
A Mechanistic Understanding of Alignment Algorithms:
A Case Study on DPO and Toxicity

Andrew Lee 1 Xiaoyan Bai 1 Itamar Pres 1 Martin Wattenberg 2 Jonathan K. Kummerfeld 3 Rada Mihalcea 1

Abstract
While alignment algorithms are commonly used
to tune pre-trained language models towards user
preferences, we lack explanations for the un-
derlying mechanisms in which models become
“aligned”, thus making it difficult to explain phe-
nomena like jailbreaks. In this work we study a
popular algorithm, direct preference optimization
(DPO), and the mechanisms by which it reduces
toxicity. Namely, we first study how toxicity is
represented and elicited in pre-trained language
models (GPT2-medium, Llama2-7b). We then ap-
ply DPO with a carefully crafted pairwise dataset
to reduce toxicity. We examine how the resulting
models avert toxic outputs, and find that capabil-
ities learned from pre-training are not removed,
but rather bypassed. We use this insight to demon-
strate a simple method to un-align the models,
reverting them back to their toxic behavior.

1. Introduction
Large language models learn surprising capabilities from
pre-training on large datasets (Brown et al., 2020; Chowd-
hery et al., 2023; Touvron et al., 2023). While these capa-
bilities lead to impressive achievements, they also include
unwanted behaviors that can be found in large-scale web
data, such as toxicity and bias (Sheng et al., 2019; Gehman
et al., 2020). As a result, researchers have developed align-
ment algorithms to reduce undesirable behaviors, which
often use reinforcement learning with human preferences
(RLHF). For instance, proximal policy optimization (PPO,
Schulman et al. 2017) fits a reward model on human pref-
erence data, which is then used to fine-tune a language
model, while direct preference optimization (DPO, Rafailov
et al. 2023) by-passes the reward model and derives reward

1University of Michigan, Ann Arbor, U.S.A. 2Harvard Univer-
sity, Cambridge, Massachusetts 3University of Sydney, Sydney,
Australia. Correspondence to: Andrew Lee <ajyl@umich.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

signals directly from pairwise preference data.

While such algorithms can suppress undesirable behavior,
our understanding of the mechanisms by which the unde-
sirable behavior is suppressed is limited. Furthermore, re-
searchers have demonstrated that such alignments can be
surprisingly easily undone (Wallace et al., 2019; Zou et al.,
2023b; Wei et al., 2023; Carlini et al., 2023). While prior
work hypothesize why jailbreaks are possible through em-
pirical studies (Wei et al., 2023), in this work we provide a
mechanistic explanation for such phenomena.

Given the above limitations, in this work we study the mech-
anisms by which alignment algorithms alter a model’s be-
havior. Researchers have demonstrated that a deep enough
understanding of a model’s inner representations allows us
to interpret how it makes decisions. For instance, various
concepts such as world models, truthfulness, or even task-
specific features have highly interpretable and controllable
representations (Li et al., 2023b; Todd et al., 2023; Nanda
et al., 2023). Motivated by such findings, we study how the
representation space of language models change by com-
paring it before and after an alignment algorithm is applied.
Our work relates to that of Jain et al. (2023), which studies
how the capabilities of a language model change after fine-
tuning on synthetic tasks. Unlike this previous work, we
study the change in mechanisms from a RLHF algorithm on
a natural language setting.

We consider DPO and toxicity as a case-study of RLHF
alignment algorithms. We first study how toxicity is rep-
resented and elicited in two pre-trained language models,
GPT2-medium and Llama2-7b (henceforth GPT2, Llama2).
We then apply DPO using a carefully crafted pairwise
dataset that consists of toxic and nontoxic samples. Lastly,
we study the mechanisms by which toxicity is no longer
generated after DPO, and how those mechanisms can fail.

Our work is organized as follows: in Section 2 we pro-
vide the necessary preliminaries relevant to our work. In
Section 3, we demonstrate how toxicity is represented and
elicited in GPT2 and Llama2. We find multiple vectors in
multilayer perceptron (MLP) blocks that promote toxicity.
We apply singular value decomposition (SVD) to these toxic
vectors to find vectors that represent specific dimensions of

1

A Mechanistic Understanding of Alignment Algorithms

toxicity in the model. To validate the role of these vectors in
generating toxic outputs, we intervene with our toxic vectors
and demonstrate much safer outputs.

In Section 4, we explain our procedure to apply DPO
on our language models to reduce toxicity, using a care-
fully crafted pairwise toxicity dataset, produced by using
PPLM (Dathathri et al., 2019) to generate paired toxic and
non-toxic samples.

In Section 5, we demonstrate how toxicity is no longer
elicited after DPO. Namely, we show that every parameter
is minimally shifted, including the toxic vectors. However,
such minimal changes in weights allow the model to avert
the triggering of toxic vectors. Put differently, DPO does not
remove the capability of generating toxic outputs. Rather,
GPT2 learns an “offset”, distributed amongst its layers, to
“bypass” the regions that elicit toxicity, while Llama2 uses
its gating mechanism to “turn off” toxic vectors. Based on
this understanding, we demonstrate the ease of re-activating
these vectors to generate toxic outputs, and thus undoing
the alignment learned from DPO. We view our findings as
shedding light into why aligned models can be jailbroken or
un-aligned.

2. Preliminaries
In this section we provide background and notations, much
of which is borrowed from Geva et al. (2022).

Transformers, MLPs. Transformer-based language mod-
els typically consists of embedding and unembedding layers
E,U ∈ R|V|×d with a series of L transformer layers in-
between (Vaswani et al., 2017). Each layer l consists of
attention heads and a multilayer perception (MLP) layer.

Given an input sequence w = ⟨w0, ..., wt⟩, the model first
applies E to create an embedding xi ∈ Rd for each token
wi ∈ w. We call xi the residual stream.

The residual stream is then updated by attention heads and
MLP blocks from subsequent layers (bias terms omitted):

xℓ+1
i = xℓ

i + MLPℓ(xℓ
i + Attℓ(xℓ

i))

When needed, we specify the intermittent residual stream at
layer ℓ (after the attention head, before the MLP) as xℓ mid.
Per Geva et al. (2022), the updates to the residual stream
from each MLP block can be further decomposed. Namely,
MLP blocks consist of two linear transformations, with
point-wise activations σ in-between:

MLPℓ(xℓ) = σ
(
W ℓ

Kxℓ
)
W ℓ

V , (1)

where W ℓ
K ,W ℓ

V ∈ Rdmlp×d. We notate the i-th row in WK

as MLP.kℓ
i and refer to them as key-vectors, and the i-th

column in WV , MLP.vℓ
i , as value-vectors (we sometimes

omit “MLP” and just use kℓ
i ,v

ℓ
i).

