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ABSTRACT

We study the problem of classification with a reject option for a fixed predictor,
crucial to natural language processing. We introduce a new problem formulation
for this scenario, and an algorithm minimizing a new surrogate loss function. We
provide a complete theoretical analysis of the surrogate loss function with a strong
H-consistency guarantee. For evaluation, we choose the decontextualization task,
and provide a manually-labelled dataset of 2,000 examples. Our algorithm signif-
icantly outperforms the baselines considered, with a ∼25% improvement in cov-
erage when halving the error rate, which is only ∼3% away from the theoretical
limit.

1 INTRODUCTION

Large language models, often trained with billions of parameters, have achieved impressive perfor-
mance in recent years (Raffel et al., 2020) and are used in a wide variety of natural language gen-
eration tasks. However, their output is sometimes undesirable, with hallucinated content (Maynez
et al., 2020; Filippova, 2020), and much work remains to fully understand their properties. In many
applications, such as healthcare, question-answering systems, or customer service, incorrect predic-
tions are particularly costly and must be avoided. This motivates the design of algorithms for large
language models and other natural language processing (NLP) tasks that achieve high precision on a
large fraction of the input set, while abstaining on the rest. How can we devise such accurate models
that allow a reject option?

A common technique adopted in the past is that of confidence-based models, where rejection is
defined by some threshold on the predictor’s scores and admits a fixed cost (Hendrickx et al., 2021).
Chow (1957; 1970) was the first to provide an analysis of the trade-off between error and rejection
rate, as well as the associated Bayes optimal solution. The rejection rule was later studied based
on the receiver operating characteristic (ROC) curve (Tortorella, 2000; Santos-Pereira and Pires,
2005; Pietraszek, 2007; Landgrebe et al., 2006). Some subsequent work has focused on minimizing
surrogate loss functions for the cost-based objective, with various theoretical guarantees (Bartlett and
Wegkamp, 2008; Grandvalet et al., 2008; Yuan and Wegkamp, 2010). In NLP, it has been reported
that scores from popular large language models such as T5, BART, and GPT-2 are poorly calibrated
(Jiang et al., 2020; Kumar and Sarawagi, 2019; Lewis et al., 2019; Raffel et al., 2020), similar to
modern neural networks (Guo et al., 2017), but Xin et al. (2021) proposed a simple regularization
trick during training to improve these scores. The method used by several other authors can also be
viewed as an instance of confidence-based models (Kamath et al., 2020; Zhang et al., 2021; Garg and
Moschitti, 2021; Dong et al., 2018; Varshney et al., 2022; Li et al., 2024; Chen et al., 2024). Here,
the idea consists of first learning a scoring function defined over pairs (x, y), and next applying the
confidence-based technique to the scoring function.

However, as shown by Cortes et al. (2016)[see Figure 2], straightforward confidence-based methods
are in general suboptimal. When the predictor learned is not the Bayes optimal solution, in general, a
more complex rejection rule is needed to achieve better performance. The authors suggested instead
seeking a suitable rejector out of a family of rejection functions that may be richer than that of
confidence-based threshold ones. They gave theory and algorithms for learning the predictor and
rejector simultaneously by minimizing a rejection loss, whose definition takes into account the cost
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of rejection, c. As shown by Ni et al. (2019), extending this predictor-rejector framework to the
multi-class setting is challenging and remains an open problem, which has been solved positively
by Mao et al. (2024a;c) and extended to multi-expert deferral (Mao et al., 2023a; 2024b). Instead,
Charoenphakdee et al. (2021) decomposed multi-class abstention into multiple one-versus-all binary
classification problems from a cost-sensitive point of view. Recently, such cost-sensitive approach
has been shown empirically to be inferior to the latest approach for abstention (Cao et al., 2022).

We aim to design accurate models with a rejection option for NLP generation tasks such as decon-
textualization (Choi et al., 2021). Decontextualization involves editing a sentence within a passage
such that it can stand alone. It is critical in this task to make confident predictions, or abstain; if
we are to edit an author’s words, we must be sure to do so correctly. One solution would consist of
adopting the rejection loss function of Cortes et al. (2016; 2023) and of learning, simultaneously, a
predictor f and a rejector r that minimize the rejection loss. However, for NLP tasks such as decon-
textualization, this faces a key obstacle: the full set of accurate outputs for a given input sentence
may be large and is typically not at the learner’s disposal. For example, in decontextualization, some
standard transformations such as passivation applied to an accurate output can immediately lead to
a large number of other accurate outputs. To minimize the rejection loss, however, the learner must
be able to evaluate the correctness of any potential predictor on any example in the training sample.
But, apart from the single label in the training sample, other potential accurate labels are not pro-
vided and thus the correctness of a potential predictor cannot be checked. How can we then learn an
accurate rejection-based model for such settings?

One way to proceed is instead to first learn a predictor f , using the standard techniques adopted for
large language models, for example by minimizing the cross-entropy loss in next-token prediction.
Next, given that predictor, it is not hard to manually assign a binary label to the output of f on some
relatively small set of held-out examples indicating their correctness. The problem of interest then
consists of finding the best rejector function r minimizing the rejection loss with f fixed. Here, the
rejector function r takes the input x together with the output f(x) as its own input. We refer to this
procedure as learning to reject with a fixed predictor f .

The resulting binary rejection loss function for r is hard to optimize directly and, instead, we need to
resort to a surrogate loss. Cortes et al. (2016) gave a consistent surrogate loss for their full rejection
loss, which involved learning both f and r. However, since f is fixed in our context, we cannot
benefit from the corresponding consistency guarantees. Instead, we first propose a parametric family
of surrogate losses inspired by their work for learning r alone. Next, we prove that these surrogate
losses benefit from strong consistency results, when a suitable constraint holds for the parameters.

Our results make use of the recent work of Awasthi et al. (2022a), which gave general tools for
deriving H-consistency bounds. These are bounds relating directly the excess error or estimation
error of the surrogate loss to those of the original loss (here the rejection loss). Thus, they are
stronger guarantees than asymptotic Bayes-consistency results. Furthermore, they can be extended
to other hypothesis sets H than that of the family of all measurable functions. We use those tools
to prove the first H-consistency bound for our surrogate rejection loss, which provides a strong
justification for its adoption for tackling the problem of interest.

The rest of this paper is organized as follows. In Section 2, we formulate our learning problem,
which consists of learning a rejector given a fixed predictor. In Section 3, we introduce confidence-
based models and contrast them with our two-step model. In Section 4, we derive our surrogate
rejection loss. In Section 5, we prove a strong H-consistency bound for the proposed surrogate
rejection loss. In Section 6, we give a description of the decontextualization task and the annotation
procedure. Section 7 reports the experimental results of our surrogate rejection loss, and shows that
it compares favorably with several baselines in a decontextualization task.

2 LEARNING PROBLEM

We consider the problem of sequence-to-sequence modeling with high confidence in natural lan-
guage processing. The general objective is to design an algorithm that only returns an output when
it is highly likely to be correct, while still guaranteeing a high coverage.

Let X denote the input and Y the output set of sequences and let D be a distribution over X×Y. The
problem can be formalized in terms of a sequence-to-sequence predictor f ∶X → Y and a rejector
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r∶X × Y → R. A non-positive sign for the output of the rejector is interpreted as rejection, and a
positive one as acceptance. Formally, on an input x ∈ X, we have

(f, r)(x) = {f(x), if r(x, f(x)) > 0
reject, if r(x, f(x)) ≤ 0.

Given a hypothesis set F of sequence-to-sequence predictors and a family of rejectors R, for a cost
c ∈ [0,1], the natural target loss for the abstention problem can be formulated as follows:

L(f, r, x, y) = If(x)≠y Ir(x,f(x))>0 +c Ir(x,f(x))≤0 . (1)

We wish to minimize the error (If(x)≠y) on accepted examples (Ir(x,f(x))>0), while imposing a
fixed cost c on rejected examples. As the cost of rejection increases, one can expect a higher cover-
age, but lower precision. One difference with respect to the framework of Cortes et al. (2016; 2023)
is that, here, the rejector takes as argument the prediction as well. More generally, as already pointed
out in that previous work, the rejection cost c can be a function of x and f(x), not just a constant.
The problem of selective classification (Gelbhart and El-Yaniv, 2019), which is based on the choice
of a threshold function, can be viewed as a special case of this framework.

