training approach that addresses these challenges via dynamic rubric ver-
ification. Our approach employs a large language model (LLM) as a critic that
dynamically identifies only the most likely failure modes (e.g., a factual error or
unhandled edge case), which are then verified by an external validator to optimize
both generator and critic jointly. By training both the generator and the critic,
this game enhances the critic’s error detection and the generator’s output quality
while reducing required verifications. Our experiments demonstrate that RLDCF
improves factual accuracy in text generation and correctness in code generation,
while also outperforming exhaustive verification and reward model methods. We
show that dynamic critics are more effective than fixed critics, showcasing the
potential of RLDCF for scaling RL post-training to free-form generation tasks.

1 INTRODUCTION

Post-training methods for large language models (LLMs) have progressed dramatically over the past
few years, from largely manual supervised fine-tuning (SFT) techniques that rely on a combination of
manual data curation (Radford et al., 2018; Brown et al., 2020; Shengyu et al., 2023) to reinforcement
learning (RL) methods that perform general preference-based optimization (Christiano et al., 2017;
Ouyang et al., 2022) or optimize task-specific notions of correctness (Zha et al., 2025). Despite these
remarkable results, RL post-training is limited to tasks with clear-cut success criteria (i.e., correctness
of an answer or preference of a human user), and it remains unclear how to post-train LLMs with RL
on tasks that require producing open-ended or free-form outputs that are hard to verify perfectly.

Perhaps the biggest challenge in building RL post-training methods for free-form generation tasks
is the lack of a solid reward function: outputs are typically expected to satisfy several task-specific
rubrics. In principle, a task designer could construct a reward by combining these rubrics, but both
enumerating and verifying them pose major scalability challenges (Min et al., 2023). For instance,
complex code generation requires testing countless edge cases (e.g., empty inputs or specific numbers).
Even if such criteria could be enumerated, knowing how to combine them remains difficult (e.g.,
should correctly handling even numbers outweigh handling primes?). While RLHF-trained reward
models or LLM-as-judge approaches (Christiano et al., 2017; Zheng et al., 2023) outsource the job of
merging rubrics to a learned or prompted reward model, this often leads to reward hacking (Ziegler
et al., 2019; Gao et al., 2023; Skalse et al., 2022; Eisenstein et al., 2023), since the best combination
is highly dependent on the prompt and the model being optimized. How can we then train LLMs on
free-form generation tasks with several (maybe uncountably many) rubrics?

We introduce Reinforcement Learning from Dynamic Critic Feedback (RLDCF), which formulates
the problem as an adversarial game between a generator and a critic. The critic is a learned model
that proposes a rubric (e.g., one test case) where the generator’s output is likely to fail, and an
external validator verifies this. Both models are trained jointly: the critic is rewarded when it correctly
pinpoints a rubric that the generator fails (verified by an external validator), while the generator

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of three post-training paradigms on a biography example (“Michael Jackson”).
(a) Enumerative verification explicitly extracts and checks every atomic fact before aggregating a
scalar reward, which is accurate but expensive. (b) Reward-model methods skip verification and
directly predict a scalar reward from a learned judge, which is efficient but prone to reward hacking.
In contrast, (c) RLDCF trains a learned critic to propose one likely-wrong fact (rubric) and verifies
it via an external validator. If the fact indeed fails, the critic receives reward 1 and the generator
0; otherwise the generator receives 1 and the critic 0. This dynamic, adversarial feedback yields
prompt-specific, verifiable, and scalable supervision for free-form generation tasks.

is rewarded when the critic is unable to do so. This formulation eliminates the need to enumerate
or verify all rubrics, significantly improving training scalability. At the same time, it ensures that
rewards are based on rubrics that are prompt-specific, adversarially chosen, and always on-policy.
Figure 1 illustrates how RLDCF achieves verification efficiency while maintaining accuracy through
adversarial critic-generator dynamics on a biography generation example.

We evaluate Reinforcement Learning from Dynamic Critic Feedback on factual text generation and
code generation, representing enumerable and non-enumerable verification scenarios, respectively.
On 8-sentence biography generation with Qwen3-8B, Reinforcement Learning from Dynamic Critic
Feedback achieves a FactScore of 0.889, surpassing FactTune-FS’s (Tian et al., 2024) 0.867, while
reducing verification calls by 5.7×. This efficiency gain scales with task complexity, from 4.4× for 4-
sentence to 5.7× for 8-sentence generation. In code generation, despite using only 9% of the training
data, Reinforcement Learning from Dynamic Critic Feedback achieves the highest average scores
on both base models: 53.2 on Qwen2.5-Coder-7B-Base and 56.6 on Qwen2.5-Coder-7B-Instruct,
outperforming prior methods AceCoder-RM and AceCoder-Rule (Zeng et al., 2025).

Our primary contribution is Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
a novel post-training paradigm that frames free-form LLM optimization as an adversarial game
between a generator and a learned critic, with an external validator providing ground-truth feedback.
This design avoids exhaustive rubric enumeration and mitigates reward hacking by producing task-
specific and on-policy training signals. In experiments, Reinforcement Learning from Dynamic Critic
Feedback consistently improves factual accuracy while reducing verification costs, and surpasses
prior methods on code generation—demonstrating scalable gains across both enumerable and non-
enumerable verification tasks.

2 PRELIMINARIES

Our goal is to train a generator that produces a free-form output meeting task requirements, without
manually enumerating every rubric. In this section, we formalize this problem, introduce notation,
and briefly discuss related concepts of reward models (Christiano et al., 2017; Ziegler et al., 2019;
Rafailov et al., 2023) and enumerative verification (Min et al., 2023; Trivedi et al., 2024; Saha et al.,
2025; Wang et al., 2024b; Xie et al., 2025), as illustrated in Figure 1. We then present our approach
in the next section.

Problem setup. We consider free-form generation tasks where outputs must satisfy many task-
specific requirements, which we call rubrics. For instance, a biography generation task may require
that each factual claim is correct, while a code generation task may require the program to handle
all edge cases correctly. Formally, let S be a distribution over prompts or instructions that may be

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

presented to an LLM. Given s ∈ S, a generator LLM πg(a | s) is tasked with producing a textual
output a ∈ A. We choose to use standard notation typically used in RL (S denoting the state space
and A denoting the action space) as we later present an RL training objective. Each instruction s is
inherently associated with a set of rubrics (denoted as C(s)), where each rubric c ∈ C(s) represents a
verifiable property the output should satisfy, such as “the claim about Newton’s birth year is correct”
for biography generation or “the code handles null inputs” for code generation.

We assume access to a binary verification function R(s, a, c) that returns 1 if a generated output
a ∼ πg(·|s) satisfies the rubric c on instruction s, and attains 0 otherwise. An output a is considered
correct only when all rubrics C(s) associated with instruction s are satisfied. Our goal is to train
πg(·|s) to maximize the probability of producing fully correct outputs:

π∗
g := argmax

π
Es∼S

Ea∼π(·|s)

[∏
c∈C(s)

R(s, a, c)
] . (1)

In constrained domains with a single, well-defined rubric (e.g., matching a reference solution
in math reasoning), the optimization of object simplifies, allowing standard RL algorithms like
PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024) to optimize the policy. However, such
cases are rare in open-ended tasks with diverse rubrics. In these settings, C(s) can be extremely large
or even unbounded, making Eq. 1 computationally intractable since every output must be checked
against every rubric.

