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ABSTRACT

Despite their huge success, Graph Neural Networks (GNNs) still require lots
of labeled examples (per class) at training time in order to perform well on the
Semi-Supervised Node Classification (SSNC) task. This is a major drawback
since labels are usually expensive and time-consuming to get. Though several
attempts have been made to address this problem, most attempts still require; a
significant amount of labeled examples for at least some classes (considered base
classes), as well a minimum amount of labels per class (for other classes). In
this work, we attempt to alleviate these hard requirements. Our problem thus
differs from the traditional SSNC settings in the sense that in this work we try to
address the setting in which we only have extremely few labeled nodes seen at
training time, and in addition, these labeled nodes are not provided (chosen) on
a per-class basis. We name this task Sparse Labels Node Classification (SLNC).
To address this problem, we Estimate Label Information (ELI) from a pseudo
space by leveraging unsupervised learning techniques. We use this estimated label
information to enhance reformulations of well-known semi-supervised learning
(SSL) frameworks, as well as guide the labeled nodes selection process for training.
We show that our approach outperforms baselines on SLNC by 10-20% when the
number of labeled nodes seen at training is extremely few.

1 INTRODUCTION

Classification which often serves as a preliminary (Serengil & Ozpinar, 2021; Redmon et al., 2016)
or final step (He et al., 2016; Kipf & Welling, 2017; Li et al., 2019) for several applications is a
ubiquitous task in several domains ranging from images (Li et al., 2019), to shapes (Sun et al., 2018),
to graphs (Di et al., 2020; Xu et al., 2019), and nodes (Velickovic et al., 2018; Delalleau et al., 2005;
Kipf & Welling, 2017). Though our work may be generalized to several if not all of these domains,
that is a monumental task requiring a lot of work and further analysis. So, in this work we will restrict
ourselves to graphs, particularly to node classification.

Given an attributed graph GA = (V, E , X), where V = {v1, · · · , vn} is the set of nodes and E
is the set of edges in GA. E can be represented by an adjacency matrix A = {0, 1}n×n. The
set of nodes is partitioned into a set of labeled nodes VL and a set of unlabelled nodes VU . The
node attributes are represented by the matrix X = [x1; · · · ;xn] ∈ Rn×d

+ , where xi ∈ Rd
+ is a

non-negative attribute vector of node vi. The aim of semi-supervised node classification (SSNC)
is to learn a function FΘ(A,X) : V −→ Y that maps the nodes in the graph to their corresponding
labels, with the learning process being guided by minimizing (or maximizing) a suitable loss function
minΘ Z(FΘ(A,X),YVL

) where Y is the label set and |C| = c is the number of unique node labels
(referred to as classes C), and YVL

is the set of labels of labeled nodes VL used for training.

SSNC’s performance depends on (a) the design of FΘ(A,X), (b) the design of the loss Z(·), as well
as (c) the optimization technique employed.

For SSNC, existing baselines in order to perform well are often provided with a substantial amount of
labeled nodes at training which are usually provided on a per-class basis. However, in real life (1) it
is difficult to obtain such amount of labels, and (2) it is even more difficult to do so on a per-class
base. In this light, we propose a setting where these two requirements are relaxed i.e., we propose
the setting where (1) we have access to only very few labels in general and (2) these labels are
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not necessarily supplied on a per-class basis but randomly (i.e., some classes may not even have
labels at training time). We term this setting the Sparse Labels Node Classification Problem. The
only requirement we maintain however is that the number of unique classes c is known in advance.
Moreover, we propose a framework ELI (Estimating Label Information) suitable for SLNC, which
when incorporated into the existing SSNC baselines yields 10-20% better performance for SLNC.

One may group our main contributions as follows:

• We introduce the Sparse Labels Node Classification (SLNC) problem,
• for SLNC, we propose a suitable framework built around estimating label information (ELI),
• we show that with ELI, the performance of existing SNNC baselines increases by 10-20%

for SLNC. We equally show in Appendix D that even in the case where very few nodes
are used on a per-class basis, ELI-enhanced baselines still outperform other baselines by
10-20%.

To these ends, we organize the sections in the rest of the paper as (a) related work, (b) sparse labels
node classification (SLNC), (c) ELI, a framework for sparse label classification, and generalization of
the framework, (d) experiments, (e) limitations, and (f) conclusion.

Table 1: Notations
Name Description Name Description
GA The original graph A The original graph adjacency
GH The pseudo label graph AGH

The pseudo label adjacency
GY The ground truth label graph AGY

The ground truth label graph adjacency
V A set of nodes vi The i-th node (i = 1, 2, · · · , n)
X An attribute matrix of all nodes xi The node attribute vector of vi
E A set of edges ej The j-th edge (j = 1, 2, · · · ,m)
VL A set of labeled nodes VU A set of unlabeled nodes
D A diagonal matrix of node degrees Lsym The normalized symmetric Laplacian
Y The ground truth Label matrix Yi,: The label indicator for node i

|C| = c The number of unique node labels lc Unique node pseudo classes
H Pseudo classes assignment matrix Hi,: pseudo label of node i
lH Number of nodes with smallest loss in pseudo space lR Number of randomly chosen nodes

N (Lsym) The graph filter function F Denoised node attributes F = N (Lsym)X
Z(·) Loss function FΘ Neural network
R predicted labels AA Averaged graph adjacency

(a) SLNC on Cora (b) SLNC on Computers (c) SLNC on Wiki

Figure 1: Illustration of the Sparse Labels Node Classification (SLNC) accuracy of baselines using
our estimation of label information (ELI) vs baselines not using ELI (see Section 3). Each experiment
is run 10 times (see parameter settings in Section 5.5). All baselines with ELI achieve up to 10-20%
more classification accuracy compared to those without ELI. Darker lines are the mean for each plot
and lighter colors are the standard deviations .