Distribution model. Before describing any method for tackling this problem, we wish to discuss the
distributional model adopted in certain NLP tasks such as decontextualization. In standard learning
tasks, there may be multiple correct labels y for the same input x and with an i.i.d. training sample,
we expect to come across all of these labels with their conditional probabilities given x.

In complex NLP tasks such as decontextualization, however, there may be a relatively large number
of correct ys for a given x: the task is highly non-deterministic. As discussed, some standard
transformations such as passivation applied to one y can immediately lead to a much larger number
of correct output sentences. Thus, it is not realistic to demand from labelers to supply all possible
correct sentences y for a given input x. On the other hand, we do not wish to consider it to be an
error if a model returns a desirable sentence that does not exactly match any of the labels provided
by the labelers.

What should be the correct distributional model to adopt for such NLP tasks? We can consider two
models: a deterministic model where only a single label is accepted as correct for any input sentence;
or a more general and more useful stochastic or non-deterministic model where, in addition to the
single label y (or few labels) provided by labelers, any other label y′ returned by the model is viewed
as correct provided that y′ is sufficiently similar to y, based on some pre-defined similarity measure.
It is important to note that this pre-defined similarity measure may be difficult to specify, and may
therefore require expert human annotation.

Adopting the non-deterministic model, for (x, y) ∼ D and a given f ∈ F, we amend our indicator
function If(x)≠y measuring incorrectness in (1). Instead, we measure If(x)∉Ax,y

, where Ax,y ⊆ Y
implements some similarity measure and describes a set of acceptable outputs y. Provided that we
have a boolean random variable a ∈ {−1,+1} derived from (x, y) and f(x) indicating membership
to Ax,y , the event where f(x) is an acceptable output, we can simplify this indicator function to
Ia=−1. Since f is fixed, we remove it as an argument to r, and the distribution over (x, y) ∼D leads
to a distribution (x, a) ∼ D induced by f . We will refer to the following as the induced rejection
loss defined for any rejector r and pair (x, a):

ℓ(r, x, a) = Ia=−1 Ir(x)>0 +c Ir(x)≤0 . (2)

In the following, we will distinguish two methods for learning the rejection function r: the so-called
confidence-based method where r is simply defined as a threshold based on the predictor f , and a
two-step learning method where first f is learned and then r.

3 LEARNING METHODS

In this section, we describe in more detail the two learning methods previously mentioned.

3.1 CONFIDENCE-BASED METHOD

The confidence-based method is perhaps the most commonly used one to define a rejection function.
Let f(x) = argmaxy s(x, y) for some scoring function s ∶ X × Y ↦ R, which could be p(y∣x;ω),
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where ω represents model parameters. Then, a threshold value θ is set based on some function of
the scores s(x, y) assigned to each y ∈ Y for a given x ∈ X. If si and sj are the final scores assigned
to (xi, yi) ∼ D and (xj , yj) ∼ D respectively, we wish to have monotonicity: si ≥ sj ⇔ If(xi)≠yi

≤
If(xj)≠yj

(Geifman and El-Yaniv, 2017).

The MaxProb method is simply defined in terms of the highest score (Hendrycks and Gimpel, 2016).
In that case, the rejection function is a function mapping from X to R defined by r(x) = s(x, f(x))−
θ, for some choice of the threshold θ ∈ R. Another popular scoring function is based on Monte-Carlo
dropout (Smith and Gal, 2018; Gal and Ghahramani, 2016), measuring statistics such as the mean
or negative variance of the scores s(x, y). Fitting the threshold to guarantee that it matches a target
precision has been studied in (Geifman and El-Yaniv, 2017). In our experiments, we follow a simpler
procedure, as this is not our focus; we are interested in the quality of the underlying scores.

3.2 TWO-STEP METHOD

In the two-step method, a predictor f is first learned by minimizing a surrogate loss for If(x)≠y , such
as the cross-entropy loss. Next, the rejection function r is learned as a binary classifier.

Note that, to learn r in the non-deterministic distributional model requires binary labels for pairs
(x, f(x)) indicating if the output sequence f(x) is indeed a good label for x, or formally, if f(x) ∈
Ax,y . As already discussed, that information cannot be directly derived from the label y of x in the
training sample since the correct labels are typically not unique in NLP tasks. One way to derive that
information is to manually label such pairs. This admits two disadvantages: the manually assigned
labels are specific to the predictor f previously learned and thus cannot be reused for different
predictors; and of course this requires manual labeling which is typically costly. However, if the
cost is not too significant, one can label a moderately-sized dataset and then train a classifier on it.

One approach for training such a classifier is to use the standard cross-entropy loss function. More
specifically, for pairs ((x, f(x)), a), where a represents the label or annotation, one can train with
direct supervision using the binary cross-entropy loss. However, similar to the MaxProb method,
this also requires setting a threshold θ for acceptance based on model scores. One can only hope
that the classifier produces higher-quality scores, where quality is associated with monotonicity.
Thus, both methods are based on straightforward threshold rejection. Additionally, to the best of
our knowledge, minimizing the cross-entropy loss does not have any proven guarantee with respect
to our main objective: minimizing the induced rejection loss. In the next section, we tackle both of
these problems: we introduce a new loss function with a built-in threshold that directly minimizes
the induced rejection loss.

In Appendix C, we briefly discuss a comparison to a cost-sensitive classification formulation. This
solution is reported to be inferior to the state-of-the-art empirically (Cao et al., 2022) and is not
proven to benefit from an H-consistency bound, unlike the solution we present in the next sections.

4 SURROGATE REJECTION LOSS

Cortes et al. (2016; 2023) study the joint optimization problem in (1) where the predictor f is a
binary classifier, and define a convex surrogate loss upper-bounding their rejection loss L. We use
the same technique to upper-bound the induced rejection loss. Specifically, the following inequality
holds, where α and β are positive parameters and x ↦ ϕ(−x) and x ↦ ψ(−x) are convex functions
upper-bounding Ix≤0:

ℓ(r, x, a) = Ia=−1 Ir(x)>0 +c Ir(x)≤0 = Ia≤0 Ir(x)>0 +c Ir(x)≤0
≤max{Ia≤0 I−r(x)<0, c Ir(x)≤0} ≤max{Imax(a,−r(x))≤0, c Ir(x)≤0}.

Next, since the maximum is lower-bounded by the average, we can write:

ℓ(r, x, a) ≤max{I a−r(x)
2 ≤0

, c Ir(x)≤0} =max{I
α

a−r(x)
2 ≤0

, c Iβr(x)≤0}

≤max{ϕ(α
2
(r(x) − a)), cψ(−βr(x))} ≤ ϕ(α

2
(r(x) − a)) + cψ(−βr(x)).
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We use the exponential function for ϕ and ψ, giving our surrogate rejection loss function:

ℓ(r, x, a) ≤ eα
2 [r(x)−a] + ce−βr(x).

While the induced rejection loss ℓ(r, x, a) is provably NP-hard to optimize, our surrogate loss is
convex and differentiable. A key insight is that models optimized with our loss function have a
built-in threshold of 0; they are directly optimized for a specific precision. Thus, there is no need to
further specify some score threshold as in all methods previously described. In those methods, one
can still target certain precision levels through the choice of threshold, but the underlying scores are
not necessarily favorable for that precision level.

While Cortes et al. (2016; 2023) proved theoretical guarantees for a joint minimization of their loss
function in their binary setting, these do not naturally apply to our problem (the predictor usually
does not have zero error and is not the Bayes predictor). In the next section, we prove strong
theoretical guarantees for minimizing our surrogate loss function.

5 H-CONSISTENCY BOUND

In this section we prove H-consistency bounds, a concept introduced by Awasthi et al. (2022a;b),
of our surrogate rejection loss function with respect to the induced rejection loss. To the best of our
knowledge, these non-asymptotic bounds are the strongest guarantees known regarding the mini-
mization of surrogate loss functions (Awasthi et al., 2021a;b; 2023; 2024; Mao et al., 2023b;d;e;c;f).
We first introduce some basic concepts and adopt the notation of Awasthi et al. (2022a).