Reward models and enumerative verification. Most approaches to optimizing free-form generation
tackle the challenge of diverse rubrics through two paradigms. RLHF (Christiano et al., 2017) trains
a single proxy reward model from offline human preference data. While efficient, this optimization is
hard because the learned proxy is only as good as its coverage of the preference dataset. When the
generator explores beyond this support, the proxy can misalign (Gao et al., 2023), often necessitating
additional constraints like KL regularization to avoid collapse. These constraints stabilize training
but also limit exploration, making it difficult to scale to highly open-ended tasks (Dong et al., 2024).

Another approach is to enumerate the evaluation criteria and optimize their aggregate, either through
prompting (Min et al., 2023; Saha et al., 2025) or via preferences implicitly elicited from hu-
mans (Wang et al., 2024b; Mahan et al., 2024). While more faithful to the underlying rubrics (Trivedi
et al., 2024), this strategy is fundamentally limited: it assumes the evaluation set C(s) can be exhaus-
tively listed, which is unrealistic for complex tasks (e.g., all test cases for a nontrivial program). Even
when such enumeration is feasible, iterating over the entire set is computationally prohibitive, turning
optimization into an intractable verification bottleneck.

3 REINFORCEMENT LEARNING FROM DYNAMIC CRITIC FEEDBACK

We now introduce our RL post-training approach, called Reinforcement Learning from Dynamic
Critic Feedback (RLDCF) for training LLM generators on free-form tasks. Our goal is to provide
rewards while avoiding the scalability limits of enumerative verification and the misalignment of
static reward models. The core idea is to recast verification as a dynamic process guided by a learned
critic. Concretely, we frame training as a two-player game: given an output from the generator, the
critic proposes a rubric the output is likely to violate, while the generator aims to satisfy all such
rubrics. An external validator then adjudicates whether the output meets the proposed rubric, and
this supervision updates both generator and critic. In this way, verification becomes adaptive and
adversarial, tailored to the generator’s current weaknesses. We now formally derive this approach.

3.1 PROBLEM REFORMULATION

To derive our approach formally, our starting point is the objective of Equation 1, which requires a
generation to satisfy all rubrics in the set C(s): Since R(s, a, c) is an indicator function for each c,
we can rewrite the requirement that all rubrics are satisfied as a minimum over all rubrics as follows:

1{R(s, a, c) = 1, ∀c ∈ C(s)} = min
c∈C(s)

1{R(s, a, c) = 1}. (2)

Intuitively, the minimum selects the worst-case criterion, i.e., the first failure mode encountered by
the current model π. Substituting Equation 2 into Equation 1 gives:

π∗
g = argmax

π
Es∼S

[
Ea∼π(·|s)

[
min

c∈C(s)
R(s, a, c)

]]
. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

However, this reformulation by itself does not make the optimization problem simpler: searching
over C(s) is infeasible when C(s) is large or infinite (e.g., all possible test cases). To address this, we
introduce a critic πc, modeled as a stochastic policy that takes an instruction–generation pair (s,a) as
input and outputs a rubric c ∈ C(s)in natural language, representing a verifiable property that may
fail. An external validator then checks the proposed rubric. Then we can rewrite Equation 3 into the
equivalent min-max form:

πg = argmax
π

min
πc

Es∼S
[
Ea∼π(·|s)Ec∼πc(·|s,a) [R(s, a, c)]

]
. (4)

It can be shown that the solution πg from Equation 4 is the same as that from Eq. (1), but now we
bypass the need to enumerate all criteria over C(s) (Madry et al., 2018).

Pretty much like other mini-max optimization problems, we can solve the above optimization problem
by iteratively updating πg and πc against each other. The optimization goal is to achieve a robust
generator πg that does well even according to the most adversarial critic, upon convergence. More
details with respect to the practical optimization algorithm will be provided in Section 3.2.

3.2 PRACTICAL INSTANTIATION OF RLDCF
We now instantiate the two-player adversarial game from the previous section into a practical approach
that we can use to train LLMs. As shown in Figure 1, we parameterize three task-agnostic components
that interact with each other during RL training. Each component is instantiated differently based on
the domain (as detailed in Section 4).

Generator. The generator πg, is an LLM that is fine-tuned to produce an output a ∈ A for an
instruction s ∈ S . RLDCF samples multiple response generations from πg for each instruction s. We
train πg to maximize the probability of producing outputs that satisfy all task-specific rubrics. The
prompt for the generator is included in the Appendix A.1.

Critic. Our critic πc is a pre-trained LLM πc that RLDCF fine-tunes. Specifically, for each instruction
s and a query generation output a, the critic is prompted to generate a natural language output
representing a rubric c through auto-regressive decoding. The rubric c along with the instruction s and
the generation a are then sent to the external validator to obtain a reward signal R(s, a, c) ∈ {0, 1}.
The prompt for the adversarial critic is included in the Appendix A.2.

Validator. The validator is an external tool or process that can verify whether a generated response
satisfies a rubric provided as input to it. The validator can be implemented in various ways depending
on the domain, such as rule-based checkers or a software tool that evaluates a proposed code on a
proposed test-case. Implementation details for specific tasks are discussed in the Appendix B.

Updating the generator and critic. At each training step, we sample instructions s ∈ S and
have the generator πg produce K candidate outputs a1, . . . , aK . For each (s, ai), the adversarial
critic πc proposes a criterion ci, which is then checked by the validator to yield a binary reward
ri ∈ {0, 1}. This online feedback provides signals for both policies. Outputs with ri = 1 are treated
as positives (a+) and those with ri = 0 as negatives (a−), and the generator is updated using the
DPO loss (Rafailov et al., 2023) with respect to the reference generator πg

ref:

L(πg;πg
ref) = −EsE(a+,a−)

[
log σ

(
β log

πg(a+|s)
πg

ref(a
+|s)

− β log
πg(a−|s)
πg

ref(a
−|s)

)]
. (5)

Similarly, for each (s, a) pair, we sample N criteria from πc. Criteria rejected by the validator (invalid
or satisfied by the generator) are treated as negatives (c−), while valid, unsatisfied ones are positives
(c+). The critic is then updated with the same DPO objective relative to its reference policy πc

ref:

L(πc;πc
ref) = −Es,aE(c+,c−)

[
log σ

(
β log

πc(c+|s, a)
πc

ref(c
+|s, a)

− β log
πc(c−|s, a)
πc

ref(c
−|s, a)

)]
. (6)

In this way, evaluation and improvement are unified: the critic adaptively identifies failure modes,
the validator provides ground-truth feedback, and both generator and critic are jointly updated to
improve over time. Note that we chose the DPO loss for its simplicity, though any online or offline
RL approach could be used for policy optimization.

Algorithm summary. Algorithm 1 summarizes the practical implementation of RLDCF. At a high
level, the algorithm follows a standard online RL loop that alternates between policy evaluation and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 RLDCF

1: Initialize parameters πg, πc, πg
ref, π

c
ref

2: for each iteration do
3: ## Policy Evaluation for Generator πg .
4: for each instruction s do
5: Generate K generations a1, ..., aK ∼ πg(·|s)
6: Sample a criterion from the adversarial critic for each generation ci ∼ πc(·|s, ai).
7: Construct a generator dataset Dg

s = {(s, ai, R(s, ai, ci))}Ki=1
8: ## Policy Evaluation for Critic πc. ▷ Optional
9: for each instruction s, output a do

10: Generate N criteria c1, ..., cN ∼ πc(·|s, a)
11: Construct a critic dataset Dc

(s,a) = {(s, a,R(s, a, cj))}Nj=1

12: ## Policy Improvement for Generator πg .
13: πg

new ← πg

14: for each update step do
15: πg

new ← πg
new −∇L(πg

new, π
g
ref) ▷ Equation 5

16: πg
ref ← πg

17: ## Policy Improvement for Critic πc. ▷ Optional
18: πc

new ← πc

19: for each update step do
20: πc

new ← πc
new −∇L(πc

new, π
c
ref) ▷ Equation 6

21: πc
ref ← πc

improvement. In each evaluation step, we sample generations from the current generator πg , have the
critic propose a criterion c, and obtain verification to assign rewards. These rewards are then used
to update the generator with the DPO objective (Equation 5). Optionally, we also collect evaluation
data for the critic by sampling multiple criteria per instruction–generation pair. The critic is then
updated with its own DPO objective (Equation 6), allowing it to adaptively identify weaknesses in
the generator and provide more effective learning signals.

