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Abstract

Graph neural networks (GNNs) have led to major breakthroughs in a variety of
domains such as drug discovery, social network analysis, and travel time estima-
tion. However, they lack interpretability which hinders human trust and thereby
deployment to settings with high-stakes decisions. A line of interpretable meth-
ods approach this by discovering a small set of relevant concepts as subgraphs in
the last GNN layer that together explain the prediction. This can yield oversimpli-
fied explanations, failing to explain the interaction between GNN layers. To ad-
dress this oversight, we provide HELP (Hierarchical Explainable Latent Pooling),
a novel, inherently interpretable graph pooling approach that reveals how concepts
from different GNN layers compose to new ones in later steps. HELP is more
than 1-WL expressive and is the first non-spectral, end-to-end-learnable, hierar-
chical graph pooling method that can learn to pool a variable number of arbitrary
connected components. We empirically demonstrate that it performs on-par with
standard GCNs and popular pooling methods in terms of accuracy while yielding
explanations that are aligned with expert knowledge in the domains of chemistry
and social networks. In addition to a qualitative analysis, we employ concept com-
pleteness scores as well as concept conformity, a novel metric to measure the noise
in discovered concepts, quantitatively verifying that the discovered concepts are
significantly easier to fully understand than those from previous work. Our work
represents a first step towards an understanding of graph neural networks that goes
beyond a set of concepts from the final layer and instead explains the complex in-
terplay of concepts on different levels.1

1 Introduction

Graph neural networks (GNNs) have recently enjoyed increasing popularity and have been success-
fully applied in a variety of domains, ranging from improved travel-time estimations (Derrow-Pinion
et al., 2021) to the multi-billion dollar industry of de novo drug design (Xiong et al., 2021). How-
ever, their application in safety-critical domains, such as healthcare, remains limited. Their lack of
interpretability hinders human trust and thus limits their uptake in practice. Consequently, a variety
of post-hoc explainability methods have been proposed to allow insights into how and why GNNs
produce certain predictions (Ying et al., 2019b; Vu and Thai, 2020; Baldassarre and Azizpour, 2019).
Crucially, these methods are limited to finding simplified explanations of a complex model, without
explicitly incentivizing the model to produce easily understandable predictions. A recent line of
research (Magister et al., 2022; Georgiev et al., 2022) therefore attempts to develop GNN-based
approaches that are interpretable-by-design. In particular, these methods are concept-based—they
explain their predictions in terms of high-level concepts (e.g., recognizable forms such as an “eye”

1Source code available at https://github.com/jonasjuerss/HELP

NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023).

https://github.com/jonasjuerss/HELP
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Figure 1: (a) Example hierarchy in a molecule. Meaningful groups of atoms are pooled into a
single node representing this functional group. (b) Overview of HELP. In each pooling step, we
apply a number of GNN layers and cluster the resulting node embeddings. Connected components of
nodes that were mapped to the same cluster are merged where the new node’s embedding is given as
the average over the embeddings of all merged nodes. Colors represent node embeddings. Notably,
the clustering is always performed over the embeddings of multiple graphs (see Section 3.1).

or “mouth” in an image, or functional groups in a molecular graph) rather than raw input features
(pixels for images, single nodes with their full embeddings for graphs).

However, while relevant, these methods—post-hoc or not—suffer from a known problem in inter-
pretability: in order to be understood by humans, the explanations tend to be overly simplistic. In this
work, rather than just discovering a set of concepts, we take a step towards understanding how con-
cepts from earlier layers compose to new ones later on. Take, for instance, the graph representation
of a molecule (Figure 1a). To predict certain properties, knowing all atoms might not be relevant. In-
stead, the atoms make up relevant subgraphs—so-called functional groups—that are sufficient for the
final prediction. A similar property holds for social networks. These often consist of a set of highly
connected communities. In many practical tasks, that rely on analyzing large graphs with many out-
liers, it is often sufficient to reason about the type of these communities or functional groups and the
connections between them, rather than reason about all nodes.

In this paper, we provide HELP, a Hierarchical Explainable Latent Pooling method. HELP allows
for analysis at different levels of the hierarchical structure of graphs, by repeatedly pooling the input
graph to a coarser representation (Figure 1a). More specifically, at each step it executes multiple GNN
layers and then merges all connected components belonging to the same cluster in the space of node
embeddings. This approach is interpretable-by-design. By analyzing which nodes are pooled together,
we can identify the relevant substructures for the model’s decision. When applied to domains that are
less studied, this could not only help to understand the behavior of the model, but by doing so it can
lead to new insights about the task (and domain) itself—just like chess players learn new moves from
AlphaGo (Willingham).

The contributions of this work are twofold:

1. HELP: a novel hierarchical pooling procedure. This is the first non-spectral method that
can learn to partition graphs into a variable number of arbitrary connected components end-
to-end based on graph structure and features. In addition to being interpretable by design,
our technique preserves sparsity (i.e. does not yield fully connected graphs after pooling),
increases the receptive field beyond the number of GNN layers and is more expressive than
message-passing GNNs.

2. Concept conformity: a novel metric to measure the level of noise in a discovered concept.

Using this new conformity metric along with concept completeness and comparing discovered
concepts against expert domain knowledge in a qualitative evaluation, we demonstrate that the ex-
planations discovered by HELP yield deeper insights while being easier to understand than those
from previous work.
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2 Graph Neural Networks

GNNs are typically formulated in terms of message passing (Battaglia et al., 2018). The aim is to
update the embedding of each node based on the set of messages which are computed between the
node and each of its neighbors. Formally, take a graph G = (V,E,X), where E ⊆ V 2 is the set of
edges and without loss of generality we assume the nodes V = [|V |] are identified by the natural
numbers 1 to |V |. X := (x0

1, . . . ,x
0
|V |) denote node-level input features x0

v ∈ Rd0 . Each layer ℓ+ 1

then computes new node features

xℓ+1
v = ϕℓ+1

xℓv,
⊕

u∈N(v)

ψℓ+1

(
xℓu, x

ℓ
v

) , (1)

where ϕℓ, ψℓ represent learnable functions, N(v) denotes the neighbors of node v and ⊕ is some
permutation-invariant function like the sum. In this work, we focus on making one prediction for the
entire graph. This can be achieved by first applying the permutation invariant function GLOBALPOOL,
to pool the embeddings of all nodes in the last layer L, and then computing the final output f(G) as a
learnable function g of f(G) = g (GLOBALPOOL(GNN(G))), where GNN(G) :=

(
xL
1 , . . . ,x

L
|V |

)
.

3 Hierarchical Explainable Latent Pooling

The underlying idea of our approach is applying a series of pool blocks to the input graph, progres-
sively creating coarser versions (Algorithm 1 and Figure 1b). Each pool block first applies multiple
GNN layers. We then cluster the generated node embeddings, merging all connected components of
nodes with the same cluster assignment. Only merging nodes in a connected component allows us to
maintain the high-level graph structure. For example, if we have the same functional group at different
positions in a molecule, we want to merge each occurrence into one node but not both into the same.

Algorithm 1 Inference for one batch using HELP. The gray area represents a single pooling step as
visualized in Figure 1b. Note that for notational convenience we simply assume the node ids to be
unique among graphs (e.g. V1 ∋ 1 ̸= 1 ∈ V2) rather than defining the node ids as tuples (j, k) ∈ Vj .

