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Abstract

We present an open-source web tool for quality control of distributed imaging studies. To
minimize the amount of human time and attention spent reviewing the images, we created
a neural network to provide an automatic assessment. This steers reviewers’ attention to
potentially problematic cases, reducing the likelihood of missing image quality issues. We
test our approach using 5-fold cross validation on a set of 5217 magnetic resonance images.
Keywords: quality control, quality assurance, neural networks, web interface.

1. Introduction

Discovery of new knowledge in medicine is sometimes accomplished by large, multi-center
imaging studies. The success of these studies depends on the quality of images and the
resulting measurements. Medical Image Quality Assurance (MIQA) provides a rapid quality
assessment of medical images that also facilitates collaboration and sharing. It incorporates
a state-of-the-art deep learning component to improve the effectiveness of Quality Control
(QC) efforts unique to the needs of multi-center studies. On a daily basis, this system QCs
magnetic resonance images (MRIs) of the brain acquired by the National Consortium on
Alcohol and Neurodevelopment in Adolescence (NCANDA).

MIQA is a client-server web application based on a robust and secure data management
system Girder. We further use ITK, vtk.js, PyTorch, MONAI, and TorchlO.

Images are auto-assessed after upload. Images which are not yet reviewed by a human
are available in a queue to tier one reviewers. Tier one reviewers can mark each image as
either good or questionable. Questionable images need to be reviewed by tier two reviewers
who make a final decision on the quality of an image. An image can be marked bad only if
it has presence of at least one artifact. This can be indicated in the GUI, or in a free-form
text comment provided if the problem does not match the predefined artifact classes.

As far as we know, this is the first attempt at assessing image quality of 3D images.
Previous studies used photographs (Bosse et al., 2017; Hosu et al., 2020), retinal fundus
images (Yu et al., 2017), or tried to improve image quality (Higaki et al., 2019). The closest
one focuses on quantifying motion artifact (Butskova et al., 2021), but that is only one of
nine artifacts we consider here. Their ultimate goal was to correct motion artifacts.

© 2022 Dz. Zuki¢, A. Haley, C. Lisle, J. Klo, K.M. Pohl, H.J. Johnson & A. Chaudhary.


https://github.com/OpenImaging/miqa
https://github.com/girder/girder
https://itk.org/
https://kitware.github.io/vtk-js/index.html
https://pytorch.org/
https://monai.io/
https://torchio.readthedocs.io/

ZUKIG HALEY LiSLE KLo PoOHL JOHNSON CHAUDHARY

2. Materials and Methods

For model training, we use data from the PREDICT-HD study (Paulsen et al., 2014), which
has manually assessed quality for structural (T, T2, PD) brain MRIs. In this study we used
only the T-weighted images. 2299 were acquired on 1.5T and 2918 on 3T MRI machines.
Images came from around 50 scanners. The most important annotation is overall quality,
scored on 0-10 scale (see Figure 1). The original study included manual assessment of signal
to noise ratio and contrast to noise ratio. We didn’t use these metrics as they are highly
correlated the with overall quality, with Pearson coefficients of 0.721 and 0.715, respectively.

The PREDICT-HD study data contained nine presence/absence indications of artifacts
and one of anatomical variants in the images. Some of the images were missing a few
of the indications. Of the 5217 T; images, 520 indicated normal anatomical variants, 61
indicated lesions, 269 identified incomplete brain coverage, 30 misalignment, 28 indicated
wraparound, 347 ghosting, 585 inhomgeneity, 187 metal susceptibility, 888 flow artifact,
and 1286 indicated truncation.

The data largely consisted of images with little or no artifacts. 392 images had quality
five or lower (considered bad by PREDICT-HD experimenters), while 4825 had quality six
or higher. We augmented the training data to compensate for this class imbalance. For
augmentation, we extended the TorchlO library and applied random operations, each with
probability ranging from 10% to 50%. We implemented five simulated artifacts: ghosting,
motion, inhomogeneity, spike, and noise.

Since the images have variable sizes (ranging from 192x256x104 to 512x512x256 here),
we decided to split them into tiles of size 64> with minimal overlap. We apply the neural
network (NN) to each tile, and then average the outputs. Our NN has 5 convolutional layers
and a fully connected layer with eleven outputs. In the loss function, we combine regression
to overall quality with the focal loss for each of the ten presence indicators. For training we
use AdamW optimizer and an exponential learning rate schedule. We trained for a preset
number of epochs, determined experimentally to allow convergence.

3. Results and Conclusion

We split the available data into 5 folds based on subject identifier. We used coefficient of
determination R? applied to the overall quality (0-10) to assess predictive power. R? ranges
from —oo (worst) to +1 (perfect). On validation data, R? was: 0.33, 0.27, 0.33, 0.24 and
0.14 for the five folds. Compare that to training data where it was: 0.65, 0.57, 0.64, 0.54
and 0.67. Low R? on training data indicates inconsistent ground truth. As there are no
previous studies to compare to, we are setting precedent.

We provide source at https://github.com/OpenImaging/miqa, where we openly de-
velop this system. We also maintain a demo instance at https://miqa.miqaweb.io/. We
welcome collaborative use of this software in medical research and clinical practice.
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Figure 1: Left: slices of two images. Top has an overall score of 8 and no artifacts present.
Bottom has score 6 with inhomogeneity, flow and truncation artifacts. PREDICT-
HD images are defaced. Right: confusion matrix for the fold with R?=0.24.
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