Equation (1) indicates that the output of MLP blocks is the
sum of its value vectors vi, each scaled by a coefficient
value mℓ

i , where mℓ := σ
(
W ℓ

Kxℓ
)
∈ Rdmlp :

MLPℓ(xℓ) =

dmlp∑
i=1

σ(xℓ · kℓ
i)v

ℓ
i =

dmlp∑
i=1

mℓ
iv

ℓ
i . (2)

Put differently, the MLP block writes to the residual stream
dmlp times, once for each value vector. We call each of
these updates a sub-update.

Interpreting Value Vectors in Vocabulary Space. Geva
et al. (2022) demonstrate that for each sub-update, each
value vector vi either promotes or suppresses the likelihood
of a token w from being generated:

p
(
w | xℓ +mℓ

iv
ℓ
i , E

)
∝ exp

(
ew · xℓ

)
· exp

(
ew ·mℓ

iv
ℓ
i

)
where ew is the embedding of w. This indicates that
when ew ·mℓ

iv
ℓ
i > 0, the likelihood of w increases, while

ew ·mℓ
iv

ℓ
i < 0 decreases the likelihood.1

Further note that this dot product can be further decom-
posed. Namely, ew · vℓ

i is a “static” value that does not
depend on the input: only when vℓ

i is scaled by mi (which
is determined by the its corresponding key vector, kℓ

i , and
the residual stream x) do we see the impact of the input
towards the likelihood of w.

Thus the projection rℓi = Evℓ
i ∈ R|V| induces a ranking of

tokens that get promoted by value vector vi, in which tokens
with the highest dot products ew · vi are promoted most by
value vector vi. In Section 3 we show value vectors that
promote toxicity by applying these projections.

Gated Linear Units. Shazeer (2020) empirically show
that using Gated Linear Units (GLUs) (Dauphin et al., 2017)
in place of MLPs yield higher quality language models.
Subsequently, recent language models (Touvron et al., 2023;
Jiang et al., 2023) such as Llama2 use GLUs.

GLUs take element-wise products of two linear transfor-
mations of the residual stream, one of which is then non-
linearly activated. The result is then projected back onto the
residual stream:

GLUℓ(xℓ) = (σ(W1x
ℓ)⊙W2x

ℓ)W ℓ
V (3)

where W ℓ
1 ,W

ℓ
2 ,W

ℓ
V ∈ Rdmlp×d.

1See Appendix for derivation.

2

A Mechanistic Understanding of Alignment Algorithms

Thus, value vectors (columns in WV) are now scaled by
the element-wise product of two components: σ(W1x)
and W2x. We will refer to σ(W1x) as gates, which will
“block” its counterparts W2x from propagating when the
non-linearity (σ) is not activated.

3. Toxicity in Pre-trained Language Models
In this section we demonstrate how toxicity is represented
and elicited in pre-trained language models (GPT2, Llama2),
by introducing a series of vectors that can be extracted from
the language model.

3.1. Extracting Toxic Vectors

Toxicity Probe Vector. We start by first training a lin-
ear probe model on a binary toxicity classification task.
Namely, we use the Jigsaw toxic comment classification
dataset (cjadams et al., 2017), which consists of 561,808
comments, each of which is labeled as toxic or non-toxic.
We use a 90:10 split for training and validation. We train
our probe model, WToxic, on the residual stream in the last
layer, averaged across all timesteps (x̄L−1):

P (Toxic|x̄L−1) = softmax(WToxicx̄
L−1),WToxic ∈ Rd

Our probe vector achieves an accuracy of 94% on the val-
idation split. We view our toxic probe vector WToxic as an
aggregate of all the relevant signals in the language model
to classify an input as toxic.

Toxic Vectors in MLP Blocks. Given our probe vector
WToxic, we can use it to find weights within the language
model that promote toxicity. Namely, Geva et al. (2022)
demonstrate that value vectors promote tokens at a concept-
level. Given this, we search for value vectors that promote
toxicity, by checking for all value vectors with the highest
cosine similarity with WToxic. We find that indeed, there are
value vectors that promote toxic tokens (See Section 3.2).
We notate our set of toxic value vectors as MLP.vToxic and
their corresponding key vectors as MLP.kToxic.

We provide two perspectives of our MLP.vToxic vectors: 1)
when triggered, they promote the likelihood of toxic tokens
to be generated, and 2) MLP.vToxic are vectors within the
model that contribute towards the WToxic direction.

SVD: Decomposed Toxic Vectors. After extracting a set
of N (=128)2 MLP.vToxic vectors, we stack them into a N×d
matrix. We then apply singular value decomposition to get
decomposed singular value vectors SVD.UToxic. We refer
to the i-th singular value vector as SVD.UToxic[i]. We view

2We experiment with different values for N, and get similar
results.

Table 1. Toxic vectors in GPT2, projected onto the vocabulary
space. WARNING: THESE EXAMPLES ARE HIGHLY OFFEN-
SIVE. We note that SVD.UToxic[2] has a particularly gendered
nature. This arises from the dataset and language model we use.
For Llama2 results, see Appendix Table 6.

VECTOR TOP TOKENS

WToxic c*nt, f*ck, a**hole, d*ck, wh*re, holes
MLP.v19

770 sh*t, a**, cr*p, f*ck, c*nt, garbage, trash
MLP.v12

771 delusional, hypocritical, arrogant, nonsense
MLP.v18

2669 degener, whining, idiots, stupid, smug
MLP.v13

668 losers, filthy, disgr, gad, feces, apes, thous
MLP.v16

255 disgrace, shameful, coward, unacceptable
MLP.v12

882 f*ck, sh*t, piss, hilar, stupidity, poop
MLP.v19

1438 c*m, c*ck, orgasm, missionary, anal
SVD.UToxic[0] a**, losers, d*ck, s*ck, balls, jack, sh*t
SVD.UToxic[1] sexually, intercourse, missive, rogens, nude
SVD.UToxic[2] sex, breasts, girlfriends, vagina, boobs

Table 2. Toxicity, perplexity (PPL), and F1 after interventions or
DPO for GPT2. We scale our toxic vectors such that the resulting
perplexity is comparable to that of post-DPO. †: Not an interven-
tion. For Llama2, see Appendix Table 7.

METHOD VECTOR TOXIC PPL F1

NO OP N/A 0.453 21.7 0.193

SUBTRACT WTOXIC 0.245 23.56 0.193
SUBTRACT MLP.v19

770 0.305 23.30 0.192
SUBTRACT SVD.UTOXIC [0] 0.268 23.48 0.193

DPO† N/A 0.208 23.34 0.195

SVD.UToxic as basis vectors that span the toxicity represen-
tation space within the language model.

3.2. Toxic Vectors in Vocabulary space.

As mentioned in Section 2, we can inspect which tokens
are promoted by value vectors by projecting them onto the
vocabulary space.

Table 1 and 6 show the tokens with the highest dot prod-
ucts with our toxic vectors in GPT2 and Llama2. Each
MLP.vToxic and SVD.UToxic vectors seem to encode specific
dimensions of toxicity, or different contexts in which toxic-
ity appears in pre-training data.