2 RELATED WORK

For learning on graphs, both in the supervised, semi-supervised, and unsupervised learning commu-
nities, it has generally been agreed upon that the neighborhood of a node is of utmost importance
(Delalleau et al., 2005; Velickovic et al., 2018; Kipf & Welling, 2017; Hamilton et al., 2017; Fey
et al., 2020; Wang et al., 2019; Huang et al., 2019), whether for homophilic graphs (neighbors tending
to share the same labels) or for heterophilic graphs (neighbors tending to share different labels).
This observation has led to designing FΘ(·) and Z(·) in such ways as to leverage this information
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contained in the neighborhood connectivity of a node by utilizing the famous graph convolution
(leading to graph convolution neural networks GCNs (Kipf & Welling, 2017; Wu et al., 2019; Zhang
et al., 2019b)), or approximation of the convolution (Hamilton et al., 2017), or attention strategies
(leading to graph attention GAT (Velickovic et al., 2018)), or other neighborhood aggregation strate-
gies (Di et al., 2020; Gasteiger et al., 2019; Chien et al., 2021; Xu et al., 2019) tailored to address
homophily, heterophily, and other challenges. For Z(·), to enforce neighborhood statistics, the
Laplacian regularization strategy has been broadly adopted (Kipf & Welling, 2017; Delalleau et al.,
2005). However, a major drawback of these SSNC baselines is the requirement of a substantial
amount of labels needed (generally on a per-class basis) at training time to learn a good FΘ(·) (Ding
et al., 2020; Wang et al., 2022). This is a hard requirement since labels are usually expensive and
time-consuming to get, and in scenarios where the graphs are arbitrarily large, getting a consistent
amount of labels becomes prohibitive. Moreover, in real life, it is extremely difficult to select labels
on a per-class basis. Figure 1 Illustrates this problem faced by existing SSNC baselines by showing
that LP (Delalleau et al., 2005), and SGC (Wu et al., 2019) perform poorly on various graphs such as
those of Cora Gasteiger et al. (2019), Computers Chen et al. (2022) and Wiki Zhang et al. (2019b)
when using extremely few random labels. In this setting, their performance is about 10-20% below
their performance when using sufficient labels (see Appendix D, and their original papers).

Pre-training approaches (Veličković et al., 2019; Peng et al., 2020; Ma et al., 2021) were proposed
to enhance the performance of SSNC baselines by learning features in an unsupervised manner and
using these learned features in a semi-supervised manner for different downstream tasks (SSNC in
this case). Though such pre-training helps to improve the performances of GNN when training on
the target graph, these methods still require a substantial amount of labels per class when training
on the downstream task to perform well. This is shown in figure 1 by the poor performance of the
pre-training baselines DGI (Veličković et al., 2019) and GMI Peng et al. (2020) when only very few
labels are used for the downstream task.

There has equally been an attempt to address the very sparse label setting by Wan et al. (2021),
however, their model requires the labeled nodes to be selected on a per-class basis. As such it does
not perform well in the SLNC setting as shown in figures 1(a) and 1(c). Moreover, it takes a lot of
time, so we did not use it for larger datasets.

Other methods (Lan et al., 2020; Ding et al., 2020; Wang et al., 2022; Liu et al., 2021; 2019; Zhang
et al., 2019a) have tried to address the few-shot scenario. In this setting, at training time some classes
termed base classes have abundant nodes seen (usually per class), while other classes termed novel
classes only have a few nodes seen (these few nodes from the novel classes are called the support
set), and evaluation/testing is done on unlabelled nodes (called the query set) from the novel classes.
Baselines in this category usually employ meta-learning on the labeled nodes from the base classes,
generalizing to the support nodes from the novel classes, and testing on query nodes from the novel
classes. Since these methods need a substantial amount of labels (for the base classes used for the
meta-learning phase), they are not suitable for SLNC because in SLNC only very few labels are
available for training for all classes, and maybe some classes may not even have labels (since labels
are chosen at random and not on a per-class basis).

Another related line of work is that of robustness and fairness under domain shift (Rezaei et al., 2021;
Liu & Ziebart, 2014; Yang et al., 2020; Guidotti et al., 2018; Celis et al., 2019; Zhai et al., 2021),
as indeed having very few labels may often result in a scenario where the distribution of labels in
the training set is quite different from the distribution of labels in the test set Wang et al. (2022). In
this domain, several Z(·) (Liu & Ziebart, 2014; Chen et al., 2022), as well as optimization strategies
(Rezaei et al., 2021), have been proposed to address the challenge of distribution change. To our
disadvantage, in this work, we do not include comparisons with these approaches due to lack of time
(we would joyfully do so in extensions to this work).

Other works in other domains (such as Vision) that are related to our work include those of Neigh-
bourhood Constraint Regularization (Iscen et al., 2022), where a neighborhood regularizer is used to
enforce neighborhood preservation when labels are noisy, Co-Teaching (Han et al., 2018) where two
networks are trained in parallel and each networks prediction are used to refine and enhance those of
the other, Mentoring (Jiang et al., 2018) where a network is trained and its predictions are used to
train a subsequent network, and others (Malach & Shalev-Shwartz, 2017; Reed et al., 2015).
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3 SPARSE LABELS NODE CLASSIFICATION

In this section, we will formally introduce sparse labels node classification.

Definition 3.1. Sparse labels node classification is the semi-supervised node classification problem
minΘ Z(FΘ(A,X),YVl

), aiming at minimizing the loss Z(·) over the parameters Θ, in a scenario
where there are only very few numbers of labeled nodes VL, and these labeled nodes are not chosen
on a per-class basis, but randomly over the entire set of nodes V (as will be the case in real life) and
the rest of the nodes in the graph are used for testing.

In this work, for fair evaluation purposes we assume that the number of classes c is known in advance,
and we choose the number of labeled nodes |VL| = l as a multiple of the number of unique classes
c present in the graph i.e., the labeled nodes VL are not chosen per class, but the total number of
labeled nodes l for training is determined as a multiple of the number of classes c and then the nodes
VL are randomly chosen over the entire node set V .

