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ABSTRACT

Existing text-driven motion generation methods often treat synthesis as a bidi-
rectional mapping between language and motion, but remain limited in capturing
the causal logic of action execution and the human intentions that drive behavior.
The absence of visual grounding further restricts precision and personalization,
as language alone cannot specify fine-grained spatiotemporal details. We propose
MoGIC, a unified framework that integrates intention modeling and visual priors
into multimodal motion synthesis. By jointly optimizing multimodal-conditioned
motion generation and intention prediction, MoGIC uncovers latent human goals,
leverages visual priors to enhance generation, and exhibits versatile multimodal
generative capability. We further introduce a mixture-of-attention mechanism
with adaptive scope to enable effective local alignment between conditional tokens
and motion subsequences. To support this paradigm, we curate Mo440H, a 440-
hour benchmark from 21 high-quality motion datasets. Experiments show that
after finetuning, MoGIC reduces FID by 38.6% on HumanML3D and 34.6% on
Mo440H, surpasses LLM-based methods in motion captioning with a lightweight
text head, and further enables intention prediction and vision-conditioned genera-
tion, advancing controllable motion synthesis and intention understanding.

1 INTRODUCTION

Human motion generation has emerged as a central research direction in artificial intelligence, with
broad applications in animation, virtual reality, and embodied intelligence. Recent advances in gen-
erative modeling have enabled text-conditioned methods to synthesize realistic human motions from
natural language descriptions. However, existing approaches often overlook the role of human in-
tention and rely on limited modalities, leading to shortcomings in controllability, and generalization.

Most text-driven motion generation methods Guo et al. (2024); Meng et al. (2025) treat synthesis
as a one-way mapping from text to motion, without explicitly modeling human intention, which
often constitutes the underlying logic of action execution. Recent GPT-based approaches Jiang et al.
(2023a); Wu et al. (2025a); Luo et al. (2024); Jiang et al. (2024) extend this paradigm by mod-
eling discretized motion as a second language, thereby enabling bidirectional generation between
motion and text. In this context, text generation can be regarded as a means of interpreting hu-
man intention. However, such bidirectional modeling reduces the motion–language association to
a cross-modal mapping and remains limited in capturing the causal logic that governs how motions
unfold. Consequently, despite leveraging large-scale linguistic priors and demonstrating strong gen-
erative capacity, these models remain less effective than specialized motion generation frameworks.
Intuitively, a model should not only understand how actions are performed. At a higher semantic
level, it should also predict the latent human intention underlying unobserved motions. This enables
the model to uncover the internal causal structure that drives the occurrence of motion.

Another critical limitation lies in the absence of visual modality, which leads to motions that lack
precision and personalization. Language alone is inherently ambiguous and cannot fully specify
fine-grained spatiotemporal details; even when such details are explicitly described, their symbolic
form does not readily translate into precise control signals. For instance, the instruction “a person
walks forward, turns left, then picks up an apple” leaves unspecified the walking speed, turning
angle, and spatial location of the apple, forcing the model to sample from a highly uncertain distri-
bution and often producing unsatisfactory results. By contrast, visual inputs naturally provide joint

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

trajectories and environmental context, such as human–scene or human–object interactions. With-
out such visual grounding, models fail to exploit these priors, resulting in less accurate motions and
restricting their applicability to text-only conditioned generation.

To overcome these limitations, we introduce MoGIC, a unified framework that integrates multi-
conditional control with explicit intent modeling. Building on the observation that motions are not
only shaped by surface semantics but also by underlying goals, MoGIC leverages fine-grained tex-
tual descriptions of incomplete motions as human intentions. The model is equipped with disentan-
gled generation heads: the Intention Prediction Head outputs discrete descriptions that specify what
to do (goals), while the Motion Generation Head produces continuous trajectories that express how
to do (execution). Through this disentangled generation process, MoGIC jointly optimizes inten-
tion and motion while avoiding semantic confusion caused by their heterogeneous representations.
This design yields substantial improvements in motion quality, achieving a 35.2% reduction in FID
compared to training without intention prediction on MoGIC.

To further address the ambiguity of purely textual conditioning, we incorporate visual modality as
an additional condition. Unlike pose estimation methods that reconstruct dense trajectories, we use
low-frame-rate image sequences as weak but informative priors. These visual conditions introduce
auxiliary perceptual priors into the training process, thereby enhancing the quality of representa-
tion learning and yielding consistent improvements across downstream tasks. Furthermore, vision
provides conditions that alleviate the inherent ambiguity of language, enabling the generation of mo-
tions that are more precise and controllable. Moreover, the integration of vision unlocks the model’s
capacity to handle a wider range of tasks beyond text-only conditioning, such as vision-conditioned
motion completion or generating diverse motions from sparse video frame.

