
Under review as a conference paper at ICLR 2024

BEYOND ACCURACY:
EVALUATING SELF-CONSISTENCY OF CODE LARGE
LANGUAGE MODELS WITH IDENTITYCHAIN

Anonymous authors
Paper under double-blind review

ABSTRACT

Code Large Language Models (Code LLMs) are being increasingly employed
in real-life applications, so evaluating them is critical. While the general accu-
racy of Code LLMs on individual tasks has been extensively evaluated, their self-
consistency across different tasks is overlooked. Intuitively, a trustworthy model
should be self-consistent when generating natural language specifications for its
own code and generating code for its own specifications. Failure to preserve self-
consistency reveals a lack of understanding of the shared semantics underlying
natural language and programming language, and therefore undermines the trust-
worthiness of a model. In this paper, we first formally define the self-consistency
of Code LLMs and then design a framework, IdentityChain, which effectively
and efficiently evaluates the self-consistency and general accuracy of a model at
the same time. We study eleven Code LLMs and show that they fail to preserve
self-consistency, which is indeed a distinct aspect from general accuracy. Fur-
thermore, we show that IdentityChain can be used as a model debugging tool
to expose weaknesses of Code LLMs by demonstrating three major weaknesses
that we identify in current models using IdentityChain. Our code is available at
https://github.com/anonymousauthor567/IdentityChain.

1 INTRODUCTION

Code Large Language Models (Code LLMs) are being increasingly employed in real-life applica-
tions (GitHub, 2023; OpenAI, 2023a). Hence, evaluating them rigorously is a crucial problem. Cur-
rent evaluations of Code LLMs focus on the models’ general accuracy on a wide range of individual
tasks (Lu et al., 2021; Zhu et al., 2022), primarily the following two:

1) Code Generation i.e. Natural Language to Programming Language (NL-to-PL) Generation: Given
a natural language specification, the model is tasked to generate a corresponding program.

2) Code Summarization i.e. Programming Language to Natural Language (PL-to-NL) Generation:
Given a program, the model is tasked to generate a corresponding natural language specification.

However, evaluating these two tasks in isolation overlooks their symmetric nature. NL-to-PL and
PL-to-NL Generation can be thought of as semantic-preserving translation and back-translation be-
tween the PL space and the NL space. Therefore, a trustworthy model should be able to correctly
perform PL-to-NL Generation given programs generated by itself from previous NL-to-PL tasks.
Similarly, it should correctly perform NL-to-PL Generation given natural language specifications
generated by itself from previous PL-to-NL tasks. We call such a property “self-consistency”.

Consider a real example shown in Figure 1. GPT-3.5 is first instructed to generate a program pl0
according to a specification nl0 written in a docstring, and then instructed to summarize its own
code pl0 into a new docstring nl1. If we evaluate NL-to-PL and PL-to-NL Generation in isolation,
GPT-3.5 is more than capable as it achieves 100% accuracy on both tasks. However, from the self-
consistency perspective, even though the model is self-consistent when generating nl1 from pl0,
it surprisingly fails to preserve self-consistency when generating pl1 from its own docstring nl1.
Note that self-consistency is different from consistency: nl1 here is generated by the model itself
instead of arbitrarily crafted by humans or synthesized by other algorithms. This example reveals

1

https://github.com/anonymousauthor567/IdentityChain


Under review as a conference paper at ICLR 2024

Figure 1: The IdentityChain Framework. Starting from a docstring nl0, instruct the model to gener-
ate a program pl0, summarize pl0 into a new docstring nl1, and generate a new program pl1. If the
test outputs of pl1 do not match the ones of pl0, then the model is not self-consistent. This chain can
be extended to length n ∈ N and we compute whether, for all i < n, the test outputs of pli match the
ones of pli+1, returning a binary result that indicates if the model is self-consistent regarding nl0.

that GPT-3.5 doesn’t understand the underlying semantics of the programs and natural language
specifications, which raises a significant trustworthiness concern.

Unfortunately, current NL-to-PL evaluations (Chen et al., 2021; Li et al., 2023; Rozière et al., 2023)
typically assess if the model-generated programs pass a set of test cases, and current PL-to-NL eval-
uations (Ahmad et al., 2021; Li et al., 2023; Rozière et al., 2023) commonly employ token-based
metrics like BLEU (Papineni et al., 2002), which both fail to take self-consistency into account.
Although similar self-consistency properties of LLMs have been probed through some natural lan-
guage tasks (Jiang et al., 2023; Ohmer et al., 2023), their evaluations rely on tasks with fixed answers
and cannot be generalized to open-ended generation (Section 2). Therefore, in this paper:

1) We formalize the definition of self-consistency and its evaluation (Section 3).