5.1 PRELIMINARIES

Let X denote the input space, Y = {−1,+1} the binary label space, and D a distribution over X × Y.
Let R denote a family of rejection functions mapping from X to R. Then, the generalization error
Rℓ(r) and minimal generalization error R∗ℓ,R for a loss function ℓ(r, x, y) are defined by

Rℓ(r) = E
(x,y)∼D

[ℓ(r, x, y)] and R∗ℓ,R = inf
r∈R

Rℓ(r).

We will adopt the standard notation for the conditional distribution of Y = 1 given X = x: η(x) =
D(Y = 1 ∣X = x). The generalization error can be expressed as Rℓ(r) = EX[Cℓ(r, x)], where
Cℓ(r, x) is the conditional ℓ-risk defined by Cℓ(r, x) = η(x)ℓ(r, x,+1) + (1 − η(x))ℓ(r, x,−1).
The minimal conditional ℓ-risk is denoted by C∗ℓ,R(x) = infr∈R Cℓ(r, x). We also use the following
shorthand for the gap ∆Cℓ(r, x) = Cℓ(r, x) − C∗ℓ,R(x) and refer to it as calibration gap.

A key quantity that appears in their bounds is the (ℓ,R)-minimizability gap Mℓ,R, which is the
difference of the best-in class error and the expectation of the minimal conditional ℓ-risk:

Mℓ,R = R∗ℓ,R − E
X
[C∗ℓ,R(x)].

This is an inherent property of the hypothesis set R and distribution D that we cannot hope to
estimate or minimize. As discussed later, the minimizability gap is zero when R is the family of all
measurable functions Rall. For simplicity, we omit dependency on R in all notation when R = Rall.

5.2 DEFINITION OF THE LOSSES AND THE DESIRED GUARANTEE

We consider the induced rejection loss function ℓ2 = ℓ defined for any rejection function or rejector
r∶X → R and (x, a) ∈ X × {−1,+1} by ℓ2(r, x, a) = Ia=−1 Ir(x)>0 +c Ir(x)≤0. We will consider
a surrogate loss function ℓ1 parameterized by α,β > 0 and defined for any rejection function or
rejector r∶X → R and (x, a) ∈ X × {−1,+1} by ℓ1(r, x, a) = e

α
2 [r(x)−a] + ce−βr(x). We will prove

H-consistency bounds for the surrogate loss ℓ1 with respect to the target loss ℓ2, when r is in the
family of all measurable functions Rall. These are excess error bounds of the form Rℓ2(r) −R∗ℓ2 ≤
f(Rℓ1(r) − R∗ℓ1) valid for all r for an increasing function f . To do so, we will use the following
general theorem from (Awasthi et al., 2022a).
Theorem 1. Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) = 0 such that the fol-
lowing holds for all r ∈ R and x ∈ X: Ψ(∆Cℓ2(r, x)) ≤ ∆Cℓ1(r, x). Then, the following inequality
holds for any r ∈ R:

Ψ(Rℓ2(r) −R∗ℓ2,R +Mℓ2,R) ≤ Rℓ1(r) −R∗ℓ1,R +Mℓ1,R.
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Figure 1: Lower bound for ∆Cℓ1 . The green denotes the values r(x) can take. Left: r(x) ≤ 0;
Right: r(x)≥0. In both cases, the infimum is attained at r(x) = 0.

As shown by Steinwart (2007, Lemma 2.5), since ℓ1(r, x, a) and ℓ2(r, x, a) can be expressed in
terms of r(x) and a alone, both minimizability gaps Mℓ1,Rall

and Mℓ2,Rall
vanish (Mℓ1,Rall

=
Mℓ2,Rall

= 0). To make use of this theorem, in the next sections, we will derive the expression
of the calibration gaps ∆Cℓ2 and ∆Cℓ1 .

5.3 CALIBRATION GAPS

The following gives the expression of the calibration gaps. The proofs for Lemma 2 and Lemma 3
are deferred to Appendix A.1 and Appendix A.2 respectively.
Lemma 2. The Bayes solution r∗ for the rejection loss can be expressed for all x ∈ X by r∗(x) =
η(x) − (1 − c). The calibration gap for the rejection loss is given for any r ∈ Rall and x ∈ X by

∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0 .

Lemma 3. Let Iη(x) be defined by Iη(x) = η(x)e−
α
2 + (1 − η(x))eα

2 and define γ by γ = α
α+2β

.
Then, the calibration gap for the surrogate loss is given for any r ∈ Rall and x ∈ X by

∆Cℓ1(r, x) = e
α
2 r(x)Iη(x) + ce−βr(x) −

1

1 − γ (
2βc

α
)
γ

Iη(x)1−γ .

5.4 MAIN RESULT

In this section, we present our main result. A key challenge in finding a function Ψ relating the two
calibration gaps is that ∆Cℓ1 depends on the value r(x) ∈ R, while ∆Cℓ2 only depends on the sign
of r(x), via that of r∗(x). The following provides a key solution to this problem.
Proposition 4. Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) = 0 such that the
following holds for all r ∈ Rall and x ∈ X: Ψ(∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0) ≤ ∆Cℓ1(0, x). Let Īc be
defined by Īc = ce

α
2 + (1 − c)e−α

2 and assume that 2βc
α
= Īc. Then, for any r ∈ Rall:

Ψ(Rℓ2(r) −R∗ℓ2) ≤ Rℓ1(r) −R∗ℓ1 . (3)

The proof is presented in Appendix A.3. The result shows that, instead, we only need to find a
function Ψ relating the gap ∆Cℓ2 to ∆Cℓ1(0, x), which is no longer a quantity depending on r(x).
To do so, we look to lower-bound ∆Cℓ1 over the infimum of r(x). Since ∆Cℓ1 is a (strictly) convex
function of r(x), if we can select the parameters α and β to ensure r∗(x)> 0⇔ r0(x)> 0, where
r0 is the Bayes solution for the surrogate rejection loss, then this infimum occurs at r(x) = 0.
This is illustrated in Figure 1. Proposition 4 states that this can be arranged if α and β are related by
2βc
α
= Īc. In view of this proposition, we will adopt the assumption 2βc

α
= Īc and analyze ∆Cℓ1(0, x).

Note that the equivalence proven in the proof holds if and only if this equality holds.

Theorem 5. Let α,β > 0 be such that 2βc
α
= Īc, where Īc = ce

α
2 + (1 − c)e−α

2 . Then, the following
inequality holds for any r ∈ Rall:

Rℓ2(r) −R∗ℓ2 ≤
2

e
α
2 − e−α

2

√
(c + Īc)Īc

c
(Rℓ1(r) −R∗ℓ1).

See Appendix A.3 for the proof. The theorem shows that if the excess surrogate loss (Rℓ1(r) −R∗ℓ1)
is reduced to ϵ, then the excess rejection loss (Rℓ2(r) −R∗ℓ2) is bounded by O(√ϵ). This provides
a strong guarantee for the surrogate rejection loss function proposed when the condition 2βc

α
= Īc
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Figure 2: Surrogate rejection loss as a function of r(x) when c = 0.05, α = 2, and β following
2βc
α
= Īc, with both terms in the sum. Left: negatively-labelled points (-1). Right: positively-

labelled points (+1).

holds. Similar results can be derived for other families of functions R, such as that of linear functions
or neural networks with one hidden-layer as in (Awasthi et al., 2022a) (see Appendix D). This gives
a principled method for defining the relation between α and β. The value of the other parameter,
say α, can be set arbitrarily or via a hyper-parameter search.

5.5 VISUALIZATION OF SURROGATE LOSS

In Figure 2, we plot our surrogate loss as a function of r(x) on (−0.5,+0.5), and arbitrarily choose
c = 0.05 and α = 2 with β following the relationship defined in 2βc

α
= Īc. We include the plot for

both negatively-annotated points (a = −1) and positively-annotated points (a = +1). The first term is
always increasing, and the second is always decreasing.