Our video inputs (sampled at 1 fps) are not temporally aligned with motion sequences (30 fps). In-
stead of enforcing rigid frame-to-frame correspondence, we leverage them as priors for trajectory
and scene context. Similarly, text only partially aligns with motion, as some phrases correspond
to specific fragments. To handle such partial correspondences, we introduce a mixture-of-attention
mechanism with adaptive scope, enabling motion tokens to interact with the most relevant condi-
tional tokens across granularities. This strengthens local–global alignment and mitigates confusion
from temporal mismatches or ambiguous conditions.

We adopt a two-stage training strategy. In the first stage, MoGIC learns cross-modal consistency
by jointly optimizing multimodal-conditioned motion generation loss and intention prediction loss,
enabling robust generalization across different input types. In the second stage, we finetune on
task-specific objectives such as language-to-motion generation, effectively transferring visual and
intentional priors to downstream tasks.

To enable tri-modal learning, we curate and automatically annotate 21 high-quality motion datasets
into a large-scale benchmark, Mo440H, which spans 440 hours of single-person motions, hu-
man–human interactions, and human–object interactions. Extensive experiments on both Hu-
manML3D and Mo440H show that MoGIC achieves substantial gains over SOTA methods, re-
ducing FID by 38.6% and 34.6% respectively. Moreover, fine-tuning on the Motion Caption task
demonstrates that MoGIC, with its lightweight text generation head, surpasses LLM-based baselines
despite using fewer parameters. Furthermore, our experiments demonstrate that incorporating the
visual modality not only enhances controllability and overall generation quality, but also unlocks
new capabilities such as image-to-motion synthesis and vision-conditioned motion completion.

2 RELATED WORK

Motion Generation Recent work on text-conditioned motion generation has primarily relied
on probabilistic generative models, including GANs Harvey et al. (2020); Ghosh et al. (2021),
VAEs Petrovich et al. (2022), and diffusion methods Du et al. (2023); Chen et al. (2023); Shafir
et al. (2024); Tevet et al. (2023); Zhang et al. (2023c;b; 2024b); Xie et al. (2024); Zhou et al. (2024);
Meng et al. (2025), which generate realistic motion by sampling and refining noise. In parallel,
discrete-token approaches Du et al. (2023); Zhong et al. (2023); Zhang et al. (2023a); Pinyoanun-
tapong et al. (2024a); Shi et al. (2025); Wang et al. (2025); Jeong et al. (2025) use vector-quantized
autoencoders to construct a motion vocabulary, with transformers modeling token sequences either
autoregressively or through masked denoising.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

More recent studies have begun to explore the use of large language models to capture the rich
temporal and semantic structure of human motion Jiang et al. (2023a); Luo et al. (2024); Liang
et al. (2024a); Wang et al. (2024); Wu et al. (2025b). By treating motion as a discretized foreign
language, these methods learn bidirectional mappings between text-to-motion (T2M) and motion-
to-text (M2T). However, such mappings remain at the level of superficial pattern matching, and the
potential of bidirectional alignment to improve motion generation has not been fully explored. In
this paper, we advance motion generation by enabling the model to infer the underlying causes of
motion, namely human intentions.

More modalities have also been explored as conditions. For instance, Chen et al. (2025) unify audio
and text representations of 3D human motions using LLMs, while MotionAnything Zhang et al.
(2025) combines text and music to generate more controllable dance motions. Such modalities pro-
vide complementary information, yet the crucial role of visual inputs in motion generation remains
underexplored. In this paper, we incorporate visual modality to reduce the ambiguity of text-only
descriptions and extend the model’s applicability to a wider range of downstream tasks.

Motion Dataset In recent years, numerous motion datasets have emerged to capture diverse
human activities. AMASS Mahmood et al. (2019) provides high-quality 3D mocap data, fur-
ther extended by BABEL Punnakkal et al. (2021) with segment-level categorical labels and Hu-
manML3D Guo et al. (2022) with sequence-level textual descriptions. Beyond these, many
datasets Mehta et al. (2017); Fieraru et al. (2021); Cai et al. (2022); Xiong et al. (2024); Liu et al.
(2022); Tripathi et al. (2023) capture a broad spectrum of movements ranging from daily actions to
gestures and yoga. EgoBody Zhang et al. (2022) and InterGen Liang et al. (2024b) focus on two-
person interactions, while others Lv et al. (2025); Zhao et al. (2024); Li et al. (2023); Jiang et al.
(2023b); Taheri et al. (2020) emphasize human–object interactions. Collaborative and scene-aware
scenarios are also addressed by datasets such as CORE4D Liu et al. (2024b), Humanise Wang et al.
(2022), PROX Hassan et al. (2019), and HOI-M3 Zhang et al. (2024a).