4 ELI (A PROPOSED FRAMEWORK) FOR SPARSE LABELS NODE
CLASSIFICATION)

In this section, we propose to estimate label information (ELI) for SLNC. The intuition behind ELI is
the fact that the neighborhood distribution and attributes of the nodes are not sufficient to be able to
achieve good performance in the presence of sparse labels. This is depicted in figure 1 by the poor
performance of neighborhood-based methods such as Label Propagation (Delalleau et al., 2005) and
graph convolutional neural networks (Wu et al., 2019), as well as the poor performance of feature
learning (pre-trained) methods such as DGI (Veličković et al., 2019) and GMI (Peng et al., 2020) for
the SLNC task.

Our intuition is that to perform well in such a setting, (a) randomly selected nodes whether on a
per-class basis or randomly over all classes may not be representative of the classes in the graph,
and (b) The message-passing framework of GNNs may not be well-adapted given that the label
distribution over the entire graph may not be well captured by the adjacency matrix of the graph. As
such, one needs some amount of information about the label distribution of the nodes over the entire
graph, as well as a strategy for choosing a representative set of nodes as labeled nodes VL.

We thus propose ELI, a framework comprising four steps, namely: (1) label distribution estima-
tion, (2) key nodes selection as labeled nodes, (3) label distribution incorporation in sparse labels
classification, (4) optimize, and (5) generalize the proposed framework.

4.1 LABEL DISTRIBUTION ESTIMATION

In this step, we attempt to estimate the label distribution of nodes on a graph as a function of the node
feature similarity and the graph structure in an unsupervised way. Formally, given the graph structure
of an attributed graph GA represented as an adjacency matrix A ∈ Rn×n, where n = |V| is the
number of nodes in the graph, and the node features (attributes) X ∈ Rn×d, where d are the number
of attributes per node, our goal at this step is to learn a function H : A,X −→ H ∈ [0, 1]n×lc which
maps the node attributes and graph structure to a pseudo label space represented as H ∈ [0, 1]n×lc .
For this step, we adopt the unsupervised convolution-based clustering framework of Kamhoua et al.
(2022) who did an analysis on the framework of Zhang et al. (2019b). These two convolution-based
clustering frameworks were empirically shown to effectively map the node attributes and graph
structure to the pseudo-label space (as seen by the state-of-the-art clustering accuracy achieved by
these frameworks, see more in Appendix D.2).

The frameworks of Zhang et al. (2019b) and Kamhoua et al. (2022) consisted of building the
normalized symmetric graph Laplacian as Lsym = I − D

−1
2 AD

−1
2 = I − Âsym, where I is

the identity matrix, D is the diagonal matrix of node degrees, and Âsym = D
−1
2 AD

−1
2 is the

normalized adjacency. Using this laplacian to build a low-pass filter N (Lsym) = (I − αLsym)k

(i.e., a filter that decays with the eigenvalues of the laplacian, specifically, it gets smaller for larger
eigenvalues, where the rate of decay is determined by the parameters k and α). Using this filter
to do a convolution on the node attributes by the left matrix multiplication F = N (Lsym)X ∈
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Rn×d. Finally using these convoluted features to minimize the clustering objective minH ||FF T −
HHT ||2F , where H ∈ [0, 1]n×lc is a pseudo label space (the cluster space in their work), and || · ||F
is the Frobenius norm. They also propose a criterion for the automatic selection of k and α (we refer
the readers to their work for more details).

4.2 KEY NODES SELECTION AS LABELED NODES (KL)

The second phase in our proposed pipeline is to select a label node set VL to use for sparse labels
classification. Here we chose a number of nodes lH from the pseudo label class returned by the Label
distribution estimation model. For every pseudo-label class H:,j (where H:,j is a column of H), the
lH nodes were chosen to be the nodes with the smallest loss used by the Label distribution estimation
model (such as the loss ||FF T −HHT ||). As the number of nodes needed for training increased
beyond the number of clusters lc, the rest of the labeled nodes lR selected for training are selected at
random. As such the total number of labeled nodes used for training is |VL| = l = lH + lR.

4.3 LABEL DISTRIBUTION INCORPORATION IN SPARSE LABELS CLASSIFICATION

Here we attempt to incorporate the pseudo-label distribution H in the sparse labels classification
problem. To this end, we consider the sparse labels classification problem formulated via the popular
label propagation (LP) (Delalleau et al., 2005). First, given extremely few labeled nodes VL, the
label distribution YVL

of the labeled nodes can be represented as the matrix Y ∈ [0, 1]n×l. Each
row Yi,: of Y is either e(t) the label indicator [0, . . . , 0, 1, 0, . . . , 0] ∈ Rl with a 1 at position t if
node vi ∈ VL and vi is labeled with its label being t, or Yi,: is the zero vector 0⃗ ∈ Rl if the node vi
is not labeled. Second, given the graph laplacian Lsym and the node features X , the sparse label
propagation problem, consists of recovering the labels for all the unlabeled nodes by solving:

min
R

µ||R− Y ||2F +Tr(RTLsymR), (1)

where the matrix R contains the recovered labels for unlabeled nodes as well as the original labels
for labeled nodes, Tr(·) is the matrix trace operator, and µ is a user-defined hyper-parameter.

LP in equation 1 however performs poorly on SLNC, since in this setting only extremely few labels are
available (see figures 1 and 4(a)). So to address SLNC with LP, we incorporate the label distribution
into it via the pseudo labels H . It is not straightforward to use H because in general, the order of the
labels in H does not match the label order in Y i.e., the class Ci in Y may be the class Cj in H
since H was obtained in an unsupervised manner via clustering. To solve this problem, we use the
notion of neighborhood over H (one way of building such a neighborhood graph GH is via the outer
product AGH

= HHT , and setting ). We then build the normalized symmetric Laplacian LGH
of

this graph GH and impose that the recovered labels R should also be smooth on the graph GH as:

min
R

µ||R− Y ||2F +W(Lsym) +K(LGH
), (2)

where the term W(Lsym) = β1Tr(R
TLsymR) enforces smoothness over the node neighborhood,

and the term K(LGH
) = β2Tr(R

TLGH
R) enforces smoothness over the pseudo label distribution.