Require: GNNs GNNs, s ∈ [nblocks + 1] ▷ A GNN for each of nblocks pool block (plus a final one)
Require: numbers of clusters ks, s ∈ [nblocks]
Require: MLP g
Require: data batch {(Vi, Ei, Xi) | i ∈ [b]} ▷ Where b denote the batch size

for s = 1, . . . , nblocks do ▷ Iterate over all pool blocks
for i ∈ [b] do

Xi ← GNNs(Vi, Ei, Xi)
end for
c← KMEANS(ks, {(Vi, Xi)i∈[b]}) ▷ cluster ids c :

(⋃
i∈[b] Vi

)
→ [ks]

for i ∈ [b] do
q ← CONCOMP({(u, v) ∈ Ei | c(u) = c(v)}) ▷ connected comp. ids q : Vi → N
Vi ← [maxv∈Vi

{q(v)}]
Xi ←

(
1

|q−1(1)|
∑

v∈q−1(1) xv, . . . ,
1

|q−1(|Vi|)|
∑

v∈q−1(|Vi|) xv

)
Ei ← {(q(u), q(v)) | (u, v) ∈ Ei}

end for
end for
for i ∈ [b] do

Xi ← GNNnblocks+1(Vi, Ei, Xi)
end for
return (g (GLOBALPOOL(X1)) , . . . , g (GLOBALPOOL(Xb)))

The underlying idea of our approach is applying a series of pool blocks to the input graph, progres-
sively creating coarser versions (Algorithm 1 and Figure 1b). Each pool block first applies multiple
GNN layers. We then cluster the generated node embeddings, merging all connected components of
nodes with the same cluster assignment. Only merging nodes in a connected component allows us to
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maintain the high-level graph structure. For example, if we have the same functional group at different
positions in a molecule, we want to merge each occurrence into one node but not both into the same.

3.1 Clustering

For the clustering, we choose k-means using Lloyds algorithm for two reasons. Firstly, it is compar-
atively cheap to compute, which is crucial as it needs to be calculated many times during training.
Secondly, it proved itself to give the best concepts when clustering node embeddings in prior work
(Magister et al., 2021).

Using k-means assumes we know the exact number of concepts in advance. While this is a hyperpa-
rameter we need to tune, in practice, our method is not overly sensitive to it as long as we slightly
overestimate. This is because required concepts can often be split up into more fine-grained ones,
even if their distinction is not relevant for the final prediction. For instance, a house motif with one or
two neighbors could be mapped to different concepts even though the same might be sufficient for
the final classification. Similarly, in computer vision, this would be like mapping blue and green eyes
to different concepts even though that information is not necessary to detect a face. Nevertheless, it
is important to emphasize that even with a fixed number of clusters, we can still learn variable size
graphs based on structure and node features. On the one hand, the number of pooled nodes can be
lower than the number of concepts as clustering is performed over multiple graphs and some of them
might only have nodes in some of the clusters. On the other hand, a pooled graph can contain more
nodes than the number of concepts because the same concept can be mapped to multiple new nodes
if they are disconnected in the graph.

In Algorithm 1, we directly apply k-means clustering in the pooling step of each batch. However, this
poses one important challenge: certain concepts might not be present in a particular batch. In this
case, assuming the same number of clusters would lead to splitting up clusters that were combined
in other batches. However, whereas the overall number of concepts may vary as described in the
paragraph above, it is crucial that their meaning remains the same between batches. Otherwise, some
motifs could sometimes be split up into multiple nodes and sometimes be merged into one. This
creates a moving target making learning significantly harder for the subsequent GNN layers.

Global Clustering One way to alleviate this issue would be storing the embeddings of each batch
over the whole epoch, then calculating the clustering based on all embeddings and keeping the
centroids fixed until the next epoch starts and the process can be repeated. However, this creates a
moving target where the outcome of all batches depends on the batches of the last epoch. When the
epoch ends, there is a sudden jump in behavior.

Merging Clusters We therefore opt for merging centroids below a certain distance threshold. The
underlying idea is that if some concepts are missing, existing clusters will be split up as described
above. However, we would still expect the resulting centroids in the same cluster to be relatively
close to each other and therefore hope we could merge them with the right threshold, eliminating
the impact of the missing concept. An important remark is that the scale of the embeddings varies
significantly during training. Thus, we make our approach approximately scale-invariant by giving
the distance threshold as a percentage of the distance between the two farthest centroids. In Algorithm
1, this could be incorporated by modifying the KMEANS procedure accordingly.

3.2 Gradient Flow

The method described so far has clearly defined gradients from the inputs to the final predictions,
which is required for backpropagation. This is, because the new node embeddings are always a scaled
sum of the previous node embeddings that were pooled together. However, one may argue that these
gradients do not describe change in the “direction" of the clustering itself, i.e., how the loss would
change if an additional node was considered part of the same cluster or one of the current nodes was
no longer considered part of it. In Section 5.3, we therefore also evaluate using a Monte Carlo estimate
of a smoothed loss function instead. In particular, we add small random perturbations to all node
embeddings in each sample. Then, we find a hyperplane in the loss function that goes through all of
these points and use its gradient for updating the weights. This is detailed in Appendix D. Smoothing
the discontinuities that exist wherever changing a node embedding would lead to a different clustering
allows us to explicitly optimize the clustering rather than just the embeddings for the current clustering.
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4 Experimental design

4.1 Datasets

Synthetic Datasets As commonly used synthetic datasets for explainability like BA-Shapes and
BA-Community (Ying et al., 2019b) are not designed for graph-level predictions or to contain intuitive
hierarchies, we propose a Synthetic Hierarchical dataset. Graphs are constructed from multiple low-
level motifs (e.g., a triangle) that are each interpreted as a single node and separated by intermediate
nodes of a different color to make up a high-level motif (see Figure 4). The goal is to predict the high-
level motif along with the set of low-level motifs. Additionally, we propose a Synthetic Expressivity
dataset where the goal is to predict if the graph consists of one or two circles. This cannot be
determined by 1-WL expressive methods like message-passing GNNs (Xu et al., 2019).

Common Benchmarks In addition to the synthetic datasets above, we evaluate our approach
on three real-world datasets. In REDDIT-BINARY (Yanardag and Vishwanathan, 2015), each
input graph corresponds to a thread on the social network Reddit. Nodes do not have features
and represent users whereas an edge between two users implies that one of them replied to the
other. The goal is to classify whether a thread is question-answer-based or discussion-based. For
the other two, Mutagenicity (Kazius et al., 2005) and BBBP (Martins et al., 2012), the inputs are
graph representations of molecules. The prediction target is a binary classification per graph in both
datasets—namely, whether the molecule is mutagenic in the case of Mutagenicity and whether it can
penetrate the blood brain barrier in the case of BBBP.