4 EXPERIMENTS

We now evaluate our approach on two free-form generation tasks: factual text generation (§4.1)
and code generation (§4.2). Factual text generation illustrates the enumerable-but-expensive regime,
where all claims can in principle be verified but at a cost that scales with text length. This tests
RLDCF’s ability to maintain verification quality while reducing calls. Code generation, by contrast,
represents the non-enumerable regime, where exhaustive verification is impossible due to infinite
corner cases and intractable formal checks (Church, 1936). Here, the goal is to expose critical failures
through targeted critic proposals. Together, these tasks span the spectrum from costly-but-possible to
fundamentally intractable verification, highlighting the broad applicability of RLDCF.

4.1 FACTUAL TEXT GENERATION

4.1.1 SETTINGS

Evaluation data & metrics. We follow Min et al. (2023); Tian et al. (2024) in adapting a factual
text generation task in which the model should produce concise biographies for a given individual.
We use 170 topics from the Wikipedia Biography Dataset (Lebret et al., 2016), split into 120 for
training and 50 for testing. We use factual precision of the output (as defined by FactScore (Min et al.,
2023)) as the primary metric, and also report the counts of correct and incorrect facts. To control for
length, the model is instructed to generate either four or eight sentences. Since frequent calls to the
external validator are costly, we additionally track the number of validator calls.
Base models & baselines. Our base generators are Qwen3-4B and Qwen3-8B. We compare against
three baselines: (1) the original base models without task-specific training; (2) FactTune-FS (Tian
et al., 2024), a widely used method for factual text generation to represent exhaustive verification
using an external validator, FactScore, for all atomic facts; and (3) ArmoRM (Wang et al., 2024a),
which represents the reward model based method that produces one reward score for the generated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on factual text generation. RLDCF achieves the highest FactScore
across all settings while using fewer verification calls than FactTune-FS.

4-sentence Generation 8-sentence Generation

Method # Corr↑ # Incorr↓ FS↑ Calls↓ # Corr↑ # Incorr↓ FS↑ Calls↓

Qwen3-4B
Baseline 10.07 6.43 0.610 - 19.62 12.08 0.619 -
FactTune-FS 10.66 3.48 0.754 214,911 20.65 5.99 0.775 341,657
ArmoRM 14.54 8.69 0.626 - 21.02 10.02 0.677 -
RLDCF (Ours) 10.54 3.04 0.776 57,600 21.58 4.84 0.817 48,000

Qwen3-8B
Baseline 12.65 5.53 0.696 - 22.51 11.97 0.653 -
FactTune-FS 13.31 3.63 0.786 168,735 25.10 3.84 0.867 438,949
ArmoRM 12.96 6.86 0.654 - 23.31 8.92 0.723 -
RLDCF (Ours) 13.14 3.37 0.796 38,400 24.33 3.03 0.889 76,800

output. Both the generator and critic are initialized from the same backbone models (Qwen3-4B
and Qwen3-8B) to ensure fairness. We use FactScore as an external validator, i.e., FactScore checks
whether a critic-proposed fact appears in the biography and is correct according to Wikipedia. All
methods are trained with multiple rounds of DPO updates, where the generator produces 10 outputs
per prompt and the critic proposes 4 rubrics per output.

4.1.2 RESULTS

Table 1 shows that RLDCF achieves the highest factuality scores across model sizes and output lengths,
while using significantly fewer verification calls. For instance, on Qwen3-8B with eight-sentence
generation, it reaches a FactScore of 0.889, outperforming FactTune-FS (0.867) and ArmoRM (0.723),
but with only 77k verification calls compared to 439k for FactTune-FS. This efficiency gap grows
with output length: FactTune-FS requires 4.4× more verification calls in the four-sentence setting
(169k vs. 39k) and 5.7× more in the eight-sentence setting (439k vs. 77k). This shows that RLDCF
scales more efficiently as the generation complexity increases.

0 5 10 15
Round

(a) Training Dynamics

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Fa
ct

Sc
or

e

0 100k 200k 300k 400k 500k
Verification Calls

(b) Verification Efficiency

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.0 0.1 0.2 0.3 0.4 0.5
KL Divergence

(c) Exploration Behavior

0.60

0.65

0.70

0.75

0.80

0.85

0.90

RLDCF Factune-FS ArmoRM

Figure 2: Comparison of training dynamics, verification efficiency, and exploration behavior for
RLDCF, FactTune-FS, and ArmoRM on the Qwen3-8B model with 8-sentence generation.

RLDCF’s improvements throughout training. Figure 2 shows how the generator’s accuracy
evolves over training, measured along three axes: training epoch, number of verification calls, and
KL divergence from the base model. In Figure 2(a), RLDCF shows a slight initial drop in FactScore
(from 0.653 to 0.641). At this early stage, the critic has not yet learned to identify the most obvious
errors, so the “mistakes” it proposes are often minor or even incorrect. As a result, the generator
receives weak targeted training signals, and factuality temporarily degrades. After several rounds, the
critic improves at detecting mistakes, which in turn accelerates generator learning. Once this dynamic
stabilizes, the generator’s factuality gradually, ultimately reaching 0.889, outperforming FactTune-FS
(0.867). This two-phase process illustrates how RLDCF evolves from weak initial supervision to
highly efficient, targeted verification.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2(b) shows that RLDCF achieves the same level of factuality as FacTune-FS with far fewer
verification calls (e.g., 67K vs. 368K to achieve 84%). This highlights the inefficiency of FactTune-
FS, which repeatedly validates already correct facts, whereas RLDCF dynamically targets high-risk
errors, yielding greater verification efficiency and scalability.

Figure 2(c) measures exploration by tracking the KL divergence from the base model. Such deviation
can usually be caused by either (1) improvements from the base model through effective exploration,
or (2) reward hacking, in which the model overfits to the reward model and drafts without real quality
gains. For RLDCF, KL increases alongside monotonic FactScore gains (0.653→ 0.889), indicating
productive exploration. In contrast, RL with a fixed offline reward model (ArmoRM) shows a rise
in KL without the corresponding factuality gains, evidence of reward hacking. These dynamics
complement Table 1: while both RLDCF and FactTune-FS improve factuality, RLDCF achieves
comparable or higher FactScore with far fewer verification calls, whereas ArmoRM inflates output
length without consistent accuracy due to its static reward.

Table 2: Generator’s test accuracy across critic types.

Method # Corr # Incorr FS

Base 19.62 12.08 0.619
Noisy Validator 19.84 12.83 0.607
Static Critic 17.77 3.77 0.825
Adversarial Critic 21.58 4.84 0.817

1 2 3 4 5 6 7 8 9 10 11 12
Epoch

(b) Mean Return

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Re

tu
rn

Static Critic Adversarial Critic

Figure 3: Average validator outcomes on suspicious facts proposed by the critic during factual
biography generation. Higher values indicate that the critic more often misjudges correct facts (i.e.,
weaker supervision).