To mitigate the effect of some possible erroneous neighborhoods in the pseudo-labels space (which
will cause nodes with different true labels to have similar features), we further enforce smoothness
on the real label space of the extremely few labeled nodes VL, by using the symmetric normalized
Laplacian LGY

of the graph GY with adjacency AGY
= Y Y T . Equation 2 will thus become:

min
R

µ||R− Y ||2F +W(Lsym) +K(LGH
) + P(LGY

), (3)

where P(mLGY
) = β3Tr(R

TLGY
R).One can verify that the solution to equation 3 is:

R = µ(µI +LA)
−1Y , (4)
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Figure 2: Illustration of the optimization strategy on Cora (see Section 4.4). The first plot shows the
adjacency AGH

of the graph GH without optimization. The second plot is the normalized adjacency
Âsym of graph GA. The last plot is the optimized adjacency AGH

. The yellow points represent edges,
showing that the adjacencies Âsym and the optimized AGH

are both sparse.

where LA = β1Lsym + β2LGH
+ β3LGY

is a weighted Laplacian (see Appendix B.1). Finally, to
simplify our framework we set β1 = β2 = β3 = 1

3 , so that LA = 1
3 (Lsym +LGH

+LGY
) becomes

simply the average of laplacians.

4.4 OPTIMIZING LABEL DISTRIBUTION INCORPORATION (KG)

The solution 4 can be approximated via the matrix multiplication:

Rt+1 = (1− α)Y + αÂAY
t, (5)

where ÂA = I −LA = 1
3 (Âsym + ÂGH

+ ÂGY
) is the average of the normalized adjacencies of

the graphs, and α = µ
1+µ .

In general, the normalized adjacency Âsym is sparse as shown in figure 2. This is due to the fact that
the nodes in real-world attributed graphs GA are usually loosely connected and only very popular
nodes may have a higher connectivity and thus a higher node degree. Moreover, the normalized
adjacency ÂGY

will also be sparse since only very few nodes are used as labeled nodes for training.

However, building the cluster graph adjacency as AGH
= HHT will result in a very dense graph

as shown in the first plot in figure 2. This will cause the solution 5 to be slow as the matrices to be
multiplied will be dense. Moreover, doing so may not well capture errors in clustering, and may also
not account for links between clusters. To solve these problems, we build the adjacency AGH

by
building a KNN Graph from the Singular Value Decomposition (SVD) of F (See Appendices C and
C.1 for more details). We set a high number of neighbors for the KNN graph to capture the relationship
between different clusters as well as within the same cluster (we use 60 in our experiments, see
Section D.1 for sensitivity studies).

4.5 GENERALIZING THE PROPOSED FRAMEWORK

Fu et al. (2020) showed that the graph convolution N (Lsym)X is an approximation to the solution
of the sparse label propagation problem 1 over node attributes rather than labels (commonly known
as feature denoising, or graph signal denoising). Following his proof, one can equally show that the
graph convolution N (LA)X using the average laplacian LA instead of the graph laplacian Lsym is
an approximation to the solution to the feature denoising problem over the graph structure, pseudo
label, and key labels spaces. As such, we generalize solutions to the sparse labels classification
problem to GNN models such as SGC (Wu et al., 2019) and any other GNN framework, by using
AA as the normalized graph adjacency. In this work, we will use SGC which aims to minimize
Z(Fθ(N (LA)X),YVl

), where Z(·) is any suitable classification loss.

Please find our algorithms and time complexity analysis for (a) ELI 1, and (b) for Label distribution
estimation and Key labeled node selection 2 in Appendix C.

5 EXPERIMENTS

In this section, we report and validate the effectiveness of our proposed framework (ELI) and its
generalization for SLNC. The code is attached and will be released later on Git Hub.
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5.1 DATASETS

We used 7 benchmark attributed graphs to validate the SLNC performance of ELI and its general-
ization. We used: (1) the citation networks Cora (Yang et al., 2016), Citeseer (Giles et al., 1998),
and Pubmed (Gasteiger et al., 2019), (2) the web page graph Wiki (Zhang et al., 2019b), (3) the
co-purchase networks Computers (McAuley et al., 2015), and Photos (Ma et al., 2021), as well as
(4) the coauthor graph Cs (Fey & Lenssen, 2019). Statistics of the datasets can be found in Table 2.

Table 2: Statistics of the datasets.
Dataset #Node #Edge #Attribute #Class

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3
Wiki 2405 17981 4973 17
Computers 13752 491722 765 10
Photo 7650 238162 745 8
Cs 18333 163788 6805 15

5.2 EVALUATION METRICS

For comparison and evaluation, we visualize the normalized classification accuracy (normalized to be
in [0,1]) for all semi-supervised models against the total number of labels used for training. Each
experiment is run 10 times and the mean and standard deviations of the accuracy are plotted.

For the labels used, we randomly selected #num ×c training nodes over the entire set of nodes V ,
where c is the number of unique classes and #num was varied from 1− 4. More experiments can be
found in Appendix D, where we (a) use #num from 1− 20, and (b) also use the setting where training
nodes are selected on a per-class basis rather than over the entire node set.

5.3 BASELINES

For comparison, we will use (a) our proposed framework (ELI) as in Algorithm 1 both with the Label
Propagation approach by setting w = 0 which we term LP-ELI and our generalization using SGC
by setting w! = 0 which we term SGC-ELI. (b) The semi-supervised models: Label Propagation
(LP) (Delalleau et al., 2005), and SGC (Wu et al., 2019) without ELI. (c) The contrastive based
network CGPN Wan et al. (2021) proposed for the sparse label setting. (d) Last but not least, we use
two pre-training bases lines DGI (Veličković et al., 2019), and GMI (Peng et al., 2020). where we
also do not pair them with ELI.

5.4 SET-UP

DGI and GMI were pre-trained on a Linux server with Python(Van Rossum & Drake Jr, 1995) version
3.9.15, PyTorch(Paszke et al., 2019) version 1.13.1, and TensorFlow (Abadi et al., 2015) version 2.11.
The server was equipped with an RTX 3090 and Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz,
and 252G of RAM. While all other downstream tasks were done on a Windows 11 machine with an
Intel(R) Core(TM) i5-13500 @ 2.50GHz, a 2080Ti, and 32GB of RAM.

