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ABSTRACT

Existing text-driven motion generation methods primarily focus on bidirectional
mapping between language and motion, yet they often struggle to capture the high-
level semantic structures and future behavior patterns that govern how actions un-
fold. Moreover, the absence of visual conditioning limits synthesis accuracy, as
language alone cannot specify fine-grained spatiotemporal trajectories or environ-
mental context. We present MoGIC, a unified multimodal framework that jointly
models future-aware behavior understanding and multimodal-conditioned motion
generation. MoGIC formulates future-behavior predicting as inferring high-level
future semantic patterns from partial observations, while leveraging visual priors
to resolve ambiguities inherent in text-only conditioning. We further introduce a
mixture-of-attention mechanism with adaptive scope to facilitate effective inter-
actions between multimodal tokens and temporal motion segments, thereby mit-
igating the impact of non-strict timing alignment. To support this paradigm, we
curate Mo440H, a 440-hour tri-modal benchmark aggregated from 21 high-quality
motion datasets. Extensive experiments demonstrate substantial improvements in
generation fidelity and multimodal versatility of MoGIC: (1) a 36% reduction in
FID on HumanML3D and Mo440H; (2) superior captioning performance com-
pared to LLM-based methods using only a lightweight text head; (3) capabili-
ties in future-aware behavior prediction and vision-conditioned motion synthesis.
Together, these results advance the state of the art in motion understanding and
multi-conditioned generation.

1 INTRODUCTION

Human motion generation has emerged as a central research direction in artificial intelligence, with
wide applications in animation, virtual reality, and embodied agents. Recent advances in generative
modeling have enabled text-conditioned methods to synthesize increasingly realistic motions from
natural language descriptions. Despite this progress, current systems remain far from capturing the
full complexity, and semantic structure of human motion.

Most existing methods Guo et al. (2024); Meng et al. (2025) focus on learning direct correspon-
dences between language and motion without explicitly modeling motion understanding, whereas
recent GPT-based approaches Jiang et al. (2023a); Wu et al. (2025a); Luo et al. (2024); Jiang et al.
(2024) extend this paradigm by treating discretized motion as a second language, thereby enabling
bidirectional generation between motion and text. However, such bidirectional modeling reduces the
motion-language association to a cross-modal mapping and remains limited in capturing the seman-
tic structures and behavior patterns that govern how actions will unfold over time. Consequently,
despite leveraging large-scale linguistic priors, these models remain less effective than specialized
motion generation frameworks. Intuitively, a model should not only understand how actions are
performed. At a higher semantic level, a model should also learn the structural dependency between
early motion and logically consistent future behaviors.

Another critical limitation lies in the absence of visual modality, which leads to motions that lack
precision and personalization. Language alone is inherently ambiguous and cannot fully specify
fine-grained spatiotemporal trajectories or environmental context; even when such content are ex-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

plicitly described, their symbolic form does not readily translate into precise generation signals. For
instance, the instruction “a person walks forward, turns left, then picks up an apple” leaves unspec-
ified the walking distance, turning angle, and spatial location of the apple, forcing the model to
sample from a highly uncertain distribution and often producing unsatisfactory results. By contrast,
visual inputs naturally provide joint trajectories and environmental context, such as human-scene
or human-object interactions. Without such visual grounding, models fail to exploit these priors,
resulting in less accurate motions and restricting their applicability to text conditioned generation.

We introduce MoGIC, a unified framework that integrates multi-conditioned generation with future-
aware behavior understanding. The key insight is that early motion segments contain latent cues
about how actions are likely to unfold, and that such cues must be captured through structured
semantic modeling rather than direct language-motion mapping. Accordingly, MoGIC employs a
disentangled design in which high-level behavior semantics and low-level motion trajectories are
handled by separate generation heads. The understanding head predicts the discrete behavior de-
scription of a complete sequence given partial observations, while the motion head synthesizes con-
tinuous motion sequences under multimodal conditions. This division of roles enables the model to
jointly optimize future-aware behavior understanding and motion synthesis without conflating sym-
bolic semantics with continuous kinematics. This design yields substantial improvements in motion
quality, achieving a 35.2% reduction in FID compared to training without predicting behavior se-
mantics in MoGIC.

To further address the ambiguity of purely textual conditioning, we incorporate visual modality as
an additional condition. Unlike pose estimation methods that reconstruct dense trajectories, we use
low-frame-rate image sequences as weak but informative priors. These visual conditions introduce
auxiliary perceptual priors into the training process, thereby enhancing the quality of representa-
tion learning and yielding consistent improvements across downstream tasks. Furthermore, vision
provides conditions that alleviate the inherent ambiguity of language, enabling the generation of mo-
tions that are more precise and controllable. Moreover, the integration of vision unlocks the model’s
capacity to handle a wider range of tasks beyond text-only conditioning, such as vision-conditioned
motion completion or generating diverse motions from sparse video frame.

Our video inputs (sampled at 1 fps) are not temporally aligned with motion sequences (30 fps). In-
stead of enforcing rigid frame-to-frame correspondence, we leverage them as priors for trajectory
and scene context. Similarly, text only partially aligns with motion, as some phrases correspond
to specific fragments. To handle such partial correspondences, we introduce a mixture-of-attention
mechanism with adaptive scope, enabling motion tokens to interact with the most relevant condi-
tional tokens across granularities. This strengthens local-global alignment and mitigates confusion
from temporal mismatches or ambiguous conditions.