Recent works Lin et al. (2023); Lu et al. (2025); Fan et al. (2025) extract motions from online videos
via pose estimation. However, this approach results in lower fidelity and exhibits content bias. For
instance, MotionMillion Fan et al. (2025) contains more than 70% sports-related activities such as
martial arts, fitness, and dance. In this paper, we integrate and re-annotate over twenty high-quality
motion datasets, achieving large-scale coverage while avoiding the quality issues and content bias
of video-derived data.

3 MODEL ARCHITECTURE

We propose MoGIC, a unified framework for human motion and intention generation conditioned
on arbitrary multimodal inputs, including language, vision, and partially visible motion sequences.
As shown in Figure 1, each modality is first projected into the latent space via modality-specific
encoders, with random masking applied to motion tokens for generative masked modeling. A
Conditional Masked Transformer (CMT) then integrates the projected conditioning signals at both
semantic-level and fine-grained conditions to modulate the masked motion tokens. The resulting
motion tokens serve as a unified representation that generates both high-level intentions and com-
plete motion latent sequences, which are subsequently reconstructed into the original motion domain
through a motion decoder.

3.1 MODALITY-SPECIFIC ENCODER

Motion/Language/Vision Encoder Given a motion sequence xm ∈ Rlm×cm with lm frames and
cm feature dimensions, we adopt a temporal convolutional auto-encoder to project motion into a
compact latent space zm = fm(xm) ∈ Rl

′
m×dm , where l

′

m ≤ lm and dm is the motion embedding
dimension. A symmetric decoder reconstructs the motion as x̂m = gm(zm), and the auto-encoder
is trained with a smooth L1 reconstruction loss Lrec = SmoothL1(x̂m,xm). For text, a frozen CLIP
encoder outputs token-level embeddings zt = ft(xt) ∈ Rlt×dt , where the [CLS] token zg

t captures
global semantics. For vision, video frames sampled at 1 fps are encoded as zp

v = fv(x
p
v) ∈ Rdv ,

and aggregated into a global representation by attention layer zg
v = attn(qv, zv, zv) with a learnable

query vector qv .
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Figure 1: Overview of MoGIC. The framework consists of modality-specific encoders, a Condi-
tional Masked Transformer (CMT), a Motion Generation Head (MGH), and an Intention Prediction
Head (IPH). Language, vision, and motion inputs are first processed by their respective encoders
to produce latent tokens. Motion tokens are randomly masked and passed through the CMT, where
semantic-level and fine-grained conditions modulate the motion token in series. The resulting con-
ditional tokens z are used in two branches: (i) the masked motion tokens are reconstructed via
the MGH, which denoises them into clean motion latent tokens and decodes them into motion se-
quences; (ii) z serves as key and query signals for the IPH to predict the underlying intention.

3.2 CONDITIONAL MASKED TRANSFORMER

The Conditional Masked Transformer integrates multimodal conditioning signals into motion tokens
through two operations: (i) global semantic-level modulation, which injects fused text–vision con-
text into the motion representation via adaptive normalization to ensure semantic consistency, and
(ii) mixture-of-attention with adaptive scope, realized through the adaptive Top-k cross-attention
mechanism that dynamically aligns motion tokens with the most relevant text-vision snippets while
adaptively determining the scope of attended context. At each layer of the CMT, motion tokens first
pass through a self-attention module, then receive fine-grained conditions via the adaptive Top-k
cross-attention, and finally go through a feed-forward network to produce the output representation.

Semantic-level Modulation We adopt adaptive LayerNorm modulation. The global multimodal
context vector cg = zg

t + zg
v is mapped to modulation coefficients (αc, βc, γc) = Wada(c

g) ∈ Rdm

via a lightweight MLP. Given a normalized motion token z̄m = LN(zm), modulation and gated
residual connection are applied as

zm ← zm + γc ⊙ h(αc ⊙ z̄m + βc) (1)

where h(·) denotes the corresponding sub-layer transformation (self-attention, cross-attention, and
feed-forward layer in CMT). This formulation ensures that global multimodal context consistently
modulates motion representation while flexibly controlling residual pathways.