4.2 Evaluation metrics

Concept Completeness Yeh et al. (2020) aims to determine the expressiveness of the discovered
concepts for the given goal. It does so by training a model to predict the target only from the discrete
set of concepts. The accuracy this model can reach is called completeness. Magister et al. apply this
to graphs by training a decision tree to predict a node’s classification from the I.D. of the concept it
was mapped to. For the graph classification case, they still aim to predict the graph’s class from a
single node and take the average accuracy over all nodes of the graph. As the combination of concepts
in a graph can be highly relevant, we propose to predict it’s class from the multiset of all concepts
rather than predicting it for each concept separately. This also yields decision trees explaining how
concepts combine to a final prediction. To account for the hierarchies discovered by our method, we
compute the completeness after each pooling step.

Concept Conformity The second desired property of concepts is that they are easy to understand
with as few as possible outliers. Magister et al. (2021, 2022) measure this in terms of purity. Each
concept is represented by the most frequent k-hop neighborhood of nodes mapped to it and the purity
is given by the average graph edit distance between this representation and the k-hop neighborhood
of a node mapped to the concept.

As an alternative, we propose to measure concept conformity. Intuitively, we would like each concept
to contain only a small set of subgraphs, all of which appear frequently enough to be relevant for the
concept. Other subgraphs, that only occur rarely could be considered noise that makes the concept
impure (see Figure 2 for an example). We therefore define the conformity of a concept in a given
pooling layer as the percentage of subgraphs that make up at least a fraction t of the overall subgraphs.
An empty concept has the perfect conformity of 100%. Formally, this is given by

conf(c) =
1

oc

nsub∑
j=1

o(j)c 1[toc,∞)(o
(j)
c ) (2)

where nsub denotes the number of pairwise non-isomorphic subgraphs that got pooled together, o(j)c

the number of times that a subgraph isomorphic to j ∈ [nsub] was mapped to concept c ∈ [nclust]

and oc :=
∑nsub

j=1 o
(j)
c the the total number of subgraphs that were mapped to cluster c. Note that

we leave out the dependence of all variables on the pooling step to avoid unnecessarily convoluted
notation. The conformity of a layer is then given as the average conformity over all non-empty
(oc ̸= 0) concepts in that layer. An obvious drawback of this definition is that it requires choosing the
threshold t which we define as t := 10% in our case.
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This definition has three major advantages over concept purity. Firstly, as HELP can learn the exact
part that belongs to a concept2, we simply count the number of nonisomorphic subgraphs mapped to
the same concept and no longer rely on the graph edit distance. Note that even a graph edit distance
of one could easily make the difference between two functional groups with vastly different impact
while other concepts might have many unimportant nodes in the L-hop neighborhood despite all
of them representing the same concept. Additionally, we take into account discrete node features
(like atom type), as, for example, a chain of three carbon atoms should not be considered the same
as an NO2 group. For all pooling steps after the first one, we use the concept I.D. instead. Finally,
concept purity assumes that only a single subgraph should be mapped to each concept. However, in
practice there might be different substructures that have the same meaning for the final prediction.
For instance, for many molecular prediction tasks the length of a chain of carbon atoms might be
close to irrelevant for the predicted property. Consequently, mapping these subgraphs to the same
concept would be desirable as it gives us insights into the dynamics of the domain while decreasing
the number of concepts we need to interpret.

5 Results & Discussion

We begin by demonstrating that HELP performs as well as DiffPool (Ying et al., 2019a), ASAP
(Ranjan et al., 2020) and a standard GCN (Kipf and Welling, 2017) in terms of accuracy while being
more than 1-WL expressive. At the same time, it outperforms GCExplainer (Magister et al., 2021)
and a definition of concepts in DiffPool in terms of concept conformity and completeness. This
quantitative evaluation is complemented by a qualitative assessment in which we first analyze some
general observations regarding the composition of concept hierarchies in the example of our Synthetic
Hierarchical dataset. We then identify concepts discovered in BBBP, Mutagenicity and REDDIT-
BINARY which align with expert domain knowledge. Finally, we conduct an ablation to show that
our version of HELP performs on-par with more computationally expensive variations using global
clustering or hyperplane gradient approximation.

5.1 Quantitative Analysis

We start by comparing HELP to the simple GNN baseline GCN (Kipf and Welling, 2017) along with
two popular pooling approaches: DiffPool (Ying et al., 2019a) and ASAP (Ranjan et al., 2020). First,
we note that HELP outperforms DiffPool and a standard GCN in our Synthetic Expressivity dataset,
indicating that it indeed is more than 1-WL expressive as detailed in Appendix A.1. For the rest of
this section, we will focus on the other datasets.

We observe that when using the same general GNN architectures for all methods3, the accuracy of
HELP almost always lies within one standard deviation of the best approach. While this implies
on-par performance with previous methods, the primary contribution of HELP is its explainability.
Since our technique is the first to extract hierarchical concepts, we compare it to the overall concepts
discovered by the post-hoc method GCExplainer on our GCN baseline. Additionally, we extract
concepts from the hierarchical pooling method DiffPool by defining the concept of each node as the
new node it got pooled to with the highest weight. HELP significantly outperforms both of those
baselines in terms of concept conformity. The only exception is our Synthetic Expressivity dataset.
However, note that neither of them is able to solve this benchmark, rendering the discovered concepts
meaningless. Additionally, while the conformity of 0 and a completeness close to the probability of
the most likely class may seem like a negative result at the first glance, note that this synthetic dataset
is purposefully designed in a way that any connected component of nodes has the same meaning.
Therefore, mapping all nodes to the same concept is the ideal strategy (as detailed in Appendix A.1),
despite resulting in these scores.

Whereas DiffPool achieves significantly lower completeness, the slightly higher scores of GCEx-
plainer can be attributed to the fact that the concepts are calculated for the last GCN layer whereas for
the hierarchical methods, the reported concepts are only those after the first pool block. These will be
combined to more meaningful concepts in the subsequent layers. On the other hand, the conformity
scores of GCExplainer are significantly lower. Figure 2 reveals how profound the impact of this is for

2In Appendix F.1, we compare this to using the k-hop neighborhood.
3See Appendix B.1 for details
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Table 1: Test accuracy, completeness and conformity scores in comparison to other methods.
All values are given as mean (in percent) and standard deviation over three models with different
seeds. As conformity and completeness should only be viewed together, we underline where there
average is highest. We account for the stochasticity of decision trees by calculating completeness
scores three times per model. For brevity we only report conformity and completeness scores after
the first pooling layer for HELP and DiffPool, all values can be found in Tables 5 and 6.

HELP (Ours) DiffPool ASAP GCN ( + GCExpl.) Feature
Acc. Comp. Conf. Acc. Comp. Conf. Acc. Comp. Conf. Acc. Comp. Conf. Comp.

Synth. Hier. 99.9±0.2 100.0±0.0 99.8±0.4 100.0±0.0 27.0±0.0 0.0±0.0 96.9±4.8 n/a n/a 100.0±0.0 100.0±0.0 16.8±1.8 46.9±0.0

Synth. Exp. 100.0±0.0 52.3±0.0 0.0±0.0 53.5±0.0 53.5±0.0 0.0±0.0 93.9±0.2 n/a n/a 53.5±0.0 53.5±0.0 74.4±0.0 53.5±0.0

Mutag. 77.0±2.3 73.7±2.7 83.6±0.3 78.7±0.6 53.6±0.0 42.9±0.0 76.2±1.7 n/a n/a 80.5±0.7 77.5±2.4 16.5±10.1 62.1±0.7

BBBP 85.0±1.6 80.8±1.4 84.8±1.4 82.0±5.6 77.1±0.4 0.0±0.0 85.2±1.5 n/a n/a 84.9±3.1 86.0±1.6 5.8±6.0 79.4±0.9

REDDIT-BIN4 88.7±2.2 infeas. 96.2±0.4 93.9±0.7 infeas. 93.0±2.6 infeas. n/a n/a 89.1±0.9 infeas. infeas. infeas.

explainability. While the concepts discovered by GCExplainer are slightly more predictive of the
final outcome, they are significantly harder to understand.