We adopt a two-stage training strategy. In the first stage, MoGIC learns cross-modal consistency
by jointly optimizing multimodal-conditioned motion generation loss and future-aware behavior
understanding loss, enabling robust generalization across different input types. In the second stage,
we finetune MoGIC on task-specific objectives such as language-to-motion generation, effectively
transferring visual priors and behavior understanding capabilities to downstream tasks.

To enable tri-modal learning, we curate and automatically annotate 21 high-quality motion datasets
into a large-scale benchmark, Mo440H, which spans 440 hours of single-person motions, human-
human interactions, and human-object interactions. Extensive experiments on HumanML3D and
Mo440H demonstrate the versatility of MoGIC as a unified motion generation framework capable
of handling multiple conditioning modalities and tasks. On the language-to-motion task, MoGIC
achieves significant improvements, reducing FID by 38.6% and 34.6% respectively. On motion
captioning (with fine-tuning) and future-aware behavior understanding (without fine-tuning), its
lightweight text-generation heads outperform LLM-based baselines despite using far fewer param-
eters. Furthermore, incorporating the visual modality not only enhances controllability and gen-
eration fidelity, but also enables new capabilities such as image-to-motion synthesis and vision-
conditioned motion completion.
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2 RELATED WORK

Motion Generation Recent work on text-conditioned motion generation has primarily relied
on probabilistic generative models, including GANs Harvey et al. (2020); Ghosh et al. (2021),
VAEs Petrovich et al. (2022), and diffusion methods Du et al. (2023); Chen et al. (2023); Shafir
et al. (2024); Tevet et al. (2023); Zhang et al. (2023c;b; 2024b); Xie et al. (2024); Zhou et al. (2024);
Meng et al. (2025), which generate realistic motion by sampling and refining noise. In parallel,
discrete-token approaches Du et al. (2023); Zhong et al. (2023); Zhang et al. (2023a); Pinyoanun-
tapong et al. (2024a); Shi et al. (2025); Wang et al. (2025); Jeong et al. (2025) use vector-quantized
autoencoders to construct a motion vocabulary, with transformers modeling token sequences either
autoregressively or through masked denoising.

More recent studies have begun to explore the use of large language models to capture the rich
temporal and semantic structure of human motion Jiang et al. (2023a); Luo et al. (2024); Liang
et al. (2024a); Wang et al. (2024); Wu et al. (2025b). By treating motion as a discretized foreign
language, these methods learn bidirectional mappings between text-to-motion (T2M) and motion-
to-text (M2T). However, such mappings remain at the level of superficial pattern matching, and the
potential of bidirectional alignment to improve motion generation has not been fully explored. In
this paper, we advance motion generation by enabling the model to infer the underlying causes of
motion.

More modalities have also been explored as conditions. For instance, Chen et al. (2025) unify audio
and text representations of 3D human motions using LLMs, while MotionAnything Zhang et al.
(2025) combines text and music to generate more controllable dance motions. Such modalities pro-
vide complementary information, yet the crucial role of visual inputs in motion generation remains
underexplored. In this paper, we incorporate visual modality to reduce the ambiguity of text-only
descriptions and extend the model’s applicability to a wider range of downstream tasks.

Motion Dataset In recent years, numerous motion datasets have emerged to capture diverse
human activities. AMASS Mahmood et al. (2019) provides high-quality 3D mocap data, fur-
ther extended by BABEL Punnakkal et al. (2021) with segment-level categorical labels and Hu-
manML3D Guo et al. (2022) with sequence-level textual descriptions. Beyond these, many
datasets Mehta et al. (2017); Fieraru et al. (2021); Cai et al. (2022); Xiong et al. (2024); Liu et al.
(2022); Tripathi et al. (2023) capture a broad spectrum of movements ranging from daily actions to
gestures and yoga. EgoBody Zhang et al. (2022) and InterGen Liang et al. (2024b) focus on two-
person interactions, while others Lv et al. (2025); Zhao et al. (2024); Li et al. (2023); Jiang et al.
(2023b); Taheri et al. (2020) emphasize human–object interactions. Collaborative and scene-aware
scenarios are also addressed by datasets such as CORE4D Liu et al. (2024b), Humanise Wang et al.
(2022), PROX Hassan et al. (2019), and HOI-M3 Zhang et al. (2024a).

Recent works Lin et al. (2023); Lu et al. (2025); Fan et al. (2025) extract motions from online videos
via pose estimation. However, this approach results in lower fidelity and exhibits content bias. For
instance, MotionMillion Fan et al. (2025) contains more than 70% sports-related activities such as
martial arts, fitness, and dance. In this paper, we integrate and re-annotate over twenty high-quality
motion datasets, achieving large-scale coverage while avoiding the quality issues and content bias
of video-derived data.

3 MODEL ARCHITECTURE

We propose MoGIC, a unified framework for future-aware behavior understanding and human mo-
tion generation conditioned on multimodal inputs, including language, vision, and partially visible
motion sequences. As shown in Figure 1, each modality is first projected into the latent space via
modality-specific encoders, with random masking applied to motion tokens for generative masked
modeling. A Conditional Masked Transformer (CMT) then integrates the projected conditioning
signals at both global-level and fine-grained conditions to modulate the masked motion tokens. The
resulting motion tokens serve as a unified representation that generates both high-level behavior
descriptions and complete motion latent sequences, which are subsequently reconstructed into the
original motion domain through a motion decoder.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Motion

Encoder

...

Motion

Decoder

(a) Motion AutoEncoder

Trainable

Frozen

Masked Tok.

Projector

Motion

Encoder

…

Text: The person 
walks forward, 
then turns left.

