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Abstract

Explanations in recommender systems have long been valued in business applica-
tions for enabling consumers to make informed decisions and providing firms with
actionable insights. However, existing approaches either explain the data, which
is not directly tied to the model, or explain a trained model in an ad hoc manner.
Neither demonstrates that explanations can improve recommendation performance.
Recent advances in large language models (LLMs) show that reasoning can im-
prove LLM performance, but LLM-based recommenders still underperform deep
neural networks (DNNs). We propose RecPIE, Recommendation with Prediction-
Informed Explanations, a framework that jointly optimizes recommendations and
explanations by learning what LLM-generated explanations are most useful for
recommendations. For prediction-informed explanations, the recommendation
task guides the learning of consumer embeddings, which serve as soft prompts
to fine-tune LLMs to generate contrastive explanations (why a consumer may or
may not like a product). For explanation-informed predictions, these learned
explanations are then fed back into the recommendation component to improve
predictive accuracy. The two tasks are trained in an alternating fashion, with the
LLM continuously fine-tuned via proximal policy optimization (PPO). Extensive
experiments on multiple industrial datasets show that RecPIE significantly outper-
forms strong baselines, achieving 3–34% gains in predictive performance. Further
analysis reveals that these gains mainly come from LLMs’ reasoning capabilities,
rather than their external knowledge or summarization skills.

1 Introduction

Recommender systems are integral to many businesses [Ricci et al., 2010, Schafer et al., 1999], but
state-of-the-art models are often black boxes that predict user behavior without explaining why items
are recommended. In an era of information overload, transparency has become increasingly important:
users want to know why certain products are suggested, sellers and creators seek insights into user
preferences, and platforms need to understand which product attributes attract specific segments.
This demand has driven growing interest in explanations for recommender systems [McSherry, 2005,
Tintarev and Masthoff, 2007, Zhang et al., 2020].

Existing explanation methods fall into two categories: (1) generating insights from the data itself,
e.g., using LLMs or multimodal models to better represent consumers or content [Wang et al., 2024,
Acharya et al., 2023, Wang et al., 2025], or (2) explaining an already-trained model with ad-hoc
methods such as SHAP [Lundberg, 2017]. The former describe only the data rather than the model
[Lubos et al., 2024], while the latter do not improve predictive performance. Thus, current approaches
fail to show how explanations can make recommender systems better. Meanwhile, recent work shows
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that reasoning can substantially improve LLM performance [Wei et al., 2022, Guo et al., 2025],
including in LLM-based recommenders [Bao et al., 2023, Zhao et al., 2024, Tsai et al., 2024]. Yet
LLM recommenders still underperform deep neural networks (DNNs), since recommendation is a
discriminative task while LLMs are generative [Ye et al., 2024]. Companies therefore continue to
rely on DNN-based models [Zhai et al., 2024, Covington et al., 2016], and it remains unclear what
natural language explanations can actually help.

We propose RecPIE—Recommendation with Prediction-Informed Explanations, a framework
that learns which LLM-generated explanations are most useful for recommendations. RecPIE jointly
optimizes two components: prediction-informed explanations, where recommendation tasks guide
consumer embeddings used as soft prompts to fine-tune LLMs to generate contrastive, personalized
explanations; and explanation-informed predictions, where these explanations feed back into the
recommender to improve accuracy. The two tasks are trained in an alternating loop, with the LLM
fine-tuned using proximal policy optimization (PPO) [Schulman et al., 2017].

To evaluate RecPIE, we conducted experiments on four real-world datasets covering destinations,
movies, restaurants, and hotels. Across all datasets, RecPIE consistently outperformed state-of-the-
art black-box, LLM-based, and explainable recommenders, achieving 3–34% gains over the best
baselines. These results show that RecPIE improving predictive accuracy while also providing expla-
nations, overcoming the common trade-off between accuracy and interpretability in recommender
systems.

We further isolate the source of improvement through diagnostic studies. Using GPT-2 [Radford
et al., 2019], trained before our datasets were created, RecPIE still outperforms state-of-the-art
baselines, confirming that gains are not due to prior knowledge. Models with stronger reasoning (e.g.,
Llama 3.1 [Meta, 2024]) outperform those with weaker reasoning (e.g., Mixtral 8×7b [Jiang et al.,
2024]), and replacing reasoning prompts with summarization prompts degrades performance. Profile
augmentation with LLMs yields little benefit. Together, these findings show that the improvements
stem from LLMs’ reasoning ability to identify key decision variables, rather than external knowledge
or summarization.