Ablation Study. We compare RLDCF with two ablated variants to isolate the factors driving its
effectiveness. In the first, we replace the external validator’s outputs with random correctness labels
to assess the role of validator reliability. In the second, we freeze the critic model, referred to as
a static critic rather than training it adversarially with the generator, to evaluate the importance of
adversarial joint training.

As shown in Table 2, noisy validation destabilizes training and reduces performance below the base
model, highlighting the importance of reliable validation. The static critic achieves a superficially high
FactScore by generating fewer facts, reducing both correct and incorrect facts, unlike the adversarially
trained critic that increases correct facts while reducing errors. This indicates that the static critic
inflates precision rather than genuine factual improvement. Figure 3 further illustrates these dynamics.
The static critic’s validator outcomes quickly rise to about 0.81, showing that the generator quickly
learns to evade its fixed patterns. In contrast, the adversarial critic’s outcomes grow much more
slowly and reach a lower level of about 0.6 by round 16, indicating that it continues to surface genuine
errors and sustain learning pressure. In general, these results highlight that both reliable external
verification and a dynamically adapting critic are crucial: Without either, the generator fails to achieve
meaningful gains in factual accuracy, validating the core design of RLDCF.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 CODE GENERATION

4.2.1 SETTINGS

Evaluation data & metrics. We evaluate code generation performance using widely studied
benchmarks: HumanEval (Base and Plus) (Chen et al., 2021; Liu et al., 2023), MBPP (Base and
Plus) (Austin et al., 2021; Liu et al., 2023), BigCodeBench (Zhuo et al., 2024), and LiveCodeBench
(V4) (Jain et al., 2025). We use Pass1 as a primary metric. For efficiency analysis, we also report
the number of test cases executed per successful solution. Note that, unlike factual verification,
where each check is expensive, unit tests in code generation are cheap to execute. The fundamental
bottleneck here is not the per-test cost but the non-enumerability of the test space. Therefore, test-case
count is reported only for completeness; the primary evaluation metric remains Pass@k.

Base models & baselines. For training data, we use the AceCode-87K-hard subset (Zeng et al.,
2025), consisting of approximately 22K problems. Our base generators include Qwen2.5-Coder-7B-
Base and Qwen2.5-Coder-7B-Instruct. We compare against three baselines: (1) the original base
models without training; (2) AceCoder-Rule, which employs RL with rule-based binary rewards from
test execution; and (3) AceCoder-RM, which uses RL with AceCodeRM-7B trained on approximately
300K preference pairs constructed from AceCode-87K dataset. Our RLDCF approach samples 2k
questions from the AceCode-87K-hard subset for training, generates k = 8 outputs per prompt
(which is consistent with the Acecoder setting) with n = 2 critic proposals per generation.

4.2.2 MAIN RESULTS

Table 3: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I),
and LiveCodeBench, using two different base models. RLDCF achieves the highest average score
across benchmarks.

Method HumanEval MBPP BCB-C BCB-I LCB Average
Base Plus Base Plus Full Hard Full Hard

Base: Qwen2.5-Coder-7B-Base
Baseline 83.5 79.3 80.4 69.3 45.8 16.2 40.2 14.2 28.7 50.8
AceCoder-RM 83.5 75.6 80.2 67.2 41.9 14.9 36.8 16.2 25.7 49.1
AceCoder-Rule 84.1 78.0 82.3 69.3 48.6 18.2 43.2 18.2 28.5 52.3
RLDCF (Ours) 85.7 80.6 82.4 71.6 50.3 20.9 42.1 16.9 28.7 53.2

Base: Qwen2.5-Coder-7B-Instruct
Baseline 91.5 84.8 82.8 71.4 49.5 19.6 41.8 20.3 34.2 55.1
AceCoder-RM 89.0 84.1 86.0 72.8 50.4 18.9 42.0 19.6 35.0 55.3
AceCoder-Rule 90.9 84.8 84.1 71.7 50.9 23.0 43.3 19.6 34.9 55.9
RLDCF (Ours) 93.3 86.0 83.9 73.0 52.2 24.3 42.3 19.6 35.2 56.6

Table 6 summarizes results across five widely-used code generation benchmarks. Despite training
on only 2,000 problems (9% of the dataset used for AceCoder-RM and AceCoder-Rule), RLDCF
achieves the highest average scores: 53.2 using Qwen2.5-Coder-7B-Base and 56.6 using Qwen2.5-
Coder-7B-Instruct, consistently outperforming both enumerative method (AceCoder-Rule) and static
reward model method (AceCoder-RM) across the majority of benchmarks. We observe from Table 4
that AceCoder-RM not only fails to improve performance but can even degrade it under noisy
validation. For example, on HumanEval, performance drops from 91.5 to 89.0 despite using the
competetive reward model Acecoder-RM-7B, indicating reward hacking.

This fragility arises from the reward model trained on preference pairs from the AceCoder dataset,
which itself contains noisy and incomplete test cases (Zeng et al., 2025). During RL training, as
the generator’s outputs drift away from the RM’s fixed training distribution, these noisy supervision
signals are further amplified. The static RM cannot adapt, causing it to favor spurious correlations
rather than true correctness, leading the generator to exploit flaws in the reward signal.

RLDCF also suffers from the noisy dataset since we use a simulated solution as validator mentioned
in settings. Although the critic is also affected by noise, its continuous adaptation allows it to stay
aligned with the generator’s changing behavior, preserving meaningful supervision. As a result,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

RLDCF consistently improves performance across all benchmarks, even in noisy and imperfect
validation environments, showing robustness to noisy validation.

1 2 3 4 5
Round

(a) Detection Precision

34

36

38

40

42

44

De
te

ct
io

n
Pr

ec
isi

on
 (%

)

0 1 2 3 4 5
Round

(b) HumanEval Pass@1

0.915

0.920

0.925

0.930

Sc
or

e

Static Critic Adversarial Critic

Figure 4: Ablations on the static critic vs. adversarial critic. Static critic’s detection accuracy
degrades from 42.3% to 33.9% as the generator exploits its patterns, yielding minimal performance
gains (+0.6%) compared to the adversarial critic’s continued improvement (+1.8%).

4.2.3 ABLATION STUDY

We compare RLDCF with a variant that replaces the adversarially trained critic with a static critic to
evaluate the necessity of dynamic adaptation. As shown in Figure 4, the static critic’s detection rate,
defined by the fraction of test cases generated that correctly expose real errors, drops dramatically
from 42.3% to 33.9% over three rounds, as the generator gradually learns to exploit its fixed detection
patterns. In contrast, the adversarial critic maintains a stable detection rate greater than 39% by
continuously adapting to the evolving behavior of the generator.

This degradation directly impacts performance: with the static critic, the generator plateaus at 92.1%
Pass@1, while RLDCF reaches 93.3%. Further analysis shows that 73% of the static critic’s test cases
in round 3 are minor variations of earlier ones, allowing the generator to avoid detection by simplifying
or reducing outputs rather than truly fixing bugs. These results highlight that dynamic adaptation is
essential for preventing reward hacking and driving real improvements in code correctness.

5 RELATED WORKS

Reward models. One possibility for evaluating free-form and open-ended generations is to encode
all criteria into a single scalar through a learnt reward model. This is usually achieved through
learning from an offline dataset of human preferences (Christiano et al., 2017; Ziegler et al., 2019;
Yi et al., 2019; Böhm et al., 2019; Rafailov et al., 2023) or absolute ratings (Cui et al., 2024; Wang
et al., 2024c). Multi-objective reward models (Wang et al., 2024a; Dong et al., 2024; Ji et al., 2023)
expose several fixed dimensions (e.g., truthfulness, honesty), improving interpretability but still
relying on static, globally defined criteria. Our approach differs conceptually: instead of collapsing
all rubrics into a single scalar or a fixed multi-objective vector, we learn a critic that dynamically
proposes a verifiable rubric for each instance and grounds its supervision through an external validator.
This yields a reward signal that is still scalar for RL optimization, but derived from an objectively
checkable criterion rather than a static, unverified proxy, offering better alignment and reliability in
open-ended tasks.