Projector

Text

 Encoder

…

Projector

Visual 

Encoder

Visual 

Encoder

…

Time

…

Motion VideoMotion Description Motion Sequence

Masked Auto-Regressive Transformer

…

Noisy Tok.

(b) OmniMoGen

maskedz

z

Tx … …
tx 1tx − 0x

Motion Diffusion Head

Latent Mot.

Latent Mot.

Noise

D
o
w

n
s
a

m
p
le

U
p
s
a
m

p
le

In
te

n
ti
o

n
 P

re
d
ic

to
r

Layer Norm

Causal SA

Layer Norm

Causal CA



Gen. Mot.

Emb. Tok.

1( )t tq x x −  

1( )masked

t tp x x z −   



Text: The person 
walks forward, 
then turns left.

Cond.

Compactor


Semantic-level 

Cond.

©

...

Learnable Modality Tok.

Self-Attn.

Fine-grained 

Cond.

1
1

Layer Norm

Residual

Cross-Attn.

Adaptive Topk Cross-Attn.

Adaptive Topk 

Mixture of 

Attention

,n nk a b  

1

n

Layer Norm

1 1,k a b  

Layer Norm

Learnable Vision Emb.

key value

Residual

MLP

Residual…

…

…

© Concat  Add

(c) Transformer Layer

M

N

, ,mB L C

, ,mB L C , ,vB L C, ,tB L C

, ,mB L C

, ,m

maskedB L C , ,m

maskedB L C

Transformer Layer

Motion Token Seq.

*

+

*

*

+

*

+

*

*

* Times + Add

2
2

1

2
3
3

3

Video

Tok.

Text

Tok.

Projector

Motion

Encoder

…

Text: The person 
walks forward, 
then turns left.

Projector

Text

 Encoder

…

Projector

Visual 

Encoder

Visual 

Encoder

…

Time …

Motion VideoMotion Description Motion Sequence

Conditional Masked Transformer

…

maskedz

z

… …

Motion Generation Head

Latent Mot.Noise Gen. Mot.

Multi-Head

Self-Attn

Cross-Attn 

Adaptive Topk

FeedForward

Compactor



Semantic-level 

Cond.

©

...

Fine-grained 

Cond.

key / value

© Concat  Add
Motion Token Seq.

Video

Tok.

Text

Tok.

Residual

Residual

Residual

Scale & Shift

Scale & Shift

LayerNorm

LayerNorm

Scale

Scale

LayerNorm

Scale & Shift

Scale

Multi-Head

Self-Attn

Cross-Attn 

Adaptive Topk

FeedForward

Compactor



Semantic-level 

Cond.

©

...

Fine-grained 

Cond.

key / value

© Concat  Add
Motion Token Seq.

Video

Tok.

Text

Tok.

Residual

Residual

Residual

Scale & Shift

Scale & Shift

LayerNorm

LayerNorm

Scale

Scale

LayerNorm

Scale & Shift

Scale

Multi-Head

Self-Attn

Cross-Attn 

Adaptive Topk

FeedForward

Compactor



Semantic-level 

Cond.

©

...

Fine-grained 

Cond.

key / value

© Concat  Add
Motion Token Seq.

Video

Tok.

Text

Tok.

Residual

Residual

Residual

Scale & Shift

Scale & Shift

LayerNorm

LayerNorm

Scale

Scale

LayerNorm

Scale & Shift

Scale

Trainable Frozen Masked Tok.

Noisy Tok. Emb. Tok. Modality Tok.

Behavior

Understanding

Head

The person walks 
forward, then 
turns left.

,m tz,m Tz , 1m tz − ,0mz

, , 1( | )m t m tq z z −

, 1 ,( | , )masked

m t m tp z z z
 −

Figure 1: Overview of MoGIC. The framework consists of modality-specific encoders, a Conditional
Masked Transformer (CMT), a Motion Generation Head (MGH), and a Behavior Understanding
Head (BUH). Language, vision, and motion inputs are first processed by their respective encoders
to produce latent tokens. Motion tokens are randomly masked and passed through the CMT, where
global-level and fine-grained conditions modulate the motion token in series. The resulting con-
ditional tokens z are used in two branches: (i) the masked motion tokens are reconstructed via
the MGH, which denoises them into clean motion latent tokens and decodes them into motion se-
quences; (ii) z serves as key and query signals for the SPH to predict the behavior description.

3.1 MODALITY-SPECIFIC ENCODER

Motion/Language/Vision Encoder Given a motion sequence xm ∈ Rlm×cm with lm frames and
cm feature dimensions, we adopt a temporal convolutional auto-encoder to project motion into a
compact latent space zm = fm(xm) ∈ Rl

′
m×dm , where l

′

m ≤ lm and dm is the motion embedding
dimension. A symmetric decoder reconstructs the motion as x̂m = gm(zm), and the auto-encoder
is trained with a smooth L1 reconstruction loss Lrec = SmoothL1(x̂m,xm). For text, a frozen CLIP
encoder outputs token-level embeddings zt = ft(xt) ∈ Rlt×dt , where the [CLS] token zg

t captures
global semantics. For vision, video frames sampled at 1 fps are encoded as zp

v = fv(x
p
v) ∈ Rdv ,

and aggregated into a global representation by attention layer zg
v = attn(qv, zv, zv) with a learnable

query vector qv .