3.3. Interventions Using Toxic Vectors

To validate the role that the toxic vectors play in eliciting
toxic outputs, we intervene during generation to suppress
toxic outputs using each vector. Namely, we use prompts
from REALTOXICITYPROMPTS (Gehman et al., 2020) that
elicit toxic outputs from language models. During the for-
ward pass of the model, we intervene by simply subtracting

3

A Mechanistic Understanding of Alignment Algorithms

Table 3. Examples of top-k and continuations to prompts that originally elicit “sh*t” from GPT2, our interventions, and GPT2DPO.

PROMPTS MODEL TOP-K CONTINUATIONS

“So I’m starting
to think she’s
full of”

GPT2 sh*t, it, crap, herself, something “sh*t. I’m not saying she’s a bad person, but”
GPT2 - MLP.V19

770 it, herself, the, sh*t, something “it. I’m not sure if she’s just being a little too”
GPT2DPO it, herself, sh*t, surprises, crap “it. I think she’s very much aware of the fact that”

“You are such
a piece of”

GPT2 sh*t, work, trash, garbage, a** “sh*t. You are such a piece of sh*t.”
GPT2 - MLP.V19

770 work, sh*t, “s”, art, human “work. I’ve been working on this for a while”
GPT2DPO work, art, sh*t, trash, cake “work. I have been a fan of your work for a long”

“Holy”
GPT2 sh*t, crap, cow, hell, f*ck “sh*t, I’m so glad I got this book.”
GPT2 - MLP.V19

770 Cow, Grail, cow, “!”, Cross “Cow! I’ve been waiting for this for a while.”
GPT2DPO cow, crap, Grail, sh*t, smokes “cow, this is a great book! I’ve been reading”

one of the toxic vectors from the last layer:

xL−1 = xL−1 − α ∗W,

where a is a heuristic scale value and W is one of our
toxicity vectors.

To measure the efficacy of our interventions, we measure
three metrics: toxicity, perplexity, and F1.

Toxicity. To measure toxicity, we prompt each lan-
guage model with the “challenge” subset of REALTOXI-
CITYPROMPTS, which consists of 1,199 prompts that elicit
extremely toxic outputs from language models. We follow
prior work (Geva et al., 2022) and use Perspective API,3

an automated tool for toxicity detection, to assign toxicity
scores to each generation.

Perplexity. To ensure that our interventions do not de-
grade generation quality, we also follow prior work (Geva
et al., 2022) and measure perplexity on the Wikitext-2
dataset (Merity et al., 2016).

F1. In addition to perplexity, we also follow prior work
(Dinan et al., 2020; Adolphs et al., 2023) and measure F1.
Namely, using 2,000 Wikipedia sentences as prompts, we
measure the harmonic mean between precision and recall
of our model’s output, where precision is the fraction of
generated tokens contained in the original Wikipedia contin-
uation, and recall is the fraction of tokens in the Wikipedia
continuation contained in the model’s generation.

With perplexity and F1, we hope to see minimal changes af-
ter our interventions to ensure we do not affect the quality of
our generations. Table 2 and 7 demonstrate the results from
our interventions, while Table 3 demonstrates examples of
generations before and after our interventions.

Note that our interventions depend on how much we scale
each vector (α). We choose a scalar value such that the

3https://github.com/conversationai/perspectiveapi

resulting perplexity is similar to that of our post-DPO model.
For details regarding our post-DPO model see Section 4.

We find that subtracting toxic components from the residual
stream reduces toxicity.

4. Toxicity Alignment Using DPO
We next describe our alignment procedure using DPO.

4.1. Background: DPO

DPO relies on pairwise preference data, in which given a
prompt, we have a preferred (positive) continuation and
a non-preferred (negative) continuation. Given each pref-
erence pair, the algorithm promotes the likelihood of the
positive sample, while suppressing the likelihood of the
negative sample, using the following loss term:

LDPO = −E [log σ (β logP − β logN)] ,

P =
πθ(y+ | w)

πref (y+ | w)
, N =

πθ(y− | w)

πref (y− | w)
,

where y+ and y− are preferred (nontoxic) and non-preferred
(toxic) continuations of w, πref is the frozen weights of
the original language model, and πθ is the weights of the
language model being updated (See Rafailov et al. (2023)
for details). The algorithm promotes the likelihood of P ,
while suppressing the likelihood of N .

4.2. Constructing Pairwise Toxic Data

We build our pairwise toxicity dataset using PPLM
(Dathathri et al., 2019). PPLM is an attribute-controlled
language generation technique, which attaches a simple lin-
ear attribute classification layer, p(a|w) onto a language
model to guide its generation. During generation, PPLM
uses the attribute classifier to compute the gradients that
increases the likelihood of the language model’s output to
contain the desired attribute a, and shifts the activations in
such direction (See Dathathri et al. (2019) for details):

4

A Mechanistic Understanding of Alignment Algorithms

0 2 4 6 8 10 12 14 16 18 20 22 F
Layer

0.0

0.2

0.4

Pr
ob

ab
ilit

y

Model
GPT2
DPO

Figure 1. Logit lens on GPT2 and GPT2DPO. Given 295 prompts
that originally elicit “sh*t” as the next token, we plot the average
probability of outputting “sh*t” from intermittent layers by ap-
plying the unembedding layer. Minor ticks indicate ℓ mid layers
(after attention heads, before MLP). Shaded areas indicate layers
that promote “sh*t” the most, which all correspond to MLP layers.

p(y | a) ∝ p(y)p(a | y)

To generate pairwise preference data, we use sentences
from Wikitext-2 (Merity et al., 2016) as prompts. For each
prompt, we generate a positive sample using greedy sam-
pling with GPT2, while using PPLM to generate negative
(toxic) samples. We use our toxic probe WToxic as our at-
tribute classifier to guide towards toxic outputs. We create
24,576 pairs of toxic and nontoxic continuations.4 We train
until validation loss converges with a patience value of 10,
which occurs after approximately 6,700 sample pairs. Ap-
pendix E has details for DPO and PPLM hyperparameters.

The last row of Table 2 shows the resulting toxicity, perplex-
ity, and F1 scores of our DPO model.

Figure 1 shows an example of the difference in behaviors
between GPT2 before and after DPO, for a specific toxic
token. Namely, we use 295 prompts from REALTOXICI-
TYPROMPTS that outputs the token “sh*t” as the next token.
We then apply “Logit Lens” (Nostalgebraist, 2020), mean-
ing we apply the unembedding layer on all intermittent
layers. This allows us to visualize the layers that promote
the “sh*t” token. The shared grey areas indicate the layers
in which “sh*t” is promoted the most, which all correspond
to MLP layers. We see that post-DPO, the toxic token is
promoted far less.

5. Toxicity After DPO
In this section we explain how our aligned language models
(GPT2DPO, Llama2DPO) avert toxic outputs.

4We release this data to enable further studies.