Feature completeness Whereas previous work in explainable GNNs focused only on the last layer,
our hierarchical analysis after each pooling block naturally extends to the question: What is the
completeness of the input concepts (i.e., the set of node features without any graph information)?
We report these feature completeness scores in Table 1 and argue that they should be reported as an
important baseline when using concept completeness scores on graphs. For datasets like BBBP where
the node features alone already determine the outcome with high accuracy, methods like GCExplainer,
which give one concept per node, might be of limited benefit. Note that HELP yields less concepts
than nodes which means that the individual concepts are more meaningful than the raw input vectors,
even with comparable completeness scores.

5.2 Qualitative Analysis

General observations Since human understanding is a highly subjective matter, metrics can only
yield limited insights into the usefulness of discovered concepts and a qualitative analysis is crucial.
We start with some general observations using examples from our Synthetic Hierarchical dataset
depicted in Figure 2. Firstly, we note that the same subgraph can be mapped to different concepts if
the impact on the outcome is different. For instance, bodies of low-level pentagons are mapped to dif-
ferent concepts depending on their degree which impacts the class. Secondly, while many concepts
only have one meaning, some are better understood when interpreting them as representing either
the first subgraph or the second where both have the same impact on the prediction or at least deter-
mine it in combination with the other concepts that can occur with it. For example, in our Synthetic
Hierarchical dataset the completeness score of 100% implies that this must hold despite “center of
house” and “body of deg 3 pentagon” intuitively looking unrelated. Finally, concepts in later pooling
steps can be more specific (e.g., splitting up center of house into centers of deg 2 and deg 3 houses),
or more general (e.g., combining different concepts into "at least 2 neighboring houses").

Domain-specific concepts To demonstrate the general applicability of HELP to more realistic
tasks, we plot the pooled graph distribution with some subgraph examples for all datasets in Ap-
pendix F.3. For Mutagenicity (Figure 13), we find that concept 1 represents the NO2 group and
concept 4 represents aromatic rings—both of which are known to have a strong impact on the mu-
tagenicity of a molecule (Kazius et al., 2005). Additionally, we identify concepts for the common
hydroxy group (14) and for most likely irrelevant hydrogen atoms (16). Important concepts discov-
ered in BBBP (Figure 11) include aromatic rings (3), oxygen atoms (9), nitrogen atoms (2, 4, 7)
and carbon atoms close to them (1, 12, 13). All of these strongly influence blood-brain-barrier pen-
etration (Pajouhesh and Lenz, 2005; He et al., 2018). As expected (Ying et al., 2019b), the concepts
discovered for REDDIT-BINARY (Figure 15) contain both, tree-like structures with few neighbors, in-
dicating a discussion between a number of users (e.g., 1, 5, 14 and 17) and structure with one central
user to whom many others reply, indicating a question-answer based thread (e.g., 7, 11, 12 and 18).

4For computational feasibility we only use 50% of the test set for conformity scores. ASAP could not be run
in the given configuration as even small batch sizes did not fit into 80GB of GPU memory.
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Figure 2: Excerpt of concepts found in our hierarchical dataset and which pooled subgraphs
were assigned to them. Each bar of one color shows a set of isomorphic subgraphs mapped to
a concept. The bars contain random example L-hop neighborhoods (transparent) of the pooled
subgraph (solid). The node color represents the features. By using the number of subgraphs rather
the number of nodes (x-axis), these plots illustrate the intuition of concept conformity, where any
colored parts that make up less than 10% of the concept’s total bar are considered noise. Extended
versions are given in Appendix F.3.

Table 2: Test accuracy and completeness scores of ablations. Reported as in Table 1.
Baseline Global Clustering Hyperplane

Acc. Comp. Conf. Acc. Comp. Conf. Acc. Comp. Conf.

Synth. Hier. 99.9±0.2 100.0±0.0 99.8±0.4 99.6±0.7 100.0±0.0 100.0±0.0 97.9±2.7 100.0±0.0 100.0±0.0

Mutag. 77.0±2.3 73.7±2.7 83.6±0.3 78.7±2.0 74.4±1.4 84.2±1.7 78.0±0.9 72.8±1.4 83.0±1.2

BBBP 85.0±1.6 80.8±1.4 84.8±1.4 86.2±2.2 82.1±2.7 84.4±2.4 84.6±3.4 81.0±1.3 84.0±2.0

5.3 Ablation

Global Clustering In the baseline version of HELP which we discussed so far, we perform cluster-
ing batch-wise with merged centroids as defined in Section 3.1. As shown in Table 2, performing clus-
tering on the whole batch would perform marginally better. For concept completeness and conformity
it is important to note that this variation has a small advantage because it was trained on clusters that
were determined by the whole training set, whereas the other methods are also tested on such a cluster-
ing, but trained on clusters from only a single batch. However, whereas the differences in the metrics
all lie within one standard deviation, global clustering requires keeping all final node embeddings from
all pooling steps in memory at once. This proves prohibitive on larger datasets like REDDIT-BINARY.

Hyperplane Gradient Approximation Applying the hyperplane gradient approximation technique
detailed in Appendix D.2 performs extremely similar to not using it. This confirms the hypothesis
that node embeddings already form clusters of meaningful concepts when training a GNN end-to-end
without explicitly optimizing the clusters (Magister et al., 2021). As the runtime per epoch grows
linearly in the number of Monte Carlo samples (in our case with 10 Monte Carlo samples by a factor
of 9.5±1.0 over the three tested datasets), we choose the simpler and more computationally efficient
approach as baseline.

Limitations We note that the computational cost prohibited an extensive hyperparameter search
on our hyperplane gradient approximation approach. We therefore cannot exclude the possibility
that with different hyperparameters, explicitly learning the clustering would further improve the
results. Moreover, our definition of the conformity score relies on graph-isomorphism for which no
polynomial time algorithm is known. In practice, we use a table of WL hashes (Shervashidze et al.,
2011) (which can be computed in linear time), and only check isomorphism for collisions. Regardless,
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this metric still becomes infeasible for larger datasets like REDDIT-BINARY. This is still significantly
less expensive than calculating the graph edit distance as proposed by Magister et al. (2021) who
simply ignore graphs above a certain size in order to be able to compute their purity scores.