Mixture-of-Attention with Adaptive Scope To enable fine-grained dynamic alignment between
motion tokens and multimodal conditioning signals, we employ the mixture-of-attention mechanism
that operates on concatenated token-level condition embeddings ctok = [zv; zt] ∈ R(p+l)×d. When
a modality is missing, its slot in ctok is replaced by a learnable embedding. Given query motion
tokens zm ∈ Rl

′
m×d, each expert computes queries, keys, and values as qe = W e

q zm, ke = W e
kc

tok,
and ve = W e

v c
tok, followed by attention to produce the score matrix Ae. To control the effective

context scope, we sort Ae in descending order per query and accumulate until a cumulative mass τ
is reached:

kedyn = min
(
max

(
argmin

k

∑k
j=1 A

e
(j) ≥ τ , kemin

)
, kemax

)
(2)
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where Ae
(j) denotes the jth largest weight. The final attention distribution is restricted to the top-kedyn

entries. The final output is the sum of all expert contributions

z =

E∑
e=1

Ãeve, Ãe
i,j =

Ae
i,j · 1j ∈ top-kedyn(i)∑

j′∈Top-kdyn(i)
Ae

i,j′
(3)

where top-kedyn(i) denotes the set of indices of the attention weights for the ith motion token. This
adaptive mixture-of-attention design ensures that motion tokens selectively attend to the most rela-
tive condition tokens, while maintaining flexibility to balance semantic consistency and fine-grained
alignment across diverse contexts.

3.3 DISENTANGLE GENERATION HEAD

Human intention and motion represent two fundamentally different semantic levels, with intention
being linguistically oriented and motion encoding continuous dynamics. To capture this distinction,
we adopt disentangled generation heads that separately model the two modalities

Intention Prediction Head (IPH) The Intention Prediction Head (IPH) captures human intention
in explicit textual form. It employs a T5-style Raffel et al. (2020) decoder that, conditioned on
the embedding z from the conditional masked transformer, generates the intention description in
an autoregressive manner. Each decoder layer combines self-attention over the partially generated
sequence with cross-attention conditioned on z

Motion Generation Head (MGH) Since motions are continuous, we employ a continuous-time
interpolant model in the Motion Generation Head (MGH) following SiT Ma et al. (2024), condi-
tioned on the masked embedding zmask. The interpolant at time t ∈ [0, 1] is defined as:

zm,t = αtzm,0 + σtϵ, ϵ ∼ N (0, I)

vθ(zm,t, t,z
mask) ≈ α̇tzm,0 + σ̇tϵ

(4)

where zm,0 is the latent motion of ground truth and vθ predicts the velocity field under conditioning.
For sampling, given zmask, we integrate the learned velocity field backward in time using either the
probability flow ODE or reverse-time SDE:

zm,0 = Solver(zm,T ,vθ, z
mask), zm,T ∼ N (0, I). (5)

The denoised latent representation zm,0 is subsequently provided to the motion decoder to recon-
struct the full motion sequence x̂m.

4 CROSS-MODAL GENERATIVE TRAINING

We train MoGIC on five tasks: (1) language-to-motion (L2M), which generates motion from textual
descriptions; (2) vision-language-to-motion (VL2M), which integrates visual and textual inputs to
produce more controllable motion; (3) vision-to-motion (V2M), which synthesizes motion purely
from visual sequences; (4) motion-to-motion (M2M), which reconstructs complete motion from
partially observed sequences; and (5) intention prediction (IP), which infers high-level motivational
factors behind motion. All tasks share a Conditional Masked Transformer with modality-specific
conditioning. Motion sequences are encoded into latent tokens zm ∈ Rl′m×dm , where a subset is
randomly masked with learnable tokens for generative reconstruction, and for intention prediction,
the latter 50% of tokens are additionally truncated. The fused masked sequence and modalities
yield a motion embedding z, which conditions both the IPH and MGH for intention prediction and
motion generation. Training is driven by a joint loss combining a diffusion-based velocity matching
objective for motion and an autoregressive cross-entropy for intention:

L = λmotion Et,ϵ

[∥∥vθ(zm,t, t,z)−(α̇tzm,0+ σ̇tϵ)
∥∥2
2

]
+λintent E(y,z)

[
−

T∑
i=1

logP (yi|y<i, z)
]

(6)

This unified training framework enables the model to learn a shared latent space where motion and
intention are jointly optimized. The decoupled intention prediction guides the model to capture
the underlying motivational factors of motion, while mitigating the semantic entanglement between
discrete text and continuous motion representations.
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Table 1: The quantitative results of L2M on HumanML3D. The best results are displayed in bold.
Noting that the metric values of some methods are adopted from MARDM (Meng et al., 2025).

Methods R Precision↑ FID↓ Matching↓ CLIP-score ↑Top 1 Top 2 Top 3

T2M-GPT (Zhang et al., 2023a) 0.470±.003 0.659±.002 0.758±.002 0.335±.003 3.505±.017 0.607±.005

ReMoDiffuse (Zhang et al., 2023b) 0.468±.003 0.653±.003 0.754±.005 0.883±.021 3.414±.020 0.621±.003

MDM-50Step (Tevet et al., 2023) 0.440±.007 0.636±.006 0.742±.004 0.518±.032 3.640±.028 0.578±.003

MLD (Chen et al., 2023) 0.461±.004 0.651±.004 0.750±.003 0.431±.014 3.445±.019 0.610±.003