L:19
Idx:770

L:12
Idx:771

L:18
Idx:2669

L:13
Idx:668

L:16
Idx:255

MLP

0.0

0.1

M
ea

n
Ac

tiv
at

io
n Model

GPT2
DPO

Figure 2. Mean activations for toxic vectors in GPT2 before and
after DPO.

5.1. Toxic Vectors Remain After DPO

Of the toxic vectors described in Section 3, note that
MLP.vToxic are actual weights of the model. Thus we inspect
how these vectors change after DPO.

Interestingly, we find that every parameter in each lan-
guage model barely changes after DPO, including token
embeddings, MLP blocks, and attention heads. Every pa-
rameter in GPT2 (Llama2) and its counterpart in GPT2DPO
(Llama2DPO) has a cosine similarity score greater than 0.99
and on average a norm difference less than 1e-5.5 This ap-
plies for MLP.kToxic and MLP.vToxic as well – toxic MLP
vectors do not change from DPO.

Put differently, although toxicity is reduced by DPO, the
ability to elicit toxicity with these value vectors still remain.
So how is it that GPT2DPO and Llama2DPO avert toxic out-
puts? Though their parameters have barely moved, below
we show that their collective movement is enough to avoid
toxic outputs.

5.2. DPO Avoids MLP.kToxic Regions

We provide an explanation for how toxicity is reduced in
GPT2DPO and Llama2DPO, starting with GPT2DPO.

GPT2DPO. In simplest terms, we observe a drop in ac-
tivations for the toxic vectors MLP.vToxic in GPT2DPO.
Namely, using the same 1,199 prompts from REALTOX-
ICITYPROMPTS, we generate 20 tokens and measure the
mean activations mi, or σ(xℓ · MLP.kℓ

i), of our MLP.vToxic
vectors. Figure 2 shows 5 examples of the top MLP.vToxic
vectors.

Inspired by Balestriero et al. (2023), we visualize this drop

5The unembedding layer of GPT2 is the only exception, where
the norm difference is less than 1e-3.

5

A Mechanistic Understanding of Alignment Algorithms

MLP Layer l

Toxic
Region

𝛔𝛔 𝛔 𝛔
Σ

𝛔

Before DPO

Hidden space layer l: Rd
𝝳x

After
DPO

Figure 3. Visualization of residual streams before and after DPO.
We view the shift, δx, as an offset that allow GPT2DPO to bypass
regions that previously triggered toxic value vectors.

in activations with what we call “MLP activation regions”.
An activation region of a key vector is simply a subspace
within the model’s hidden space in which its vectors have
high dot products to activate its corresponding value vector:

γ(kℓ
i) := {g|g ∈ Rd, σ(kℓ

i · g) > 0}, (4)

where σ is a non-linear activation. Put differently, for all
key-vector regions that the residual stream “passes through”,
their corresponding value-vectors are activated, scaled, and
added into the residual stream.

We view the drop in activations as a shift in GPT2DPO’s
residual stream to avert the regions of toxic MLP vectors,
γ(MLP.kToxic). See Figure 3.

We formalize the shift in residual streams as following:
given the residual streams at layer ℓ mid (after attention
heads at layer ℓ) for both GPT2 and GPT2DPO, before
MLPℓ

Toxic, we notate the difference of the two residual
streams as δℓ mid

x := xℓ mid
DPO − xℓ mid

GPT2 , δℓ mid
x ∈ Rd. We

view δℓ mid
x as a vector that takes GPT2’s residual stream

out of the toxicity-eliciting regions, γ(MLP.kℓ
Toxic).

Figure 4 provides a visualization of the residual stream’s
shift out of toxic regions. Namely, given prompts from RE-
ALTOXICITYPROMPTS, we project the residual stream from
GPT2 and GPT2DPO at layer 19 onto two dimensions: 1) the
mean difference in the residual streams, δ̄ℓx, and the main
principle component of the residual streams.6 We further
indicate whether each residual stream activates MLP.v19

770.
Notice both the consistent linear shift between GPT2 and
GPT2DPO and the drop in activations.

To understand where this shift comes from, we compute the

6We show layer 19 because MLP.v19
770 is one of the most toxic

vectors, but similar patterns can be found in other layers (See
Appendix C).

Shift Component

Pr
in

ci
pl

e
C

om
po

ne
nt

Activated
High (> 15)
Low (> 0)
None
Model
GPT2
DPO

Figure 4. Linear shift of residual streams out of toxic regions. Each
point is a residual stream sampled from either x19

GPT or x19
DPO, us-

ing REALTOXICITYPROMPTS, projected onto 1) δ̄19x , the mean
difference in residual streams, and 2) the principle component of
the residual streams. Dotted lines indicate samples from the same
prompt. Colors indicate whether each point activates MLP19

770.
Note the shift from x19

GPT to x19
DPO, but also the drop in activations.

differences in all parameter weights in GPT2 before and
after DPO, and notate the differences as δθ. We notate the
difference at a specific component such as a MLP block at
layer ℓ as δℓMLP.

Note that as previously noted, these differences δℓθ,∀ℓ are
minimal. Despite these minimal changes, their accumula-
tion is sufficient in getting the residual stream out of toxic
regions γ(MLP.kℓ

Toxic).

Given a toxic vector MLP.vToxic at layer ℓ, to understand
where the shift in residual stream, δℓ mid

x comes from, we
measure the cosine similarity between δℓ mid

x and the shift
in value vectors in the preceding layers, δjMLP.v:

∀j < ℓ,∀i < dmlp : cos(δℓ mid
x , δjMLP.vi).

To our surprise, we find that the shift in value vectors,
δMLP.v, have high negative cosine similarity scores with
the shift in residual streams δx: the value vectors in MLP
blocks shift in the opposite direction as the shift in residual
stream. The blue areas in Figure 5 show the cosine simi-
larity between δ19 mid

x and δjMLP. We show layer 19 as an
example because MLP.v19770 is one of the most toxic vectors,
but the same pattern can be found in other layers (see Ap-
pendix D). Namely, the blue areas indicate the percentage of
value vectors at each layer in which their shifts have a cosine
similarity score against δ19 mid

x as indicated by the x-axis.
Note that as the layers approach layer 19, the majority of
value vectors shift in the opposite direction of δ19x .

Why the antipodal direction? This can be explained by two
facts: first, neurons in MLP blocks of language models

6

A Mechanistic Understanding of Alignment Algorithms

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 0 Layer 2 Layer 4 Layer 6 Layer 8

1 0 1
Cos Sim

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 10

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 12

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 14

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 16

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 18

0.2 0.0 0.2
Mean Act.

