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ABSTRACT

Energy-Based Models (EBMs) have the natural advantage of flexibility in the form
of the energy function. Recently, EBMs have achieved great success in modeling
high-dimensional data in computer vision and natural language processing. In
accordance with these signs of progress, we build a versatile energy-based model
for High Energy Physics events at the Large Hadron Collider. This framework
builds on a powerful generative model and describes higher-order inter-particle
interactions. It suits different encoding architectures and decomposes clearly. As
for applicational aspects, it can serve as a powerful parameterized event generator,
a generic anomalous signal detector, and an augmented event classifier.

1 INTRODUCTION

Energy-based Models (EBMs) (Hopfield, 1982; Ackley et al., 1985; LeCun et al., 2006), being a
classical generative framework, leverage the energy function for learning dependencies between input
variables. With an energy function E(x) and constructing the un-normalized probabilities through
the exponential p̃(x) = exp(−E(x)), the energy model naturally yields a probability distribution.
Despite the flexibility in the modeling, the training of EBMs has been cumbersome and unstable due
to the intractable partition function and the corresponding Monte Carlo sampling involved. More
recently, EBMs have been succeeding in high-dimensional modeling (Nijkamp et al., 2020; 2019a;b;
Du & Mordatch; Du et al., b; Song & Ermon, 2020; Deng et al., 2020; Naskar et al., 2021) for
computer vision and natural language processing. At the same time, it has been revealed that neural
classifiers are naturally connected with EBMs (Xie et al., 2016; Grathwohl et al.; 2021), combining
the discriminative and generative learning processes in a common learning regime. More interestingly,
compositionality can be easily incorporated within the framework of EBMs by simply summing up
the energy functions (Du et al., a; 2021).

On the other hand, statistical physics originally inspired the invention of EBMs. This natural
connection makes EBMs appealing in modeling physical systems. In physical sciences, EBMs have
been used to simulate condensed-matter systems and protein molecules (Noé et al., 2019). They
have also been shown great potential in structure biology (Du et al., 2020), in a use-case of protein
conformation.

Given the flexibility in the architecture and the compatibility with different tasks, we explore the
potential of EBMs in modeling elementary particle radiation patterns. The Large Hadron Collider
(LHC) (Eva, 2008), being the most energetic particle collider in human history, is colliding highly-
energetic protons to examine the underlying physics of subatomic particles. After the great success
in observing the Higgs boson (Aad et al., 2012; et al., 2012), the most important task of searching
for new physics signals remains challenging. High Energy Physics (HEP) events produced at the
LHC have the properties of high dimensionality, high complexity, and enormous data size. Deep
neural classifiers and generative models have been explored to meet the needs for more effective
data selection and physics analysis. Neural net-based unsupervised learning of physics events
(Paganini et al., 2018; Kansal et al., 2020; Butter et al., 2019; Touranakou et al., 2022) have been
explored in the usual generative modeling methods. In comparison, Variational Autoencoders (VAEs)
Kingma & Welling (2014) need a well-designed reconstruction loss, which might be difficult for
sophisticated network architectures and complex input features. Generative Adversarial Networks
(GANs) Goodfellow et al. (2020) employ separate networks, which need to be carefully tuned, for
the generation process. They usually suffer from unstable training and high computation demands.

1



Under review as a conference paper at ICLR 2023

Topic Practice

Generative modeling Parameterized event generation
OOD detection Model-independent new physics search

Hybrid modeling Classifier combined with EBMs

Table 1: Application aspects for Energy-based Models for High Energy Physics.

Furthermore, EBMs provide a convenient mechanism to simulate high-order interactions between
particles. The energy function can be flexible enough to incorporate sophisticated architectures.
Aside from image generation, applications for point cloud data (Xie et al., 2021), graph neural
networks (Liu et al., 2021) for molecule generation are also explored. In particle physics, we leverage
the self-attention mechanism (Bahdanau et al., 2015; Vaswani et al., 2017), to mimic the complex
interactions between elementary particles.

As an applicational practice, out-of-distribution (OOD) detection comes naturally in the form of
energy comparison. More importantly, EBMs incur fewer spurious correlations in OOD detection.
This plays a slightly different role in the context of signal searches at the LHC. There are correlations
that are real and useful, but at the same time handicaps effective signal detection. As we will see in
Section 4, the EBMs are free from the notorious correlation observed in many anomaly detection
methods in HEP, in both the generative and the discriminative approaches.