MMM (Pinyoanuntapong et al., 2024b) 0.487±.003 0.683±.002 0.782±.001 0.132±.004 3.359±.009 0.635±.003

MoMask (Guo et al., 2024) 0.469±.004 0.687±.003 0.786±.003 0.116±.006 3.353±.010 0.637±.003

MotionDiffuse (Zhang et al., 2024b) 0.450±.006 0.641±.005 0.753±.005 0.778±.005 3.490±.023 0.606±.004

MARDM-DDPM (Meng et al., 2025) 0.492±.006 0.690±.005 0.790±.005 0.116±.004 3.349±.010 0.637±.005

MARDM-SiT (Meng et al., 2025) 0.500±.004 0.695±.003 0.795±.003 0.114±.007 3.270±.009 0.642±.002

MotionAgent Wu et al. (2025b) 0.485±.003 0.680±.003 0.780±.002 0.202±.009 3.327±.009 0.634±.003

MoGIC (ours) w/o Int. loss 0.533±0.012 0.731±0.010 0.826±0.010 0.108±0.023 3.078±0.037 0.658±0.001

MoGIC (ours) 0.545±0.003 0.741±0.003 0.835±0.002 0.070±0.004 2.999±0.011 0.669±0.001

Table 2: The quantitative results of L2M on Mo440H-ML. The best results are displayed in bold.

Methods R Precision↑ FID↓ Matching↓ Diversity↑Top 1 Top 2 Top 3

MotionDiffuse (Zhang et al., 2024b) 0.550±.001 0.735±.001 0.801±.002 0.957±.010 2.990±.007 12.009±.104

MMM (Pinyoanuntapong et al., 2024b) 0.601±.001 0.798±.001 0.887±.001 0.237±.004 2.420±.004 11.883±.089

MoMask (Guo et al., 2024) 0.610±.001 0.801±.002 0.886±.001 0.205±.006 2.353±.003 11.963±.077

MARDM-DDPM Meng et al. (2025) 0.573±.001 0.785±.002 0.885±.002 0.431±.004 2.166±.005 12.630±.079

MARDM-SiT Meng et al. (2025) 0.613±.001 0.820±.002 0.906±.001 0.231±.003 2.420±.005 12.112±.079

MG-MotionLLM Wu et al. (2025a) 0.556±0.002 0.737±0.002 0.834±0.002 0.624±0.008 2.544±0.006 12.252±0.099

MoGIC (ours) only L2M loss 0.637±0.001 0.836±0.001 0.908±0.002 0.201±0.001 2.003±0.007 12.392±0.084

MoGIC (ours) L2M + Int. loss 0.652±0.001 0.851±0.001 0.926±0.001 0.134±0.001 1.889±0.005 12.434±0.087

MoGIC (ours) L2M + Caption loss 0.646±0.001 0.845±0.001 0.919±0.001 0.198±0.001 1.910±0.005 12.623±0.090

MoGIC (ours) 0.643±0.001 0.844±0.002 0.917±0.002 0.185±0.002 1.915±0.004 12.516±0.077

MoGIC (ours) w/ L2M FT 0.651±0.001 0.849±0.001 0.924±0.002 0.123±0.001 1.903±0.006 12.511±0.091

5 EXPERIMENTS

5.1 INTEGRATED MOTION DATASET

Motion Dataset We curated and processed 21 high-quality motion datasets covering diverse sce-
narios such as single-person activities, human–human interactions, and human–object interactions.
All motions were standardized to a 22-joint format, resampled to 30 fps, and capped at 10 sec-
onds. For datasets without textual annotations but with visual modalities, we used Qwen2.5-VL-
Max Bai et al. (2025) to generate captions and manually filtered inadequate samples; for those
lacking RGB videos, rendered mesh sequences were adopted instead, with all videos downsampled
to 1 fps. The final collection, termed Mo440H, comprises about 440 hours of motion (about 50M
frames), 210k textual descriptions, and 140k image sequences. Depending on available modali-
ties, we further organize it into three subsets: Mo440H-All (the whole dataset, for auto-encoder
training and cross-modal generative training), Mo440H-ML (motion–language pairs, for language-
to-motion and motion-to-language), and Mo440H-MLV (motion–language–vision triplets, enabling
visually conditioned tasks).

In addition, we evaluate on the HumanML3D Guo et al. (2022) dataset, a widely used benchmark
with about 14k motion sequences and 45k text annotations, following established protocols Meng
et al. (2025) for fair comparison with previous work.