Model Cora Citeseer Wiki Pubmed

#1 #2 #1 #2 #1 #2 #1 #2

SGC 38.58± 6.53 49.70± 10.16 30.97± 6.91 34.55± 7.47 40.97± 6.09 52.37± 4.91 40.37± 7.78 44.54± 10.52
LP 41.47± 6.79 49.45± 7.11 30.45± 6.64 31.29± 5.92 31.18± 4.85 36.74± 5.02 43.24± 9.72 52.73± 7.28
CGPN 17.95± 6.12 21.84± 6.81 16.85± 4.83 21.85± 3.52 09.15± 4.23 11.88± 7.12 - -
DGI 48.08± 8.98 59.67± 7.51 40.35± 9.48 42.39± 6.35 33.19± 3.61 41.37± 4.78 44.84± 10.09 51.36± 10.17
GMI 50.87± 4.76 58.01± 6.50 45.31± 8.74 44.61± 6.38 30.78± 3.61 38.66± 4.58 45.15± 8.86 51.72± 8.73

LP-ELI 69.72± 0.00 69.14± 1.93 66.21± 0.00 64.99± 1.94 51.26± 0.00 54.35± 1.78 68.08± 0.00 65.59± 2.96
SCG-ELI 67.16± 0.00 68.90± 2.76 64.77± 0.00 61.02± 3.10 56.12± 0.00 59.95± 2.39 66.24± 0.00 62.07± 7.53

Table 3: Tabular results of % classification accuracy on Cora, Citeseer, Wiki, and Pubmed for different
models using 1 label (#1) and 2 labels (#2).
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(a) SLNC on Pubmed (b) SLNC on Citeseer

(c) SLNC on Cs (d) SLNC on Photo

Figure 3: Comparison between ELI-enhanced models and other baselines for SLNC on Pubmed,
Citeseer, and Cs. See parameter settings in Section 5.5.

Model Cs Photo Computers

#1 #2 #1 #2 #1 #2

SGC 62.85± 7.79 70.88± 5.03 56.06± 7.91 71.28± 7.28 53.50± 9.81 63.94± 3.38
LP 46.80± 6.58 53.93± 3.22 53.03± 9.97 63.54± 7.61 50.18± 6.79 59.96± 3.37
CGPN - - - - - -
DGI 63.36± 6.74 69.94± 5.14 40.54± 10.12 51.31± 6.98 41.63± 9.09 49.66± 2.66
GMI 62.74± 6.03 71.19± 5.47 32.41± 8.21 38.65± 6.52 40.03± 10.06 47.44± 3.03
LP-ELI 69.40± 0.00 75.43± 2.60 79.00± 0.00 77.69± 3.48 71.17± 0.00 70.40± 1.45
SCG-ELI 72.50± 0.00 82.62± 3.19 80.97± 0.00 82.03± 2.82 70.78± 0.00 71.96± 1.71

Table 4: Tabular results of % classification accuracy on Cs, Photo, and Computers for different
models using 1 label (#1) and 2 labels (#2).

5.5 PARAMETER SETTINGS

5.5.1 SEMI-SUPERVISED MODELS

For the LP(Delalleau et al., 2005) model, we followed the implementation of Huang et al. (2021) and
set the maximum propagation power to 60, the p parameter to 0.6, and the α parameter to 0.5. For
SGC Wu et al. (2019), we set the convolution power k to 5 and use a multi-layer perceptron (MLP)
from scikit-learnPedregosa et al. (2011) with the solver set as adam, alpha as 1e-3, hidden layer sizes
as (16,), activation as logistic, random state as 0, and learning rate init=0.01. For CGPN, we followed
the original paper settings.

5.5.2 PRE-TRAINING MODELS

On DGI (Veličković et al., 2019) we follow the original paper settings, where we set the number of
epochs to 10000, the patience to 20, the dropout probability to 0, the learning rate to 0.001, the l2
regularization to 0, and we set the output feature dimensions to 512 for all datasets except for the
larger datasets (i.e., Pubmed, Computers, Photo, Cs) for which we use 256 instead. We equally follow
the original paper settings for GMI (Peng et al., 2020), where we set the number of epochs to 550, the
patience to 20, the dropout probability to 0, the learning rate to 0.001, the l2 regularization to 0, the
number of negative samples to 5, the alpha parameter for the loss to 0.8, the beta parameter for the loss
to 1.0, the gamma parameter for the loss to 1.0, and we set the output feature dimensions to 256 for
all datasets. All pre-training was done on the RTX 3090. For the downstream classification tasks, we
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used these pre-trained features in a multi-layer perceptron model (MLP) from scikit-learn(Pedregosa
et al., 2011) with the same parameter settings as the one used for the semi-supervised SGC model
discussed in Section 5.5.1. We used this MLP instead of the simpler Logistic Regression as proposed
in the original papers because the MLP performed much better.

5.5.3 ELI

For Label Distribution Estimation in steps 2-4 of Algorithm 1, we use the variant of attributed graph
clustering via adaptive graph convolution (AGC) from Kamhoua et al. (2022). For all datasets, we
set the tolerance for their stopping criteria to 0.001, and the maximum number of iterations k to
60. For all datasets, no normalization is used for the features (due to space, see clustering results in
Appendix C). We then incorporate this into the LP or SGC models (following Section 4) depending
on w in Algorithm 1, we name these SGC-ELI and LP-ELI. The SGC-ELI and LP-ELI models here
use the same k, p, and power parameters used for the SGC and LP in Section 5.5.1.

5.6 COMPARISON ANALYSIS

Here, we compare and contrast the SLNC performance of baselines enhanced by ELI (i.e., SGC-ELI
and LP-ELI) against the performance of baselines without ELI (i.e., SGC, LP, DGI, and GMI).