As summarized in Table 1, we build a framework of physics-inspired EBMs. We construct an
energy-based model of the fundamental interactions of elementary particles to simulate the resulting
radiation patterns. We especially employ the short-run Markov Chain Monte Carlo for the EBM
training, which is improved with an upper-bounded of the Kullback–Leibler divergence correction to
the usual Contrastive Divergence objective. The EBMs are able to generate realistic event patterns
and can be used as generic anomaly detectors free from spurious correlations.

2 METHODS

2.1 ENERGY BASED MODELS

Energy-based models are constructed to model the un-normalized data probabilities. They leverage
the property that any exponential exp(−E(x)) is non-negative and thus can serve as an un-normalized
probability naturally. The data distribution is modelled through the Boltzmann distribution: pθ(x) =
exp(−Eθ(x))/Z(θ) with the energy model Eθ(x) : X → R mapping x ∈ X to a scalar. And the
partition function Z =

∫
p̃(x)dx =

∫
exp(−Eθ(x))dx integrates over all the possible states.

EBMs can be learned through maximum likelihood EpD
(log pθ(x)). However, the training of EBMs

can be difficult due to the intractable partition function in log pθ(x) = −Eθ(x)− logZ(θ). Though
the partition function is intractable, the gradients of the log-likelihood do not involve the partition
function directly. Thus when taking gradients w.r.t. the model parameters θ, the partition function is
canceled out. The gradient of the maximum likelihood loss function can be written as:

∇θL(θ) = −EpD(x)[∇θ log pθ(x)] (1)

≃ EpD(x)[∇θEθ(x
+)]− Epθ(x)[∇θEθ(x

−)] , (2)

where pD(x) is the data distribution and pθ(x) is the model distribution. The training objective is
thus composed of two terms, corresponding to two different learning phases (i.e., the positive phase
to fit the data x+, and the negative phase to fit the model distribution x−). When parameterizing
the energy function with feed-forward neural networks (Ngiam et al., 2011), the positive phase is
straightforward. However, the negative phase requires sampling over the model distribution. This
leads to various Monte Carlo sampling strategies for estimating the maximum likelihood.

Contrasting the energies of the data and the model samples as proposed Contrastive Divergence (CD)
(Hinton, 2002) leads to an effective strategy to train EBMs with the following CD objective:

DKL(pD(x)∥pθ(x))−DKL(TpD(x)∥pθ(x)) , (3)
where T denotes the one-step Monte Carlo Markov Chain (MCMC) kernel imposed on the data
distribution. In more recent approaches for high-dimensional modeling, we can directly initialize
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from random noises to generate the MCMC samples. More specifically, we employ gradient-based
MCMC generation in the training process, which is handled by Langevin Dynamics (Welling & Teh,
2011). As written in Eq. 4, Langevin dynamics uses gradients w.r.t. the data points to generate a
sequence of negative samples {x−

k }Kk=1.

x−
k+1 = x−

k −
λ2

2
∇xEθ(x

−
k ) + λ · ϵ, with ϵ ∼ N (0, 1) (4)

KL Divergence-Improved EBM Training In the original Contrastive Divergence, the precise
gradient of the loss function is as follows (Du et al., b):

∇θL(θ) = EpD(x)[∇θEθ(x
+)]− Eqθ(x)[∇θEθ(x

−)]− ∂qθ(x)

∂θ

∂DKL(qθ(x)||pθ(x))
∂qθ(x)

, (5)

where qθ(x) denotes the Monte Carlo estimation of the model distribution pθ(x). There is then a gap
between pD(x) and qθ(x) not taken into account in the usual EBM training process. Thus the full
loss (Eq. 6) consists of the usual CD loss term LCD (as in Eq. 2) and an extra KL term LKL which is
ignored in most cases.

L = LCD + LKL, with LKL = Eq(x)[Eθ̂(x)] + Eqθ(x)[log(qθ(x))] (6)

The KL term is then further decomposed into two terms: the energy of the MCMC samples
Eq(x)[Eθ̂(x)] and the entropy of the MCMC samples −Eqθ(x)[log(qθ(x))]. While estimating the
energy term is relatively straightforward with Langevin dynamics, the entropy term can get involved
with non-parametric methods. In this work, we ignore the entropy term since it’s always non-negative.
Thus we are actually trying to minimize the upper bound of the KL divergence term in our model
training.

MC Convergence The training anatomy (Nijkamp et al., 2020; 2019a;b) for short-run non-
convergent MCMC and long-run convergent MCMC shows that short-run ( 5-100 steps) MCMC
initialized from random distributions is able to generate realistic samples.