Enumerative verifications for free-form generations. To obtain a comprehensive and reliable
evaluation of free-form generations, the standard practice is to enumerate a set of fine-grained
criteria (Zhuge et al., 2024; Min et al., 2023; Saad-Falcon et al., 2024; Chang et al., 2024; Xie
et al., 2025). While they can be automatically deposed by LLMs for easier domains (Min et al.,
2023; Jing et al., 2024), extensive manual annotations are typically required for more complex
domains such as travel planning (Xie et al., 2024), codebase generation (Zhao et al., 2025), and
research reproduction (Starace et al., 2025). Dedicated computation and actions such as information
retrieval (Min et al., 2023) and code execution (Zhuge et al., 2024; Starace et al., 2025) require
manual rubric design or domain-specific validators (e.g., retrieval and code execution). Because all

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

rubrics must be checked for each output, verification cost scales roughly linearly with the number
of possible rubrics and may still miss unlisted error types. In contrast, RLDCF replaces exhaustive
enumeration with a learned critic that dynamically selects the most informative, verifiable failure
mode for each instance. By verifying only this targeted rubric via an external validator, the method
retains rubric-level faithfulness while substantially reducing evaluation cost and exposing diverse,
on-policy errors that static checklists often overlook.

Outcome-reward RL for reasoning. RL for LLM has been shown to significantly boost model
performance in domains where the success of the final answer can be easily checked (OpenAI et al.,
2024; Liang et al., 2025; Team et al., 2025; Lambert et al., 2025). This mostly includes the domains
of math (Cobbe et al., 2021; Cui et al., 2025; Luo et al., 2025b; Yu et al., 2025), coding (Jimenez
et al., 2024; Pan et al., 2024a; Wei et al., 2025; Luo et al., 2025a) , but can be tricky for other
domains like agent decision-making (Pan et al., 2024b; Zhai et al., 2024; Bai et al., 2024) and
free-form generations (Min et al., 2023; Zhuge et al., 2024). However, RLDCF is designed to relax
this requirement so that we can apply RL to more general domains where success cannot be easily
verified, such as free-form generations.

LLM-as-a-Judge. Because of the common-sense and reasoning capabilities of pre-trained LLMs,
they can directly be prompted to serve as a judge to evaluate free-form generations (Zheng et al., 2023;
Yuan et al., 2025; Zhu et al., 2025). Their capabilities in evaluations can be further improved through
explicit fine-tuning (Wang et al., 2024b; Yuan et al., 2025). They can also be more interpretable
and robust by introducing a long Chain-of-Thought (CoT) reasoning to explicitly verify fine-grained
criteria (Saha et al., 2025; Wang et al., 2024b; Trivedi et al., 2024). Beyond rubric-only judging,
generative verifiers treat verification itself as next-token generation: they first produce verification
rationales or counterevidence, and then score or select candidates (Zhang et al., 2025; Singhi et al.,
2025; Setlur et al., 2025). These approaches, however, use the judge or verifier only as a static
evaluator. They produce fixed judgments or explanations but do not learn adaptively from the
generator’s evolving behaviors. In contrast, RLDCF treats the verifier as a learned critic policy within
an adversarial training loop: the critic dynamically proposes which rubric to verify for each instance,
receives direct feedback from an external validator, and updates jointly with the generator. This
design transforms LLM-as-a-judge from a static scoring module into an active, on-policy agent that
allocates verification effort where it is most informative.

6 CONCLUSION

We presented Reinforcement Learning from Dynamic Critic Feedback (RLDCF), a new post-training
approach for open-ended tasks requiring diverse, task-specific rubrics, where exhaustive enumeration
is infeasible and optiomal reward design is unknown. RLDCF formulates training as an adversarial
min-max game between a generator and a critic, a model that dynamically identifies the worst-case
rubric for each output and verifies it externally. By jointly training both models, our approach
bypasses the need for exhaustive verification or manual reward design while providing adaptive
learning signals that prevent reward hacking. On the factual text generation task and code generation
task, RLDCF outperforms competitive baselines with significantly lower verification cost. Ablation
studies further confirm the critical role of components such as adversarial critic training.

While we evaluate RLDCF on two domains, we expect it to generalize broadly to other open-ended
generation tasks where multiple evaluation criteria make exhaustive or rubric-by-rubric verification
infeasible, such as story or scientific text generation. By adaptively selecting the most critical rubric
at each step, RLDCF makes RL training practical for complex generation tasks that were previously
intractable due to the combinatorial explosion of rubrics or the lack of universal reward functions.

7 REPRODUCABILITY AND ETHICS STATEMENTS

To facilitate reproducibility of our work, we have included core implementation code in the supple-
mentary materials. For the FactScore and code generation benchmarks, we use the default settings
from their respective official implementations. All experiments employ DPO (Direct Preference
Optimization) training with consistent configurations across tasks. The datasets used in our exper-
iments are publicly available: WikiBiography can be obtained from its official website, and the

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Acecoder dataset is accessible through its official repository. We plan to release our complete code
implementation publicly upon acceptance to further support reproducibility efforts.

The primary goal of our method, Reinforcement Learning from Dynamic Critic Feedback (RLDCF),
is to enhance the quality of open-ended generations, such as to improve the factual accuracy of
text generation and the correctness of code generation. We believe this is a positive contribution
toward developing more reliable and trustworthy AI systems. However, we acknowledge the dual-use
potential inherent in any powerful generative technology. While our aim is to reduce errors, an
improved generator could still be misused to create convincing but harmful or misleading content
if directed by malicious prompts. Similarly, the adversarial critic, designed to find flaws, could
potentially be repurposed for malicious critique, or to align the generator in a direction misaligned
with human values.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL
https://arxiv.org/abs/2406.11896.

Florian Böhm, Yang Gao, Christian M. Meyer, Ori Shapira, Ido Dagan, and Iryna Gurevych. Better
rewards yield better summaries: Learning to summarise without references. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 3108–
3118. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1307. URL
https://doi.org/10.18653/v1/D19-1307.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Booookscore: A systematic exploration
of book-length summarization in the era of llms. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=7Ttk3RzDeu.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

11

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2406.11896
https://doi.org/10.18653/v1/D19-1307
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=7Ttk3RzDeu
https://arxiv.org/abs/2107.03374

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30:4299–4307, 2017. URL https://papers.nips.cc/paper/2017/file/
d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf.

Alonzo Church. A note on the entscheidungsproblem. The journal of symbolic logic, 1(1):40–41,
1936.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: boosting
language models with scaled AI feedback. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=BOorDpKHiJ.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online
RLHF. Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview.net/forum?
id=a13aYUU9eU.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Balaji Lakshminarayanan, Sanmi Koyejo, and
Deepak Ramachandran. Helping or herding? reward model ensembles mitigate but do not eliminate
reward hacking. arXiv:2312.09244, 2023. URL https://arxiv.org/abs/2312.09244.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 10835–10866. PMLR, 2023.
URL https://proceedings.mlr.press/v202/gao23h.html.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=chfJJYC3iL.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of LLM via a
human-preference dataset. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_
and_Benchmarks.html.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

12

https://papers.nips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://papers.nips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://openreview.net/forum?id=a13aYUU9eU
https://openreview.net/forum?id=a13aYUU9eU
https://arxiv.org/abs/2312.09244
https://proceedings.mlr.press/v202/gao23h.html
https://openreview.net/forum?id=chfJJYC3iL
http://papers.nips.cc/paper_files/paper/2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liqiang Jing, Ruosen Li, Yunmo Chen, and Xinya Du. Faithscore: Fine-grained evaluations of
hallucinations in large vision-language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
Miami, Florida, USA, November 12-16, 2024, pp. 5042–5063. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-EMNLP.290. URL https://doi.org/
10.18653/v1/2024.findings-emnlp.290.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/
abs/2411.15124.

Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data with
application to the biography domain. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 1203–1213, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1128. URL https://aclanthology.
org/D16-1128/.

Wenfeng Liang, Xiaohong Zhang, Kai Wang, Rui Chen, Yiming Zhou, Mian Xiao, Rui Zhu, Ziheng
Chen, Qing Wang, Hao Song, et al. Deepseek-r1: Incentivizing reasoning capability in large
language models via reinforcement learning. arXiv:2501.12948, 2025. URL https://arxiv.
org/abs/2501.12948.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

Michael Luo, Sijun Tan, Roy Huang, Xiaoxiang Shi, Rachel Xin, Colin Cai, Ameen Patel, Alpay
Ariyak, Qingyang Wu, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully
open-source 14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025a. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025b. Notion Blog.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models, 2024. URL
https://arxiv.org/abs/2410.12832.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pp. 12076–12100. Association for Computational
Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.741. URL https://doi.org/10.
18653/v1/2023.emnlp-main.741.

OpenAI, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow

13

https://doi.org/10.18653/v1/2024.findings-emnlp.290
https://doi.org/10.18653/v1/2024.findings-emnlp.290
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://aclanthology.org/D16-1128/
https://aclanthology.org/D16-1128/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2305.01210
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-1968190 2c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-1968190 2c1468005bed8ca303013a4e2
https://arxiv.org/abs/2410.12832
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym, 2024a. URL https://arxiv.
org/abs/2412.21139.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents, 2024b. URL https://arxiv.org/abs/2404.
06474.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. OpenAI.

Rafael Rafailov, Aditi Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. ARES: an automated
evaluation framework for retrieval-augmented generation systems. In Kevin Duh, Helena Gómez-
Adorno, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 338–354. Association
for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.20. URL https:
//doi.org/10.18653/v1/2024.naacl-long.20.

Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to
plan & reason for evaluation with thinking-llm-as-a-judge. CoRR, abs/2501.18099, 2025. doi: 10.
48550/ARXIV.2501.18099. URL https://doi.org/10.48550/arXiv.2501.18099.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=A6Y7AqlzLW.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Zhang Shengyu, Dong Linfeng, Li Xiaoya, Zhang Sen, Sun Xiaofei, Wang Shuhe, Li Jiwei, Runyi
Hu, Zhang Tianwei, Fei Wu, et al. Instruction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792, 2023. doi: 10.48550/ARXIV.2308.10792. URL https:
//doi.org/10.48550/arXiv.2308.10792.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for LLM reasoning. CoRR, abs/2504.01005, 2025. doi: 10.48550/ARXIV.2504.01005.
URL https://doi.org/10.48550/arXiv.2504.01005.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defin-
ing and characterizing reward gaming. In Sanmi Koyejo, S. Mohamed, A. Agar-
wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
3d719fee332caa23d5038b8a90e81796-Abstract-Conference.html.

14

https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2404.06474
https://doi.org/10.18653/v1/2024.naacl-long.20
https://doi.org/10.18653/v1/2024.naacl-long.20
https://doi.org/10.48550/arXiv.2501.18099
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=A6Y7AqlzLW
https://openreview.net/forum?id=A6Y7AqlzLW
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.48550/arXiv.2308.10792
https://doi.org/10.48550/arXiv.2308.10792
https://doi.org/10.48550/arXiv.2504.01005
http://papers.nips.cc/paper_files/paper/2022/hash/3d719fee332caa23d5038b8a90e81796-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/3d719fee332caa23d5038b8a90e81796-Abstract-Conference.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese,
and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research, 2025. URL
https://arxiv.org/abs/2504.01848.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D. Manning, and Chelsea Finn. Fine-
tuning language models for factuality. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=WPZ2yPag4K.

Prapti Trivedi, Aditya Gulati, Oliver Molenschot, Meghana Arakkal Rajeev, Rajkumar Ramamurthy,
Keith Stevens, Tanveesh Singh Chaudhery, Jahnavi Jambholkar, James Zou, and Nazneen Rajani.
Self-rationalization improves llm as a fine-grained judge, 2024. URL https://arxiv.org/
abs/2410.05495.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via
multi-objective reward modeling and mixture-of-experts. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
Miami, Florida, USA, November 12-16, 2024, pp. 10582–10592. Association for Computational
Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-EMNLP.620. URL https://doi.
org/10.18653/v1/2024.findings-emnlp.620.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught evaluators,
2024b. URL https://arxiv.org/abs/2408.02666.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Helpsteer:
Multi-attribute helpfulness dataset for steerlm. In Kevin Duh, Helena Gómez-Adorno, and
Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 3371–3384. Association for
Computational Linguistics, 2024c. doi: 10.18653/V1/2024.NAACL-LONG.185. URL https:
//doi.org/10.18653/v1/2024.naacl-long.185.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution, 2025. URL https://arxiv.org/abs/
2502.18449.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=l5XQzNkAOe.

Yiqing Xie, Wenxuan Zhou, Pradyot Prakash, Di Jin, Yuning Mao, Quintin Fettes, Arya Talebzadeh,
Sinong Wang, Han Fang, Carolyn Rosé, Daniel Fried, and Hejia Zhang. Improving model

15

https://arxiv.org/abs/2504.01848
https://arxiv.org/abs/2501.12599
https://openreview.net/forum?id=WPZ2yPag4K
https://arxiv.org/abs/2410.05495
https://arxiv.org/abs/2410.05495
https://doi.org/10.18653/v1/2024.findings-emnlp.620
https://doi.org/10.18653/v1/2024.findings-emnlp.620
https://arxiv.org/abs/2408.02666
https://doi.org/10.18653/v1/2024.naacl-long.185
https://doi.org/10.18653/v1/2024.naacl-long.185
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://openreview.net/forum?id=l5XQzNkAOe

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

factuality with fine-grained critique-based evaluator. arXiv preprint arXiv:2410.18359, 2025. doi:
10.48550/arXiv.2410.18359. URL https://arxiv.org/abs/2410.18359. Version v3,
last revised 2025-06-01.

Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessandra Cervone, Tagyoung Chung, Behnam Heday-
atnia, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tür. Towards coherent and engaging
spoken dialog response generation using automatic conversation evaluators. In Kees van Deemter,
Chenghua Lin, and Hiroya Takamura (eds.), Proceedings of the 12th International Conference
on Natural Language Generation, INLG 2019, Tokyo, Japan, October 29 - November 1, 2019,
pp. 65–75. Association for Computational Linguistics, 2019. doi: 10.18653/V1/W19-8608. URL
https://aclanthology.org/W19-8608/.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
llm reinforcement learning system at scale, 2025. URL https://arxiv.org/abs/2503.
14476.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. Self-rewarding language models, 2025. URL https://arxiv.org/abs/
2401.10020.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. ACECODER:
acing coder RL via automated test-case synthesis. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, pp. 12023–12040. Association for Computational Linguistics, 2025. URL
https://aclanthology.org/2025.acl-long.587/.