3.2 CONDITIONAL MASKED TRANSFORMER

The Conditional Masked Transformer integrates multimodal conditioning signals into motion tokens
through two operations: (i) global-level modulation, which injects fused text–vision context into the
motion representation via adaptive normalization to ensure pattern consistency, and (ii) mixture-
of-attention with adaptive scope, realized through the adaptive Top-k cross-attention mechanism
that dynamically aligns motion tokens with the most relevant text-vision snippets while adaptively
determining the scope of attended context. At each layer of the CMT, motion tokens first pass
through a self-attention module, then receive fine-grained conditions via the adaptive Top-k cross-
attention, and finally go through a feed-forward network to produce the output representation.

Global-level Modulation We adopt adaptive LayerNorm modulation. The global multimodal con-
text vector cg = zg

t +zg
v is mapped to modulation coefficients (αc, βc, γc) = Wada(c

g) ∈ Rdm via a
lightweight MLP. Given a normalized motion token z̄m = LN(zm), modulation and gated residual
connection are applied as

zm ← zm + γc ⊙ h(αc ⊙ z̄m + βc) (1)
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where h(·) denotes the corresponding sub-layer transformation (self-attention, cross-attention, and
feed-forward layer in CMT). This formulation ensures that global multimodal context consistently
modulates motion representation while flexibly controlling residual pathways.

Mixture-of-Attention with Adaptive Scope To enable fine-grained dynamic alignment between
motion tokens and multimodal conditioning signals, we employ the mixture-of-attention mechanism
that operates on concatenated token-level condition embeddings ctok = [zv; zt] ∈ R(p+l)×d. When
a modality is missing, its slot in ctok is replaced by a learnable embedding. Given query motion
tokens zm ∈ Rl

′
m×d, each expert computes queries, keys, and values as qe = W e

q zm, ke = W e
kc

tok,
and ve = W e

v c
tok, followed by attention to produce the score matrix Ae. To control the effective

context scope, we sort Ae in descending order per query and accumulate until a cumulative mass τ
is reached:

kedyn = min
(
max

(
argmin

k

∑k
j=1 A

e
(j) ≥ τ , kemin

)
, kemax

)
(2)

where Ae
(j) denotes the jth largest weight. The final attention distribution is restricted to the top-kedyn

entries. The final output is the sum of all expert contributions

z =

E∑
e=1

Ãeve, Ãe
i,j =

Ae
i,j · 1j ∈ top-kedyn(i)∑

j′∈Top-kdyn(i)
Ae

i,j′
(3)

where top-kedyn(i) denotes the set of indices of the attention weights for the ith motion token. This
adaptive mixture-of-attention design ensures that motion tokens selectively attend to the most rela-
tive condition tokens, while maintaining flexibility to balance pattern consistency and fine-grained
alignment across diverse contexts.

3.3 DISENTANGLE GENERATION HEAD

Behavior understanding and motion represent two fundamentally different data formats, with the
former being linguistically oriented and motion encoding continuous dynamics. To capture this
distinction, we adopt disentangled generation heads that separately model the two modalities

Behavior Understanding Head (BUH) The Behavior Understanding Head (BUH) aims to cap-
ture the complete behavior pattern from the partial observation in textual form. It employs a T5-
style Raffel et al. (2020) decoder that, conditioned on the embedding z from the conditional masked
transformer, generates the behavior description in an autoregressive manner. Each decoder layer
combines self-attention over the partially generated sequence with cross-attention conditioned on z

Motion Generation Head (MGH) Since motions are continuous, we employ a continuous-time
interpolant model in the Motion Generation Head (MGH) following SiT Ma et al. (2024), condi-
tioned on the masked embedding zmask. The interpolant at time t ∈ [0, 1] is defined as:

zm,t = αtzm,0 + σtϵ, ϵ ∼ N (0, I)

vθ(zm,t, t,z
mask) ≈ α̇tzm,0 + σ̇tϵ

(4)

where zm,0 is the latent motion of ground truth and vθ predicts the velocity field under conditioning.
For sampling, given zmask, we integrate the learned velocity field backward in time using either the
probability flow ODE or reverse-time SDE:

zm,0 = Solver(zm,T ,vθ, z
mask), zm,T ∼ N (0, I). (5)

The denoised latent representation zm,0 is subsequently provided to the motion decoder to recon-
struct the full motion sequence x̂m.

4 CROSS-MODAL GENERATIVE TRAINING

We train MoGIC on five tasks: (1) language-to-motion (L2M), which generates motion from tex-
tual descriptions; (2) vision-language-to-motion (VL2M), which integrates visual and textual in-
puts to produce more controllable motion; (3) vision-to-motion (V2M), which synthesizes motion

5
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Table 1: The quantitative results of L2M on HumanML3D. The best results are displayed in bold.
Noting that the metric values of some methods are adopted from MARDM (Meng et al., 2025).

Methods R Precision↑ FID↓ Matching↓ CLIP-score ↑Top 1 Top 2 Top 3

T2M-GPT (Zhang et al., 2023a) 0.470±.003 0.659±.002 0.758±.002 0.335±.003 3.505±.017 0.607±.005

ReMoDiffuse (Zhang et al., 2023b) 0.468±.003 0.653±.003 0.754±.005 0.883±.021 3.414±.020 0.621±.003

MDM-50Step (Tevet et al., 2023) 0.440±.007 0.636±.006 0.742±.004 0.518±.032 3.640±.028 0.578±.003

MLD (Chen et al., 2023) 0.461±.004 0.651±.004 0.750±.003 0.431±.014 3.445±.019 0.610±.003

MMM (Pinyoanuntapong et al., 2024b) 0.487±.003 0.683±.002 0.782±.001 0.132±.004 3.359±.009 0.635±.003

MoMask (Guo et al., 2024) 0.469±.004 0.687±.003 0.786±.003 0.116±.006 3.353±.010 0.637±.003