First, it can be observed from figures 1 and 3 and tables 3 and 4 that GNNs enhanced by ELI (i.e.,
SGC-ELI and LP-ELI) outperformed the non-enhanced baselines by 10-20% when the total number
of labels used for training was extremely small. However, as the total number of labels kept growing,
this margin converged and narrowed down (see more extensive plots in Appendix D). Moreover, it
can also be observed that SGC-ELI often outperformed LP-ELI, which can be explained by the fact
that the function FΘ(A,X) learned by SGC-ELI via the graph convolution and the neural network
helps SGC-ELI not only to account for graph structure and labels but also the node features.

On the other hand, there seems to be a trade of blow between, the pre-trained baselines (DGI,
and GMI) and the non-pre-trained baselines (SGC, and LP). This is as expected as the pre-trained
baselines just like the non-pre-trained baselines will both learn only structural and/or node information
while not explicitly learning about the label distribution of the graph, and as such in the presence of
extremely few randomly selected labels for training, both -pre-trained and non-pre-trained baselines
will not have enough guidance to learn a good FΘ(A,X).

Lastly, it can also be observed that though CGPN was proposed for a setting with extremely few
labels, it heavily relied on what nodes were selected per-class, and as such it struggles in the SLNC
setting where nodes may be randomly selected not on a per-class basis. Furthermore, this model took
a very long time to run on our downstream intel 5 13500 machine equipped with the RTX 2080Ti.
For example, on Citeseer it took more than 48 seconds per run per number of labels used compared
to 0.27 seconds for LP-ELI or 2.18 seconds for SGC-ELI. On larger datasets like Pubmed and Photo,
it was still running even after 45 mins (so we stopped it and did not use it on the larger Pubmed, Cs,
Computers and Photo). For ablation and sensitivity analysis, we refer the reader to Appendix D.1.

6 CONCLUSION AND LIMITATIONS

In this work, we presented a real-world scenario classification task in which we have only very few
randomly chosen node labels named Sparse Labels Node Classification (SLNC). We then presented
a framework that performs about 10-20% better than traditional baselines for SLNC. Finally, we
conducted ablation and sensitivity studies on the proposed framework. A key limitation of our work
is that, though we tried to simulate a real-world scenario where we randomly select only a few labels
(not on a per-class basis), we still required the total number of possible unique classes to be known in
advance which is generally not the case in real life. There are a few possible future directions, which
include but are not limited to; exploring the ELI framework or variants of it for other domains (such
as images, videos, shapes, and others), overcoming the main limitation of this work by generalizing
ELI to scenarios where the total number of possible unique classes are not known in advance, further
generalizing and optimizing ELI by varying the model used for the label distribution estimation
(Section 4.1), or even the way the label it is incorporated in SLNC (Section 4.3). We believe this
work is beneficial as it can help the industry to alleviate huge costs and time used in labeling.
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Sparse Labels Node Classification: Unsupervised
Learning for Mentoring Supervised Learning in

Sparse Label Settings.
Appendices:

A MORE ON LIMITATIONS OF THE PROPOSED FRAMEWORK

Although a key limitation of our work is that we require prior knowledge of the number of all unique
classes in the graph (see Section 6), we want to note here that our framework can also be used in
cases where this is not known. We simply guess this number of possible unique classes and then use
this guess to generate the pseudo-labels in the first stage of our framework (see step 2 in Algorithm 1)
and then use these pseudo-labels in the next stages of our framework Algorithm 1. Though we did
not experiment this setting, it is a good possible future extension and research direction of the current
work.

A second limitation of this current work is that due to time constraints, we did not use more varied
GNN models with our proposed generalization of the framework (see Section 4.5). This will indeed be
very interesting to see in possible future extensions as well as to see how general is the generalization
(i.e., how well it works with more varied models).

A last possible limitation we perceive is the fact that we did not explore other tasks besides node
classification in the proposed sparse labels classification setting. It will indeed be a good future
direction to explore other tasks in this setting as well as see how similar frameworks or improved
frameworks can be implemented for those tasks since in real life the sparse label setting is ubiquitous.

B MORE ON THE SPARSE LABELS CLASSIFICATION PROBLEM

B.1 SOLUTION TO THE PROPOSED FRAMEWORK

In this section, we derrive the solution to the proposed framework. Recall that the proposed framework
is of the form:

min
R

µ||R− Y ||2F +W(Lsym) +K(LGH
) + P(LGY

), (6)

setting W(Lsym) +K(LGH
) + P(LGY

) = Q(LA), we can rewrite 6 as

min
R

||R− Y ||2F +Q(LA), (7)

where also, Q(LA) = Tr(β1R
TLsymR+ β2R

TLGH
R+ β3R

TLGY
R) Taking, simplifying, and

setting the derivative of equation 7 w.r.t R to 0 we have:

2µ(R− Y ) + 2(RLA) = 2(µI +LA)R− µY = 0, (8)

where LA = β1Lsym + β2LGH
+ β3LGY

is a weighted Laplacian. Thus we have the solution being:

R = µ(µI +LA)
−1Y , (9)

B.2 APPROXIMATING THE SOLUTION AND GENERALIZING

Given that the matrix inversion in equation 9 is very expensive. As such, it is generally approximated.
One can rewrite where LA = I − ÂA where ÂA = 1

3 (Âsym + ÂGH
+ ÂGY

), given that we set
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β1 = β2 = β3 = 1
3 . ÂA can be seen as an average symmetrically normalized adjacency (note that

given an adjacency matrix A and the diagonal matrix D of node degrees, one can obtain the average
symmetrically normalized adjacency as Â = D

−1
2 AD

−1
2 . Using the symmetrically normalized

adjacency, one can rewrite the solution is equation 9 as:

R = µ(µI + (I − ÂA))
−1Y =

µ

1 + µ
(I − 1

1 + µ
ÂA)

−1Y ,

setting α = 1
1+µ , we have that:

R = (1− α)(I − αÂA)
−1Y = (1− α)

∞∑
k=0

(αÂA)
kY .