2) We design a novel framework, IdentityChain (Section 4), which effectively and efficiently evalu-
ates a Code LLM’s self-consistency by employing a new metric, Test Output Match (TOM) score,
and leveraging greedy decoding during inference. Through experiments, we exhibit the effectiveness
of the TOM score (Section 6.2) and the efficiency of greedy decoding (Section 6.3).

3) We evaluate eleven current Code LLMs including GPT-4, showing that they are not always self-
consistent. Furthermore, we find that more accurate models are not necessarily more self-consistent,
highlighting that self-consistency is a different aspect from general accuracy (Section 6.1).

4) We show through experiments that TOM score is also an effective metric to evaluate PL-to-
NL Generation (Section 6.2), thus completing IdentityChain as a holistic framework that evaluates
the NL-to-PL accuracy, PL-to-NL accuracy, and self-consistency of Code LLMs at the same time.
We further discuss three major weaknesses of current models that we identify using IdentityChain,
demonstrating the potential of IdentityChain as a debugging tool that helps model developers by
exposing weaknesses of models and inspiring potential improvements (Section 6.4).

2 RELATED WORK

Evaluating Code Large Language Models. For NL-to-PL evaluation, token-based metrics like
Exact Match (Ding et al., 2023b), Edit Distance (Zhang et al., 2023), Jaccard Similarity (Pei et al.,
2023), and BLEU (Iyer et al., 2018; Ahmad et al., 2021) are used, but these metrics fail to capture the
code-specific characteristics. To address this issue, CodeBLEU (Ren et al., 2020) takes Keywords,
Abstract Syntax Tree, and Data-Flow Match into account, and CodeBERTScore (Zhou et al., 2023)
computes a similarity score of code embeddings extracted by pre-trained Code LLMs. However,
static similarity scores don’t reflect the dynamic semantics of programs, so execution-based metrics

2



Under review as a conference paper at ICLR 2024

like Pass@K (Chen et al., 2021) are more adopted now as many benchmarks with test cases are
proposed (Austin et al., 2021; Hendrycks et al., 2021; Li et al., 2022). Nonetheless, all existing NL-
to-PL metrics focus only on one-time accuracy while overlooking the models’ self-consistency. For
PL-to-NL evaluation, BLEU (Papineni et al., 2002) score has been the automated metric adopted
by most models (Rozière et al., 2023; Li et al., 2023; Wang et al., 2023). Metrics like ROGUE
(Lin, 2004), chrF (Popović, 2015), and BERTScore (Zhang et al., 2020) are also reasonable choices.
However, these static metrics fail to measure semantics separately from syntax and all require ground
truth references to compare to. In this paper, we proposed an effective dynamic self-consistency
evaluation metric, TOM score, which is compatible with all existing evaluation benchmarks with test
cases. In addition, we show that TOM score effectively evaluates PL-to-NL Generation regardless
of ground-truth references, outperforming all aforementioned PL-to-NL metrics.

Evaluating Self-Consistency of Large Language Models. Previous studies (Minervini & Riedel,
2018; Li et al., 2019; Asai & Hajishirzi, 2020) show that LLMs behave inconsistently when given
two semantically bonded inputs.1 However, measuring those inconsistencies is different from eval-
uating a model’s self-consistency since these inputs, either hand-crafted or algorithm-synthesized
are not generated by the model itself. Alberti et al. (2019) designs a system to synthesize question-
answering corpora by using three models to respectively extract an answer from a context, generate
a question from the answer and the context, and generate a new answer to the generated question.
This setting can be used for self-consistency evaluation if the three models are replaced by the same
one, but models at that time were not powerful enough to perform multiple tasks. As LLMs become
better at multitasking (Brown et al., 2020; Ouyang et al., 2022), their self-consistency across tasks
evolves into an important issue. Jiang et al. (2023) asks LLMs to generate the answer for an arith-
metic reasoning problem, replace a variable in the original problem with an unknown x, and then
instruct the same model to solve for x given the answer it previously generated. Ohmer et al. (2023)
asks LLMs to translate a question from English to another language and instruct the same model
to answer the questions in both languages. However, all three evaluation settings above all rely on
tasks with fixed ground truths and cannot be generalized to open-ended generation tasks where there
can be multiple ground truth answers with arbitrary length. In this paper, we evaluate Code LLMs
on two major open-ended generation tasks: NL-to-PL and PL-to-NL Generation.