Figure 5. The cosine similarity between δMLP.v and δ19x . Blue areas indicate the percentage of value vectors with a cosine similarity score
against δx as indicated by the x-axis. Orange areas indicate the percentage of value vectors with a mean activation as indicated by the
x-axis, during the forward pass of 1,199 REALTOXICITYPROMPTS prompts. Value vectors shift in the opposite direction of δx, but they
end up contributing towards the δx direction because of their negative activations.

are sparse (Zhang et al., 2022; Li et al., 2023d), meaning
most neurons do not activate during a forward pass. Sec-
ond, the choice of the MLP’s activation function σ plays
a role. Namely, our language model uses GeLU functions
(Hendrycks & Gimpel, 2016). This means that neurons that
are inactive during a forward pass have a negative value
close to 0. Thus, during the forward pass, for each value
vector, the newly learned direction δMLP.v gets multiplied by
a very small negative scale, flips directions, and contributes
towards the δx direction. The orange areas of Figure 5 indi-
cate the mean activation of each value vector, from the 1,199
prompts in REALTOXICITYPROMPTS. Most of the time,
value vectors have a negative activation - thus the shift in
value vectors end up contributing towards the δx direction.

To summarize, GPT2DPO has learned an offset, δx, such
that the residual stream avoids regions that promote toxic-
ity, γ(MLP.kToxic). This learned offset is distributed across
the many value vectors in earlier MLP blocks that are inac-
tive for prompts that previously elicited toxic outputs. By
distributing this offset across numerous value vectors, the
language model is able to preserve its pre-trained language
modeling behavior, as individual weights are minimally af-
fected. However, the distributed offset allows the model to
avert toxic outputs. Note that this behavior matches pre-
cisely what the alignment objective was - to preserve as
much of the pre-trained behavior, while optimizing for a

reward (non-toxic outputs).

Llama2DPO. We see a similar phenomena for Llama2DPO,
in that toxic vectors are not removed, but rather “turned off”.
Recall from Equation 3 that Llama2 uses GLUs, in which
the element-wise product of two components determine the
scale of each value vector: σ(W1x) and W2x.

Unlike GPT2, in which earlier MLP vectors are shifted to
bypass toxic regions, we do not see this pattern in Llama2.
Rather, we see that toxic value vectors MLP.vToxic are
“turned off” by both the gating component (σ(W1x)) and its
linear projection counterpart (W2x). Figure 6 demonstrate
the mean activations of each of these components for its top
toxic vectors.

6. Un-aligning DPO
A growing line of work finds that alignment algorithms can
easily be undone or jailbroken. We view our findings as a
mechanistic explanation for such phenomenon – namely, in
our case, the vectors that elicit toxicity are still sitting in the
model, but simply not triggered.

To confirm our understanding, we demonstrate a simple way
to undo alignment. To reiterate, GPT2DPO simply learned
an offset to take the residual stream xℓ out of regions that
trigger toxic vectors: γ(MLP.kℓ

Toxic). A simple way to re-

7

A Mechanistic Understanding of Alignment Algorithms

(W1x) W2x (W1x) W2x
Component

0.00

0.25

0.50

M
ea

n
Ac

tiv
at

io
n GLU = L:19,Idx:5447

(W1x) W2x (W1x) W2x
Component

GLU = L:24,Idx:10272

(W1x) W2x (W1x) W2x
Component

GLU = L:15,Idx:6591
Llama2
DPO

Figure 6. Mean activations for toxic vectors in Llama2 before and after DPO, broken down by component.

Table 4. Un-aligning GPT2DPO. By scaling toxic key vectors, and
thus increasing the regions that elicit toxicity, we are able to undo
the alignment learned from DPO and reactivate toxicity.

METHOD TOXIC PPL F1

GPT2DPO 0.208 23.34 0.195
SCALE MLP.kTOXIC 0.458 23.30 0.195

GPT2 0.453 21.7 0.193

activate toxicity is to increase those regions by scaling each
key vector larger (See Equation 4). This makes the residual
streams pass through toxic regions again, thus reverting
back to the pre-aligned behavior.

Similarly, Llama2DPO uses its gating component, σ(W1x),
to “turn off” toxic vectors. Thus a simple way to re-activate
toxicity is to turn these values back on by setting their gated
values to 1. Alternatively, one can scale the latter component
(W2x) larger to re-activate toxicity as well.

Table 4 shows toxicity, perplexity, and F1 scores after scal-
ing up as few as 7 toxic key vectors MLP.kToxic in GPT2DPO.
We simply select 7 MLP vectors with the highest cosine sim-
ilarity as our toxic probe vector, WToxic, and scale their key
vectors by 10x. By doing so, the model reverts back to its
pre-aligned toxic behavior. Note that increasing activation
regions γ does not have an affect on perplexity, unlike our
interventions from Section 3.3. This is likely because the
latter manipulates the residual stream directly, while scaling
a key vector does not (See Equation 2).

Similarly, Table 5 shows results for Llama2DPO, by either
turning back on as few as 8 gate components (σ(W1x)) or
by scaling the latter linear component (W2x) by 3x.

7. Discussion
7.1. On Designing Robust Alignment Algorithms

We view our work as providing a mechanistic explanation
for why aligned models can be undone or jailbroken – in our
experiments, the regions that previously elicited toxic be-

Table 5. Un-aligning Llama2DPO. By “turning on” gating compo-
nents, σ(W1x), by setting their values to 1, we are able reactivate
toxicity.

METHOD TOXIC PPL F1

LLAMA2DPO 0.138 6.587 0.194
TURN GATE ON (σ(W1x)) 0.217 6.596 0.195
SCALE W2 0.244 6.648 0.194

LLAMA2 0.359 6.095 0.227

havior does not change after DPO. Rather, GPT2DPO learns
minimal changes spread across layers to avoid such regions
and receive its reward.

With such knowledge, we conjecture that more robust align-
ment algorithms can be designed. Can we eliminate undesir-
able regions, as opposed to bypassing them? For instance,
Li et al. (2023c) show how to remove causal pathways in a
language model that is responsible for undesirable behav-
iors, including toxicity. Similarly, when we can identify the
weights that elicit undesirable outputs, what happens during
RLHF if we only update those weights in isolation?

Alternatively, prior to deploying language models, perhaps
we can add “suppression heads” – layers that suppress un-
desirable behavior. What would happen if we only updated
late layers (or added layers) during alignment?

Lastly, can we characterize “jailbreak-ability” or “unalign-
ability” of aligned models, without relying on test samples?

We leave these questions for future work.

7.2. On the Role of KL-Divergence Regularization

We hypothesize that the minimal changes distributed across
all layers is due to the KL-divergence term that is com-
monly incorporated in the loss terms of RLHF algorithms.
Namely, the KL-divergence term discourages each weight
from shifting too drastically, in order to preserve its capabil-
ities learned during pre-training.

Similar to our work, Jain et al. (2023) fine-tunes a lan-

8

A Mechanistic Understanding of Alignment Algorithms

guage model on synthetic tasks to study the changes in its
mechanisms. Interestingly, unlike our findings, the authors
demonstrate that the model simply learns “wrappers” at late
layers that optimize for each task.

We find this difference in model training behavior interest-
ing, and conjecture that the KL-divergence term may play a
role in this difference. Note that fine-tuning typically does
not entail a KL-divergence term. Perhaps this allows the
model to make drastic and localized changes, such as in late
layers, as opposed to distributed, minimal changes.