2 Proposed Framework: RecPIE

RecPIE consists of two components: an explanation generator (a generative task) and a recommen-
dation model (a discriminative task). These components are trained in an alternating optimization
loop so that each task improves the other. In the prediction-informed explanations stage, the rec-
ommendation task guides consumer embeddings that are used as soft prompts to fine-tune an LLM
for generating personalized explanations e. In the explanation-informed predictions stage, these
explanations are fed back into the recommender to improve rating prediction accuracy. Formally, the
ground truth rating is y, and the prediction with explanations is f(x, e), where f is the DNN-based
recommendation model and x denotes other standard inputs (user, item, and contextual features).
The LLM is fine-tuned via proximal policy optimization (PPO) [Schulman et al., 2017]. Figure 1
provides an overview.

Figure 1: (Color online) Overview of RecPIE.

2.1 Prediction-Informed Explanations

We fine-tune an LLM to generate explanations without relying on costly ground-truth annotations.
Instead, the recommendation task itself provides supervision. Given consumer i’s history of consumed
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products ji1, . . . , jin, the LLM is prompted to generate positive (why the user may like a product)
and negative (why not) explanations. The quality of these explanations is measured by how much
they reduce the rating prediction error. Specifically, we define the reward for fine-tuning the LLM as

r(e) =
1

1 + |y − f(x, e)|
, (1)

where f(x, e) is the recommendation output with explanation e. This reward is used to update the
LLM through PPO.

To personalize explanations, we adopt a soft prompt mechanism. Each consumer i has an embedding
ei from the consumer embedding table Ec. This embedding is prepended to the LLM input, ensuring
that the generated explanations reflect consumer-specific preferences. The “Explanation component”
of RecPIE is illustrated in Figure 2. Prompts used for fine-tuning are detailed in Appendix A.1.

Figure 2: (Color online) Detailed architecture of RecPIE.

2.2 Explanation-Informed Predictions

The generated explanations are embedded using a pre-trained text encoder (e.g., DistillBERT; Sanh
et al., 2019) and concatenated with standard user, item, and context features as inputs to the rec-
ommendation model. Specifically, the DNN input includes: embeddings of positive and negative
explanations, the consumer embedding, product embedding, sequential history embedding, and
contextual features. This input is processed by the DNN to predict ratings or outcomes such as click-
through probability. Importantly, the consumer embeddings learned here are reused as soft prompts
in the explanation component, forming the alternating loop between prediction and explanation. The
“Recommendation component” is illustrated in Figure 2.

Statistical insights into why LLM-generated explanations can aid learning are provided in Appendix B.

3 Experiments

3.1 Setup

We evaluate RecPIE on four benchmark datasets: Amazon Movie, Yelp Restaurant, TripAdvisor Hotel,
and Google Maps. Dataset details are provided in Appendix C.1. For all datasets, the task is to predict
the item rating given the user’s past consumption history. We compare RecPIE with 17 state-of-the-art
baselines spanning four categories: LLM-based recommender systems, aspect-based recommender
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TripAdvisor Yelp Amazon Movie Google Map
RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓

RecPIE (Ours) 0.1733 (0.0010) 0.1333 (0.0008) 0.2020 (0.0010) 0.1620 (0.0009) 0.1653 (0.0010) 0.1165 (0.0009) 0.2976 (0.0011) 0.1976 (0.0010)
% Improved +13.18%*** +21.63%*** +16.63%*** +21.78%*** +21.25%*** +34.18%*** +4.31%*** +3.80%***
RecSAVER 0.1949 (0.0017) 0.1512 (0.0013) 0.2279 (0.0017) 0.1764 (0.0014) 0.1755 (0.0016) 0.1242 (0.0013) 0.3173 (0.0015) 0.2104 (0.0012)

LLMRG 0.1956 (0.0017) 0.1514 (0.0013) 0.2268 (0.0017) 0.1760 (0.0014) 0.1758 (0.0016) 0.1246 (0.0013) 0.3177 (0.0015) 0.2101 (0.0012)
TallRec 0.1924 (0.0017) 0.1498 (0.0013) 0.2238 (0.0017) 0.1732 (0.0014) 0.1720 (0.0016) 0.1222 (0.0013) 0.3118 (0.0015) 0.2072 (0.0012)
A3NCF 0.2103 (0.0019) 0.1811 (0.0013) 0.2607 (0.0023) 0.2181 (0.0016) 0.2241 (0.0029) 0.1903 (0.0018) 0.3238 (0.0035) 0.2124 (0.0021)
SULM 0.2191 (0.0021) 0.1872 (0.0013) 0.2823 (0.0019) 0.2258 (0.0015) 0.2477 (0.0027) 0.1980 (0.0019) 0.3244 (0.0034) 0.2150 (0.0021)
AARM 0.2083 (0.0019) 0.1803 (0.0014) 0.2582 (0.0021) 0.2162 (0.0015) 0.2162 (0.0027) 0.1845 (0.0018) 0.3238 (0.0035) 0.2124 (0.0021)
SASRec 0.2089 (0.0007) 0.1731 (0.0006) 0.2491 (0.0011) 0.2135 (0.0009) 0.2176 (0.0013) 0.1869 (0.0008) 0.3118 (0.0011) 0.2058 (0.0010)