As such we can approximate the solution in equation 9 by performing until convergence the iterative
update:

Rt+1 = (1− α)Y + αÂAY
t. (10)

To generalize this framework to other GNNs, we recall that the graph signal denoising problem is of
the form:

min
P

||P −X||2F + α1W(Lsym), (11)

where the term ||P − αX||2F tries to make the learned denoised features P to be as close as possible
to the noisy ones features X , and the term W(Lsym) = Tr(XTLsymX) tries to make neighbors
on the graph to have similar denoised features. For SLNC, one will need to incorporate some degree
on information about the label distribution into equation 11. Doing so will imply trying to enforce
that the learned denoised featured of nodes sharing similar pseudo-labels (as in Sections 4.1) are
equally similar. This can be enforced by adding the two terms K(LGH

) = Tr(α2P
TLGH

P ), and
P(LGY

) = Tr(α3P
TLGY

P )) into equation 11, thus yielding:

min
P

µ||P −X||2F + µQ(LA), (12)

where Q(LA) = Tr(α1P
TLsymP + α2P

TLGH
P + α3P

TLGY
P ) and the terms.

Setting α1 = α2 = α3 = 1
3 and following similar steps in equations 8 and 9, we have that the

solution to equation 12 is :

P = (I + µLA)
−1X, (13)

where LA = I − ÂA, and ÂA = 1
3 (Âsym + ÂGH

+ ÂGY
). One can observe that (I + µLA)

−1X
in equation 13 is a graph convolution with the grap convolution filter being the lowpass filter
(I + µLA)

−1. As such, one can use different convolution functions with ELI as well by just using
the average laplacian LA.

C ALGORITHM FOR ELI AND THE CHOSEN FRAMEWORK FOR
PSEUDO-LABELS APPROXIMATION

In this section, we show the adaptation of the clustering algorithm of Kamhoua et al. (2022) that
we used to generate the KNN graph (see Sections 4.1 and 4.3), as well as to select key labels (see
Section 4.2)
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Algorithm 1 : ELI (A Proposed Framework) for SLNC
1. input Graph adjacency A, node attributes X , maximum iteration for pseudo-label estimation k,
a flag w for which learning method to choose to solve the sparse labels classification problem, and
parameters of the learning method.
2. Obtain both the label distribution H and the lH key labeled nodes from the pseudo label space
(as in Sections4.3, 4.4 and 4.2) using Algorithm 2
4. Build the real label graph adjacency AGY

= Y Y T (as in Section 4.3)
if w = 0 then

5a. Solve the sparse labels classification problem using the Label propagation framework as in
equation 5

else
5b. Solve the sparse labels classification problem using the generalization of the framework as
in Section 4.5 (in this work we use SGC here).

end if
6. return the labels R, and use the set of labels corresponding to those that were unlabeled at
training for evaluation.

Algorithm 2 AGC: Adaptive Graph Convolution based Clustering algorithm
1: Input: Adjacency matrix A and attribute matrix X of graph G, number of clusters K, graph filtering rate

α, maximum iteration number Lmax, tolerance value tol, number of nearest neighbors nn
2: Output: A set of clusters C, the KNN-graph adjacency AGH , list of nodes lH with min clustering loss per

cluster
3: Set Aii = 1 for all nodes vi ∈ V of graph G
4: Compute symmetric graph Laplacian Lsym = I −D−1/2AD−1/2

5: Initialize Y (0) = X
6: for l = 1 to Lmax do
7: Perform Y (k) = (I − αLsym)Y (l−1)

8: obtain singular vectors U by solving [U ,S,V ] = SV D(Y (l))
9: store these singular values in a temporary Utemp

10: Obtain K clusters C(l) by applying K-means on U

11: if Comp(C(l−1))− Comp(C(l)) ≤ tol then
12: Obtain KNN-graph adjacency AGH from Utemp from iteration, using nn nearest neighbors
13: get lH from C(l)

14: break
15: end if
16: end for
17: Set C = C(k)

Algorithm 2 shows our modification of the framework of Kamhoua et al. (2022). The stopping metric
that measures the compactness of clusters is given as follows:

Comp(C) =
1

|C|

K∑
k=1

1

|Cc|(|Ck| − 1)

∑
vi,vj∈Ck,vi ̸=vj

||yi − yj ||2, (14)

where C = {C1, · · · , Ck} is a set of clusters. Each node vi is associated with an attribute vector yi.
For our adaptation, we set tol to 0.001, Lmax to 60, and α to 0.5 for all datasets. Zhang et al. (2019b)
and Kamhoua et al. (2021) observed that the convolution operation is beneficial for clustering as it
helps to group nodes with higher connectivity while being harmful as it will cause nodes with similar
features to be embedded away from each other. They further proposed Comp(C) as a way of finding
the best trade-off between the benefit and the harm of the convolution operation for clustering. We
refer the reader to Zhang et al. (2019b) and Kamhoua et al. (2021) for an extensive study on the
reason for the efficiency of the convolution operation for clustering.

The total time complexity of the models enhanced with ELI for our experiments is as follows:

• for LP-ELI where w = 0 in Algorithm 1 is O(cN + cnd + knd + dn2 + tcnd), where
cN is for equation (5), O(nd + kn) is for the KNN graph, O(dn2) is for the SVD, and
O(tcnd) = O(nd) is for kmeans MacQueen et al. (1967) since t and c are extremely small.
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• the total time complexity for SGC-ELI is O(Nd+ ndc+ cnd+ knd+ dn2 + tcnd), where
Nd is for the filtering operation X̂ = N (LA)X defined in section 4.5, ndc for multiplying
the filtered features and the neurons of size d by c i.e, X̂W, and the rest being similar to
those defined for the LP-ELI model. Giving a simplified complexity of O(dn2+ndc+knd),
with c << d << N << n2 and t being a constant.

C.1 MORE ON THE KNN GRAPH REGULARIZER

As mentioned in Section 4.4, building the adjacency AGH
as AGH

= HHT , will result in connecting
only nodes belonging to the same clusters (since H obtained from clustering are hard cluster
assignments), as such will ignore possible links between clusters. Moreover, such a strategy will
result in a very dense adjacency, not suitable for the convolution operation in most GNNs.