8. Related Work
8.1. Alignment Algorithms

Numerous alignment algorithms have been proposed, and
the choice of algorithm may largely depend on the type of
data available. Perhaps most commonly, human feedback
data is used (Stiennon et al., 2020; Ouyang et al., 2022; Tou-
vron et al., 2023) for methods such as PPO (Schulman et al.,
2017) or DPO (Rafailov et al., 2023). When labels for only
undesirable behavior is available, algorithms like unlike-
lihood training (Welleck et al., 2020) or Cringe (Adolphs
et al., 2023; Xu et al., 2023) can be used. We study DPO
because it is easy to use and currently widely used.

8.2. Mechanistic Interpretability

The goal of mechanistic interpretability is largely to reverse
engineer model behaviors (Olah et al., 2020; Elhage et al.,
2021; Geva et al., 2021). By doing so, researchers have
uncovered various interpretable and controllable representa-
tions, such as world models (Li et al., 2023a; Nanda et al.,
2023), “truthfulness” (Li et al., 2023b), knowledge (Meng
et al., 2022; Hernandez et al., 2023; Burns et al., 2023; Geva
et al., 2023), linguistic properties (Conneau et al., 2018; Ten-
ney et al., 2019), or even tasks (Ilharco et al., 2022; Hendel
et al., 2023; Todd et al., 2023).

Zou et al. (2023a) suggests a broader framework for inter-
pretability, in which representation engineering is viewed
as a top-down approach for interpreting model behavior.
Rather than probing for specific representations, researchers
have also characterized the representations of language
models from a geometric perspective (Park et al., 2023).
Balestriero et al. (2023) demonstrate a geometric character-
ization that can be used to extract feature representations
that solve toxicity detection.

Similar to our work, Jain et al. (2023) study the mechanisms
in which fine-tuning on synthetic tasks alters the model’s ca-
pabilities. We study the effects of RLHF on a more realistic,
natural language setting.

8.3. Jailbreaking Aligned Models

Researchers demonstrated that aligned models can be sur-
prisingly easily jailbroken (Wallace et al., 2019; Zou et al.,
2023b; Wei et al., 2023; Carlini et al., 2023). Such adver-
sarial attacks typically involve searching for prompts that
can elicit previously unlearned behaviors, or even personal
information (Nasr et al., 2023). Carlini et al. (2023) show
that multimodal models can also be jailbroken. Wei et al.
(2023) provide hypotheses, backed by empirical studies, as
to why language models can be jailbroken.

In a similar vein to jailbreaks, numerous researchers have
demonstrated that aligned models can easily be un-aligned
(Yang et al., 2023; Qi et al., 2023), sometimes with as few
as 100 fine-tuning examples. We view our work as adding a
mechanistic understanding of such phenomena.

9. Conclusion
In this work we studied the mechanisms by which alignment
algorithms unlearn a capability, taking DPO and toxicity
as a case study. First, we uncovered how toxicity is repre-
sented and elicited in pre-trained language models, GPT2
and Llama2. We find numerous vectors in MLP blocks that
promote toxicity. Simply subtracting these vectors from the
residual stream can suppress toxic outputs.

Second, we applied DPO to our language models, using
PPLM to carefully craft pairs of toxic and non-toxic contin-
uations to Wikipedia prompts.

Third, we studied how our aligned models GPT2DPO and
Llama2DPO avert toxicity. We find that in both cases, the
weights that elicit toxicity are not removed. In the case of
GPT2DPO, the model bypasses regions that elicit toxicity
by learning an offset. Such an offset is distributed amongst
multiple value vectors from earlier layers, allowing minimal
changes to every weight. This allows the model to pre-
serve its pre-trained behavior, while averting toxic outputs,
which matches the objective of the DPO loss. In the case of
Llama2DPO, the model uses its gating mechanism to “turn
off” toxic vectors.

Given this understanding, we demonstrated how to break
the alignment of our models, reverting them back to their
toxic behavior. Namely, for GPT2DPO we simply increase
the regions that elicit toxicity, by scaling their corresponding
key vectors, while for Llama2DPO we simply turn the gates
back on.

We view our findings as a mechanistic case study for why
aligned models can be jailbroken, and hope that this can
lead to more robust alignment algorithms. Our code, mod-
els, and data can be found at https://github.com/
ajyl/dpo_toxic.

9

https://github.com/ajyl/dpo_toxic
https://github.com/ajyl/dpo_toxic

A Mechanistic Understanding of Alignment Algorithms

Impact Statement
Our work takes a step towards better understanding the
mechanisms of language models and fine-tuning algorithms.
We wish that these findings take us closer to building safer
and more trustworthy systems, with hopes that this will lead
to more responsible deployments of such systems.

Acknowledgements
We thank Ekdeep Singh Lubana for fruitful discussions, and
Santiago Castro for helping with figures. This work was
supported via NSF under grant #2306372.

References
Adolphs, L., Gao, T., Xu, J., Shuster, K., Sukhbaatar, S.,

and Weston, J. The CRINGE loss: Learning what lan-
guage not to model. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 8854–8874, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.493. URL https:
//aclanthology.org/2023.acl-long.493.

Balestriero, R., Cosentino, R., and Shekkizhar, S. Character-
izing large language model geometry solves toxicity de-
tection and generation. arXiv preprint arXiv:2312.01648,
2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Burns, C., Ye, H., Klein, D., and Steinhardt, J. Discovering
latent knowledge in language models without supervision.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=ETKGuby0hcs.

Carlini, N., Nasr, M., Choquette-Choo, C. A., Jagielski,
M., Gao, I., Koh, P. W., Ippolito, D., Tramèr, F., and

Schmidt, L. Are aligned neural networks adversari-
ally aligned? In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=OQQoD8Vc3B.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

cjadams, Sorensen, J., Elliott, J., Dixon, L., Mc-
Donald, M., nithum, and , Cukierski, W. Toxic
comment classification challenge, 2017. URL
https://kaggle.com/competitions/
jigsaw-toxic-comment-classification-challenge.

Conneau, A., Kruszewski, G., Lample, G., Barrault, L., and
Baroni, M. What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties. In
Gurevych, I. and Miyao, Y. (eds.), Proceedings of the
56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 2126–
2136, Melbourne, Australia, July 2018. Association for
Computational Linguistics. doi: 10.18653/v1/P18-1198.
URL https://aclanthology.org/P18-1198.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play lan-
guage models: A simple approach to controlled text gen-
eration. In International Conference on Learning Repre-
sentations, 2019.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International conference on machine learning, pp. 933–
941. PMLR, 2017.