MotionDiffuse (Zhang et al., 2024b) 0.450±.006 0.641±.005 0.753±.005 0.778±.005 3.490±.023 0.606±.004

MARDM-DDPM (Meng et al., 2025) 0.492±.006 0.690±.005 0.790±.005 0.116±.004 3.349±.010 0.637±.005

MARDM-SiT (Meng et al., 2025) 0.500±.004 0.695±.003 0.795±.003 0.114±.007 3.270±.009 0.642±.002

MotionAgent Wu et al. (2025b) 0.485±.003 0.680±.003 0.780±.002 0.202±.009 3.327±.009 0.634±.003

MoGIC (ours) w/o Und. loss 0.533±0.012 0.731±0.010 0.826±0.010 0.108±0.023 3.078±0.037 0.658±0.001

MoGIC (ours) 0.545±0.003 0.741±0.003 0.835±0.002 0.070±0.004 2.999±0.011 0.669±0.001

Table 2: The quantitative results of L2M on Mo440H-ML. The best results are displayed in bold.

Methods R Precision↑ FID↓ Matching↓ Diversity↑Top 1 Top 2 Top 3

MotionDiffuse (Zhang et al., 2024b) 0.550±.001 0.735±.001 0.801±.002 0.957±.010 2.990±.007 12.009±.104

MMM (Pinyoanuntapong et al., 2024b) 0.601±.001 0.798±.001 0.887±.001 0.237±.004 2.420±.004 11.883±.089

MoMask (Guo et al., 2024) 0.610±.001 0.801±.002 0.886±.001 0.205±.006 2.353±.003 11.963±.077

MARDM-DDPM Meng et al. (2025) 0.573±.001 0.785±.002 0.885±.002 0.431±.004 2.166±.005 12.630±.079

MARDM-SiT Meng et al. (2025) 0.613±.001 0.820±.002 0.906±.001 0.231±.003 2.420±.005 12.112±.079

MG-MotionLLM Wu et al. (2025a) 0.556±0.002 0.737±0.002 0.834±0.002 0.624±0.008 2.544±0.006 12.252±0.099

MoGIC (ours) only L2M loss 0.637±0.001 0.836±0.001 0.908±0.002 0.201±0.001 2.003±0.007 12.392±0.084

MoGIC (ours) L2M + Und. loss 0.652±0.001 0.851±0.001 0.926±0.001 0.134±0.001 1.889±0.005 12.434±0.087

MoGIC (ours) L2M + Caption loss 0.646±0.001 0.845±0.001 0.919±0.001 0.198±0.001 1.910±0.005 12.623±0.090

MoGIC (ours) 0.643±0.001 0.844±0.002 0.917±0.002 0.185±0.002 1.915±0.004 12.516±0.077

MoGIC (ours) w/ L2M FT 0.651±0.001 0.849±0.001 0.924±0.002 0.123±0.001 1.903±0.006 12.511±0.091

purely from visual sequences; (4) motion-to-motion (M2M), which reconstructs complete motion
from partially observed sequences; and (5) future-aware behavior understanding, which infers high-
level motivational factors behind motion. All tasks share a Conditional Masked Transformer with
modality-specific conditioning. Motion sequences are encoded into latent tokens zm ∈ Rl′m×dm ,
where a subset is randomly masked with learnable tokens for generative reconstruction, and for
future-aware behavior understanding, the latter 50% of tokens are additionally truncated. The fused
masked sequence and modalities yield a motion embedding z, which conditions both the SPH and
MGH for behavior understanding and motion generation. Training is driven by a joint loss com-
bining a diffusion-based velocity matching objective for motion and an autoregressive cross-entropy
for description:

L = λmotion Et,ϵ

[∥∥vθ(zm,t, t,z)− (α̇tzm,0 + σ̇tϵ)
∥∥2
2

]
+λund E(y,z)

[
−

T∑
i=1

logP (yi|y<i, z)
]

(6)

This unified training framework enables the model to learn a shared latent space where motion
generation and behavior understanding are jointly optimized. The decoupled generation paradigm
guides the model to capture the underlying motivational factors of motion, while mitigating the
semantic entanglement between discrete text and continuous motion representations.

5 EXPERIMENTS

5.1 INTEGRATED MOTION DATASET

Motion Dataset We curated and processed 21 high-quality motion datasets covering diverse sce-
narios such as single-person activities, human-human interactions, and human-object interactions.
All motions were standardized to a 22-joint format, resampled to 30 fps, and capped at 10 sec-
onds. For datasets without textual annotations but with visual modalities, we used Qwen2.5-VL-
Max Bai et al. (2025) to generate captions and manually filtered inadequate samples; for those
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lacking RGB videos, rendered mesh sequences were adopted instead, with all videos downsampled
to 1 fps. The final collection, termed Mo440H, comprises about 440 hours of motion (about 50M
frames), 210k textual descriptions, and 140k image sequences. Depending on available modalities,
we further organize it into three subsets: Mo440H-All (the whole dataset, for auto-encoder training
and cross-modal generative training), Mo440H-ML (motion-language pairs, for language-to-motion
and motion-to-language), and Mo440H-MLV (motion-language-vision triplets, enabling visually
conditioned tasks).

In addition, we evaluate on the HumanML3D Guo et al. (2022) dataset, a widely used benchmark
with about 14k motion sequences and 45k text annotations, following established protocols Meng
et al. (2025) for fair comparison with previous work.