DIN 0.2022 (0.0009) 0.1709 (0.0007) 0.2479 (0.0009) 0.2116 (0.0008) 0.2155 (0.0009) 0.1853 (0.0007) 0.3134 (0.0011) 0.2070 (0.0010)
BERT4Rec 0.2003 (0.0009) 0.1701 (0.0006) 0.2460 (0.0009) 0.2101 (0.0008) 0.2126 (0.0009) 0.1832 (0.0008) 0.3110 (0.0011) 0.2054 (0.0010)

PETER 0.1996 (0.0019) 0.1715 (0.0013) 0.2423 (0.0015) 0.2071 (0.0013) 0.2099 (0.0013) 0.1770 (0.0010) 0.3126 (0.0021) 0.2059 (0.0013)
UCEPic 0.2035 (0.0015) 0.1723 (0.0011) 0.2477 (0.0015) 0.2099 (0.0012) 0.2228 (0.0011) 0.1801 (0.0009) 0.3148 (0.0021) 0.2078 (0.0014)

PARSRec 0.2008 (0.0009) 0.1703 (0.0007) 0.2471 (0.0009) 0.2106 (0.0008) 0.2133 (0.0009) 0.1837 (0.0007) 0.3166 (0.0021) 0.2089 (0.0014)

Table 1: Recommendation performance on four datasets. “%Improved” shows the gains of RecPIE
over the best baseline (underlined). Lower is better for RMSE and MAE. ***p<0.01; **p<0.05.

TripAdvisor Yelp Amazon Movie Google Map
Coverage Informativeness Fluency Coverage Informativeness Fluency Coverage Informativeness Fluency Coverage Informativeness Fluency

RecPIE 0.3784 0.5744 0.4193 0.3984 0.5936 0.4380 0.3580 0.5276 0.4003 0.3138 0.4997 0.3836
TallRec 0.3668 0.5583 0.4158 0.3958 0.5901 0.4358 0.3479 0.5155 0.3530 0.3099 0.4930 0.3818
PETER 0.3730 0.4762 0.3772 0.3770 0.5327 0.4012 0.3026 0.4748 0.3264 0.3074 0.4525 0.3597

Table 2: Explanation quality comparison.

systems, sequential recommender systems, and interpretable recommender systems (summarized in
Appendix C.2).

3.2 Main Results

Table 1 reports the main results. RecPIE consistently outperforms all baseline groups across the
four datasets. In particular, LR-Recsys achieves 2.9–3.7% improvements in AUC over the strongest
baselines, demonstrating both the efficacy of RecPIE and the value of LLM-based contrastive
explanations for improving recommendation accuracy.

Appendix C.4 present an example explanation generated with RecPIE alongside corresponding rec-
ommendations. Table 2 further compares explanation quality against the best explanation-generation
baselines (evaluation metrics detailed in Appendix C.3). RecPIE consistently produces the highest-
quality explanations, confirming the advantage of jointly optimizing recommendation and explanation
in a single framework.

3.3 Understanding the Improvements

In Appendix D, we provide additional analyses to better understand the sources of RecPIE’s per-
formance gains. Specifically, we show that: (1) RecPIE substantially improves learning efficiency,
achieving the predictive accuracy of the best baseline trained on 100% of the data using only 25%
of the training data (Appendix D.1); (2) users and products with the highest prediction uncertainty
benefit the most, alleviating cold-start challenges (Appendix D.2); (3) the improvements mainly come
from LLMs’ reasoning capability, rather than external knowledge or summarization (Appendix D.3);
(4) RecPIE learns item similarities in the embedding space with far fewer examples than state-of-
the-art recommenders (Appendix D.4); and (5) both positive and negative explanations contribute to
predictive performance (Appendix D.5).

4 Conclusion

We proposed RecPIE, a framework that jointly optimizes recommendations and explanations. Unlike
prior approaches that treat recommendation (a discriminative task) and explanation (a generative task)
separately, RecPIE demonstrates that the two can mutually reinforce each other when trained together.
The framework is general and practical for large-scale deployment: unlike LLM-based recommenders
that are expensive to serve in real time, RecPIE allows explanations to be pre-computed and stored for
each user. Beyond recommender systems, the idea of integrating prediction-informed explanations
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with explanation-informed predictions offers a promising direction for broader applications such as
consumer targeting and behavior prediction.
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A Details of the framework

A.1 Prompts

The prompts for positive and negative explanations follow this template:

“Provide a reason for why this user purchased (or did not purchase) this product,
based on the provided profile of the past products the user purchased, and the
profile of the current product. Answer with exactly one sentence in the following
format: ‘The user purchased (or did not purchase) this product because the user ...
and the product ...’.”