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S. Boning, and Dina Katabi.
Rl tango: Reinforcing generator and verifier together for language reasoning. arXiv preprint
arXiv:2505.15034, 2025. URL https://arxiv.org/abs/2505.15034.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as
decision-making agents via reinforcement learning, 2024. URL https://arxiv.org/abs/
2405.10292.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025. URL https://openreview.net/forum?id=Ccwp4tFEtE.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T. Chiu, Claire Cardie, Matthias Gallé, and Alexander M.
Rush. Commit0: Library generation from scratch. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=MMwaQEVsAg.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models are
scalable judges. In The Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.
net/forum?id=xsELpEPn4A.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi,
Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents, 2024.
URL https://arxiv.org/abs/2410.10934.

16

https://arxiv.org/abs/2410.18359
https://aclanthology.org/W19-8608/
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://aclanthology.org/2025.acl-long.587/
https://arxiv.org/abs/2505.15034
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2405.10292
https://openreview.net/forum?id=Ccwp4tFEtE
https://openreview.net/forum?id=MMwaQEVsAg
https://openreview.net/forum?id=xsELpEPn4A
https://openreview.net/forum?id=xsELpEPn4A
https://arxiv.org/abs/2410.10934

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2024. URL https://arxiv.org/abs/2406.15877.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019.
URL https://arxiv.org/abs/1909.08593.

17

https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/1909.08593

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Appendices
A PROMPTS

This section lists the exact prompts used for the generator model and critic model during data
creation and training. They correspond to the input format described in Section 3.2 of the main paper.

A.1 GENERATOR PROMPT

Factual Text Generation

System message: You are an AI assistant that provides accurate and concise biographies of individuals.
Each biography should be exactly four sentences long, highlighting key aspects of the person’s life,
achievements, and significance.

User message: Write a biography of topic.

Code Generation

The generator input exactly matches the problem statement provided in
TIGER-Lab/AceCode-87K-hard without modification.

User message:
{problem_statement_from_AceCode-87K-hard}

A.2 CRITIC PROMPT

Factual Text Generation

System message:
You are a factual checker. Based on your existing knowledge,
identify exactly one sentence that contains the most clearly
verifiable factual error in the paragraph.
Return your answer in **exactly three lines**:
reason: < briefly explaining what is wrong >
sentence: N N is the number of the most incorrect sentence
(positive integer)
error_fact: F a brief clause (no more than 8 words) capturing the
wrong claim from that sentence

User message:
Here is an example to show the task.
Find the sentence that contains the most clearly verifiable factual error
in the paragraph about Albert Einstein.

Example paragraph:
[1] Albert Einstein was awarded the Nobel Prize in Physics in 1921 for

his discovery of the photoelectric effect.
[2] He was born in New York City, United States, and later moved to

Europe where he continued his studies.
[3] Einstein developed the theory of relativity, revolutionizing our

understanding of space, time, and gravity.
[4] His famous equation describes the equivalence of mass and energy.

Expected answer:
reason: Einstein was actually born in Ulm, Germany, not New York City.
sentence: 2
error_fact: Albert Einstein was born in New York City.

Now apply the same procedure to the paragraph below about {topic}.

Paragraph:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

{numbered_paragraph}

Answer:

Code Generation

System message:
You are a code critic. Analyze code for bugs and generate failing test
cases.
Strictly follow the format with <think> and <testcase> tags.

User message:
Analyze the given problem and the generated code to find a test case that
would cause the code to fail.

Problem: {question}

Generated code:
‘‘‘python
{code}
‘‘‘
First, think through potential bugs and edge cases in <think> </think>
tags.
Then output exactly ONE failing test case inside <testcase> tags using
this format:

Option A (CALL format)
<testcase> CALL: func_name(arg1, arg2, kw=val) </testcase>
Option B (STDIN format)
<testcase> STDIN: <raw input here> </testcase>

Do NOT include expected outputs or explanations.
{optional_examples_block}

B VALIDATOR IMPLEMENTATION DETAILS

This section provides the detailed design of the validator used in our training pipeline, corresponding
to Section 3.2 of the main paper.

B.1 FACTUAL TEXT GENERATION

We follow a strict validation process to ensure both authenticity and factual accuracy. In the first
stage, the critic outputs both a suspected erroneous fact and the sentence number containing it. To
prevent exploitation through information injection, we use textual entailment checking to verify that
the proposed fact genuinely appears in the specified sentence. In the second stage, for proposals
passing authenticity checks, we reuse FactScore’s atomic fact verification component, which queries
Wikipedia knowledge base to provide binary verification of individual factual claims, returning true
or false based on external verification.

B.2 CODE GENERATION

Since the AceCoder dataset lacks reference solutions to prevent data contamination, we construct
reliable verification anchors by using Qwen2.5-Coder-7B-Instruct to generate solutions. We filter
these solutions using original test cases, retaining only those highly accurate answers (achieving
99.7% accuracy) to serve as simulated ground truth for test case validation. Our validation first
execute the critic’s test case on the reference solution to obtain the expected output, then execute
the same test case on the generated code to obtain the actual output. Finally, we compare these
outputs and return R(s, a,c) = 1 if outputs match and 0 if they differ, with execution failures also
indicating detected errors. The AceCoder dataset contains noise in GPT-4o generated test cases,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

which introduces some bias in our reference-based validator but reflects realistic imperfections in
verification tools.

C ANALYSIS OF K AND N

This section clarifies the roles of the hyperparameters K and N in RLDCF and explains why their
values differ between the factual and code generation experiments.

In RLDCF, the parameter K controls how many candidate outputs are sampled for each prompt.
A larger K increases candidate diversity and raises the probability that, for the same instruction,
at least one candidate passes all critic checks while another fails at least one. This is essential for
constructing non-degenerate preference pairs for DPO, since each pair requires both a “chosen” and
a “rejected” candidate. The hyperparameter N specifies how many criteria or testcases the critic
proposes for each candidate. A larger N expands the critic’s search space and enables it to discover
more potential failure modes. However, this comes with two main drawbacks: fewer candidates pass
all checks (which reduces preference pairs available for training generator), and verification costs
increase substantially. Additionally, an excessively large N may introduce redundant checks without
meaningful benefits.

For factual text generation, we set K = 10, following the configuration used in FactTune-FS, our
main baseline. For code generation, we use K = 8, consistent with the AceCoder setup. Thus, the
difference in K is not arbitrary; it adheres to the standard experimental settings established in prior
work.

The choice of N is primarily determined by the structure of the underlying verification space. In the
factual generation task, the rubric space used by FactScore is large and semantically diverse, and
the biography dataset itself is relatively small. Therefore, a moderately larger N helps the critic
explore a broader range of failure modes. In contrast, the code generation dataset contains over 2,000
problems, and the unit tests used as criteria are typically deterministic. As a result, a smaller N is
already sufficient to generate a large number of informative preference pairs.

D QUANTIFICATION OF UNCERTAINTY

Table 4: Factual text generation on 8-sentence biographies with the Qwen3-4B backbone, with results
shown as mean ± standard deviation across three runs.