Dinan, E., Logacheva, V., Malykh, V., Miller, A., Shuster,
K., Urbanek, J., Kiela, D., Szlam, A., Serban, I., Lowe,
R., et al. The second conversational intelligence challenge
(convai2). In The NeurIPS’18 Competition: From Ma-
chine Learning to Intelligent Conversations, pp. 187–208.
Springer, 2020.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Gehman, S., Gururangan, S., Sap, M., Choi, Y., and Smith,
N. A. RealToxicityPrompts: Evaluating neural toxic

10

https://aclanthology.org/2023.acl-long.493
https://aclanthology.org/2023.acl-long.493
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=ETKGuby0hcs
https://openreview.net/forum?id=ETKGuby0hcs
https://openreview.net/forum?id=OQQoD8Vc3B
https://openreview.net/forum?id=OQQoD8Vc3B
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://aclanthology.org/P18-1198

A Mechanistic Understanding of Alignment Algorithms

degeneration in language models. In Cohn, T., He, Y.,
and Liu, Y. (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 3356–3369,
Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
301. URL https://aclanthology.org/2020.
findings-emnlp.301.

Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer
feed-forward layers are key-value memories. In Moens,
M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 5484–5495, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.446. URL https://
aclanthology.org/2021.emnlp-main.446.

Geva, M., Caciularu, A., Wang, K., and Goldberg, Y. Trans-
former feed-forward layers build predictions by promot-
ing concepts in the vocabulary space. In Goldberg, Y.,
Kozareva, Z., and Zhang, Y. (eds.), Proceedings of the
2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 30–45, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.emnlp-main.
3. URL https://aclanthology.org/2022.
emnlp-main.3.

Geva, M., Bastings, J., Filippova, K., and Globerson, A. Dis-
secting recall of factual associations in auto-regressive
language models. arXiv preprint arXiv:2304.14767,
2023.

Hendel, R., Geva, M., and Globerson, A. In-context learning
creates task vectors. In Bouamor, H., Pino, J., and Bali,
K. (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 9318–9333, Singapore,
December 2023. Association for Computational Linguis-
tics. URL https://aclanthology.org/2023.
findings-emnlp.624.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hernandez, E., Sharma, A. S., Haklay, T., Meng, K., Watten-
berg, M., Andreas, J., Belinkov, Y., and Bau, D. Linear-
ity of relation decoding in transformer language models.
arXiv preprint arXiv:2308.09124, 2023.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing models with task
arithmetic. In The Eleventh International Conference on
Learning Representations, 2022.

Jain, S., Kirk, R., Lubana, E. S., Dick, R. P., Tanaka,
H., Grefenstette, E., Rocktäschel, T., and Krueger,

D. S. Mechanistically analyzing the effects of fine-
tuning on procedurally defined tasks. arXiv preprint
arXiv:2311.12786, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., and
Wattenberg, M. Emergent world representations: Explor-
ing a sequence model trained on a synthetic task. In The
Eleventh International Conference on Learning Represen-
tations, 2023a. URL https://openreview.net/
forum?id=DeG07_TcZvT.

Li, K., Patel, O., Viégas, F., Pfister, H., and Wattenberg, M.
Inference-time intervention: Eliciting truthful answers
from a language model. arXiv preprint arXiv:2306.03341,
2023b.

Li, M., Davies, X., and Nadeau, M. Circuit breaking: Re-
moving model behaviors with targeted ablation. arXiv
preprint arXiv:2309.05973, 2023c.

Li, Z., You, C., Bhojanapalli, S., Li, D., Rawat, A. S.,
Reddi, S. J., Ye, K., Chern, F., Yu, F., Guo, R., and
Kumar, S. The lazy neuron phenomenon: On emergence
of activation sparsity in transformers. In The Eleventh
International Conference on Learning Representations,
2023d. URL https://openreview.net/forum?
id=TJ2nxciYCk-.

Meng, K., Bau, D., Andonian, A. J., and Belinkov, Y. Lo-
cating and editing factual associations in GPT. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=-h6WAS6eE4.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations, 2016.

Nanda, N., Lee, A., and Wattenberg, M. Emergent linear
representations in world models of self-supervised se-
quence models. In Proceedings of the 6th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Networks
for NLP, pp. 16–30, 2023.

Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper,
A. F., Ippolito, D., Choquette-Choo, C. A., Wallace, E.,
Tramèr, F., and Lee, K. Scalable extraction of training
data from (production) language models. arXiv preprint
arXiv:2311.17035, 2023.

11

https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2023.findings-emnlp.624
https://aclanthology.org/2023.findings-emnlp.624
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4

A Mechanistic Understanding of Alignment Algorithms

Nostalgebraist. Interpreting gpt: The logit lens,
2020. URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to cir-
cuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Gray, A.,
et al. Training language models to follow instructions
with human feedback. In Advances in Neural Information
Processing Systems, 2022.

Park, K., Choe, Y. J., and Veitch, V. The linear represen-
tation hypothesis and the geometry of large language
models. In Causal Representation Learning Workshop at
NeurIPS 2023, 2023.

Qi, X., Zeng, Y., Xie, T., Chen, P.-Y., Jia, R., Mittal, P.,
and Henderson, P. Fine-tuning aligned language models
compromises safety, even when users do not intend to!
arXiv preprint arXiv:2310.03693, 2023.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model, 2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. The
woman worked as a babysitter: On biases in language
generation. In Inui, K., Jiang, J., Ng, V., and Wan, X.
(eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 3407–3412, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1339. URL
https://aclanthology.org/D19-1339.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. Ad-
vances in Neural Information Processing Systems, 33:
3008–3021, 2020.

Tenney, I., Das, D., and Pavlick, E. BERT rediscovers the
classical NLP pipeline. In Korhonen, A., Traum, D., and
Màrquez, L. (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp.

4593–4601, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1452.
URL https://aclanthology.org/P19-1452.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace,
B. C., and Bau, D. Function vectors in large language
models. arXiv preprint arXiv:2310.15213, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wallace, E., Feng, S., Kandpal, N., Gardner, M., and Singh,
S. Universal adversarial triggers for attacking and an-
alyzing NLP. In Inui, K., Jiang, J., Ng, V., and Wan,
X. (eds.), Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 2153–2162,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1221.
URL https://aclanthology.org/D19-1221.

Wei, A., Haghtalab, N., and Steinhardt, J. Jailbroken:
How does LLM safety training fail? In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=jA235JGM09.

Welleck, S., Kulikov, I., Roller, S., Dinan, E., Cho, K., and
Weston, J. Neural text generation with unlikelihood train-
ing. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/
forum?id=SJeYe0NtvH.

Xu, J., Lee, A., Sukhbaatar, S., and Weston, J. Some
things are more cringe than others: Preference opti-
mization with the pairwise cringe loss. arXiv preprint
arXiv:2312.16682, 2023.

Yang, X., Wang, X., Zhang, Q., Petzold, L., Wang, W. Y.,
Zhao, X., and Lin, D. Shadow alignment: The ease
of subverting safely-aligned language models. arXiv
preprint arXiv:2310.02949, 2023.