The prompts can be adapted to fit specific domains; for example, “purchased this product” can be
changed to “watched this movie”. The prompt is then concatenated with the user’s consumption
history, which is presented as a sequence of product profiles, and the candidate product profile.
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B Statistical Insights into Why Explanations Improve Learning

We provide mathematical insights into why and how explanations can help machine learning (ML)
models learn more efficiently. In a typical ML setting, the model is trained in a single environment,
represented by the observed training data. The goal is to predict outcomes Y from high-dimensional
inputs X , which may include user behavior, product attributes, and contextual signals. When we
prompt large language models (LLMs) to explain why a user prefers or dislikes a product, we ask them
to reveal probable decision-making factors—that is, which features in X likely drive Y . Incorporating
this knowledge into model training improves learning efficiency and predictive performance with the
same amount of data.

We formalize this using high-dimensional statistical learning theory. Suppose observations
{xk, yk}Nk=1 follow:

yk = f(xk) + ϵk, (2)
where xk = (xk1, ..., xkp) is a p-dimensional feature vector, yk is the label, ϵk are i.i.d. errors, and f
is the true data-generating function. Let S∗ ⊂ {1, ..., p} be the (unknown) set of important features,
with |S∗| = s∗ ≪ p. Then:

yk = f∗(xk,S∗) + ϵk. (3)

LLM-generated explanations can be interpreted as direct estimates of S∗. For instance, in Figure ??,
the LLM highlights features like hasBoughtOrange as relevant to the user liking orange juice. This
implicit identification of S∗ enables more targeted and efficient learning.

LLMs Approximate S∗ via Multi-Environment Learning. LLMs are trained on data from
many domains—analogous to multi-environment learning [Peters et al., 2016]. Let E be a set of
environments. Each e ∈ E provides n i.i.d. samples {x(e)

k , y
(e)
k }nk=1 from the model:

y
(e)
k = β∗

S∗
Tx

(e)
k,S∗ + ϵ

(e)
k . (4)

The feature relevance (i.e., S∗ and β∗) is invariant across environments, but feature distributions may
vary. LLMs trained on web-scale corpora effectively learn from large |E|, enabling robust inference
of S∗.

The environment invariant linear least squares (EILLS) estimator [Fan et al., 2023] formalizes this.
It solves:

β̂L = argmin
β

R̂(β) + γĴ(β) + λ∥β∥0, (5)

where R̂(β) is empirical loss across environments and Ĵ(β) encourages cross-environment invariance.
Under regularity conditions:

P(supp(β̂L) = S∗) → 1 as n ≫ s∗β−2
min log p. (6)

Thus, LLMs—trained on vast, multi-environment corpora—can identify S∗ with high probability,
outperforming models trained in a single environment.

Knowing S∗ Improves Learning Efficiency. Let β∗ be the true coefficients. Without knowledge
of S∗, Lasso regression estimates:

β̂Lasso = argmin
β

 1

2n

n∑
k=1

(yk − xT
k β)

2 + λ

p∑
j=1

|βj |

 , (7)

with error rate:

∥β̂Lasso − β∗∥2 = OP

(√
s∗ log p

n

)
. (8)

If S∗ is known (oracle case), OLS yields:

∥β̂Oracle − β∗∥2 = OP

(√
s∗

n

)
, (9)

and achieves better convergence by a factor of
√
log p. This efficiency gain is particularly valuable in

recommender systems, where p (e.g., item attributes) can be very large.
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Figure 3: (Color online) Convergence rate comparison: Lasso (unknown S∗) vs. Oracle (known S∗).

Extensions to Nonlinear Models. Though the above theory focuses on linear models, results
extend to nonlinear settings. Gu et al. [2024] consider multi-environment neural networks:

min
g∈G

max
f(e)∈Fg

∑
e∈E

Eµ(e) [ℓ(y, g(x))] + γ
∑
e∈E

E[{y − g(x)}f (e)(x)− f (e)(x)2/2]. (10)

They show that the estimated set Ŝ includes all true features with high probability.

Finally, Schmidt-Hieber [2020] show that for neural networks, convergence rate improves from
OP (n

−2/(2+p)) to OP (n
−2/(2+s∗)) if S∗ is known. Thus, LLM-generated explanations—by identi-

fying S∗—help black-box ML models converge faster and generalize better.

In practice, our framework retains environment-specific signals (e.g., embeddings) alongside explana-
tions, allowing flexibility while preserving the benefits of explanation-informed learning.

C Details on the Experiments

C.1 Datasets

Amazon Movie: This dataset captures user purchasing behavior in the Movies & TV category on
Amazon [Ni et al., 2019]2. Collected in 2023, it contains 17,328,314 records from 6,503,429 users
and 747,910 unique movies. Each record includes the user ID, movie ID, movie title, user rating (on
a 1-5 scale), purchasing timestamp, user’s past purchasing history (as a sequence of movie IDs), and
three aspect terms summarizing key movie attributes (e.g., “thriller”, “exciting”, “director”).