To improve mode coverage, we use random noise to initialize MCMC chains. To accelerate training,
we employ a relatively small number of MCMC steps. In practice, we can reuse the generated
samples as initial samples of the following MCMC chains to accelerate mixing, similar to Persistent
Contrastive Divergence (Tieleman, 2008). Following the same procedure in (Du & Mordatch), we
use a randomly initialized buffer that is consistently updated from previous MCMC runs as the initial
samples. (As empirically shown, a Metropolis-Hastings step is not necessary. So we ignore this
rejection update in our experiments.)

Energy Function Since there is no explicit generator in EBMs, we have much freedom in designing
the architectures of the energy function. This also connects with the fast-paced development of
supervised neural classifiers. We can directly reuse the architectures from supervised classifiers in the
generative modeling of EBMs. We use a self-attention-based transformer to parameterize the energy
function Eθ(·). We defer the detailed description to Sec. 3.

The full algorithm for training EBMs is described in Algorithm 1.

2.2 HYBRID MODELING

Neural Classifier as an EBM As shown in (Grathwohl et al.), a classical classifier can be re-
interpreted in the framework of EBMs, with the logits g(x) corresponding to negative energies of
the joint distribution p(x, y) =

exp(g(x)y)
Z , where g(x)y denotes the logit corresponding to label y .

Thus the probability marginalized over y can be written as p(x) =
∑

y exp(g(x)y)

Z , with the energy of
x as − log

∑
y exp(g(x)y).

This viewpoint provides a novel method for jointly training a supervised classifier and an un-
supervised generative model. The joint log-likelihood can be decomposed into two terms:

log p(x, y) = log p(x) + log p(y|x) . (7)

Thus we can maximize log p(x) with the contrastive divergence of the EBM, and maximize log p(y|x)
with the usual cross-entropy of the classification.
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Algorithm 1 EBM training with KL-Divergence-Corrected Contrastive Divergence and MCMC by
Langevin Dynamics

Input: training samples {x+
i }Ni=1 from pD(x), parameterized energy function Eθ(·), initial buffer

B ← ∅, Langevin dynamics step size λx, number of MCMC steps K, model parameter learning
rate λθ, regularization strength α
for Gradient descent step l = 0...L-1 do

x+
i ∼ pD(x)

x−
i,0 ∼ 0.95 ∗ B + 0.05 ∗ U ▷ Reinitialize the samples in the buffer with random noise in the

probability of 0.05
for Langevin dynamics step k=0...K-1 do

x−
i,k+1 = x−

i,k − λx∇xEθ(x
−
i,k) + 0.005 · ϵk, ϵk ∼ N (0, 1) ▷ Langevin Dynamics taking

gradients w.r.t. input dimensions
end for
x−
i ← x−

i,K

LCD = 1
N

∑
i(Eθ(x

+
i )− Eθ(x

−
i ))

LKL = Eθ̂(x
−
i ) (+ ...) ▷ θ̂ denotes stopping gradient for back-propagating in the energy

function parameters
Lreg = 1

N

∑
i(Eθ(x

+
i )

2 + Eθ(x
−
i ))

2 ▷ L2 Regularization
θ ← θ − λθ∇θ(LCD + LKL + αLreg) ▷ Update model parameters with gradient descent
B ← x−

i,K ∪ B ▷ Update the buffer with generated samples
end for

3 PROBLEM STATEMENT

Figure 1: Left: EBM model training schematic. Right: Energy function estimated with a transformer.

Physics events produced at the LHC leave energy deposits in the detectors. Along with the spatial
coordinates, we can precisely identify the collision products. The substructures of these particle
traces and energy deposits manifest the underlying physics and the corresponding high-energetic
elementary particles.

Describing HEP Events Most particle interactions happening at the LHC are governed by Quantum
chromodynamics (QCD), due to the hadronic nature of the proton-proton collision. Thus jets are
enormously produced by these interactions. A jet is formed by collimated radiations originating from
highly-energetic elementary particles (e.g., quarks, gluons, and sometimes highly-boosted electro-
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weak bosons). The tracks and energy deposits left in the particle detectors reveal the underlying
physics in complex patterns. These patterns have been used to identify different types of particles,
assisting in more precise data analysis and signal detection. Identifying, classifying, and sometimes
reconstructing these elementary particles manifest in raw data is critical for ongoing physics analysis
at the LHC. Deep neural nets are the perfect candidates for encoding this low-level information and
modeling the high-dimensional distributions of the constituents within a jet.