We observe the following property: for negatively-annotated points, the minimum is attained at
r(x) < 0, and for positively-annotated points, the minimum is attained at r(x) > 0. The following
is a key insight from our H-consistency bound: this property holds for any c, and any α and β
satisfying 2βc

α
= Īc, as the signs of r∗(x) and r0(x) match. This relationship thus ensures that the

minimums of both plots are in the proper regions.

6 DECONTEXTUALIZATION TASK

We choose the NLP task of decontextualization as a primary case study. This is a challenging task
because only a modest amount of annotated data is available and because each input typically admits
a large number of correct labels. We give a description of the task and our annotation procedure.

6.1 DEFINITION

Decontextualization is the task of editing a sentence within a passage so that it can be interpretable
out of context (Choi et al., 2021). Specifically, given a sentence-context pair (s, c), a sentence s′ is a
valid decontextualization of s if: (1) the sentence s′ is interpretable in the empty context; and (2) the
truth-conditional meaning of s′ in the empty context is the same as the truth-conditional meaning of
s in context c. We refer readers to (Choi et al., 2021) for a full description.

6.2 ANNOTATION

For our experiments, we labeled 2,000 decontextualizations of a fixed MT5 XXL model (Xue et al.,
2020) ourselves, fine-tuned on the decontextualization task. The training data for the original decon-
textualization task is a sample from the English portion of the Wikipedia corpus (Choi et al., 2021).
The input is formed by concatenating the title and subtitle of the relevant page with ‘[HEAD]’, and
then appending the relevant paragraph after ‘[SEP]’, see Figure 3. Our 2,000 annotated decontex-
tualizations are originally from a random sample of English Wikipedia. Examples that the model
labelled as ‘impossible’ or ‘unnecessary’ were not considered. We observe that annotating for this
task is difficult: some take several minutes to evaluate.

When labeling or evaluating the validity of a decontextualization, we consider the correctness of
the edits: the added information must be correct, and the deletions cannot change the meaning of
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Goldie Taylor [HEAD] Career ; Corporate [SEP] Taylor has worked for the Sara Lee Corporation as director of
global communications and public affairs. Goldie Taylor has served as executive consultant to NBC News
and CNN Worldwide.

Figure 3: Decontextualization labeled as ‘title’.

the sentence. Sometimes, however, this is impossible to discern without using information from the
title or subtitle. We thus labeled the outputs as ‘yes’, ‘no’ or ‘title’. We present a ‘title’ example in
Figure 3. The decontextualization request is for the bolded sentence, and ‘Goldie’ is then inserted.
However, ‘Goldie’ only appears in the title. While it is probable that ‘Taylor’ refers to ‘Goldie
Taylor’, we must rely on the information from the title. It is however also possible that ‘Taylor’
refers to a family member of ‘Goldie Taylor’ and that the paragraph is entirely unrelated to the title.

In our case, since ‘title’ examples are likely to be factual (while unsupported by the context provided
to the model), we evaluate experimentally by including them with ‘yes’. In other setting such as
novels, ‘title’ examples are less likely to be factual, as paragraphs deep within a chapter have little
connection to their title.

7 EXPERIMENTAL EVALUATION

In this section, we report results for the described learning methods.

7.1 DATASET

We randomly split our 2,000 annotation examples into 1,500 train/500 validation examples and
perform 4-fold cross-validation. 1,019 (50.95%) of the annotations are ‘yes’, 761 (38.05%) are
‘title’, and the remaining 220 (11.00%) are ‘no.’ As already mentioned, we consider the ‘title’
examples as ‘yes’, so we have about 89% positive examples. The decontextualization rejection task
is constructed as follows: we concatenate the input and output of the decontextualization model with
the token ‘[OUT]’ to form the input. The target consists of just one token, ‘yes’ or ‘no.’

7.2 METHODS
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Figure 4: Precision vs. coverage on decon-
textualization. Standard deviations for both
precision and coverage are from the 4 cross-
validation splits.

Maxprob: We use the score that the fixed MT5 XXL
predictor assigned to its own output sequence. The
best threshold for some precision level is determined
on the training data, and then evaluated on the vali-
dation data for both coverage and precision. A new
threshold is determined for each split.

Cross-entropy loss: We further fine-tune a T5X
1.1 XXL decontextualization model (Roberts et al.,
2022), limited to one output token, on the decontex-
tualization rejection task, and use as the score the
value of the logitsyes. The standard cross-entropy
loss function is used, and a threshold is similarly fit-
ted on half of the validation data and evaluated on
the other half. We perform a hyper-parameter search
over {1e − 4,1e − 3,1e − 2} for the learning rate, and
{0,0.05, . . . ,0.2} for the dropout rate.

Surrogate loss: In our formulation, we have a re-
jector r∶X → R. Thus, to convert the output of a
T5X model to a real number for r(x), we simply use
r(x) = softmax(logits(x))yes−0.5. We further fine-
tune the same model, but with our surrogate loss function: e

α
2 [r(x)−a] + ce−βr(x). In Figure 4, each

point corresponds to a model trained with a value of c ∈ {0.02,0.03,0.04,0.05,0.07,0.1,0.15}. For
the two most extreme points on the curve, we fit a threshold slightly different from 0 on the models
for c = 0.02 and c = 0.15. We set α to 4, and do not perform a hyper-parameter search.
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Theoretical limit: The theoretical limit of coverage can be defined as b/p, where b is the fraction
of positively labeled points and p is the desired precision level. The precision is obtained exactly,
and standard deviations for coverage are a result of the slightly different class imbalances in the
cross-validation splits.

7.3 DISCUSSION

Table 1: Precision vs. Coverage for surrogate
rejection loss on decontextualization.

c Precision Coverage
0.15 0.915 ± 0.003 0.949 ± 0.011
0.15 0.937 ± 0.005 0.921 ± 0.007
0.10 0.938 ± 0.003 0.912 ± 0.011
0.07 0.945 ± 0.005 0.906 ± 0.010
0.05 0.949 ± 0.001 0.881 ± 0.008
0.04 0.953 ± 0.009 0.863 ± 0.024
0.03 0.969 ± 0.009 0.621 ± 0.027
0.02 0.983 ± 0.006 0.448 ± 0.104
0.02 0.996 ± 0.007 0.247 ± 0.159

The performance of the four methods is reported in
Figure 4. The details of the surrogate loss are shown
in Table 1 and the details for various baselines are pre-
sented in Appendix B.1 (see Table 2).

We observe that our rejection loss clearly outperforms
the baselines considered, and for the lower half of the
precision levels, closely follows the theoretical limit.
We provide, at c = 0.07 for example, about a halving
of the error rate (11.00% to 5.1%) while maintaining
a broad 90.6% coverage. The theoretical limit for 5%
error is only slightly higher at 93.6% coverage, and
the closest baseline, the cross-entropy loss, only provides ∼64.4% coverage at ∼5.1% error. Another
important observation is the stability of this result. Not only does the surrogate loss perform much
better on average, but the standard deviations are also significantly smaller.

7.4 IMAGE CLASSIFICATION
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Figure 5: Precision vs. coverage on KM-
NIST. Standard deviations for precision and
coverage are from 4 training runs.

While our focus is on LLM predictors and multiple
correct labels, we provide additional empirical eval-
uation on two simpler image classification datasets:
Fashion-MNIST (Xiao et al., 2017) and KMNIST
(Clanuwat et al., 2018). These are standard 10-class
classification tasks, both with 60,000 training sam-
ples and 10,000 test samples. Half of the training data
is used for training a predictor, and the other half for
training a rejector. We use a 5-layer fully-connected
neural network. While this is a much easier task
than decontextualiztion, and the model class is far less
complex, we still observe an improvement when min-
imizing our surrogate rejection loss (see Figure 5).
Due to fewer computational constraints, we include a
cost-sensitive baseline, which uses the cross-entropy
loss but reweights positive class by c/(1−c) for vary-
ing c. The full details are deferred to Appendix B.2.