Motion Representation We adopt a compact motion representation by removing redundant fea-
tures (e.g., 6D rotations), following Meng et al. (2025), to mitigate distribution mismatch and gen-
eration errors. The motion data is represented as xi

m = [ṙa, ṙxz, ṙh, jp] at time step i, consisting of
root angular velocity ṙa, root linear velocities ṙxz in the XZ-plane, root height ṙh, and local joint
positions jp ∈ R3(Nj−1), which jointly encode the essential kinematic information for motion.
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5.2 EXPERIMENT SETTINGS AND EVALUATION METRICS

Experiment Settings All experiments are conducted on RTX4090 GPUs with a batch size of 64
using the Adam optimizer (lr=2e-4, 2000-step warm-up), training for 500 epochs on HumanML3D
and 10M iterations on Hu440H (≈40 GB GPU memory). The motion generation loss is optimized
every epoch, while the intention prediction loss is updated every 4 epochs. The Conditional Masked
Transformer (384 channels) uses 1 layer for HumanML3D and 2 layers for Hu440H dataset. Cross-
attention employs two parallel modules (k ∈ [1, 6], threshold 0.8; and k ∈ [0,∞], threshold 1).
The intention head is a 3-layer T5-style decoder, and the motion head is a diffusion model with a
10-layer MLP (1280 channels).

5.3 DOWNSTREAM APPLICATIONS

Table 3: Comparisons of motion in-between tasks on
Mo440H-ML. Each setting reports R-precision top 3
(R@3), FID, and Matching score (Match).

Task Method
w/o language w/ language

R@3↑ FID↓ Match↓ R@3↑ FID↓ Match↓

pref. MARDM 0.874 0.286 2.808 0.912 0.194 1.972
MoGIC 0.892 0.173 2.172 0.943 0.128 1.644

suff. MARDM 0.894 0.239 2.334 0.912 0.188 1.989
MoGIC 0.912 0.140 1.938 0.941 0.091 1.647

inf. MARDM 0.907 0.211 2.249 0.913 0.186 1.984
MoGIC 0.926 0.124 1.789 0.943 0.113 1.619

circ. MARDM 0.896 0.249 2.358 0.913 0.175 1.980
MoGIC 0.912 0.147 1.979 0.943 0.109 1.639

Table 4: Text generation metrics on the test set.

BLEU@1↑ BLEU@4↑ ROUGE↑ BERTScore↑

H
3D

TM2T 48.90 8.27 38.1 32.2
MotionGPT 48.20 12.47 37.4 32.4
MotionChain 48.10 12.56 33.9 36.9
MotionGPT3 51.06 8.43 38.7 32.0
MG-MotionLLM − 8.06 − 36.7
MoGIC (ours) 53.13 10.36 40.6 40.7

M
o4

40
H T2MT 28.99 15.37 36.22 29.01

MG-MotionLLM 35.47 17.97 39.07 30.95
MoGIC (ours) 42.52 20.32 39.31 31.96

Following cross-modal generative train-
ing, MoGIC supports arbitrary multi-
modal inputs (language, vision, motion)
to produce unified outputs in motion se-
quences and intentions. Further fine-
tuning on specific tasks enhances perfor-
mance in specialized settings. We eval-
uate on HumanML3D Guo et al. (2022)
and our integrated dataset Mo440H. For
HumanML3D, we adopt evaluators from
prior work Meng et al. (2025). For the
integrated dataset, we train an evaluator
on Mo440H following the previous meth-
ods Guo et al. (2022).

Motion Generation and Caption We
evaluate language-to-motion generation
both with and without fine-tuning, as well
as motion captioning after finetuning. Ex-
periments are conducted on HumanML3D
and Mo440H-ML.

For motion generation on HumanML3D,
we adopt a single-stage training strategy, jointly optimizing the motion generation loss and the intent
prediction loss, achieving substantial improvements over state-of-the-art methods in terms of FID
and R-Precision (Tables 1). Results on Mo440H are shown in Tables 2, where MoGIC denotes
the model trained solely through cross-modal generative learning, and MoGIC w/ FT represents
the variant further fine-tuned on the language-to-motion task. We also present the results without
computing the generation loss conditioned on the visual modality (denoted as MoGIC T2M + Int.
loss in the Table 2). As shown, language-based motion generation achieves better results, but its
functionality remains limited. All evaluations are conducted using our retrained evaluator on the
Mo440H dataset, following the same protocol as previous work Guo et al. (2022).

In addition, Table 4 reports results for fine-tuning on motion caption task. During fine-tuning, we
feed the entire motion sequence as input and generate textual descriptions. Compared with LLM-
based methods, the Intent Prediction Head (IPH) in MoGIC is highly lightweight and does not rely
on pre-trained language models, yet it still delivers competitive and effective performance.