6 Related Work

Explainable GNNs Post-hoc explainability methods on GNNs can be divided into three categories.
Instance-level approaches explain the prediction of a single input sample. This is often done by
adapting existing explainability techniques to the domain of graphs (Baldassarre and Azizpour, 2019;
Pope et al., 2019; Schnake et al., 2022) or—taking inspiration from the seminal work GNNExplainer
(Ying et al., 2019b)—by finding a subgraph that has the highest relevance for the prediction (Vu and
Thai, 2020; Schlichtkrull et al., 2021; Yuan et al., 2021). In contrast, model-level methods (Wang and
Shen, 2022; Yuan et al., 2020; Luo et al., 2020) aim to understand what characterizes a particular
prediction (e.g., a given class) over the whole dataset. In an attempt to find a balance between those
two ideas, concept-based approaches (Azzolin et al., 2022; Xuanyuan et al., 2023) explain individual
predictions but do so in-terms of human-understandable concepts rather than raw input features. Most
similar to our method is GCExplainer (Magister et al., 2021), which also defines concepts as clusters
in the embedding space but—besides being post-hoc—cannot show hierarchies or which part of a
node’s neighborhood is actually relevant for the concept.

By trying to cast light on the complex prediction process without ever incentivizing the model’s
decisions to be made in an easily understandable way, these post-hoc approaches tend to generate
explanations that are less complete, less accurate and more prone to human error (Rudin, 2019).
As a remedy, Magister et al. (2022) force the final node embeddings to be in [0, 1] and define a
concept as all nodes that were mapped to the same, booleanized embedding. In contrast to HELP,
this approach represents concepts as k-hop neighborhoods rather than only the relevant part. It has
limited applicability to the graph-level prediction setting where they average over all final node
embeddings, making them no longer close to binary values. (Georgiev et al., 2022) propose an
alternative, specifically targeting the field of learning to imitate classical algorithms and assuming to
know the possible concepts in advance.

Hierarchical Graph Pooling While earlier work in this field deterministically pre-computes which
nodes to cluster based on the graph-structure (Defferrard et al., 2016; Rhee et al., 2018), or learns a
fixed pooling in a separate, unsupervised step before training the actual model (Subramonian, 2021;
Dai and Wang, 2021), we focus on end-to-end-learnable graph pooling approaches. This allows us
to explicitly learn concepts that are relevant for the task at hand. More specifically, while there are
numerous spectral pooling methods (Dhillon et al., 2007; Ma et al., 2019; Bacciu and Sotto, 2019)—
which are problematic due to the time complexity of the Eigendecomposition they rely on—we focus
on non-spectral approaches. In their method DiffPool, Ying et al. (2019a) learn weights mapping
any input graph to a fully connected graph with a fixed number of nodes. Later methods like ASAP
(Ranjan et al., 2020) approach these two major limitations by learning to prune a fixed percentage
of nodes, resulting in sparse graphs where the number of output nodes is a fixed percentage of the
number of input nodes (Gao and Ji, 2019; Cangea et al., 2018; Lee et al., 2019). In contrast to HELP,
the number of nodes after pooling still cannot depend on structure or features of the input.

7 Conclusions

We present HELP, a novel graph learning method that explains its predictions in terms of hierarchical
concepts. We empirically demonstrate that it performs on-par with previous message-passing GNNs
and hierarchical pooling methods in terms of accuracy while being more than 1-WL expressive and
discovering significantly more precise and less noisy concepts than the previous state-of-the-art.
The latter is shown by a qualitative analysis as well as a novel metric to evaluate the conformity of
concepts. In future work, it would be valuable to explore adding readout layers after each pooling step,
replacing the final sum pooling with variations of Logic Explained Networks (Ciravegna et al., 2023),
extending HELP to settings requiring node-level predictions, or utilizing it for graph compression.
More importantly, we believe HELP paves the way for a more thorough analysis of the interplay
between concepts discovered on different layers of GNNs.
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A Additional properties of HELP

A.1 Expressive Power

An additional advantage of HELP is that, in contrast to GNNs following the message-passing
framework (Xu et al., 2019), it can distinguish between graphs that cannot be distinguished by the
Weisfeiler-Lehman graph isomorphism test (WL-test). Figure 3 gives an example of two graphs that
this test fails to tell apart. However, it is easy to see that the number of connected components in these
graphs differs. As our pooling step includes a connected component search, our algorithm should,
in theory, be able to determine which of those two graphs was given as the input. In particular, the
GNN layers will produce the same embeddings for all nodes due to the mentioned limitation. The
pooling will then map the graph on the left to two nodes and the graph on the right to one node—
all of them with the exact same embedding which was calculated by mean pooling nodes with the
same embedding. For nonzero embeddings, the final global sum pooling will therefore yield different
results (the graph on the left will have the result of the graph on the right times two), allowing the
final classification layer to make different predictions.

To empirically demonstrate this, we design a simple synthetic dataset based on the example graphs
shown in Figure 3. In particular, we generate graphs with even numbers of nodes between 6 and 40
which consist of either one or two circles. The goal is to predict which of those two is the case. As
shown in Section 5.1, we indeed achieve perfect accuracy whereas GCN only reaches the accuracy of
always guessing the more likely class.

Note that HELP trivially also can distinguish everything the GNN layers it uses could differentiate on
their own. This makes it strictly more expressive than standard GNNs that follow the message-passing
scheme. Interestingly, even though it does not solve it perfectly, the fact that ASAP achieves higher
accuracy than just predicting the most likely class on our Synthetic Expressivity dataset indicates that
it is more than 1-WL expressive as well. To the best of our knowledge, this is not mentioned in the
original paper.

A.2 Receptive Field

In a standard GNN following the message-passing scheme, the receptive field of a node is its L-
hop neighborhood, where L is the number of GNN layers. A big receptive field can be necessary to
recognize larger structures in the graph. However, increasing the number of GNN layers not only
leads to higher computational cost but also has a harmful effect termed oversmoothing. This refers
to the phenomenon that with a growing number of GNN layers, the embeddings of all nodes will
become similar which leads to a loss of expressive power exponential in the number of layers (Oono
and Suzuki, 2020).

Our algorithm alleviates this issue by increasing the receptive field beyond the number of GNN
layers. Take, for instance, a graph consisting of multiple substructures where the interaction of those
substructures is important but they are separated by long chains of intermediate nodes. An example
would be inserting more intermediate nodes in our Synthetic Hierarchical dataset. A standard GNN
would require enough layers to cover those long chains. In contrast, our method could already pool
after only one or two layers. Most nodes on the chains would then be mapped to the same cluster—
independent of the length of the chains. Consequently, the nodes on each chain would be mapped to

Figure 3: The graph consisting of two triangles (left) and the graph consisting of a hexagon (right)
can not be distinguished by standard GNN architectures even though they are not isomorphic.
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Table 3: Shared hyperparameters for all datasets
Parameter Value
Optimizer Adam (Kingma and Ba, 2015)

Learning Rate 0.001
Weight Decay 0.0005

Batch Size 32 for REDDIT-BINARY, 64 otherwise
GNN Layers GCN (Kipf and Welling, 2017)

Global Pooling Operation
∑

Activation LeakyReLU (0.01)
Hidden Dimensions 32 32 [Pool] 32 32 [Pool] 32 4

Train/Test/Validation Split 80% / 10% / 10%
m (no. samples for hyperplane approx.) 10

a single node during pooling. After this, a significantly smaller number of layers would be required
to cover the whole graph in the receptive field.