3 FORMALIZATION

3.1 SELF-CONSISTENCY DEFINITION

Given a model M that is capable of performing both NL-to-PL and PL-to-NL Generation, let n2p
and p2n denote two instructions that respectively set M to perform NL-to-PL Generation or PL-to-
NL Generation. In practice, the instructions n2p and p2n are usually prompts. Therefore, a model
instructed to perform one of the two tasks can be defined as two functions:

Mn2p : NL → PL, Mp2n : PL → NL

where PL denotes the space of all valid programs in a specific programming language and NL
denotes the space of all semantically valid and unambiguous2 program specifications in a specific
natural language. For example, PL can be the space of all valid Python programs and NL can
be the space of all valid and unambiguous corresponding English specifications of these programs,
which is the setting for all experiments later in this paper.

Let nl0 ∈ NL be a valid and unambiguous natural language specification, and pl0 = Mn2p(nl0) be
the program generated by the model M a given nl0. If the model is accurate, then pl0 and nl0 should
have the same underlying semantics.3 If we further instruct the model to generate a specification
nl1 = Mp2n(pl0) given pl0, then the semantics of pl1, nl1, pl0 should be all identical. We call such
a property “self-consistency”. Generally, a self-consistent model should be able to perform such
translations between NL and PL infinitely many times without changing underlying semantics.

1One input entails, contradicts, or is identical to the other.
2Nonsensical and ambiguous text is important in natural languages, but for NL-PL tasks, it makes more

sense to only consider a subset of the natural language that validly and unambiguously specifies programs.
3Aside from program semantics i.e. input-output behavior, nl0 and pl0 should be also aligned regarding

pragmatic aspects like complexity, security, and human readability. In this paper, our scope is just the semantics.

3



Under review as a conference paper at ICLR 2024

Note that self-consistency is a different property from accuracy. While accuracy assesses a model’s
ability to uni-directionally translate from NL to PL or the converse in a single step, self-consistency
assesses the model’s ability to bidirectionally translate between the two spaces in infinitely many
steps. Therefore, a model can remain self-consistent even when it’s inaccurate, as long as it consis-
tently preserves the same error. Similarly, low self-consistency but high accuracy can also happen.

We can now formalize the above intuitions about the self-consistency of Code LLMs. Assume that
given NL and PL, there exists a semantics space D (we don’t assume any specific definition of D)
s.t. an interpretation function sem is well-defined as the following:

sem : NL ∪ PL → D

which means that for all pl ∈ PL or nl ∈ NL, the interpretation function sem maps it uniquely to
an element in D.4 We define the self-consistency property as the following:

Definition 1: Self-Consistency. Given a valid and unambiguous specification nl0 ∈ NL, a model
M is self-consistent w.r.t. nl0 if and only if

∀i ∈ N, sem(pli) = sem(nli+1) = sem(pli+1)

where

pl0 = Mn2p(nl0), nli+1 = Mp2n(pli), pli+1 = Mn2p(nli+1)

Aligning with the informal intuitions, our definition doesn’t consider the initial generation pl0 to be
semantically the same as nl0. As long as, for all i ∈ N, the three-tuple pli, nli+1, and pli+1 are
semantically identical, we can say that M is self-consistent w.r.t. nl0. If pl0 is semantically identical
to nl0 and the model is self-consistent w.r.t. nl0, we can say the model is “strong self-consistent”,
since if a model is always accurate, it must be self-consistent. We formally define it as:

Definition 2: Strong Self-Consistency. Given nl0 ∈ NL, a model M is strong self-consistent w.r.t.
nl0 if and only if M is self-consistent w.r.t. nl0 and sem(nl0) = sem(pl0), where pl0 = Mn2p(nl0).

Similar to the above definitions, we can further define self-consistency and strong self-consistency
w.r.t. an arbitrary pl0 ∈ PL. Note that these two classes of definitions are not equivalent,5 but for
simplicity, we adopt the self-consistency and strong self-consistency w.r.t. nl0 ∈ NL definitions.