Yelp Restaurant: This dataset documents users’ restaurant check-ins on the Yelp platform3. It spans
11 metropolitan areas in the United States and comprises 6,990,280 check-in records from 1,987,897
users across 150,346 restaurants. Each record includes the user ID, restaurant ID, check-in timestamp,
user rating (on a 1-5 scale), user’s historic visits (as a sequence of restaurant IDs), and three aspect
terms summarizing key restaurant features (e.g., “atmosphere”, “service”, “expensive”).

TripAdvisor Hotel: This dataset captures users’ hotel stays on the TripAdvisor platform [Li et al.,
2023a]. Collected in 2019, it contains 343,277 hotel stay records from 9,765 users and 6,280 unique
hotels. Each record includes the user ID, hotel ID, check-in timestamp, user rating, the list of hotels
previously visited by the user, and three aspect terms describing key hotel attributes (e.g., “beach”,
“price”, “service”).

Google Map Mountain View: This dataset contains review information up to Sep 2021 on Google
Map (ratings and review text), along with business metadata (address, descriptions, category, etc...)
in the United States 4. We focus on the sample of the data around the Google Headquarters (i.e.,
Mountain View, CA) by filtering with the zip codes between 94035 and 94043. To align with the

2https://nijianmo.github.io/amazon/index.html
3https://www.yelp.com/dataset
4https://mcauleylab.ucsd.edu/public_datasets/gdrive/googlelocal/
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other three datasets, we infer three aspect terms describing key business attributes using LLM based
on the review text and business descriptions.

C.2 Baselines

We compare RecPIE against state-of-the-art black-box recommender systems, LLM-based recom-
mender systems, and a wide range of explainable recommender systems. Specifically, we identify the
following four groups of 14 state-of-the-art baselines:

1. LLM-Based Recommender Systems:

• RecSAVER [Tsai et al., 2024] automatically assesses the quality of LLM reasoning
responses through a self-verification process, without the requirement of curated gold
references or human raters. The identified reasoning will then be used for the rating
prediction task.

• LLMRG [Wang et al., 2023] leverages LLMs to construct personalized reasoning
graphs, which link a user’s profile and behavioral sequences through causal and logical
inferences, representing the user’s interests in an interpretable way.

• TallRec [Bao et al., 2023] fine-tunes LLMs with a large set of recommendation data to
align LLMs with the recommendation tasks.

2. Aspect-Based Recommender Systems: These models utilize ground-truth aspect terms as
additional information to facilitate preference reasoning and generate recommendations.

• A3NCF [Cheng et al., 2018] constructs a topic model to extract user preferences and
item characteristics from reviews, and capture user attention on specific item aspects
via an attention network.

• SULM [Bauman et al., 2017] predicts the sentiment of a user about an item’s aspects,
identifies the most valuable aspects of their potential experience, and recommends
items based on these aspects.

• AARM [Guan et al., 2019] models interactions between similar aspects to enrich
aspect connections between users and products, using an attention network to focus on
aspect-level importance.

• MMALFM [Cheng et al., 2019] applies a multi-modal aspect-aware topic model to
estimate aspect importance and predict overall ratings as a weighted linear combination
of aspect ratings.

• ANR [Chin et al., 2018] learns aspect-based user and item representations through
an attention mechanism and models multi-faceted recommendations using a neural
co-attention framework.

• MTER [Le and Lauw, 2021] generates aspect-level comparisons between target and
reference items, producing recommendations based on these comparative explanations.

3. Sequential Recommender Systems: These models use sequences of past user behaviors to
predict the next likely purchase, leveraging various neural network architectures.

• SASRec [Kang and McAuley, 2018] utilizes self-attention to capture long-term seman-
tics in user actions and identify relevant items in a user’s history.

• DIN [Zhou et al., 2018] adopts a local activation unit to adaptively learn user interest
representations from historical behaviors and predict preferences for candidate items.

• BERT4Rec [Sun et al., 2019] adopts bidirectional self-attention and the Cloze ob-
jective to model user behavior sequences and avoid information leakage, enhancing
recommendation efficiency.

• UniSRec [Hou et al., 2022] uses contrastive pre-training to learn universal sequence
representations of user preferences, improving recommendation accuracy.

4. Interpretable Recommender Systems: These models focus on generating high-quality
recommendations accompanied by intuitive explanations.

• AMCF [Pan et al., 2021] maps uninterpretable general features to interpretable aspect
features, optimizing for both recommendation accuracy and explanation clarity through
dual-loss minimization.
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• PETER [Li et al., 2021] predicts words in target explanations using IDs, endowing
them with linguistic meaning to generate personalized recommendations.