8 CONCLUSION

We presented a theoretically-justified approach to classification with a reject option for applications
where the predictor remains fixed. Our main contributions include the following: (1) a new for-
mulation of the problem of learning a rejector with fixed predictor (for cases where there may be
many correct labels); (2) introduction of a new surrogate loss function for our scenario, with the
proof of a strong H-consistency bound guarantee; (3) definition of the notion of correctness for de-
contextualization, and its use to provide a dataset of 2,000 manually-labeled decontextualizations;
(4) experimental results demonstrating a 10-25% improvement over baselines in coverage at various
precision levels on decontextualization.

We observe that our algorithm can be used in other settings where a binary label indicating correct-
ness of a prediction is available. Annotation in NLP can of course be expensive, and this limits the
breadth of our experimental evaluation. We encourage the use of our algorithm in difficult rejection
tasks with a large output space and a large number of correct labels. In particular, our algorithm can
be used for abstention with large language models, in a variety of contexts such as text generation.
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A H-CONSISTENCY BOUND PROOF

A.1 CALIBRATION GAP FOR REJECTION LOSS

The following gives the expression of the calibration gap ∆Cℓ2 .
Lemma 2. The Bayes solution r∗ for the rejection loss can be expressed for all x ∈ X by r∗(x) =
η(x) − (1 − c). The calibration gap for the rejection loss is given for any r ∈ Rall and x ∈ X by

∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0 .

Proof. For any r ∈ Rall and x ∈ X, we can write
Cℓ2(r, x) = η(x)ℓ2(r, x,+1)

+ [1 − η(x)]ℓ2(r, x,−1)

= η(x) [I+1=−1 Ir(x)>0 +c Ir(x)≤0]

+ [1 − η(x)] [I−1=−1 Ir(x)>0 +c Ir(x)≤0]

= c Ir(x)≤0 +[1 − η(x)] Ir(x)>0 .
For the optimal C∗ℓ2 , we would always pick the lower of c or 1 − η(x), which gives: C∗ℓ2(x) =
min{c,1 − η(x)}. The corresponding Bayes solution r∗ can be defined by r∗(x) = η(x) − (1 − c).
Thus, the calibration gap is given by

∆Cℓ2(r, x) = c Ir(x)≤0 +[1 − η(x)] Ir(x)>0
−min{c,1 − η(x)}.

If r(x) correctly chooses the lower of the two, we have r(x)r∗(x) > 0 and then ∆Cℓ2 = 0. Other-
wise,

∆Cℓ2(r, x) = {
c − (1 − η(x)) if r(x) ≤ 0
(1 − η(x)) − c otherwise

.

Thus, for all x ∈ X, we have ∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0. This completes the proof.

A.2 CALIBRATION GAP FOR SURROGATE LOSS

Here, we analyze the calibration gap for the surrogate loss.
Lemma 3. Let Iη(x) be defined by Iη(x) = η(x)e−

α
2 + (1 − η(x))eα

2 and define γ by γ = α
α+2β

.
Then, the calibration gap for the surrogate loss is given for any r ∈ Rall and x ∈ X by

∆Cℓ1(r, x) = e
α
2 r(x)Iη(x) + ce−βr(x) −

1

1 − γ (
2βc

α
)
γ

Iη(x)1−γ .

Proof. By definition, the calibration function for ℓ1 can be expressed for all x ∈ X by
Cℓ1(r, x) = η(x)ℓ1(r, x,+1)

+ [1 − η(x)]ℓ1(r, x,−1)

= η(x) [eα
2 [r(x)−1] + ce−βr(x)]

+ [1 − η(x)] [eα
2 [r(x)+1] + ce−βr(x)]

= eα
2 r(x)Iη(x) + ce−βr(x).

Since the exponential function is convex, ∆Cℓ1(r, x) is a convex function of r(x). Thus, for r ∈ Rall,
we obtain the minimum r0(x) by differentiating with respect to r(x) and setting to 0:

α

2
e

α
2 r(x)Iη(x) − βce−βr(x) = 0

⇔ r0(x) = log
⎡⎢⎢⎢⎢⎣
( 2βc

αIη(x)
)

2
2β+α
⎤⎥⎥⎥⎥⎦
.
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Plugging in this expression in Cℓ1 gives the corresponding minimal calibration C∗ℓ1(x): C∗ℓ1(x) =
[( 2βc

α
)γ] Iη(x)1−γ ( 1

1−γ
). This completes the proof.

A.3 H-CONSISTENCY BOUND

In this section, we prove our main result. The following will provide a key tool to derive our result.
Proposition 4. Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) = 0 such that the
following holds for all r ∈ Rall and x ∈ X: Ψ(∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0) ≤ ∆Cℓ1(0, x). Let Īc be
defined by Īc = ce

α
2 + (1 − c)e−α

2 and assume that 2βc
α
= Īc. Then, for any r ∈ Rall:

Ψ(Rℓ2(r) −R∗ℓ2) ≤ Rℓ1(r) −R∗ℓ1 . (3)

Proof. We will show that the following holds: infr(x)r∗(x)≤0∆Cℓ1(r, x) = ∆Cℓ1(0, x). The result
then follows by Theorem 1 and Lemma 2. Since we have 2βc

α
= Īc, the following equivalence holds:

r0(x) > 0⇔
2βc

αIη(x)
> 1

⇔ Iη(x) < Īc

⇔ η(x) > e
α
2 −Īc

e
α
2 −e−

α
2

⇔ η(x) > (1−c)e
α
2 −(1−c)e−

α
2

e
α
2 −e−

α
2

⇔ r∗(x) > 0.
This implies infr(x)r∗(x)≤0 Cℓ1(r, x) = infr(x)r0(x)≤0 Cℓ1(r, x). Now, since r0(x) is the unique
minimizer of the strictly convex function Cℓ1(r, x) of r(x), then, as a function of r(x), Cℓ1(r, x) is
decreasing from −∞ to r0(x) and increasing from there to +∞. Thus, if r0(x) > 0, the infimum of
Cℓ1(r, x) over r(x) ≤ 0 is reached for r(x) = 0. Similarly, if r0(x) < 0, the infimum of Cℓ1(r, x)
over r(x) ≥ 0 is reached for r(x) = 0. This shows that infr(x)r0(x)≤0 Cℓ1(r, x) = Cℓ1(0, x), and
completes the proof.

The proof of our main result makes use of the following identity, which is a refinement of Bernoulli’s
inequality. The result could be of independent interest in other contexts, we give a concise proof
below.
Lemma 6 (Bernoulli-type inequality). The following identity holds for all x, r ∈ (0,1),

(1 + x)r ≤ 1 + rx + r(r − 1)x
2

4
.

Proof. Let fr(x) = (1+x)r −(1 + rx + r(r−1)x2

4
). We will show that fr(x) ≤ 0 for all x, r ∈ (0,1).

We have f ′r(x) = r(1 + x)r−1 − (r +
r(r−1)x

2
), and f ′r(0) = 0. To see that f ′r(1) ≤ 0, observe

r2r−1 − (r + r(r−1)
2
) ≤ 0⇔ 2r−1 − (r−1)

2
≤ 1. The left-hand side of the last inequality is a convex

function of r, and equal to 1 when r = 0 or r = 1. Thus, the left-hand side is less than or equal 1 for
r ∈ (0,1), giving f ′r(1) ≤ 0. Since f ′r(x) is a convex function of x, with f ′r(0) ≤ 0 and f ′r(1) ≤ 0,
then f ′r(x) ≤ 0 for all x ∈ (0,1), which shows fr is decreasing. Then, since fr(0) = 0, fr(x) ≤ 0
for all x, r ∈ (0,1).

The following is our main result; it relates the surrogate excess error to that of the rejection loss.

Theorem 5. Let α,β > 0 be such that 2βc
α
= Īc, where Īc = ce

α
2 + (1 − c)e−α

2 . Then, the following
inequality holds for any r ∈ Rall:

Rℓ2(r) −R∗ℓ2 ≤
2

e
α
2 − e−α

2

√
(c + Īc)Īc

c
(Rℓ1(r) −R∗ℓ1).
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Proof. Using the expression of ∆Cℓ1 given by Lemma 3, we can write

∆Cℓ1(0, x) = Iη(x) + c −
1

1 − γ (
2βc

α
)
γ

Iη(x)1−γ

= Iη(x) + c − (Īc + c)(
Iη(x)
Īc
)
1−γ

.