Specifically, each particle within a jet has (log pT , η, ϕ)i as the descriptive coordinates in the detector’s
reference frame, with pT denoting the transverse momentum perpendicular to the beam axis, and
(η, ϕ) is the spatial coordinates within the cylindrical detector. More details about the datasets can be
found in Appendix A.

Energy-based Models for Elementary Particles We would like to construct an Energy-based
Model for describing jets and their inner structures. In conceiving the energy function for these
elementary particles, we consider the following constraints and characteristics: 1) permutation
invariance – the energy function should be invariant to jet constituents permutations, and 2) high-
order interactions – we would like to energy function to be powerful enough to simulate the complex
inter-particle interactions.

Thus, we leverage the self-attention-based transformer (Vaswani et al., 2017) to approximate the
energy function, which takes into account the higher-order interactions between the component
particles. As indicated in Eq. 8b, the encoding vector of each constituent is connected with all other
constituents through the self-attention weights in Eq. 8a.

A = softmax(Q ·KT /
√

dmodel) (8a)

W = A · V (8b)

Moreover, we can easily incorporate particle permutation invariance (Zaheer et al., 2017) in the
transformer, by simply summing up the encodings of each jet constituent. The architecture is shown
in Fig. 1. The coordinates (log pT , η, ϕ)i are first embedded through a linear layer, then fed into N
self-attention blocks sequentially. After that, a sum-pooling layer is used to sum up the features of the
jet constituents. Finally, a multi-layer-perceptron projector maps the features into the energy score.
Model parameters are recorded in Table 3 of Appendix A.

Model Validation In monitoring the likelihood, the partition function can be estimated with
Annealed Importance Sampling (AIS) (Neal, 2001). However, these estimates can be erroneous
and consume a lot of computing resources. Fortunately for physics events, we have well-designed
high-level features as a handle for monitoring the generation quality. Especially, we employ Lorentz-
invariants jet transverse momentum pT and jet mass M as the validation observables. And we
calculate the Jensen–Shannon divergence, between these high-level observable distributions of the
data and the model generation, as the metric. In contrast to the short-run MCMC in the training steps,
we instead use longer MCMC chains for generating the validation samples.

When we focus on downstream tasks such as OOD detection, it’s reasonable to employ the (i.e.,
Standard Model top jets as the benchmark) Area Under the ROC Curve (AUC) as the validation
metric.

4 EXPERIMENTS

Training Details We employ the KL-improved training of EBMs. To speed up the training, we
ignore the entropy term and instead back-propagate the gradients through all the Langevin dynamics
steps for the LKL term. We have 10,000 samples in the buffer and reinitialize the random samples
with a probability of 0.05 in each iteration. The training set consists of 50,000 QCD jets. To fit in the
GPU memory, we use a relatively small number of steps (e.g., 24) for the MCMC chains, since we
back-propagate through the full MCMC chains for estimating the KL divergence term in Eq. 6. The
step size λx is set to 0.1 according to standard deviations of the input features. The noise magnitude
ϵ within the Langevin dynamics is set to 0.005. The number of steps used in validation steps is set to
128 for better mixing.
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We use Adam (Kingma & Ba, 2015) for optimization, with the momenta β1 = 0.0 and β2 = 0.999.
The initial learning rate is set to 1e-4, with a decay rate of 0.98 for each epoch. We use a batch size
of 128, and train the model for 50 epochs. More details can be found in Appendix A.

Generation Test-time generation is achieved in MCMC transition steps from the proposal random
(Gaussian) distribution. We use a smaller step size of 0.05 to ensure stable generation. And more
steps (e.g., 200) are taken to achieve realistic generation.

And as a common finding for different methods considered, the step size is the most important
parameter that predominantly determines the generation quality.

OOD Detection for New Physics Searches Despite the great efforts in searching for new physics
signals at the LHC, there has been no hint of beyond-Standard-Model physics. Given the large amount
of data produced at the LHC, it has been increasingly challenging to cover all the search channels.
We thus shift to model-independent searches which are data-oriented rather than theory-guided.

EBM naturally has the handle for discriminating between in-distribution and out-of-distribution
examples. While in-distribution data points are trained to have lower energy, energies of OOD
examples are pushed up in the learning process. This property has been used for OOD detection
in computer vision (Du & Mordatch). This indicates great potential for EBM-based new physics
detection at the LHC.