3.2 SELF-CONSISTENCY EVALUATION

Chain of Identity Transformations. Let a model M be self-consistent w.r.t. nl0. We first instruct
the model to generate pl0 = Mn2p(nl0). We then iteratively apply the PL-to-NL function to get
nli+1 = Mp2n(pli) and the NL-to-PL function to get pli+1 = Mn2p(nli+1). All programs and
specifications generated along this chain of transformations, excluding nl0 if M is not strongly
consistent, should be semantically identical. From the semantics perspective, alternatively applying
the PL-to-NL and NL-to-PL functions on pl0 for n ∈ N+ times is equivalent to applying the identity
transformation I in the semantics space D on the element sem(pl0) for 2n times:

sem((Mn2p ◦Mp2n)
n(pl0)) = I2n(sem(pl0))

The chain of transformations on pl0 between the language spaces NL and PL corresponds to a
chain of identity transformations on sem(pl0) within the semantics space D. In the equation above,
the superscript n denotes the length of such an “identity chain”.

Self-Consistency Scores. To evaluate the self-consistency of a model M , it’s impossible to extend
the identity chain infinitely long or exhaust all NL, so we approximate by picking a fixed chain
length n ∈ N+ and a reasonably large subset of NL with m ∈ N+ elements as an evaluation set.
We index the inputs in the evaluation set by j ∈ N+, 1 ≤ j ≤ m. For an input nl0,j in the evaluation
set, we check its corresponding semantic equalities sem(pli) = sem(nli+1) = sem(pli+1) for all
i ∈ N, 0 ≤ i < n. We use a binary output scn,j ∈ {0, 1} to indicate whether all semantic equalities

4Namely, sem is a right-unique and left-total binary relation.
5Self-consistency w.r.t. all nl0 ∈ NL doesn’t imply self-consistency w.r.t. all pl0 ∈ PL. The converse is

also not true. The NL-to-PL function Mn2p can simply map all nl0 to the exact same pl0, where M is strong
self-consistent w.r.t. pl0. No claim can be made about M ’s self-consistency w.r.t. the entire PL space.

4



Under review as a conference paper at ICLR 2024

are true at the same time i.e. whether M is self-consistent w.r.t. nl0.j within n steps. Similarly, we
use sscn,j ∈ {0, 1} to denote if M is strong self-consistent w.r.t. nl0.j within n steps. Finally, by
aggregating scn,j and sscn,j over all j, we can evaluate self-consistency and strong self-consistency
of M within n steps by reporting two scores SCn and SSCn defined as the following:

SCn =

∑m
j=1 scn,j
m

, SSCn =

∑m
j=1 sscn,j

m

4 THE IDENTITYCHAIN FRAMEWORK

4.1 EFFECTIVE SELF-CONSISTENCY EVALUATION

Determining the truth value of the semantic equalities sem(pli) = sem(nli+1) = sem(pli+1) can
be performed by humans. However, it’s not feasible to employ human judgment when the evaluation
set scales up. Consequently, we need automated metrics as approximations.

Inapplicability of Existing Automated Metrics. Ideal automated PL-to-NL and NL-to-PL metrics
should map a program and a natural language specification to the semantic space, and directly com-
pute their semantic distance. Given such ideal metrics, we can approximate or even determine the
truth values of sem(pli) = sem(nli+1) and sem(nli+1) = sem(pli+1). However, all existing met-
rics gauge the semantic equalities indirectly by computing a distance between the model-generated
candidate and a predefined ground truth reference. Specifically, all existing NL-to-PL metrics com-
pute a distance between two programs in the same programming language and all existing PL-to-NL
metrics compute a distance between two specifications in the same natural language. Unfortunately,
we do not have any predefined ground truth reference for either nli+1 or pli+1.6

Relaxation of the Semantic Equalities. Recall that our goal is to approximate the truth value of the
semantic equalities sem(pli) = sem(nli+1) = sem(pli+1). Although there are no existing metrics
to approximate the truth values of sem(pli) = sem(nli+1) or sem(nli+1) = sem(pli+1), the third
equality sem(pli) = sem(pli+1) is feasible to gauge. We can use existing NL-to-PL metrics to
approximate this equality as they directly compute a distance between two programs in the same
programming language. In addition, if the model summarizes pli wrongly into a semantically dif-
ferent nli+1, then program pli+1, which is supposed to be semantically identical to nli+1, is highly
unlikely to have the exact same semantics as pli and vice versa. Therefore, any effective NL-to-PL
metric, which approximates the truth value of sem(pli) = sem(pli+1), can be also considered as
an effective approximation to the truth value of sem(pli) = sem(nli+1). In Table 2, we empirically
show that there is a positive correlation between them. Therefore, using existing NL-to-PL metrics
to gauge sem(pli) = sem(pli+1), we can approximate the truth value of all three equalities.