Motion Representation We adopt a compact motion representation by removing redundant fea-
tures (e.g., 6D rotations), following Meng et al. (2025), to mitigate distribution mismatch and gen-
eration errors. The motion data is represented as xi

m = [ṙa, ṙxz, ṙh, jp] at time step i, consisting of
root angular velocity ṙa, root linear velocities ṙxz in the XZ-plane, root height ṙh, and local joint
positions jp ∈ R3(Nj−1), which jointly encode the essential kinematic information for motion.

5.2 EXPERIMENT SETTINGS AND EVALUATION METRICS

Experiment Settings All experiments are conducted on RTX4090 GPUs with a batch size of 64
using the Adam optimizer (lr=2e-4, 2000-step warm-up), training for 500 epochs on HumanML3D
and 10M iterations on Hu440H (≈40 GB GPU memory). The motion generation loss is optimized
every epoch, while the future-aware behavior understanding loss is updated every 4 epochs. The
Conditional Masked Transformer (384 channels) uses 1 layer for HumanML3D and 2 layers for
Hu440H dataset. Cross-attention employs two parallel modules (k ∈ [1, 6], threshold 0.8; and
k ∈ [0,∞], threshold 1). The semantic prediction head is a 3-layer T5-style decoder, and the motion
head is a diffusion model with a 10-layer MLP (1280 channels).

5.3 DOWNSTREAM APPLICATIONS Table 3: Comparisons of motion in-between tasks on
Mo440H-ML. Each setting reports R-precision top 3
(R@3), FID, and Matching score (Match).

Task Method
w/o language w/ language

R@3↑ FID↓ Match↓ R@3↑ FID↓ Match↓

pref. MARDM 0.874 0.286 2.808 0.912 0.194 1.972
MoGIC 0.892 0.173 2.172 0.943 0.128 1.644

suff. MARDM 0.894 0.239 2.334 0.912 0.188 1.989
MoGIC 0.912 0.140 1.938 0.941 0.091 1.647

inf. MARDM 0.907 0.211 2.249 0.913 0.186 1.984
MoGIC 0.926 0.124 1.789 0.943 0.113 1.619

circ. MARDM 0.896 0.249 2.358 0.913 0.175 1.980
MoGIC 0.912 0.147 1.979 0.943 0.109 1.639

Table 4: Text generation metrics on the test set.

BLEU@1↑ BLEU@4↑ ROUGE↑ BERTScore↑

H
3D

TM2T 48.90 8.27 38.1 32.2
MotionGPT 48.20 12.47 37.4 32.4
MotionChain 48.10 12.56 33.9 36.9
MotionGPT3 51.06 8.43 38.7 32.0
MG-MotionLLM − 8.06 − 36.7
MoGIC (ours) 53.13 10.36 40.6 40.7

M
o4

40
H T2MT 28.99 15.37 36.22 29.01

MG-MotionLLM 35.47 17.97 39.07 30.95
MoGIC (ours) 42.52 20.32 39.31 31.96

Following cross-modal generative train-
ing, MoGIC supports arbitrary multimodal
inputs (language, vision, motion) to pro-
duce unified outputs in motion sequences
and text descriptions. Further finetun-
ing on specific tasks enhances perfor-
mance in specialized settings. We eval-
uate on HumanML3D Guo et al. (2022)
and our integrated dataset Mo440H. For
HumanML3D, we adopt evaluators from
prior work Meng et al. (2025). For the
integrated dataset, we train an evaluator
on Mo440H following the previous meth-
ods Guo et al. (2022).

Motion Generation and Caption We
evaluate language-to-motion generation
both with and without fine-tuning, as well
as motion captioning after finetuning. Ex-
periments are conducted on HumanML3D
and Mo440H-ML.

For motion generation on HumanML3D,
we adopt a single-stage training strategy,
jointly optimizing the motion generation
loss and the future-aware behavior under-
standing loss, achieving substantial improvements over state-of-the-art methods in terms of FID and
R-Precision (Tables 1). Results on Mo440H are shown in Tables 2, where MoGIC denotes the model
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trained solely through cross-modal generative learning, and MoGIC w/ FT represents the variant fur-
ther fine-tuned on the language-to-motion task. We also present the results without computing the
generation loss conditioned on the visual modality (denoted as MoGIC T2M + Und. loss in the
Table 2). As shown, language-based motion generation achieves better results, but its functionality
remains limited. All evaluations are conducted using our retrained evaluator on the Mo440H dataset,
following the same protocol as previous work Guo et al. (2022).

In addition, Table 4 reports results for fine-tuning on motion caption task. During fine-tuning, we
feed the entire motion sequence as input and generate textual descriptions. Compared with LLM-
based methods, the Semantic Prediction Head (SPH) in MoGIC is highly lightweight and does not
rely on pre-trained language models, yet it still delivers competitive and effective performance.

Motion In-Between We evaluate our method on the motion in-between task, which generates
plausible transitions from partial motion contexts. We consider prefix, suffix, infix, and circumfix
completion, predicting missing segments at the beginning, end, middle, or both ends of a motion se-
quence. Experiments on HumanML3D and Mo440H, compared with MARDM Meng et al. (2025),
are reported under two settings: (i) in-between with language, using both textual descriptions and
visible motion fragments, and (ii) in-between without language, using only motion fragments. With-
out task-specific fine-tuning, our method consistently outperforms baselines, as shown in Table 3.

Future-aware Behavior Understanding The future-aware behavior understanding task requires
the model to infer the underlying semantic structure and behavioral patterns in text format. Given
the first 50% of a motion sequence, the model outputs a complete language description that conveys
the underlying behavior patterns. Meanwhile, MoGIC can also generate a future motion sequence
aligned with this description. We train two baselines separately for future-aware behavior under-
standing Wu et al. (2025a) and future motion generation Meng et al. (2025). Without fine-tuning,
our model surpasses both, achieving higher quality in understanding and lower FID for the syn-
chronously generated motion continuation, as shown in Figure 2.