• UCEPic [Li et al., 2023b] combines aspect planning and lexical constraints to produce
personalized explanations through insertion-based generation, improving recommenda-
tion performance.

• PARSRec [Gholami et al., 2022] leverages common and individual behavior patterns
via an attention mechanism to tailor recommendations and generate explanations based
on these patterns.

We split each dataset into training and test sets using an 80-20 ratio at the user-temporal level. To
ensure a fair comparison, we adopted Grid Search [Bergstra et al., 2011] and allocated equal compu-
tational resources—in terms of training time and memory usage—to optimize the hyperparameters
for both RecPIE and all baseline models.

C.3 Explanation quality evaluation

We look at the following three metrics for evaluating explanation quality:

• Coverage: Percentage of aspect terms covered in the explanations5.
• Informativeness: The informativeness score (INFO) measured by BARTScore [Yuan et al.,

2021], which measures how well the generated text captures the key ideas of the source text.
Here the source text is the review text for each (user, item) pair.

• Fluency: The fluency score (FLU) measured by BARTScore [Yuan et al., 2021], which
measures whether the text has no formatting problems, capitalization errors or obviously
ungrammatical sentences (e.g., fragments, missing components) that make the text difficult
to read.

The results are reported in Table 2.

C.4 Case study

To illustrate how our model operates, we present a case study from the Yelp dataset below. In this
scenario, the task is to recommend a premium Thai restaurant to a specific consumer. However,
after incorporating the positive and negative reasoning generated by the contrastive-explanation
generator in our RecPIE, the model determines that an alternative Japanese restaurant would be a
better fit for the consumer. Consequently, our recommendation system predicts a rating of 1.14 for
the Thai restaurant, closely aligning with the ground-truth rating of 1. This prediction significantly
outperforms the baseline model PETER [Li et al., 2021], which predicts a rating of 1.89.

Consumer Past Visiting History: O-Ku Sushi, Zen Japanese, MGM Grand Hotel, Sen of Japan,
Sushi Bong
Restaurant Profile: “Siam Thai Kitchen is a Thai restaurant that offers a unique dining experience in
the city. The restaurant is known for its authentic Thai cuisine and its warm and inviting atmosphere.
The menu features a variety of traditional Thai dishes, as well as some modern twists on classic Thai
flavors. The restaurant is perfect for couples, families, and groups of friends who are looking for a
delicious and authentic Thai dining experience.”
Generated Positive Explanation: “The consumer is looking for a unique and flavorful dining
experience and the restaurant offers a variety of Asian cuisine.”
Generated Negative Explanation: “The consumer is looking for a traditional Japanese experience
and wants to escape the busy city life, while the restaurant is not a traditional Japanese experience
and is located in a city.”
Positive Explanation Attention Value: 0.23
Negative Explanation Attention Value: 0.87
RecPIE Predicted Consumer Rating: 1.14
Ground-Truth Consumer Rating: 1
PETER-Predicted Consumer Rating: 1.89

5Each (user, item) pair is accompanied by a list of aspect terms in the dataset.

11



TripAdvisor Yelp Amazon Movie
RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓

RecPIE 0.1889 0.1444 0.2149 0.1685 0.1673 0.1180
100% Training Data (0.0010) (0.0008) (0.0010) (0.0009) (0.0010) (0.0009)

RecPIE 0.1938 0.1503 0.2188 0.1774 0.1791 0.1308
50% Training Data (0.0017) (0.0013) (0.0018) (0.0017) (0.0021) (0.0017)

RecPIE 0.2017 0.1679 0.2356 0.1958 0.1997 0.1703
25% Training Data (0.0026) (0.0021) (0.0027) (0.0027) (0.0039) (0.0028)

RecPIE 0.2098 0.1796 0.2557 0.2140 0.2175 0.1866
12% Training Data (0.0036) (0.0030) (0.0039) (0.0038) (0.0066) (0.0044)

PETER 0.1996 0.1715 0.2423 0.2071 0.2099 0.1770
100% Training Data (0.0019) (0.0013) (0.0015) (0.0013) (0.0013) (0.0010)

Table 3: Recommendation performance across three datasets using varying percentages of training
data for RecPIE.

D Understanding the Improvements

D.1 Improved learning efficiency.

Based on the theoretical insights, incorporating explanations into the recommendation process is
expected to significantly improve learning efficiency. This implies that our proposed RecPIE should
require less training data to achieve recommendation performance comparable to the baselines. To
demonstrate this, we randomly sample subsets of the three datasets, keeping 12%, 25%, and 50%
of the original training data, and train RecPIE on these subsets while keeping the same test set for
evaluation. The results, presented in Table 3, show that our model achieves performance equivalent
to the best-performing baseline, PETER [Li et al., 2021], using as little as 25% of the training data.
These findings validate the improved learning efficiency of RecPIE.