B Experimental Setup

B.1 Baselines

We compare our proposed algorithm to a standard GNN (in our case GCN (Kipf and Welling, 2017))
with the exact same architecture but without the pooling layers. Additionally, we compare it to two
popular pooling methods: DiffPool and and ASAP (see Section 6). Whereas none of these approaches
was designed with the goal of interpretability, we are still able to calculate concept completeness for
DiffPool. Recall that DiffPool has a fixed number of nodes after each pooling step and learns a soft
assignment from each input node to these output nodes. We therefore define the concept of an input
node as the id of the output node to which the assignment is the strongest. This gives us everything
that is required for our concept metrics, such as a multiset of present concepts for completeness.
ASAP, on the other hand, only selects some percentage of the most important nodes. There is no
straight-forward mapping from these nodes to a global concept. Additionally, note that ASAP and
DiffPool both employ more complex GNN layers to achieve state-of-the-art performance and ASAP
additionally makes use of a layer-wise readout5. To enable fair comparison, we instead use the GCN
layer for all experimental setups and remove the layer-wise readout.

C Implementation Details

C.1 Reproducibility

Whereas the most important hyperparameters are given in Appendix C.1, the exact commands to
reproduce all ablations are given in the README.md file of our repository (attached as supplementary
material). Additionally, the analysis.ipynb notebook contains detailed instructions to easily
reproduce the concept/subgraph visualizations used in the qualitative analysis.

C.2 Clustering

C.2.1 Resolving Ambiguities when Merging Clusters

Note that it is possible for connected chains of points that should be merged to occur. For example,
there could be three points A, B and C where the distance between A and B and between B and C
is below the threshold but the distance between A and C is not. We resolve these ambiguities in a
permutation-invariant manner by merging the whole connected chain.

5Essentially, this introduces skip connections from the output of each GNN layer to the final prediction layer.
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Figure 4: An example graph from the synthetic hierarchical dataset. The high-level motif here is
a house. It contains two triangles, a house and two fully connected pentagons as lowlevel motifs. The
class label is therefore given by (house, {triangle, house, fully connected pentagon}). Intermediate
nodes (see Section 4.1) are colored red.

Table 4: Hyperparameters varying between datasets
Epochs nclust Lvl. 1 nclust Lvl. 2

Synthetic Hierarchical 10000 10 15
Mutagenicity 1000 20 20
REDDIT-BINARY 1500 30 30
BBBP 5000 15 15
Synthetic Expressivity Ours: 100, others: 1000 10 15

C.3 Datasets

C.3.1 Hierarchical Dataset

Note that we insert the intermediate nodes described in Section 4.1 for two reasons. First, they ensure
that the combination of low-level and high-level motif can theoretically be deduced. Whereas we
view the graph in a certain way based on how it was generated, it is otherwise possible that graphs
from different classes are in fact isomorphic. Additionally, the main goal of this dataset is that we
already have a good understanding of what concepts to expect when going into the analysis. In
particular, we would like to see decoupled concepts for the different low-level motifs which makes
the dynamics easier to understand. As our method pools connected components mapped to the same
concept, without the intermediate nodes, neighboring high-level nodes would be pooled together
if they are mapped to the same concept. Therefore, our algorithm would be forced to learn more
complex concepts that depend on the combination of neighboring low-level motifs in order to solve
the task. These would be harder to interpret in the analysis.

C.3.2 Mutagenicity and BBBP

Like previous methods (Magister et al., 2021, 2022), we ignore the edge features in these datasets
as they are not supported by the simple GNN layer GCN (Kipf and Welling, 2017). Whereas our
method is independent of the message-passing GNN layer and therefore in principle also supports
edge features with an appropriate layer, we opt for GCN as a widely used baseline to make our
analysis comparable to previous work (Magister et al., 2022, 2021), avoid unexpected side-effects
by a complex GNN layer and minimize computational cost. Whereas Mutagenicity has only the
atom class as its node labels, BBBP contains various additional properties like valence by default.
We remove these properties to allow easier visualization and interpretation of the input graphs by
someone who is not a domain expert.
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Figure 5: Gradient flow of our method. Black arrows denote the forward pass, green arrows show
the naïve gradient flow only through the node embeddings (Section D.1) and red arrows denote the
gradient flow in our hyperlane-based approximation (Section D.2). In particular, note that the red
gradients flow back up to the discontinuous component where the flow is interrupted. Instead, the
gradient with respect to the input of these components is approximated from the multiple samples
that were propagated from here up to the final dense layer. These approximated input gradients then
flow back up to the next discontinuous component, where the process repeats.

C.4 Visualization

Whilst not required in clean datasets like our Synthetic Hierarchical one, for BBBP and Mutagenicity
(plots 13–12), we make visualizations slightly more readable by merging small bar segments into
bigger ones. In particular, visualizing examples of these segments reveals that they are generally
highly related to bigger segments of the same concept. For example, the same functional group
but including an additional carbon atom. While this could still be interpreted by a human, it would
require looking at a bigger list of examples and thereby be harder to depict in a single plot. As
a remedy, we take all pooled components with at most 500 assigned nodes (starting from the one
with the least assigned nodes) and merge them with the next bigger one (if any) that (1) is a proper
subgraph (including node features) of the current component and (2) consists of at least 2 nodes (to
ensure that relevant structure is preserved). Note that this method could not sensibly be applied to
GCExplainer as the different k-hop neighborhoods would likely not be subgraphs of each other.

D Differentiability

As mentioned earlier, clustering and merging connected components are inherently discontinuous
operations. In this section, we will discuss different remedies that allow us to still learn embeddings
that give the desired clusters.

D.1 Using the Existing Gradient Flow

Before we dive further into different approaches to estimate gradients, it is important to note that
they are not strictly necessary to train a model. As the node embeddings of the pooled graphs are
always averages over a subset of node embeddings of the previous graph, there exists an uninterrupted
gradient flow from the inputs to the final predictions (see Figure 5). However, these gradients are
calculated as if the cluster assignments were fixed. In other words, whereas the loss landscape is
not zero almost everywhere (as it would be the case for many classical algorithms like sorting, path
finding etc. (Pogancic et al., 2020)), it has discontinuities wherever a change in a node embedding
would lead to it being assigned to a different cluster. This means that the gradient information does
not give us any way of learning which cluster assignment would be better. As learning a good way to
coarsen graphs is a central goal of this work, we will discuss different sampling based remedies in
the following sections. Nevertheless, since Magister et al. (2021) find that even in standard GNNs,
the trained node embeddings form clusters representing meaningful concepts, we still expect this
approach to perform reasonably well. Even though we do not explicitly optimize for a good clustering,
it will implicitly evolve as the GNN learns to optimally predict the target.

D.2 Locally Approximating Gradients as a Hyperplane

An alternative approach is motivated by the definition of the gradient as the locally tangent hyperplane
as well as Taylor’s theorem which tells us that a continuously differentiable function could be locally
approximated as a hyperplane. We therefore propose to locally approximate the gradient of some
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Figure 6: Visualization of the approximated hyperplane. For a given point (red) on the function
f (blue/red), we take m samples around it (black) and find an approximate hyperplane (green). We
then use the gradient of that hyperplane as the approximate gradient at the red point. Note that this
example is overdetermined as m > 2 and x ∈ R2. We therefore use the least squares solution to
Equation 3 rather then the minimum norm solution. In practice, we have x ∈ Rb for some b≫ m
and our hyperplane will therefore always go through all sampled points.

function f : Rb → Rd at point x ∈ Rb by evaluating the function on a number m − 1 of slightly
perturbed points and finding a hyperplane that goes through all of them. A visualization is shown in
Figure 6.