Vision-Augmented Tasks We further extend our framework to vision-augmented scenarios,
where image sequences serve as additional conditions for motion generation. We focus on two
representative tasks: (i) vision-language-to-motion, where textual descriptions and visual frames
jointly guide motion synthesis, and (ii) vision-based motion in-between, where visual cues comple-
ment partial motion fragments to complete missing segments. These tasks provide a natural and
accessible source of conditioning signals that enrich the controllability of generated motions. As
shown in Figure 3, when generating a weightlifting motion conditioned only on the text prompt “lift
weight by extending legs and back, raising arms”, the description neither specifies the exact position
of the barbell nor provides the model with a prior about the abstract concept of weight. As a result,
the model produces an unrealistic sequence in which the barbell is lifted overhead, which is clearly
inconsistent with real-world biomechanics. By incorporating visual modality, however, the model
gains explicit information about the barbell’s position relative to the body, allowing it to generate
natural lifting motions that adhere to realistic constraints.

5.4 ABLATION STUDY

Figure 2: Comparisons of future-
aware behavior understanding results.

Effectiveness of Future-aware Behavior Understanding
Ablation results on HumanML3D (MoGIC w/o Und. loss
in Table 1) and Mo440H (MoGIC only T2M loss in Table 2)
show that removing future-aware behavior understanding
task consistently lowers performance, with the largest drops
in FID (−35.2% on HumanML3D, −33.3% on Mo440H)
and retrieval precision (−0.9% on HumanML3D, −1.8%
on Mo440H). We further replace the understanding loss
with a captioning loss, training the model to generate de-
scriptions from complete motion sequences (MoGIC L2M
+ Caption loss). Caption supervision improves motion
quality, but the gains are notably smaller than those from
future-aware behavior understanding. This underscores that learning the semantic structures and
understanding how motion will unfold is crucial for producing high-quality motion. Without it, the
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Table 5: The effectiveness of the vision modality. We evaluate MoGIC on the motion generation
and in-between tasks conditioning on different conditions without finetuning. L, V, M represent
language, vision, and motion, respectively.

Category Task R Precision↑ FID↓ Matching↓ Diversity↑Top 1 Top 2 Top 3

Motion Gen.
L2M 0.590±0.002 0.804±0.001 0.897±0.002 0.330±0.003 1.913±0.007 12.757±0.075

V2M 0.408±0.002 0.639±0.003 0.789±0.003 0.634±0.010 2.881±0.012 12.662±0.108

LV2M 0.589±0.001 0.801±0.001 0.898±0.002 0.266±0.002 1.953±0.007 12.585±0.067

Motion In-Bet.

prefix 0.498±0.002 0.720±0.002 0.830±0.001 0.436±0.004 2.373±0.006 12.469±0.052

prefix w/ L 0.624±0.001 0.833±0.001 0.918±0.001 0.137±0.001 1.707±0.003 12.487±0.041

prefix w/ V 0.553±0.001 0.766±0.001 0.868±0.001 0.205±0.001 2.021±0.004 12.639±0.058

prefix w/ L+V 0.619±0.001 0.830±0.001 0.914±0.001 0.132±0.001 1.701±0.004 12.662±0.065
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Figure 3: Visualization of motion generation and motion in-between tasks with vision modality.

model relies on shallow correlations, failing to capture the causal structure and latent goals of human
motion. Consequently, generated motions lose realism.

(a) Ablation study of the mixture-of-attentions
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(b) Visualization results of L2M.
Figure 4: The effectiveness of mixture-of-attention.

Effectiveness of Training with Vision
Modality We assess the contribution of
vision from two complementary angles.
(i) Vision as priors. We drop vision-
to-motion and vision-language-to-motion
losses in the cross-modal generative train-
ing (MoGIC L2M + Und. loss in Ta-
ble 2). Compared to MoGIC w/ L2M
FT which is finetuned on language-to-
motion and future-aware behavior under-
standing losses after the complete cross-
modal generative training, training with-
out vision modality leads to degraded
language-to-motion performance, indicat-
ing that the visual modality enables the
model to learn richer contextual represen-
tations and implicitly guides the alignment
between generated motions and their con-
ditioning inputs. (ii) Vision as a con-
ditioning modality. We further exam-
ine whether adding vision conditions im-
proves generation. On Mo440H-MLV, we
evaluate both vision–language-to-motion
and vision-based motion in-between with-
out task-specific fine-tuning. As shown in
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Table 5, vision consistently reduces FID while keeping diversity comparable, and combining lan-
guage with vision yields the best trade-off. This suggests that visual conditions provide comple-
mentary spatiotemporal hints beyond text or motion alone, leading to more natural and coherent
generations.

Effectiveness of Mixture-of-Attention We test four settings: no expert (i.e., no cross-attention
with fine-grained conditions), one expert (k1 ∈ [0,∞)), two experts (k1 ∈ [0,∞), k2 ∈ [1, 6)),
and three experts (k1 ∈ [0,∞), k2 ∈ [1, 6), k3 ∈ [6, 10)). As shown in Figure 4a, fine-grained
conditions greatly boost retrieval performance. Increasing expert number steadily reduces FID,
with retrieval precision peaking at two experts. To balance efficiency and effectiveness, we adopt
two experts as default. Figure 4b further shows that, thanks to mixture-of-attention with adaptive
scope, our method generates motions with more precise local responses, including joint movement,
positioning, and timing.