We can express this formula in terms of u(x) = η(x) − (1 − c), using Iη(x) = Ju(x) + Īc, with
Ju(x) = [e−

α
2 − eα

2 ]u(x):

∆Cℓ1(0, x)

= Ju(x) + Īc + c − (Īc + c)[1 +
Ju(x)
Īc
]
1−γ

≥ Īc
c + Īc

c

c + Īc
c + Īc
4
[Ju(x)

Īc
]
2

= 1

4

cĪc
c + Īc

[Ju(x)
Īc
]
2

.

where we used Lemma 6. The function Ψ(u) defined by this expression verifies the condition of
Proposition 4 and therefore we have Ψ(Rℓ2(h) −R∗ℓ2) ≤ Rℓ1(h)−R∗ℓ1 . An explicit upper-bound on
Rℓ2(h) −R∗ℓ2 can be written in terms of Ψ−1: Rℓ2(h) −R∗ℓ2 ≤ Ψ

−1(Rℓ1(h) −R∗ℓ1). To derive the
expression of Ψ−1, we write z = Ψ(u), that is:

4
c + Īc
cĪc

z = [u(x)
Īc
]
2

[eα
2 − e−α

2 ]2

⇔ ∣u∣ = 2

e
α
2 − e−α

2

√
(c + Īc)Īc

c
z.

Thus, we have, for all r ∈ Rall, Rℓ2(r) −R∗ℓ2 ≤
2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
(Rℓ1(r) −R∗ℓ1) .
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B EXPERIMENTAL DETAILS

B.1 DECONTEXTUALIZATION

In this section, we report the detailed results for our experiments on the decontextualization task.
Table 2 presents the mean and standard deviation of the precision and coverage of various baselines
over 4 cross-validation splits and Table 1 in Section 7.3 provides detailed results of the surrogate
loss.

Table 2: Precision vs. Coverage for various baselines on decontextualization, with theoretical limit.

MAXPROB CROSS-ENTROPY THEORETICAL LIMIT
Target
precision precision coverage precision coverage precision coverage

0.90 0.899 ± 0.002 0.907 ± 0.017 0.903 ± 0.016 0.968 ± 0.045 0.90 0.989 ± 0.001
0.92 0.924 ± 0.001 0.672 ± 0.052 0.930 ± 0.021 0.771 ± 0.146 0.92 0.967 ± 0.001
0.93 0.934 ± 0.025 0.552 ± 0.069 0.939 ± 0.015 0.677 ± 0.102 0.93 0.957 ± 0.001
0.94 0.938 ± 0.022 0.467 ± 0.035 0.949 ± 0.012 0.644 ± 0.103 0.94 0.950 ± 0.001
0.95 0.942 ± 0.023 0.405 ± 0.030 0.965 ± 0.015 0.509 ± 0.143 0.95 0.936 ± 0.001
0.96 0.959 ± 0.022 0.321 ± 0.041 0.976 ± 0.006 0.364 ± 0.096 0.96 0.927 ± 0.001
0.97 0.972 ± 0.018 0.225 ± 0.012 0.980 ± 0.008 0.330 ± 0.086 0.97 0.917 ± 0.001
0.98 0.972 ± 0.018 0.198 ± 0.017 0.981 ± 0.013 0.298 ± 0.069 0.98 0.908 ± 0.001
0.99 0.983 ± 0.013 0.168 ± 0.015 0.986 ± 0.015 0.150 ± 0.059 0.99 0.898 ± 0.001

B.2 IMAGE CLASSIFICATION

In this section, we provide details of our experiments on Fashion-MNIST, a fashion image dataset,
and KMNIST, a cursive Japanese letter dataset. Both are perfectly balanced between their 10 classes.
In both cases, we use a 5-layer fully-connected neural network to train a predictor with half of
the training data. The remaining half is reserved for the rejector. Training the rejector is a bi-
nary classification task: for pairs (x, y) occuring in the usual dataset, we construct another dataset
((x, fp(x)), If(x)=y), where f is the predictor and fp(x) is the probability that f assigns to its pre-
diction on x. In our experiments, we observe that it is important to append fp(x) as a feature to
x. Note that constructing this binary classification dataset does not require manual annotation. For
Fashion-MNIST, our predictor is trained to 85.3% accuracy on its test set, and for KMNIST, our pre-
dictor is trained to 79.1% accuracy on its test set. While it is possible to improve the performance of
these predictors, this is not our focus. We are focused on a rejection task given some fixed predictor.

Next, we detail the methods for rejection.

Maxprob. Similar to the decontextualization experiment, we fit thresholds on the scores assigned
by the predictor. Since this method is deterministic (and the error bars here are over rejector training
runs), there are no error bars to report.

Cross-entropy loss. We train another 5-layer neural network on the constructed binary classification
dataset using the cross-entropy loss. Similar to the decontextualization experiment, thresholds are
fitted on the scores of this neural netowrk.

Rejection loss. We train a second 5-layer neural network on the constructed binary classifi-
cation dataset using our proposed surrogate rejection loss. For Fashion-MNIST, c is varied in
{0.05,0.1,0.2,0.3,0.5}. For KMNIST, c is varied in {0.025,0.05,0.1,0.15}. Each point on the
plot represents a model trained with a different value of c. We set α in the surrogate rejection loss
function to 3.5.

Cost-sensitive loss. We train a third 5-layer neural network on the constructed binary classification
dataset using the cross-entropy loss, but with the positive class reweighted by c/(1−c). For Fashion-
MNIST, c is varied in {0.05,0.1,0.2,0.3,0.5}. For KMNIST, c is varied in {0.03,0.05,0.1,0.2}.
Each point on the plot represents a model trained with a different value of c.

For all methods, we use the Adam optimizer (Kingma and Ba, 2014), and tune the learning rate in
[1e − 4,1e − 7] and number of epochs in [20,100].
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Figure 6: Precision vs. Coverage on Fashion-MNIST. Standard deviations for both precision and
coverage are from 4 different training runs.

The precision vs. coverage graph for KMNIST is reported in Figure 5 in Section 7.4 and the precision
vs. coverage graph for Fashion-MNIST is reported in Figure 6. We do not plot the theoretical limit
since no method is near it in this setting. In both cases, we generally observe that the rejection loss
lies above the baselines. It is likely that the predictor in this setting is much better calibrated than
a large language model, and thus Maxprob is a much stronger baseline with not as much room for
improvement as on decontextualization. We also note that it may also be possible to improve the
performance of our method by tuning α.

C COMPARISON WITH COST-SENSITIVE CLASSIFICATION

It is worth pointing out that minimizing the induced rejection loss is equivalent to minimizing a
cost-sensitive classification loss (Elkan, 2001; Steinwart, 2007; Scott, 2012; Charoenphakdee et al.,
2021), since by using the decomposition Ia=−1 Ir(x)>0 = (1 − c) Ia=−1 Ir(x)>0 +c Ia=−1 Ir(x)>0 and
c Ir(x)≤0 = c Ia=+1 Ir(x)≤0 +c Ia=−1 Ir(x)≤0, the loss (2) can be rewritten as

ℓ(r, x, a) = Ia=−1 Ir(x)>0 +c Ir(x)≤0
= (1 − c) Ia=−1 Ir(x)>0 +c Ia=−1 Ir(x)>0 +c Ia=+1 Ir(x)≤0 +c Ia=−1 Ir(x)≤0
= (1 − c) Ia=−1 Ir(x)>0 +c Ia=+1 Ir(x)≤0 +c Ia=−1,

where in the last step we use the fact that c Ia=−1 Ir(x)≤0 +c Ia=−1 Ir(x)>0 = c Ia=−1. In light of this
expression, since the last term c Ia=−1 does not depend on r, if x ↦ ϕ(−x) is a convex function
upper-bounding Ix≤0, then, ℓϕ defined as follows for any r ∈ R and (x, a) ∈ X × {−1,+1}, is a
natural surrogate loss for ℓ:

ℓϕ(r, x, a) = (1 − c) Ia=−1 ϕ(r(x)) + c Ia=+1 ϕ(−r(x)).
We will refer to ℓϕ as cost-sensitive surrogate losses for the induced rejection loss. However, this
cost-sensitive approach suffers from several issues: (i) There is a lack of any H-consistency bound
guarantees for cost-sensitive surrogate losses with respect to the induced rejection loss. Conversely,
our theoretical analysis can potentially extend to an H-consistent surrogate loss function for cost-
sensitive classification. This would provide a theoretically justified algorithm for that context. Our
novel contribution lies in introducing a loss function for the induced rejection loss backed by strong
H-consistency bounds; (ii) It has been shown in (Cao et al., 2022) that the cost-sensitive approach
(Charoenphakdee et al., 2021) can not produce the state-of-the-art performance in the learning with
rejection framework, which motivates us to propose a new theoretically guaranteed surrogate loss
in our rejection scenario; (iii) As shown in (Charoenphakdee et al., 2021), the cost-sensitive ap-
proach equivalently solves n one-versus-all binary classification problems, where n is the number
of classes. Therefore, when the size of the sub-sample containing some of the classes is relatively
small, the one-versus-all binary classification problem may face challenges due to insufficient data
or increased risk of overfitting. This issue stands out for the decontextualization task, where the
samples corresponding to a = −1 are much fewer than those corresponding to a = +1; (iv) Our
empirical results on the benchmark datasets show that the cost-sensitive approach is inferior to our
proposed surrogate loss function, which substantiate the effectiveness of our approach.
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D H-CONSISTENCY BOUNDS BEYOND Hall AND PROOF

Here, we will show that our surrogate losses benefit from R-consistency bounds with the hypothesis
set R extending beyond the family of all measurable functions Rall. Without loss of generality, we
consider X = {x ∈ Rd ∣ ∥x∥p ≤ 1}. Let p, q ∈ [1,+∞] be conjugate numbers such that 1

p
+ 1

q
= 1. We

will consider bounded hypothesis sets R, that is, there exists a function r∶X → R+ such that for all
r ∈ R and x ∈ X, ∣r(x)∣ ≤ r(x), and all values in [−r(x), r(x)] can be reached. As shown by Awasthi
et al. (2022a), for the family of linear models Rlin = {x ↦ w ⋅ x + b ∣ ∥w∥q ≤ W, ∣b∣ ≤ B} and one-
hidden-layer ReLU networks RNN = {x ↦ ∑n

j=1 uj(wj ⋅ x + bj)+ ∣ ∥u∥1 ≤ Λ, ∥wj∥q ≤W, ∣bj ∣ ≤ B},
where (⋅)+ =max(⋅,0), we have r(x) =W ∥x∥p +B and r(x) = ΛW ∥x∥p +ΛB respectively.

D.1 MAIN RESULT

In this section, we present our main result on R-consistency bounds with bounded hypothesis sets
R (Theorem 7), including Rlin and RNN considered in (Awasthi et al., 2022a) as special cases
(Corollary 8). The proofs are presented in Appendix D.4.

Theorem 7. Assume that R is bounded with function r∶X → R. Let α,β > 0 be such that 2βc
α
= Īc,

where Īc = ce
α
2 + (1 − c)e−α

2 . Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (4)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c) infx∈X r(x)

2c ][e
α
2 −e−

α
2 ]

z otherwise.

Corollary 8. Let R = Rlin or RNN. Let α,β > 0 be such that 2βc
α
= Īc, where Īc = ce

α
2 +(1−c)e−α

2 .
Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (5)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c)B

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c)B

2c ][e
α
2 −e−

α
2 ]

z otherwise
and B is replaced by

ΛB for R = RNN.

D.2 CALIBRATION GAP FOR REJECTION LOSS

We first extend Lemma 2 to any hypothesis set R that is regular for rejection.

Definition 9. We say that a hypothesis set R is regular for rejection if for all x ∈ X, there exist
r+, r− ∈ R such that r+(x) > 0 and r+(x) ≤ 0.

It is clear that all bounded hypothesis sets including Rlin and RNN are regular for rejection. The
following gives the expression of the calibration gap ∆Cℓ2 for all hypothesis sets R that are regular
for rejection. The proof is nearly identical to Lemma 2.

Lemma 10. Assume that R is regular for rejection. The best-in-class solution r∗ for the rejection
loss can be expressed for all x ∈ X by r∗(x) = η(x) − (1 − c). The calibration gap for the rejection
loss is given for any r ∈ R and x ∈ X by

∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0 .
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Proof. For any r ∈ R and x ∈ X, we can write

Cℓ2(r, x) = η(x)ℓ2(r, x,+1)
+ [1 − η(x)]ℓ2(r, x,−1)

= η(x) [I+1=−1 Ir(x)>0 +c Ir(x)≤0]

+ [1 − η(x)] [I−1=−1 Ir(x)>0 +c Ir(x)≤0]

= c Ir(x)≤0 +[1 − η(x)] Ir(x)>0 .

For the optimal C∗ℓ2,R, since R is regular, we would always pick the lower of c or 1 − η(x), which
gives: C∗ℓ2,R(x) = min{c,1 − η(x)}. The corresponding best-in-class solution r∗ can be defined by
r∗(x) = η(x) − (1 − c). Thus, the calibration gap is given by

∆Cℓ2(r, x) = c Ir(x)≤0 +[1 − η(x)] Ir(x)>0
−min{c,1 − η(x)}.

If r(x) correctly chooses the lower of the two, we have r(x)r∗(x) > 0 and then ∆Cℓ2 = 0. Other-
wise,

∆Cℓ2(r, x) = {
c − (1 − η(x)) if r(x) ≤ 0
(1 − η(x)) − c otherwise

.

Thus, for all x ∈ X, we have ∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0. This completes the proof.

D.3 CALIBRATION GAP FOR SURROGATE LOSS

Next, we extend Lemma 3 to bounded hypothesis sets R. The following gives the expression of the
calibration gap for the surrogate loss. The proof directly extends that of Lemma 3.
Lemma 11. Assume that R is bounded with function r∶X→ R. Let Iη(x) = η(x)e−

α
2 +(1−η(x))eα

2 ,

r0(x) = log[( 2βc
αIη(x)

)
2

2β+α ] and γ = α
α+2β

. Then, the calibration gap for the surrogate loss is given

for any r ∈ R and x ∈ X by

∆Cℓ1(r, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e
α
2 r(x)Iη(x) + ce−βr(x) − 1

1−γ
( 2βc

α
)γIη(x)1−γ −r(x) ≤ r0(x) ≤ r(x)

e
α
2 r(x)Iη(x) + ce−βr(x) − e

α
2 r(x)Iη(x) − ce−βr(x) r0(x) > r(x)

e
α
2 r(x)Iη(x) + ce−βr(x) − e−

α
2 r(x)Iη(x) − ceβr(x) r0(x) < −r(x).

Proof. By definition, the calibration function for ℓ1 can be expressed for all x ∈ X by

Cℓ1(r, x) = η(x)ℓ1(r, x,+1) + [1 − η(x)]ℓ1(r, x,−1)

= η(x) [eα
2 [r(x)−1] + ce−βr(x)] + [1 − η(x)] [eα

2 [r(x)+1] + ce−βr(x)]

= eα
2 r(x)Iη(x) + ce−βr(x).

Since the exponential function is convex, ∆Cℓ1(r, x) is a convex function of r(x). Thus, for r ∈ R,
we obtain the minimum r0(x) by differentiating with respect to r(x) and setting to 0:

α

2
e

α
2 r(x)Iη(x) − βce−βr(x) = 0

⇔ r0(x) = log
⎡⎢⎢⎢⎢⎣
( 2βc

αIη(x)
)

2
2β+α
⎤⎥⎥⎥⎥⎦
.