Formally, for noise vectors ε1, . . . , εm−1 ∼ N (0, σ2Ib) we determine the minimum norm solution
A to
−−−− x⊤ −−−− 1
−−−− (x+ ε1)

⊤ −−−− 1
...

...
−−−− (x+ εm−1)

⊤ −−−− 1


 a1,1 . . . a1,d
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. . .
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
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=:A

=


−−−− (f(x))⊤ −−−−
−−−− (f(x+ ε1))

⊤ −−−−
...

−−−− (f(x+ εm−1))
⊤ −−−−


(3)

where we append ones to the input to allow for a constant offset in the hyperplane. We can therefore
locally approximate f around x as:

f̂(z) := A⊤


z1
...
zb
1

 (4)

where we can trivially read off the gradients from A.

Whereas in traditional finite difference methods, the distance between the points should be as small
as possible to obtain the best possible gradient approximation, this is not the goal in our case. Instead,
we need to strike a balance with the chosen variance. On the one hand, the points should be spread
out far enough that when close to a discontinuity, some points will likely be on the other side of
this “jump". This is what makes our gradient estimations smooth. On the other hand, increasing the
variance of the point distribution also increases the variance of our gradient estimates which means
that we need more samples to attain stable gradients. Moreover, the estimated gradient should not be
overly smooth in order to still be able to find the correct minimum.

Whereas the previously proposed black box differentiation methods (Berthet et al., 2020; Pogancic
et al., 2020; Blondel et al., 2020; Dalle et al., 2022) focus on linear programs, our approach has
an intuitive motivation for arbitrary functions. This is particularly useful as in our setting we need
to map a mixture of continuous (node embeddings) and discrete (input graph) features to discrete
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output features (pooled graph) which continuous output features rely on (new node embeddings). In
contrast, these previous approaches focus on mapping purely continuous input features to discrete
output features.

Additionally, whereas we opt to sample the perturbed points from the normal distribution, the
motivation behind our method does not rely on randomly sampled points and they could easily be
chosen in some deterministic way instead. This makes our approach easier to analyze. For instance, if
f already corresponds to a hyperplane, for m > d we will always get f = f̂ by definition. This holds
independent of the choice of perturbed points, as long as they are linearly independent. In methods
like the one by Berthet et al. (2020), this only holds in expectation.

D.2.1 Application to Graph Pooling

The gradient approximation methods for black box combinatorial solvers that we discussed so far
(including our method described in the previous section) are not directly applicable to our hierarchical
pooling setting because they assume that the output dimension d of the black box function will be
fixed. However, our black box component outputs arbitrarily sized graphs along with their node
embeddings. For each pooling layer, we therefore define the black box as its actual discontinuous
component followed by all subsequent pool blocks along with the final, global pooling (see Figure
5). Whereas this results in a constant output dimension, it also leads to black boxes containing
learnable parameters—a setting which the discussed approximation methods are not applicable for.
We therefore always propagate gradients back until we reach a discontinuous component. However,
instead of propagating them through this component as described in Section D.1, we compute the
gradient with respect to the inputs of the discontinuous component using the black box differentiation
method described earlier in this section.

Note that with this method, the number of required forward passes grows in Θ(mnblocks). Along with
the “main" forward pass (for which we calculate gradients), we need m− 1 additional forward passes
from each component up to the final layer. As we do not need to calculate the gradients for these
additional forward passes, the number of forward passes does not grow exponentially. Regardless,
this still limits us to a relatively low number of samples in practice. In Appendix E we demonstrate
that despite yielding relatively stochastic gradients, combined with an optimizer like Adam (Kingma
and Ba, 2015), this approach can still lead to convergence. To further stabilize training in our more
complex setting, we use a weighted average of the exact gradients with respect to the values (as
described in Section D.1) and the gradients obtained by our method, which are stochastic but take
different clustering into account.

E Evaluation of Hyperplane Gradient Aproximation

To showcase the smooth gradient estimation generated by our method described in Appendix D.2, we
arbitrarily chose the piece-wise linear function f as:

f(x1, x2) :=


0.2x1 + 1 x1 < 1 ∧ x2 < −1
0 x1 < 1 ∧ x2 ≥ −1
4 x1 ≥ 1

(5)

Figure 7 shows that for a higher number of samples we get an increasingly smooth and less stochastic
gradient approximation. However, In practice we are limited to a relatively low number of samples in
more complex architectures like the one proposed in this thesis. To verify that even noisy gradient
estimations allow us to learn, we initialize a point on the red plateau at (2,−2.5) (see Figure 7a)
and try to minimize the function using the Adam optimizer (Kingma and Ba, 2015) with learning
rate 0.1 and weight decay 5 · 10−4. For the gradient estimation, we evaluate at m = 20 additional
points perturbed by the Normal distribution N (0, 0.3). Since f does not have a unique minimum,
the goal should be arriving at any point with x1 < 1, x2 < −1 and moving down the slope in the
direction of smaller x1 from there. After 1000 steps we end up at (−76.21,−2.42) with f(x1, x2)
monotonically decreasing over all steps, strongly indicating that this is indeed what happens. In
particular, despite the theoretical gradient of 0 we are able to leave the plateau and even though the
dark blue area f(x1, x2) = 0 for x1 < 1, x2 ≥ −1 has 0 gradient and a lower value for x1 > −5 we
do not end up in this local minimum.

21



x1

2
0

2
x 2

2

0

2

f

0

2

4

(a) f

x1

2
0

2
x 2

2

0

2
0.00

0.15

(b) ∂f
∂x1

x1

2
0

2
x 2

2

0

2
0.05

0.00

0.05

(c) ∂f
∂x2

x1

2
0

2
x 2

2

0

2

f x 1

0

8

(d) ∂f
∂x1

(m = 10)

x1

2
0

2
x 2

2

0

2

f x 1

0

4

(e) ∂f
∂x1

(m = 100)

x1

2
0

2
x 2

2

0

2

f x 1

0

3

(f) ∂f
∂x1

(m = 1000)

x1

2
0

2
x 2

2

0

2

f x 2

6

0

6

(g) ∂f
∂x2

(m = 10)

x1

2
0

2
x 2

2

0

2

f x 2

2

0

(h) ∂f
∂x2

(m = 100)

x1

2
0

2
x 2

2

0

2

f x 2

1

0

(i) ∂f
∂x2

(m = 1000)

Figure 7: Plot (a) shows the function from Equation 5 with its exact gradients in the directions x1
and x2 in Figures (b) and (c) respectively. Plots (d)–(i) show the corresponding smooth gradient
estimations for m ∈ {10, 100, 1000} samples. Perturbations are sampled from N (0, 0.3I2).

F Additional Results

F.1 L-hop Neighborhood Conformity

In addition to our definition of conformity, Table 5 also shows the conformity when interpreting
examples of a concept as the L-hop neighborhood (like proposed in GCExplainer) rather than the
connected component of nodes mapped to the same cluster. Crucially, this is not just a different metric
definition but rather a question of how we define and therefore interpret concepts. As expected, all
conformity scores are significantly lower this way as the subgraphs consist of a fixed neighborhood
and will therefore inevitably contain nodes that are not relevant to the concepts, leading to many
non-isomorphic subgraphs with the same meaning.