Compared with the common practice in computer vision, there is specificity in EBM-based OoD
detection for HEP. The simple approach comparing two different datasets such as CIFAR10 and
SVHN ignores the complex real-world applicational environments. Adapting OOD detection to
scientific discovery at the LHC, we reformulate and tailor the decision process as follows: if we
train on Standard Model datasets, we focus on class-conditional model evaluation for discriminating
between the unseen signals and the most copious background events (i.e., QCD jets rather than all
the Standard Model jets).

4.1 GENERATIVE MODELING – ENERGY-BASED EVENT GENERATOR

We present the generated jets transformed from initial random noises with the Langevin dynamics
MCMC. Due to the non-human-readable nature of physics events (e.g., low-level raw records at the
particle detectors), we are not able to examine the generation quality through formats such as images
directly. However, it has a long history that expert-designed high-level observables can serve as strong
discriminating features. In the first row of Fig. 2, we first show the distributions of input features
for the data and the model generation. Meanwhile, in the second row, we plot the distributions of
high-level expert observables including the jet transverse momentum pT and the jet mass M. Through
modeling low-level features in the detector space, we achieve precise recovery of the high-level
physics observables in the theoretical framework. For better visualization, we map the jets onto the
(η, ϕ) plane, with pixel intensities associated with the corresponding energy deposits. We show the
average generated jet images in Fig. 3, comparing to the real jet images (Right) in the (η, ϕ) plane.

At the Large Hadron Collider, event simulation serves as an important handle for background
estimation and data analysis. For many years, physics event simulators (Campbell et al., 2022) are
build on Monte Carlo methods based on physics rules. These generators are slow and need to be tuned
to the data frequently. Deep neural networks provide us with an efficient parameterized generative
approach to event simulation for the coming decades.

4.2 ANOMALY DETECTION – ANOMALOUS JET TAGGING

Since EBMs naturally provide an energy score for each jet, for which the in-distribution samples
should have lower scores while OOD samples are expected to incur higher energies. Furthermore, a
classifier, when interpreted as an energy-based model, the transformed energy score can also serve as
an OOD identifier (Grathwohl et al.; Liu et al., 2020).

EBM In HEP, the in-situ energy score can be used to identify potential new physics signals.
Experiments at the LHC over the past decades have been focused on model-oriented searches, such as
searching for the Higgs boson (Englert & Brout, 1964; Higgs, 1964). The null results up to now from
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Figure 2: Top: Input feature distributions of jet constituents for the data and the model generation.
Bottom: High-level feature distributions for the data and the model generation.
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Figure 3: Jet images averaged over 10000 jet samples. Left: Random noises. Middle: EBM-
generated jet samples by the MCMC chains in intervals. Right: Real jets.

model-driven searches call for novel solutions. Model-independent and data-driven search strategies
are thus under investigation.

By reducing the main QCD background events, generic anti-QCD jet taggers facilitate effective
model-independent searches for new physics signals. Thus with an energy-based model, which is
trained on the QCD background events or directly on the slightly signal-contaminated data, we expect
unseen signals have higher energies, correspondingly lower likelihoods.

In Fig. 4, we compare the energy distributions of in-distribution QCD samples, out-of-distribution
signal examples (hypothesized Heavy Higgs boson which decays into four QCD sub-jets), and random
samples drawn from the Gaussian distribution. We observe that random samples unusually have the
highest energies. Signal jets have relatively higher energies compared with the QCD background jets,
making model-independent new physics searches possible.

A more intriguing property of EBMs is that spurious correlations can be better handled. Spurious
correlations in jet tagging might result in distorted background distributions and obscure effective
signal detection. For instance, VAEs in OOD detection can be highly correlated with the input
particle numbers (Cheng et al., 2020), similar to the spurious correlation with image pixel numbers
in image recognition (Nalisnick et al., 2019; Ren et al., 2019). In the right panel of Fig. 4, we
plot the correlation between energy scores and jet masses. Unlike other generative strategies for
model-independent anomaly detection, EBMs are largely free from the spurious correlation between
the energy E(x) and the jet mass M. This makes EBMs a promising candidate for model-independent
new physics search.
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Figure 4: Left: Energy distributions for random samples, background QCD jets, and novel signals.
Right: Correlation between the jet mass MJ and the energy E.

EBM-CLF To better suit the goal of OOD detection, we employ the hybrid learning scheme
(Ngiam et al., 2011; Grathwohl et al.) combining the discriminate and the generative approaches.
The jointly trained jet classifier and EBM (EBM-CLF) according to Eq. 7 maintain the classification
accuracy. The associated EBM is thus augmented by the discriminative task, and thus assisted with
better inductive biases.