To address this, we build a KNN graph on soft cluster assignment, which will (a) not result in isolated
components, and (b) address connections between clusters which will be more robust in case some
nodes end up grouped in the wrong clusters, and (c) result in a sparse adjacency suitable for the
convolution operation in GNNs. One can see that Y (k) = (I − αLsym)Y (l−1) in algorithm 1 is the
same as F in Section 4.1. As such, building the KNN graph from the SVD of F in in Section 4.1 is
the same as building the KNN graph on Y in algorithm 1, which means building the KNN graph on
U . One can notice that this is equivalent to building the KNN graph on the soft cluster assignments,
where the assignments are given by U .

D MORE EXPERIMENTS

Table 5: Ablation naming scheme
Name Description Name Description

no KG {name}-ELI model named {name} without the KNN Graph in section 4.4 full {name}-ELI model with all ELI steps
no KL {name}-ELI model named {name} without the Key Labels in section 4.2 no KL no KG {name}-ELI model no KNN graph and no Key labeled nodes

(a) LP Ablation on cora (b) SGC ablation on Cora (c) Parameter Sensitivity

Figure 4: Ablation studies and Parameter Sensitivity on Cora.

D.1 ABLATION AND SENSITIVITY ANALYSIS

We conducted ablation studies by comparing the performance of the ELI-augmented LP and SGC
models (full SGC-ELI, full LP-ELI) against; (1) those without the key node as labeled node selection
(no KL SGC-ELI, and no KL LP-ELI), but with label distribution incorporation via the KNN graph,
(2) those without label distribution incorporation via the KNN graph (no KG SGC-ELI, and no KG
LP-ELI), but with the key node as labeled node selection, and (3) those with no ELI (no KL no KG
SGC-ELI and no KL no KG LP-ELI)

It can be observed from Figure 4 that the models augmented with the full ELI framework (full
SGC-ELI, and full LP-ELI) outperform both the models with the partial ELI (no KG SGC-ELI, no
KG LP-ELI, no KL SGC-ELI, and no KL LP-ELI) and the models with no ELI (no KL no KG
SGC-ELI, and no KL no KG LP-ELI). Moreover, it can equally be seen that the models with partial
ELI also outperform the models with no ELI. Finally, it can be seen that the models with only the
label distribution incorporation step of ELI (no KL SGC-ELI, and no KL LP-ELI) outperform the
ones with only the key nodes as label nodes selection (no KG SGC-ELI, no KG LP-ELI), which
validates our intuition that for good performance in the presence of very sparse labels, some amount
of information about the label distribution is important.

17



Under review as a conference paper at ICLR 2024

We equally conduct sensitivity analysis on the effects of the number of neighbors used for the KNN
graph for the label distribution incorporation step of ELI in Sections 4.3 and 4.4, as well as varying
the number of labels l (num lab in the plot) used for training. It can be seen from figure 4(c) that
the SLNC performance of the models increases as the number of neighbors used increases up to a
threshold beyond which further increase in the number of neighbors does not bring more increase in
the SLNC performance. We thus recommend users use a high number of neighbors while trying to
find a trade-off with the run time. We recommend around 60 neighbors as used for all our experiments
on all datasets. Equally, increasing num lab led to a model performance increase as expected.

D.2 EXPERIMENTS ON THE CHOSEN FRAMEWORK FOR PSEUDO-LABELS APPROXIMATION

Figure 5 shows the clustering performance of Algorithm, 2. It can be observed that in general, this

Figure 5: Clustering performance of Algorithm 2 using parameters in Appendix C.
simple framework achieves a reasonable clustering accuracy across all datasets, and as such is a good
framework for estimating the label distribution in a graph since higher clustering accuracy indicates
that nodes with similar classes are grouped together in a pseudo-class (cluster).

In this section, we equally investigate the patterns and correlation between the performance of ELI
with the clustering performance of Algorithm, 2.

It can be observed from figure 6 that the classification accuracy of ELI augmented models generally
increases as the clustering accuracy of algorithm 2 increases. For example, one can observe that the
classification accuracy of SGC-ELI and LP-ELI on Cora (figure 6(a)) is higher than their classification
accuracy on Wiki (figure 6(d)) just as the clustering accuracy of algorithm 2 is higher on Cora than
on Wiki. We want to emphatically note here that the clustering accuracy is not the same as
the classification accuracy, as the classes returned by the clustering model may be a shuffled
version of the true classes. For example, even on Cora where algorithm 2 achieves around 69%
clustering accuracy, it has below 20% classification accuracy

Figure 7 shows experiment results for the setting where the number of labeled nodes used for training
are selected on a per-class basis i.e., lR for ELI is still selected as in Section 4.2, while l = LR+lH is
selected on a per-class basis for non-ELI augmented models. It can Equally be observed from figure 7
that even in this setting, the classification accuracy of ELI augmented models generally outperforms
that of non-ELI augmented models by about 10-20% on most datasets when the number of labeled
nodes used for training are extremely few. Moreover, it can also be observed that in this setting
too, the performance of ELI-augmented models increases as the clustering accuracy of algorithm 2
increases.
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(a) More on Cora (b) More on Photo

(c) More on Citeseer (d) More on wiki

(e) More on Cs (f) More on Pubmed

Figure 6: More extensive SLNC experiments on Cora, Pubmed, Citeseer, Photo, Wiki, and Cs
(Computers not shown due to space, Computers similar to Citeseer). See parameter settings in
Sections 5.5.
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(a) Guided SLNC on Cora (b) Guided SLNC on Photo

(c) Guided SLNC on Citeseer (d) Guided SLNC on wiki

(e) Guided SLNC on Cs (f) Guided SLNC on Pubmed

Figure 7: SLNC with lR (in Section 4.2) selected on a per-cluster basis for ELI, and l = LR+lH
selected on a per-cluster basis for non-ELI augmented models (Computers not shown due to space,
Computers similar to Citeseer). See parameter settings in Sections 5.5.
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