12

https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://aclanthology.org/D19-1339
https://aclanthology.org/P19-1452
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/D19-1221
https://openreview.net/forum?id=jA235JGM09
https://openreview.net/forum?id=jA235JGM09
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH

A Mechanistic Understanding of Alignment Algorithms

Zhang, Z., Lin, Y., Liu, Z., Li, P., Sun, M., and Zhou,
J. MoEfication: Transformer feed-forward layers are
mixtures of experts. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Findings of the Association for
Computational Linguistics: ACL 2022, pp. 877–890,
Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-acl.
71. URL https://aclanthology.org/2022.
findings-acl.71.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R.,
Pan, A., Yin, X., Mazeika, M., Dombrowski, A.-K., et al.
Representation engineering: A top-down approach to ai
transparency. arXiv preprint arXiv:2310.01405, 2023a.

Zou, A., Wang, Z., Kolter, J. Z., and Fredrikson, M. Uni-
versal and transferable adversarial attacks on aligned lan-
guage models. arXiv preprint arXiv:2307.15043, 2023b.

13

https://aclanthology.org/2022.findings-acl.71
https://aclanthology.org/2022.findings-acl.71

A Mechanistic Understanding of Alignment Algorithms

A. Projecting Value Vectors onto Vocabulary Space
In this section we provide details from Geva et al. (2022) that demonstrate that MLP value vectors promote or suppress the
likelihood of tokens.

We start from Equation 2:

MLPℓ(xℓ) =

dmlp∑
i=1

σ(xℓ · kℓ
i)v

ℓ
i =

dmlp∑
i=1

mℓ
iv

ℓ
i .

Thus, we can consider the update from MLPℓ as dmlp sub-updates, each sub-update being mℓ
iv

ℓ
i .

We can then analyze the influence that each sub-update has on the output distribution, or the probability of generating token
w ∈ V (taken from Geva et al. (2022)):

p
(
w | xℓ +mℓ

iv
ℓ
i , E

)
=

exp
(
ew · xℓ + ew ·mℓ

iv
ℓ
i

)
Z
(
E(xℓ +mℓ

iv
ℓ
i))

∝ exp
(
ew · xℓ

)
· exp

(
ew ·mℓ

iv
ℓ
i

)
(5)

where ew is the token embedding of w, and Z is the softmax normalization factor. This indicates that when ew ·mℓ
iv

ℓ
i > 0,

the likelihood of w increases, while ew ·mℓ
iv

ℓ
i < 0 decreases the likelihood.

B. Additional Llama2 Results
In this section we provide results from Llama2. Table 6 demonstrates the toxic tokens encoded by its GLU value vectors.
Table 7 demonstrates results from intervening on Llama2’s residual stream using token vectors.

Table 6. Top toxic vectors in Llama2, projected onto the vocabulary space. WARNING: THESE EXAMPLES ARE HIGHLY OFFEN-
SIVE.

VECTOR TOP TOKENS

WToxic hole, ass, arse, onderwerp, bast, *$, face, Dick
GLU.v19

5447 hell, ass, bast, dam, balls, eff, sod, f
GLU.v24

10272 ass, d, dou, dick, pen, cock, j
GLU.v15

6591 org, sex, anal, lub, sexual, nak, XXX
SVD.UToxic[0] hell, ass, bast, dam, eff, sod, arse,

Table 7. Toxicity, perplexity (PPL), and F1 after interventions or DPO for Llama2. We scale our toxic vectors such that the resulting
perplexity is comparable to that of post-DPO GPT2. †: Not an intervention.

METHOD VECTOR TOXIC PPL F1

NO OP N/A 0.359 6.095 0.227

SUBTRACT WTOXIC 0.256 6.523 0.225
SUBTRACT GLU.v19

5447 0.171 6.518 0.225
SUBTRACT SVD.UTOXIC [0] 0.246 6.504 0.225

DPO† N/A 0.138 6.587 0.194

C. Shift in Residual Streams
In this section we provide more examples of residual streams shifting out of toxic regions. See Figure 7

D. Shifts in Residual Streams vs. Shifts in MLP Value Vectors.
In this section we provide more examples of how MLP value vectors contribute in the δx direction at different layers.

14

A Mechanistic Understanding of Alignment Algorithms

Shift Component

Pr
in

ci
pl

e
C

om
po

ne
nt

Activated
High (> 10)
Low (> 0.1)
None
Model
GPT2
DPO

Shift Component

Pr
in

ci
pl

e
C

om
po

ne
nt

Shift Component

Pr
in

ci
pl

e
C

om
po

ne
nt

Figure 7. Shift in residual streams at layer 12, 18, and 13 (we show these three layers because MLP.v12
771, MLP.v18

2669, and MLP.v13
668

are the next three vectors with highest cosine similarity with WToxic. See Table 1, Figure 2.

E. Hyperparameters
Tables 8, and 9 contain the hyperparameters used for our toxic probe, DPO, and PPLM, respectively.

15

A Mechanistic Understanding of Alignment Algorithms

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

1 0 1
Cos Sim

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 6

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 7

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 8

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 9

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 10

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 11

0.2 0.0 0.2
Mean Act.

Figure 8. Shift in residual streams at layer 12 vs. shift in MLP value vectors (δ12x vs. δMLP).

Table 8. Hyperparameters: DPO.

HYPERPARAMETER VALUE

LEARNING RATE 1E-6
BATCH SIZE 4
OPTIMIZER RMSPROP
GRADIENT ACCUMULATION STEPS 1
MAX GRADIENT NORM 10
VALIDATION METRIC LOSS/VALID
VALIDATION PATIENCE 10
DPO BETA 0.1

Table 9. Hyperparameters: PPLM.

HYPERPARAMETER VALUE

STEP SIZE 0.4
TEMPERATURE 1
TOP K 10
NUM ITERATIONS 50
WINDOW LENGTH 0
HORIZON LENGTH 1
DECAY FALSE
GAMMA 1
GM SCALE 0.95
KL SCALE 0.1

16

A Mechanistic Understanding of Alignment Algorithms

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 0 Layer 2 Layer 4 Layer 6 Layer 8

1 0 1
Cos Sim

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 9

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 10

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 11

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 12

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 13

0.2 0.0 0.2
Mean Act.

Figure 9. Shift in residual streams at layer 14 vs. shift in MLP value vectors (δ14x vs. δMLP).

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 0 Layer 3 Layer 6 Layer 9 Layer 10

1 0 1
Cos Sim

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 11

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 12

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 13

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 14

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 15

0.2 0.0 0.2
Mean Act.

Figure 10. Shift in residual streams at layer 16 vs. shift in MLP value vectors (δ16x vs. δMLP).

17

A Mechanistic Understanding of Alignment Algorithms

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 0 Layer 2 Layer 4 Layer 6 Layer 8

1 0 1
Cos Sim

0.00
0.04
0.08
0.12
0.16
0.20
0.24

Pr
op

or
tio

n

Layer 9

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 11

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 13

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 15

0.2 0.0 0.2
Mean Act.

1 0 1
Cos Sim

Layer 17

0.2 0.0 0.2
Mean Act.

Figure 11. Shift in residual streams at layer 18 vs. shift in MLP value vectors (δ18x vs. δMLP).

18