D.2 “Harder” examples benefit more from RecPIE

By leveraging LLMs’ reasoning capabilities to identify important variables, RecPIE should intuitively
provide greater benefits for “harder” examples where users’ decisions are less obvious. To test this
hypothesis, we compute the prediction uncertainty for each observation in our datasets, measured as
the variance—or “disagreement”—across the predictions made by our model and all baseline models
from Table 1. Intuitively, higher prediction uncertainty indicates a more challenging, or “harder”,
prediction task.

In Fig.4, we created plots for each dataset, where the x-axis represents the normalized uncertainty level
(scaled between 0 and 1 using min-max normalization [Patro, 2015]), and the y-axis represents the
performance improvement of our RecPIE over the best-performing baseline (measured by RMSE). As
shown by the regression lines in Figures 4(a), 4(b), and 4(c), there is a statistically significant positive
correlation between uncertainty and performance improvements. Specifically, the performance gains
from incorporating explanations are consistently larger for high-uncertainty examples across all three
datasets, validating the insight that our RecPIE is more beneficial for examples that are “harder” or
more uncertain.

This observation aligns with the theoretical insights in Appendix B. For “harder” examples, the
model is likely uncertain about which input variables to rely on for making predictions, leading to
higher prediction uncertainty. In such cases, the knowledge provided by LLMs about the important
variables becomes particularly valuable, allowing the model to focus on the most relevant features.
Consequently, the performance gains of our RecPIE are larger for these more challenging cases.

D.3 The gain of RecPIE is from LLM’s reasoning capability

The theoretical insights highlight that the advantage of RecPIE lies in leveraging LLMs’ strong
reasoning capabilities to identify the important variables. Therefore, LLMs with better reasoning
capabilities are expected to lead to better recommendation performance. To validate this, we conduct
additional experiments within the RecPIE framework, using different LLMs with varying reasoning
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(a) Amazon Dataset. (b) TripAdvisor Dataset. (c) Yelp Dataset.

Figure 4: Performance improvement of RecPIE against (normalized) pediction uncertainty.

capabilities. As shown in Table 4, the performance of RecPIE with Llama 3.1 is significantly
better than RecPIE with Llama 3, Mixtral-8×7b, Vicuna-7b-v1.5, Qwen2-7B, or GPT-2. This
aligns with the reasoning capability leaderboard at https://huggingface.co/spaces/allenai/
ZebraLogic, where Llama 3.1 demonstrates the highest reasoning capabilities among the tested
models. Furthermore, Llama 3 and Mixtral-8×7b also outperform Vicuna-7b-v1.5, Qwen2-7B, and
GPT-2 in the reasoning leaderboard, which is also aligned with the results observed in RecPIE. These
results confirm that better reasoning capabilities in LLMs directly translate to improved performance
within the RecPIE framework.

Moreover, RecPIE significantly outperforms an alternative approach that uses LLMs directly for
recommendations—without generating explicit explanations (“LLM Direct Recommendation (with
Llama 3.1)” row in Table 4). This suggests that only using LLMs for recommendation without tapping
into their reasoning abilities is insufficient. Additionally, we find that including LLM-generated
product profile information plays only a minor role in the overall effectiveness of the model, as
RecPIE continues to significantly outperform baseline models even when these augmented profiles
are removed (“RecPIE w/o Profile Augmentation” row in Table 4).

Furthermore, we confirm that the observed performance improvements are not due to information
leakage or pre-existing dataset knowledge. For example, the Amazon Movie dataset was collected in
2023, while GPT-2 was pre-trained on data available only up to 2019. Despite this, when GPT-2 is
used within the RecPIE framework, our approach still outperforms other baselines.

Finally, we also tested utilizing LLMs’ summarization capabilities instead of their reasoning abil-
ities within RecPIE. Specifically, we replace the positive and negative explanation prompts in the
contrastive-explanation generator with the following prompt:

“Given the profiles of the watching history of this user {movie_profile_seq}, can
you provide a summary of the user preference of candidate movies?”

In other words, we leverage the LLM’s summarization skills to condense the user’s consumption
history, and then use this summarized information as input to the DNN instead of the positive and
negative explanations. As shown in the last row of Table 4 (“Consumption History Summarization”),
the performance of using LLM for summarization is significantly worse than that of RecPIE using
LLM for explanations. This suggests that the gain from RecPIE specifically comes from the reasons
(positive and negative explanations) provided by LLMs, rather than their ability to summarize
consumption history.

Collectively, these findings support the conclusion that the performance gains observed with RecPIE
are primarily driven by the LLMs’ reasoning capabilities, not their external dataset knowledge or
summarization skills.