8-sentence Generation

Method # Corr↑ # Incorr↓ FS↑ Calls↓

Qwen3-4B
Baseline 19.03 ± 0.41 12.05 ± 0.19 0.616 ± 0.006 -
FactTune-FS 21.67 ± 0.79 5.66 ± 0.48 0.793 ± 0.017 402,781 ± 52,264
ArmoRM 22.51 ± 1.00 9.39 ± 0.58 0.705 ± 0.013 -
RLDCF (Ours) 21.45 ± 0.31 4.37 ± 0.48 0.831 ± 0.016 70,667 ± 20,072

We report variability across random seeds for the factual text generation experiment. For each method,
we run training with three different random seeds (affecting data shuffling and sampling of generator
candidates) and report the mean and standard deviation of the metrics. Table 5 summarizes the
results for the 8-sentence biography setting with Qwen3-4B as the base model. We observe that
RLDCF consistently improves the number of correct biographies and the overall FactScore compared
to the baselines, while using substantially fewer verification calls than FactTune-FS. The standard
deviations are relatively small, indicating that the performance gains are robust across independent
runs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E BACKBONE ROBUSTNESS

0.0 2.5 5.0 7.5 10.0 12.5
Round

(a) Training Dynamics

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Fa
ct

Sc
or

e

0 100k 200k 300k 400k 500k
Verification Calls

(b) Verification Efficiency

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.0 0.1 0.2 0.3 0.4
KL Divergence

(c) Exploration Behavior

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

RLDCF Factune-FS ArmoRM

Figure 5: Comparison of training dynamics, verification efficiency, and exploration behavior for
RLDCF, FactTune-FS, and ArmoRM on the LLaMA-3.1-8B-Instruct model with 8-sentence genera-
tion.

To examine whether the effectiveness of RLDCF depends on a particular model family, we conducted
additional experiments using an alternative generator/critic backbone, LLaMA-3.1-8B-Instruct. The
training setup strictly follows the configuration used in the Qwen experiments. Figure 5 shows
the resulting training dynamics. We observe the same qualitative behavior as in the Qwen-based
experiments: RLDCF consistently improves factual correctness during training while requiring fewer
verification calls than Factune-FS, consistent with the trend observed in the main paper; moreover, in
the high-KL regime, RLDCF achieves substantially greater gains in factual accuracy compared to the
ArmoRM method.

F MEDICALQA

Table 5: Factual text generation on 8-sentence Medical Question with the Qwen3-4B backbone.

8-sentence Generation

Method # Corr↑ # Incorr↓ FS↑ Calls↓

Qwen3-4B
Baseline 34.0 3.38 0.909 -
FactTune-FS 34.2 1.99 0.945 524329
ArmoRM 35.1 2.36 0.937 -
RLDCF (Ours) 35.2 1.67 0.955 76800

RLDCF achieves the highest factual accuracy while requiring 6.8× fewer verification calls than
FactTune-FS, mirroring the efficiency gains observed in the biography experiments.

These results reinforce that RLDCF is not tied to a particular text domain. It successfully im-
proves factuality in a medical correctness setting with substantially different linguistic and semantic
structures.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G CROSS-FAMILY

Table 6: Results for HumanEval, MBPP, BigCodeBench Complete and Instruct (BCB-C, BCB-I), and
LiveCodeBench, Using a different model (GPT-4O) to generate reference solutions, the results show
that RLDCF still achieves a similar level of average performance improvement across all benchmarks.

Method HumanEval MBPP BCB-C BCB-I LCB Average
Base Plus Base Plus Full Hard Full Hard

Base: Qwen2.5-Coder-7B-Instruct
Baseline 91.5 84.8 82.8 71.4 49.5 19.6 41.8 20.3 34.2 55.1
RLDCF (Qwen) 93.3 86.0 83.9 73.0 52.2 24.3 42.3 19.6 35.2 56.6
RLDCF (GPT-4o) 92.1 85.4 83.9 73.2 52.2 23.6 42.5 20.3 35.5 56.5

H QUALITATIVE CASE STUDIES

This section presents additional qualitative examples illustrating the behavior of the critic before and
after adversarial training.

H.1 FACTUAL TEXT GENERATION CASE STUDY

Generator output(numbered)

[1] Amina Wadud is a prominent Islamic scholar and theologian based in
the United States.

[2] She is known for her groundbreaking work in Islamic studies,
particularly in reinterpreting Islamic texts for modern, gender-
inclusive contexts.

[3] Wadud has been a leading voice in the movement toward a more
inclusive and progressive understanding of Islamic law and theology.

[4] She is a professor at the University of Durham and has held academic
positions at several other institutions.

[5] Wadud is widely recognized for her advocacy of women’s religious and
social rights within Islam.

[6] She is the first woman to lead a Friday prayer in a major American
mosque.

[7] Her research and writings challenge traditional interpretations of
Islamic law and promote gender equality.

[8] Wadud has been an influential figure in interfaith dialogue and
religious pluralism.

Initial Critic Output

reason: Amina Wadud is not a prominent Islamic scholar based in the
United States.

sentence: 1
error_fact: Amina Wadud is a prominent Islamic scholar based in the

United States.

Trained Critic Output

reason: The Friday prayer Amina Wadud led took place in a church hall in
New York, not in a mosque.

sentence: 6
error_fact: Amina Wadud led this Friday prayer in a major American mosque

in the United States.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H.2 CODE GENERATION CASE STUDY

Code Question

You are tasked with implementing a function that simulates the behavior
of a drawing application by managing a canvas. The canvas is
represented by a 2D grid of pixels, where each pixel can be either
empty (0) or filled (1). Your function should handle the following
operations: 1) Resize the canvas to a new width and height, filling
the new area with empty pixels. 2) Fill the entire canvas with a
specified color (1 for filled, 0 for empty). 3) Clear the canvas by
setting all pixels back to empty (0). Implement a single function
called ‘manage_canvas‘ that takes the following parameters: ‘canvas‘
(a list of lists representing the initial canvas), ‘operation‘ (a
string indicating the operation: ’resize’, ’fill’, or ’clear’), and ‘
params‘ (a tuple with parameters for the operation). The function
should return the modified canvas after performing the specified
operation. The function should not access any external resources.

Generator output

from typing import List, Tuple, Union

def manage_canvas(
canvas: List[List[int]],
operation: str,
params: Tuple[Union[int, float, bool]]

) -> List[List[int]]:
"""Manage the canvas based on the specified operation and parameters
."""
if operation == ’resize’:

params = (new_width, new_height)
new_width, new_height = params
new_canvas = [[0] * new_width for _ in range(new_height)]
return new_canvas

elif operation == ’fill’:
params = (fill_value,)
fill_value, = params
return [[fill_value] * len(row) for row in canvas]

elif operation == ’clear’:
return [[0] * len(row) for row in canvas]

else:
raise ValueError("Invalid operation")

Initial Critic Output

<think>
1. The function supports a ’resize’ operation that changes the canvas to

(new_width, new_height).
2. Typical boundary cases include an empty canvas and zero or negative

dimensions.
</think>

<testcase> CALL: manage_canvas([], ’resize’, (2, 2)) </testcase>

Trained Critic Output

</think>
1. The code does not handle the ’resize’ operation correctly. It

initializes a new canvas with the correct dimensions but does not
copy the existing canvas’s data into the new canvas. This could
result in a canvas with only empty pixels after resizing.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2. This behavior contradicts the problem description, where ’resize’ is
expected to preserve existing pixels and only fill newly created
areas with 0, as in a normal drawing application.

</think>
<testcase> CALL: manage_canvas([[1, 1], [1, 1]], ’resize’, (3, 3)) </

testcase>

24

	Introduction
	Preliminaries
	Reinforcement Learning from Dynamic Critic Feedback
	Problem Reformulation
	Practical Instantiation of RLDCF

	Experiments
	Factual Text Generation
	Settings
	Results

	Code generation
	Settings
	Main Results
	Ablation Study

	Related Works
	Conclusion
	Reproducability and Ethics Statements
	Prompts
	Generator Prompt
	Critic Prompt

	Validator Implementation Details
	Factual Text Generation
	Code Generation

	Analysis of K and N
	Quantification of Uncertainty
	Backbone Robustness
	MedicalQA
	Cross-Family
	Qualitative Case Studies
	Factual Text Generation Case Study
	Code Generation Case Study