We train a multi-class classifier for discriminating different Standard Model jets (QCD jets, boost W
jets, and boost top jets), along with the associated EBM. The resulting generative sampling results are
shown in Fig. 5. We measure the OOD detection performance in AUCs in the binary classification of
QCD background samples and the signal jets. Table 2 records the AUCs for tagging Standard Model
Top jets and hypothesized Higgs boson by different models. THe jointly trained model has even
better anomaly tagging performance compared with the naive EBM. Corresponding ROC curves are
shown in the left panel of Fig. 6, in terms of the signal efficiency ϵS and the background rejection rate
1/ϵB . In the right panel, we plot the background mass distributions under different cuts on the energy
scores. We observe excellent jet mass decorrelation/invariance for energy score-based anomalous jet
tagging.

We also record the AUCs for the class-conditional softmax probability-based jet tagging in Table
2. We employ the p(y|x) corresponding to the QCD class as the anomaly score. However, without
further decorrelation strategies, this anomaly score is usually strongly correlated with the masses of
the in-distribution classes and distorts the background distributions. Thus we list the results here only
for reference.

Model AUC (Top) AUC(OOD H)

EBM (E(x)) 0.681 0.782
EBM-CLF (E(x)) 0.711 0.817

EBM-CLF (p(y|x)) 0.929 0.870

Table 2: Anomaly detection performance measured in AUCs.

5 CONCLUSION

We present a versatile generative framework for modeling the behavior of elementary particles.
By mimicking the inter-particle interactions with a self-attention-based transformer, we map the
correlations in the detector space to a probabilistic space with an energy function. The energy
model is used for the implicit generation of physics events. Despite the difficulty in training EBMs,
we employ adapted training strategies to balance learning efficiency and training stability. This
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Figure 5: High-level observables for the generated samples from EBM-CLF.
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Figure 6: Left: ROC Curves for the EBM-CLF with the energy E(x) as the anomaly score. The grey
line denotes the case of random guessing. Right: Background mass distributions under different
acceptance rates ϵ after cutting on the energy score from the EBM-CLF.

framework thus provides us with flexible tools for parameterized physics event simulation and
spurious-correlation-free model-independent signal detection.
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A EXPERIMENTAL DETAILS

Datasets For the simple EBM, we train on 50,000 simulated QCD jets. For the hybrid model EBM-CLF,
we train on 300,000 simulated Standard Model jets (QCD jets, boosted jets originating from the W boson, and
boosted jets originating from the top quark). For OOD detection test sets, we employ the hypothetical Higgs
boson with a mass of 174 GeV, which decays into two lighter Higgs bosons of 80 GeV. The intermediate light
Higgs boson decays into two b quarks. All the jet samples are generated with a pipeline of physics simulators.

Event Generation QCD jets are extracted from QCD di-jet events that are generated with MadGraph (Alwall
et al., 2011) for LHC 13 TeV, followed by Pythia8 (Sjöstrand et al., 2008) and Delphes (de Favereau et al., 2014)
for Parton shower and fast detector simulation. All jets are clustered using the anti-kT algorithm (Cacciari et al.,
2008) with cone size R = 0.8 and the selection cut in the jet transverse momentum pT ∈ [550, 650] GeV. We
use the particle flow objects for jet clustering.

Input Preprocessing Jets are preprocessed before being fed into the neural models. Jets are longitudinally
boosted and centered at (0, 0) in the (η, ϕ) plane. The centered jets are then rotated so that the jet principal
axis (

∑
i
ηiEi
Ri

,
∑

i
ϕiEi
Ri

) (with Ri =
√

η2
i + ϕ2

i ) and Ei is the constituent energy) is vertically aligned on the
(η, ϕ) plane.

Hyper-parameters Hyper-parameters are recorded in Table 3.

Data
input features {(log(pT ), η, ϕ)i}Ni=1
input length N=40

Energy Function
Number of layers 8
Model dimension 128
Number of heads 16

Feed-forward dimension 1024
Dropout rate 0.1

Normalization None

MCMC
Number of steps 24

Step size 0.1
Buffer size 10000

Resample rate 0.05
Noise ϵ = 0.005

Regularization
L2 Regularization 0.1

Training
Optimizer Adam (β1 = 0.0, β2 = 0.999)

Learning rate 1e-4 (decay rate γ = 0.98)

Table 3: Model settings.

B ADDITIONAL RESULTS
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Figure 7: Background mass distributions under different acceptance rates ϵ after cutting on the energy
score from the EBM.
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