Motion In-Between We evaluate our method on the motion in-between task, which generates
plausible transitions from partial motion contexts. We consider prefix, suffix, infix, and circumfix
completion, predicting missing segments at the beginning, end, middle, or both ends of a motion se-
quence. Experiments on HumanML3D and Mo440H, compared with MARDM Meng et al. (2025),
are reported under two settings: (i) in-between with language, using both textual descriptions and
visible motion fragments, and (ii) in-between without language, using only motion fragments. With-
out task-specific fine-tuning, our method consistently outperforms baselines, as shown in Table 3.
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Table 5: The effectiveness of the vision modality. We evaluate MoGIC on the motion generation
and in-between tasks conditioning on different conditions without finetuning. L, V, M represent
language, vision, and motion, respectively.

Category Task R Precision↑ FID↓ Matching↓ Diversity↑Top 1 Top 2 Top 3

Motion Gen.
L2M 0.590±0.002 0.804±0.001 0.897±0.002 0.330±0.003 1.913±0.007 12.757±0.075

V2M 0.408±0.002 0.639±0.003 0.789±0.003 0.634±0.010 2.881±0.012 12.662±0.108

LV2M 0.589±0.001 0.801±0.001 0.898±0.002 0.266±0.002 1.953±0.007 12.585±0.067

Motion In-Bet.

prefix 0.498±0.002 0.720±0.002 0.830±0.001 0.436±0.004 2.373±0.006 12.469±0.052

prefix w/ L 0.624±0.001 0.833±0.001 0.918±0.001 0.137±0.001 1.707±0.003 12.487±0.041

prefix w/ V 0.553±0.001 0.766±0.001 0.868±0.001 0.205±0.001 2.021±0.004 12.639±0.058

prefix w/ L+V 0.619±0.001 0.830±0.001 0.914±0.001 0.132±0.001 1.701±0.004 12.662±0.065

Intention Prediction The intention prediction task requires the model to infer the conceptual goal
of an observed motion and express it in textual form. Given the first 50% of a motion sequence, the
model outputs a complete language description that conveys the underlying intention. Meanwhile,
MoGIC can also generate a future motion sequence aligned with this intention. We train two base-
lines separately for intention prediction Wu et al. (2025a) and future motion generation Meng et al.
(2025). Without fine-tuning, our model surpasses both, achieving higher quality in intention predic-
tion and lower FID for the synchronously generated motion continuation, as shown in Figure 2.

Vision-Augmented Tasks We further extend our framework to vision-augmented scenarios,
where image sequences serve as additional conditions for motion generation. We focus on two
representative tasks: (i) vision-language-to-motion, where textual descriptions and visual frames
jointly guide motion synthesis, and (ii) vision-based motion in-between, where visual cues comple-
ment partial motion fragments to complete missing segments. These tasks provide a natural and
accessible source of conditioning signals that enrich the controllability of generated motions. As
shown in Figure 3, when generating a weightlifting motion conditioned only on the text prompt “lift
weight by extending legs and back, raising arms”, the description neither specifies the exact position
of the barbell nor provides the model with a prior about the abstract concept of weight. As a result,
the model produces an unrealistic sequence in which the barbell is lifted overhead, which is clearly
inconsistent with real-world biomechanics. By incorporating visual modality, however, the model
gains explicit information about the barbell’s position relative to the body, allowing it to generate
natural lifting motions that adhere to realistic constraints.

5.4 ABLATION STUDY

Figure 2: Comparisons of intention
prediction results.

Effectiveness of Intention Prediction Ablation results
on HumanML3D (MoGIC w/o Int. loss in Table 1) and
Mo440H (MoGIC only T2M loss in Table 2) show that
removing intention prediction consistently lowers perfor-
mance, with the largest drops in FID (−35.2% on Hu-
manML3D, −33.3% on Mo440H) and retrieval precision
(−0.9% on HumanML3D,−1.8% on Mo440H). We further
replace the intention prediction loss with a captioning loss,
training the model to generate descriptions from complete
motion sequences (MoGIC L2M + Caption loss). Caption
supervision improves motion quality, but the gains are no-
tably smaller than those from intention prediction. This un-
derscores that intention modeling is crucial for producing high-quality motion. Without it, the model
relies on shallow correlations, failing to capture the causal structure and latent goals of human mo-
tion. Consequently, generated motions lose realism. Moreover, the improved performance from
jointly optimizing intention prediction and motion generation underscores that modeling the under-
standing of motion is key to generating more faithful results.

Effectiveness of Training with Vision Modality We assess the contribution of vision from two
complementary angles. (i) Vision as priors. We drop vision-to-motion and vision–language-to-
motion losses in the cross-modal generative training (MoGIC L2M + Int. loss in Table 2). Com-
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Figure 3: Visualization of motion generation and motion in-between tasks with vision modality.

pared to MoGIC w/ L2M FT which is finetuned on language-to-motion and intention prediction
losses after the complete cross-modal generative training, training without vision modality leads to
degraded language-to-motion performance, indicating that the visual modality enables the model
to learn richer contextual representations and implicitly guides the alignment between generated
motions and their conditioning inputs. (ii) Vision as a conditioning modality. We further exam-
ine whether adding vision conditions improves generation. On Mo440H-MLV, we evaluate both
vision–language-to-motion and vision-based motion in-between without task-specific fine-tuning.
As shown in Table 5, vision consistently reduces FID while keeping diversity comparable, and com-
bining language with vision yields the best trade-off. This suggests that visual conditions provide
complementary spatiotemporal hints beyond text or motion alone, leading to more natural and co-
herent generations.