The main advantage of taking the L-hop neighborhood is that it guarantees, all isomorphic subgraphs
mapped to a concept will have exactly the same meaning as they are defined as the receptive field of
the node. In contrast, in our approach, two concepts could each pool the subgraph “pair of nodes"
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Table 5: Comparison of concept conformity scores. Due to the expense of graph-isomorphism tests
we only perform one inference pass per trained model (as opposed to 3 for concept completeness).
For comparison, we also show the L-hop scores (Section F.1). Note that scores close to 100% are
expected for DiffPool after the first layer as the pooled graphs look identical for all samples (fully
connected with the predefined number of nodes). However, this also yields low completeness scores,
meaning that the concepts may be easy to understand (everything is considered the same concept) but
not meaningful.

.

Ours
Level 1

L-hop
Level 1

Ours
Level 2

L-hop
Level 2

Synthetic Hierarchical
Ours 99.8%±0.4 97.3%±0.2 95.0%±2.7 89.7%±0.9
Ours (Global Clustering) 100.0%±0.0 97.5%±0.0 97.1%±2.2 88.8%±3.9
Ours (Hyperplane) 100.0%±0.0 97.1%±0.2 97.0%±2.3 90.3%±4.0
DiffPool 0.0%±0.0 27.2%±0.0 100.0%±0.0 100.0%±0.0

Mutagenicity
Ours 83.6%±0.3 47.5%±2.4 63.5%±4.2 23.3%±4.4
Ours (Global Clustering) 84.2%±1.7 47.8%±5.3 54.0%±6.3 18.2%±5.4
Ours (Hyperplane) 83.0%±1.2 46.7%±3.7 60.0%±6.0 28.2%±3.9
DiffPool 42.9%±0.0 12.4%±0.0 100.0%±0.0 100.0%±0.0

BBBP
Ours 84.8%±1.4 33.2%±6.0 57.5%±2.0 7.5%±2.9
Ours (Global Clustering) 84.4%±2.4 30.1%±0.7 53.4%±4.0 10.5%±4.4
Ours (Hyperplane) 84.0%±2.0 31.3%±2.0 59.1%±5.0 9.2%±4.7
DiffPool 0.0%±0.0 0.0%±0.0 100.0%±0.0 100.0%±0.0

REDDIT-BINARY
Ours 96.2%±0.4 infeasible 76.0%±11.0 infeasible
DiffPool 93.0%±2.6 infeasible 100.0%±0.0 infeasible

where in one of them, this stands for the bottom of a house and in the other it stands for the bottom of
a triangle. In Section 5.2, we demonstrate that plotting a few example neighborhoods per subgraph
is generally sufficient to get a good understanding of meaningful concepts. Note that in practice,
GCExplainer ignores node features and tunes the neighborhood size to some ℓ ≤ L that gives the
best concepts which both imply that this property no longer necessarily holds for their reported
concepts. Additionally, by ensuring this, the number of subgraphs to analyze is significantly higher
which makes understanding each of them infeasible. When it leads to ignoring other concepts, the
guaranteed same meaning is no longer beneficial.

F.2 Completeness of Hierarchical Concepts

Table 6: Test completeness scores after each of the two pooling steps in comparison to other
methods.

HELP (Ours) DiffPool
Level 1 Level 2 Level 1 Level 2

Synthetic 100.0%±0.0 99.5%±1.4 27.0%±0.0 27.0%±0.0
Mutagenicity 73.7%±2.7 70.8%±2.4 53.6%±0.0 53.6%±0.0
BBBP 80.8%±1.4 78.3%±2.5 77.1%±0.4 77.1%±0.4
Synthetic Expressivity 52.3%±0.0 100.0%±0.0 53.5%±0.0 53.5%±0.0

We would generally expect the completeness to be higher in later pooling layers where the concepts
incorporate more structural information. However, the trend we observe indicates the opposite. To
this end, it is important to note that in our hierarchical setup, these concepts can, in fact, be more
meaningful in two ways that are not captured by the completeness measure. Firstly, they aggregate
local information that might not be meaningful on its own but could facilitate subsequent layers.
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For instance, the presence of a pair of carbon atoms might not carry significantly more information
towards the final prediction than a single atom and thus not increase the completeness. Yet, the
following GNNs would require less layers to detect an aromatic ring from pairs of carbon atoms than
they would for the original graph. Secondly, pooling always implies a reduction in the number of
nodes. This generally means that the set of concepts is smaller and each of them will therefore need
to carry more information in order for the completeness to stay constant.

F.3 Additional visualizations
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Figure 8: Subgraphs matched to each concept by GCExplainer in our hierarchical dataset and
how often they occur
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bo�om of triangle – deg 3

body of pentagon – deg 2

bo�om of triangle – deg 2

top of house – deg 3

top node

bo�om of house

intermediate node

center of house

top of pentagon – deg 2

body of pentagon – deg 3

Figure 9: Subgraphs matched to each concept in the first pooling layer of our hierarchical dataset
and how often they occur. Textual explanations were generated manually based on this visualization.
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intermediate node between 2 houses

bo�om of house

(bo�om of) deg 2 triangle

top of deg 2 pentagon and neighboring intermediate nodes

bo�om of triangle – deg 3 

center of deg 3 house

center of deg 2 house

top of deg 2 triangles / deg 2 pentagons

at least 2 neighboring houses

Figure 10: Subgraphs matched to each concept in the second pooling layer of our hierarchical
dataset and how often they occur. Textual explanations were generated manually based on this
visualization.
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SO2

Cs close to N

Cs close to N

C-S-C in ring

Cs close to more electronega�ve (O/F/N/S)

O

Cs without others in neighborhood

N

C close to O

N

(mostly) aroma�c rings

N

O / Cl

Figure 11: Subgraphs matched to each concept in the first pooling layer of BBBP and how often
they occur. Textual explanations were generated manually based on this visualization.
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O (and its neighborhood)

O (and its neighborhood)

Cs close to N

N (and its neighborhood)

Cs close to more electronega�ve (O/F/N/S)

mostly aroma�c rings close to Ns

Figure 12: Subgraphs matched to each concept in the second pooling layer of BBBP and how
often they occur. Textual explanations were generated manually based on this visualization.
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NH2

NH

OH (hydroxy)

less relevant H / CH2

aroma�c rings

Cl

O

NO2

less relevant H / CH2

Cs without others in neighborhood

C close to Cl

N

less relevant H / CH / CH2

Figure 13: Subgraphs matched to each concept in the first pooling layer of Mutagenicity and
how often they occur. Textual explanations were generated manually based on this visualization.
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Figure 14: Subgraphs matched to each concept in the second pooling layer of Mutagenicity and
how often they occur
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Figure 15: Subgraphs matched to each concept in the first pooling layer of REDDIT-BINARY
and how often they occur. Generated with 50% of the test data for performance reasons.
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Figure 16: Subgraphs matched to each concept in the second pooling layer of our REDDIT-
BINARY and how often they occur. Generated with 50% of the test data for performance reasons.
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