D.4 RecPIE learns similarity between items much faster than state-of-the-art recommender
systems

Figure 5 illustrates the embedding distances between two similar items (In-N-Out vs. Five Guys) and
two dissimilar items (Mountain View Farmers Market vs. Kirin Chinese Restaurant) in the Google
Maps dataset. RecPIE learns these relationships significantly faster than state-of-the-art DNN-based
recommender systems: embedding distances (cosine similarities) converge quickly to a high value
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TripAdvisor Yelp Amazon Movie
RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓

RecPIE with Llama 3.1 (Ours) 0.1889 0.1444 0.2149 0.1685 0.1673 0.1180
(0.0010) (0.0008) (0.0010) (0.0009) (0.0010) (0.0009)

RecPIE with Llama 3 0.1934 0.1491 0.2166 0.1697 0.1695 0.1203
(0.0010) (0.0008) (0.0010) (0.0009) (0.0010) (0.0009)

RecPIE with Mixtral-8 ×7b 0.1910 0.1462 0.2163 0.1693 0.1691 0.1199
(0.0010) (0.0008) (0.0010) (0.0009) (0.0010) (0.0009)

RecPIE with Vicuna-7b-v1.5 0.1949 0.1502 0.2175 0.1703 0.1703 0.1210
(0.0010) (0.0008) (0.0010) (0.0009) (0.0010) (0.0009)

RecPIE with Qwen2-7B 0.1966 0.1520 0.2193 0.1724 0.1727 0.1235
(0.0010) (0.0008) (0.0010) (0.0009) (0.0010) (0.0009)

RecPIE with GPT-2 0.1940 0.1582 0.2211 0.1801 0.1799 0.1304
(0.0014) (0.0010) (0.0015) (0.0013) (0.0015) (0.0013)

LLM Direct Recommendation (with Llama 3.1) 0.2233 0.1838 0.2976 0.2402 0.2680 0.2055
(0.0033) (0.0020) (0.0044) (0.0029) (0.0046) (0.0031)

RecPIE w/o Profile Augmentation 0.1973 0.1520 0.2193 0.1719 0.1744 0.1239
(0.0013) (0.0011) (0.0012) (0.0012) (0.0013) (0.0012)

Consumption History Summarization 0.1971 0.1700 0.2409 0.2051 0.2077 0.1751
(0.0011) (0.0008) (0.0011) (0.0009) (0.0011) (0.0010)

Table 4: Recommendation performance across three datasets using LLMs with varying levels of
reasoning capability (lower is better for RMSE and MAE).

for similar items and to a low value for dissimilar items, and the convergence is even faster with more
training data.

This result highlights the advantage of incorporating LLM reasoning into RecPIE. Traditional
recommenders, built on collaborative filtering principles, require many co-occurrence observations
(e.g., consumers visiting both In-N-Out and Five Guys) before capturing such similarities. In contrast,
RecPIE leverages LLMs’ reasoning ability to infer relationships with far fewer examples, accelerating
convergence and improving representation quality.

(a) In-N-Out vs. Five Guys. (b) Mountain View Farmers Market vs. Kirin Chi-
nese Restaurant.

Figure 5: Embedding distances in the Google Maps dataset: RecPIE learns similarities (In-N-Out vs.
Five Guys) and dissimilarities (Mountain View Farmers Market vs. Kirin Chinese Restaurant) more
quickly.

D.5 The role of positive and negative explanations.

To test this, we conduct an attention value analysis to quantify the contributions of positive and
negative explanations to the classification task. The attention value for the positive explanation ᾱpos

is computed as the average of all the relevant pairwise attention values in the attention layer of the
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DNN component. We define:

ᾱpos =
1

|I|
∑
i∈I

αi,pos, ᾱneg =
1

|I|
∑
i∈I

αi,neg, (11)

where I = [pos, neg, c, p, seq, context] represents the index set corresponding to each element in
the input Xinput. In other words, ᾱpos captures the average “attention” that the model puts on the
positive explanation embedding when generating the final prediction, and ᾱneg captures the average
“attention” put on the negative explanation embedding. Therefore, ᾱpos and ᾱneg estimates the
relative importance of the positive and negative explanations in producing the final recommendation
results.

(a) Positive examples (Yelp Dataset). (b) Negative examples (Yelp Dataset).

Figure 6: (Color online) Distribution of attention values on positive and negative explanations for
positive and negative examples.

We find that when a product receives a high rating, RecPIE assigns more attention to positive
explanations than negative ones, as indicated by the distribution of attention weights for positive
explanations (blue bars) being skewed further to the right compared to negative explanations (orange
bars) (Fig.6(a)). Conversely, for products receiving a low rating, RecPIE assigns more attention to
negative explanations, with the distribution of attention weights for positive explanations shifting
further to the left compared to negative explanations (Fig. 6(b),). This confirms the value of the
dual explanations: By providing both positive and negative explanations through the contrastive-
explanation generator, RecPIE is able to intelligently decide which type of explanation to rely on, in
order to generate the most accurate predictions.
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