Note that for all x ∈ X, {r(x)∶ r ∈ R} = [−r(x), r(x)]. If r0(x) is within this range,
plugging in r0(x) in Cℓ1 gives the corresponding minimal calibration gap C∗ℓ1(x): C∗ℓ1(x) =
[( 2βc

α
)γ] Iη(x)1−γ ( 1

1−γ
). Otherwise, the corresponding minimal calibration gap is achieved at
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either r(x) = r(x) or r(x) = −r(x). Plugging in these expressions give the corresponding minimal
calibration gap C∗ℓ1(x):

C∗ℓ1(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[( 2βc
α
)γ] Iη(x)1−γ ( 1

1−γ
) −r(x) ≤ r0(x) ≤ r(x)

e
α
2 r(x)Iη(x) + ce−βr(x) r0(x) > r(x)
e−

α
2 r(x)Iη(x) + ceβr(x) r0(x) < −r(x).

This completes the proof.

D.4 H-CONSISTENCY BOUND

In this section, we prove our main result. The following result extends Proposition 4 to any hypoth-
esis set R that is regular for rejection and will provide a key tool to derive our result. The proof is
nearly identical to Proposition 4.

Proposition 12. Assume that R is regular for rejection. Assume that there exists a convex func-
tion Ψ∶R+ → R with Ψ(0) = 0 such that the following holds for all r ∈ R and x ∈ X:
Ψ(∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0) ≤ ∆Cℓ1(0, x). Let Īc be defined by Īc = ce

α
2 + (1 − c)e−α

2 and
assume that 2βc

α
= Īc. Then, for any r ∈ R:

Ψ(Rℓ2(r) −R∗ℓ2,R +Mℓ2,R) ≤ Rℓ1(r) −R∗ℓ1,R +Mℓ1,R. (6)

Proof. We will show that the following holds: infr(x)r∗(x)≤0∆Cℓ1(r, x) = ∆Cℓ1(0, x). The result
then follows by Theorem 1 and Lemma 10. Since we have 2βc

α
= Īc, the following equivalence

holds:

r0(x) > 0⇔
2βc

αIη(x)
> 1

⇔ Iη(x) < Īc

⇔ η(x) > e
α
2 −Īc

e
α
2 −e−

α
2

⇔ η(x) > (1−c)e
α
2 −(1−c)e−

α
2

e
α
2 −e−

α
2

⇔ r∗(x) > 0.

This implies infr(x)r∗(x)≤0 Cℓ1(r, x) = infr(x)r0(x)≤0 Cℓ1(r, x). Now, since r0(x) is the unique
minimizer of the strictly convex function Cℓ1(r, x) of r(x), then, as a function of r(x), Cℓ1(r, x) is
decreasing from −∞ to r0(x) and increasing from there to +∞. Thus, if r0(x) > 0, the infimum of
Cℓ1(r, x) over r(x) ≤ 0 is reached for r(x) = 0. Similarly, if r0(x) < 0, the infimum of Cℓ1(r, x)
over r(x) ≥ 0 is reached for r(x) = 0. This shows that infr(x)r0(x)≤0 Cℓ1(r, x) = Cℓ1(0, x), and
completes the proof.

The following is our main result; it relates the surrogate estimation error to that of the rejection loss.

Theorem 7. Assume that R is bounded with function r∶X → R. Let α,β > 0 be such that 2βc
α
= Īc,

where Īc = ce
α
2 + (1 − c)e−α

2 . Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (4)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c) infx∈X r(x)

2c ][e
α
2 −e−

α
2 ]

z otherwise.
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Proof. Using the expression of ∆Cℓ1 given by Lemma 11, we can write

∆Cℓ1(0, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Iη(x) + c − 1
1−γ
( 2βc

α
)γIη(x)1−γ −r(x) ≤ r0(x) ≤ r(x)

Iη(x) + c − e
α
2 r(x)Iη(x) − ce−βr(x) r0(x) > r(x)

Iη(x) + c − e−
α
2 r(x)Iη(x) − ceβr(x) r0(x) < −r(x).

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Iη(x) + c − (Īc + c)( Iη(x)Īc
)
1−γ

−r(x) ≤ r0(x) ≤ r(x)
Iη(x) + c − e

α
2 r(x)Iη(x) − ce−

αĪcr(x)
2c r0(x) > r(x)

Iη(x) + c − e−
α
2 r(x)Iη(x) − ce

αĪcr(x)
2c r0(x) < −r(x).

Without loss of generality, we consider r∗(x) = η(x) − (1 − c) ≥ 0. Then r0(x) ≥ 0. As with
the proof of Theorem 5, we can express ∆Cℓ1(0, x) in terms of u(x) = η(x) − (1 − c), using
Iη(x) = Ju(x) + Īc, with Ju(x) = [e−

α
2 − eα

2 ]u(x). Note that the condition r0(x) ≤ r(x) can be
expressed as

log

⎡⎢⎢⎢⎢⎣
( 2βc

αIη(x)
)

2
2β+α
⎤⎥⎥⎥⎥⎦
≤ r(x) ⇐⇒ u(x) ≤

Īc[1 − e−
α(Īc+c)r(x)

2c ]

e
α
2 − e−α

2

.

When 0 ≤ r0(x) ≤ r(x), we have

∆Cℓ1(0, x) ≥
1

4

cĪc
c + Īc

[Ju(x)
Īc
]
2

= 1

4

cĪc
c + Īc

[u(x)
Īc
]
2

[eα
2 − e−α

2 ]2.

When r0(x) > r(x), we have

∆Cℓ1(0, x) ≥
1

4

cĪc
c + Īc

[1 − e−
α(Īc+c)r(x)

2c ]

Īc
[eα

2 − e−α
2 ]u(x).

Therefore, the function Ψ(u) defined by

Ψ(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
4

cĪc
c+Īc
[u(x)

Īc
]
2
[eα

2 − e−α
2 ]2 0 ≤ u(x) ≤

Īc[1−e
−

α(Īc+c) infx∈X r(x)
2c ]

e
α
2 −e−

α
2

1
4

cĪc
c+Īc

[1−e−
α(Īc+c) infx∈X r(x)

2c ]

Īc
[eα

2 − e−α
2 ]u(x) otherwise

verifies the condition of Proposition 12 and therefore we have Ψ(Rℓ2(h) −R∗ℓ2) ≤ Rℓ1(h) − R∗ℓ1 .
An explicit upper-bound on Rℓ2(h) − R∗ℓ2 can be written in terms of Ψ−1: Rℓ2(h) − R∗ℓ2 ≤
Ψ−1(Rℓ1(h) −R∗ℓ1). To derive the expression of Ψ−1, we write z = Ψ(u), that is: when

0 ≤ z ≤ 1
4

cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

,

4
c + Īc
cĪc

z = [u(x)
Īc
]
2

[eα
2 − e−α

2 ]2 ⇐⇒ ∣u∣ = 2

e
α
2 − e−α

2

√
(c + Īc)Īc

c
z.

Otherwise,

z = 1

4

cĪc
c + Īc

[1 − e−
α(Īc+c) infx∈X r(x)

2c ]

Īc
[eα

2 − e−α
2 ]u(x) ⇐⇒ u = 4(c + Īc)

c[1 − e−
α(Īc+c) infx∈X r(x)

2c ][eα
2 − e−α

2 ]
z

Thus, we have, for all r ∈ R, Rℓ2(r) −R∗ℓ2 ≤ Γ(Rℓ1(r) −R∗ℓ1), where

Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c) infx∈X r(x)

2c ][e
α
2 −e−

α
2 ]

z otherwise.
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Theorem 7 implies the following corollary for R = Rlin and RNN.

Corollary 8. Let R = Rlin or RNN. Let α,β > 0 be such that 2βc
α
= Īc, where Īc = ce

α
2 +(1−c)e−α

2 .
Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (5)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c)B

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c)B

2c ][e
α
2 −e−

α
2 ]

z otherwise
and B is replaced by

ΛB for R = RNN.

Proof. Using the fact that infx∈X r(x) = infx∈X(W ∥x∥p +B = B) for R = Rlin and infx∈X r(x) =
infx∈X(ΛW ∥x∥p +ΛB) = ΛB for R = RNN, by Theorem 7, we complete the proof.
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