Table 6: Effect of video sampling strategies on IDEA400.

Sampling FID↓ Top1↑ Top2↑ Top3↑ Div.↑ Match↓
1 FPS 0.443 0.285 0.466 0.588 9.106 3.321
2 FPS 0.423 0.284 0.469 0.597 8.903 3.226
Flow-based 0.421 0.286 0.468 0.591 8.797 3.304
Acc.-based 0.418 0.285 0.468 0.593 8.817 3.302

Impact of Video Sampling Strat-
egy We further analyze how differ-
ent visual sampling strategies affect
motion generation quality. Since the
visual stream in MoGIC is designed
to provide weak conditions rather
than dense kinematic supervision, we
compare (1) sparse 1 FPS inputs (de-
fault setting), (2) denser 2 FPS inputs,
and (3) dynamic-aware keyframes selected by optical-flow magnitude and joint-acceleration peaks
(10 frames). As shown in Table 6, while denser or motion-centric sampling slightly improves FID,
it consistently reduces motion diversity, indicating that the model becomes over-constrained by de-
terministic visual poses and tends toward keyframe interpolation. In contrast, 1 FPS inputs already
capture essential context, interaction type, and coarse movement tendencies, yielding a strong bal-
ance between fidelity and generative flexibility.

Table 7: Ablation study of future-aware behavior under-
standing.

Visible Rate Top1↑ Top2↑ Top3↑ FID↓ Match↓ Div.↑
100% 0.646 0.845 0.919 0.198 1.910 12.623
75% 0.648 0.847 0.922 0.171 1.905 12.599
50% 0.652 0.851 0.926 0.134 1.889 12.434
25% 0.650 0.848 0.923 0.156 1.905 12.417

The proportion of visible motion
prefixes in Future-Aware Behav-
ior Understanding We investigate
how the proportion of visible motion
prefixes used in the future-aware be-
havior understanding task influences
downstream motion generation. As
shown in Table 7, providing a mod-
erate amount of prefix motion (50%)
leads to the best overall performance,
as it offers sufficient contextual cues while still encouraging the model to infer future dynamics. In
contrast, either exposing the entire prefix or revealing too little motion reduces generation quality,
indicating that balanced prefix visibility is essential for effective future-aware behavior understand-
ing.

6 CONCLUSION

In this work, we introduce MoGIC, a unified multimodal framework that couples future-aware be-
havior understanding with multimodal-conditioned motion generation. By jointly modeling high-
level future semantic patterns and continuous motion synthesis across language, vision, and motion,
MoGIC effectively resolves ambiguities inherent in text-only conditioning and delivers versatile
generative capability. To support this paradigm, we construct Mo440H, a 440-hour tri-modal bench-
mark aggregated from 21 diverse motion datasets. Comprehensive experiments across HumanML3D
and Mo440H verify MoGIC’s substantial gains in generation fidelity, captioning performance, and
multi-conditioned synthesis, including vision-guided generation and future-behavior understanding.
We believe these findings offer new insights into multimodal human motion understanding and lay
the groundwork for more precise, and semantically grounded motion generation in future research.
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ETHICS STATEMENT

Dataset usage and compliance. All datasets used in this work are publicly available and can be
freely downloaded from the internet. We strictly comply with the official licenses and usage terms
associated with each dataset, ensuring that our data use aligns with community norms and legal
requirements.

Privacy and anonymity. The datasets employed do not contain personally identifiable informa-
tion (PII) or sensitive private data. Our work involves only motion capture–style representations
(e.g., 3D skeleton joints, body parameters), which are inherently abstract and anonymized.

Human subjects. No human subject experiments were conducted for this research. All experi-
mental results are derived from existing open-source datasets, which have already been collected
and released by their respective authors. Thus, issues related to IRB approval, informed consent, or
direct participant involvement are not applicable.

Application scope and potential risks. This research falls under the category of generative mod-
eling, with primary applications in animation, computer graphics, and artistic content creation. We
do not foresee potential risks of harmful applications, such as surveillance, discrimination, or misuse
in security-critical settings.

Representation and likeness. The generated outputs represent human body kinematics in terms
of parameters such as joint positions and motion trajectories. They do not reproduce personal like-
nesses, facial identities, or biometric information, and therefore do not raise concerns about portrait
rights or identity misuse.

Fairness, bias, and integrity. The datasets used are diverse motion corpora but, as with all public
datasets, may contain imbalances in action types or distributions. Our focus is on methodological
contributions rather than demographic or identity-sensitive attributes. We confirm that all results
presented in this paper are genuine, and no data manipulation or misrepresentation has been per-
formed.

REPRODUCIBILITY STATEMENT

Model description. The main body of the paper provides a comprehensive description of our
proposed architecture, including the conditional masked transformer, diffusion head, and the disen-
tangled generation modules.

Training and evaluation details. Hyperparameters, optimization strategies, and hardware settings
are reported in the experimental section. We also describe the evaluation metrics, number of epochs,
and sampling steps to ensure clarity and transparency.

Dataset processing. The composition of the datasets used in the experiments is reported in the
main text. Further details on sequence segmentation, normalization, and preprocessing are provided
in the supplementary materials.

Code availability. An anonymous link to the source code is provided in the supplementary mate-
rials. The repository contains scripts for training, evaluation, and dataset preparation, allowing other
researchers to replicate our results.

Documentation of assumptions. All assumptions made in model design and implementation are
explicitly documented in the paper and supplementary materials, enabling verification and repro-
ducibility of our findings.
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