(a) Ablation study of the mixture-of-attentions

a person starts in the stand up   position with his arms out to straight   on his sides 
and is then seated and does the wave motion with his right hand
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(b) Visualization results of L2M.
Figure 4: The effectiveness of mixture-of-attention.

Effectiveness of Mixture-of-Attention
e, we test four settings: no expert (i.e.,
no cross-attention with fine-grained condi-
tions), one expert (k1 ∈ [0,∞)), two ex-
perts (k1 ∈ [0,∞), k2 ∈ [1, 6)), and three
experts (k1 ∈ [0,∞), k2 ∈ [1, 6), k3 ∈
[6, 10)). As shown in Figure 4a, fine-
grained conditions greatly boost retrieval
performance. Increasing expert number
steadily reduces FID, with retrieval preci-
sion peaking at two experts. To balance
efficiency and effectiveness, we adopt two
experts as default. Figure 4b further
shows that, thanks to mixture-of-attention
with adaptive scope, our method gener-
ates motions with more precise local re-
sponses, including joint movement, posi-
tioning, and timing.

6 CONCLUSION

In this work, we present MoGIC, a unified
framework that integrates intention modeling and visual priors into multimodal motion generation.
Through joint training of intention prediction and motion synthesis across language, vision, and mo-
tion, MoGIC uncovers latent human goals and achieves versatile generative capability. To support
this paradigm, we curated and automatically annotated Mo440H, a large-scale tri-modal benchmark
comprising 440 hours of diverse human motions. Extensive experiments validate the strong perfor-
mance and broad functionality of MoGIC, demonstrating significant gains in both motion fidelity
and text generation tasks. We believe this work provides new insights into multimodal human mo-
tion generation and understanding, and lays a foundation for future research toward more precise,
adaptive, and intention-aware motion synthesis.
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ETHICS STATEMENT

Dataset usage and compliance. All datasets used in this work are publicly available and can be
freely downloaded from the internet. We strictly comply with the official licenses and usage terms
associated with each dataset, ensuring that our data use aligns with community norms and legal
requirements.

Privacy and anonymity. The datasets employed do not contain personally identifiable informa-
tion (PII) or sensitive private data. Our work involves only motion capture–style representations
(e.g., 3D skeleton joints, body parameters), which are inherently abstract and anonymized.

Human subjects. No human subject experiments were conducted for this research. All experi-
mental results are derived from existing open-source datasets, which have already been collected
and released by their respective authors. Thus, issues related to IRB approval, informed consent, or
direct participant involvement are not applicable.

Application scope and potential risks. This research falls under the category of generative mod-
eling, with primary applications in animation, computer graphics, and artistic content creation. We
do not foresee potential risks of harmful applications, such as surveillance, discrimination, or misuse
in security-critical settings.

Representation and likeness. The generated outputs represent human body kinematics in terms
of parameters such as joint positions and motion trajectories. They do not reproduce personal like-
nesses, facial identities, or biometric information, and therefore do not raise concerns about portrait
rights or identity misuse.

Fairness, bias, and integrity. The datasets used are diverse motion corpora but, as with all public
datasets, may contain imbalances in action types or distributions. Our focus is on methodological
contributions rather than demographic or identity-sensitive attributes. We confirm that all results
presented in this paper are genuine, and no data manipulation or misrepresentation has been per-
formed.

REPRODUCIBILITY STATEMENT

Model description. The main body of the paper provides a comprehensive description of our
proposed architecture, including the conditional masked transformer, diffusion head, and the disen-
tangled generation modules.

Training and evaluation details. Hyperparameters, optimization strategies, and hardware settings
are reported in the experimental section. We also describe the evaluation metrics, number of epochs,
and sampling steps to ensure clarity and transparency.

Dataset processing. The composition of the datasets used in the experiments is reported in the
main text. Further details on sequence segmentation, normalization, and preprocessing are provided
in the supplementary materials.

Code availability. An anonymous link to the source code is provided in the supplementary mate-
rials. The repository contains scripts for training, evaluation, and dataset preparation, allowing other
researchers to replicate our results.

Documentation of assumptions. All assumptions made in model design and implementation are
explicitly documented in the paper and supplementary materials, enabling verification and repro-
ducibility of our findings.
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