Design of the Test Output Match (TOM) Score. While all NL-to-PL metrics have the potential
to be self-consistency evaluation metrics, we want to pick one that best approximates the semantic
equality sem(pli) = sem(pli+1). As reviewed in Section 2, execution-based dynamic metrics
like Pass/Fail can directly, though not complete, gauge the code semantics, and are therefore more
preferred than static metrics like CodeBLEU. In Table 2, we empirically verify this conclusion.

The most adopted dynamic metric, Pass@K, is not directly applicable to self-consistency evaluation.
Whether pli passes or fails the test cases doesn’t imply if it’s semantically identical to pli+1, so
naturally, we come up with a new metric, the Pass/Fail Match (P/FM) score, which checks if pli
and pli+1 both pass or both fail at the same time. If both of them pass all test cases, they must
be semantically identical. If one passes while the other fails, they must be semantically different.
However, P/FM doesn’t handle the Fail-Fail situation correctly: pli and pli+1 can fail the same test
case due to completely different reasons.

We, therefore, propose another new metric, the Test Output Match (TOM) score, which compares
the exact output of pli and pli+1 for each test case, records 1 if the outputs match and 0 if the outputs
differ, and finally computes the percentage of matches among all test cases.

TOM =
Number of Matched Outputs
Total Number of Test Cases

6Taking nli or pli as the ground truth reference for nli+1 or pli+1 is not generally applicable. For example,
if pl0 fails some test cases, then nl1 = Mp2n(pl0), which is supposed to be semantically identical to pl0, must
be semantically different from nl0. Therefore, nl0 cannot be seen as the ground truth for nl1.

5



Under review as a conference paper at ICLR 2024

For syntax errors and runtime errors like ValueError or IndexError, the TOM score is calculated by
comparing the full error message instead of just the error type. By capturing more fine-granular
semantic information, TOM score better approximates the truth value of sem(pli) = sem(pli+1)
than the simple P/FM score. In Table 2, we show that TOM indeed better correlates to the human-
judged truth value, and therefore is an effective metric for self-consistency evaluation.

4.2 EFFICIENT SELF-CONSISTENCY EVALUATION

Efficient Evaluation by Greedy Decoding. To evaluate self-consistency up to a certain chain length
n, we use greedy decoding for both NL-to-PL and PL-to-NL Generation. Given a starting point nl0,
if at some step i in the chain, pli+1 is an exact match of pli, or nli+1 is an exact match of nli,
then by the deterministic nature of greedy decoding, we know that the model will always generate
the same program and specification repeatedly. In such cases, we can assert that the model is self-
consistent w.r.t. pli or nli (not necessarily nl0). Therefore, our IdentityChain framework adopts
greedy decoding and stops the chain early when exact matches are found. We show in Figure 2 that,
with greedy decoding and early stopping, self-consistent cases can be quickly determined.

4.3 HOLISTIC EVALUATION OF CODE LLMS

The IdentityChain framework not only effectively and efficiently evaluates the self-consistency of a
Code LLM, but also holistically evaluates multiple aspects of a model at the same time.

NL-2-PL Accuracy. The bootstrapping step from nl0 to pl0 is exactly the canonical NL-to-PL eval-
uation setting, where we can compute the Pass@1 score to evaluate the model’s NL-to-PL accuracy.

PL-2-NL Accuracy. Unlike NL-to-PL metrics, existing PL-to-NL metrics are all static and they
struggle with capturing the underlying semantics. As discussed in Section 4.1, by back-translating
a model-generated natural language specification into another program, we can approximate the
semantic equality between the original program and the specification. Therefore, the SC1 score i.e.
the averaged TOM score of all pl0 and pl1 can be an effective metric for the model’s PL-to-NL
accuracy. In Table 2, we empirically show that TOM outperforms all existing PL-2-NL metrics.

Strong Self-Consistency. An ideal model should be both accurate and self-consistent. An accu-
rate but not self-consistent model is not trustworthy, while a self-consistent but not accurate model
is useless. The strong self-consistency score SSCn takes both accuracy and self-consistency into
account, which serves as a comprehensive evaluation of the model’s overall performance.

Using IdentityChain for evaluation, model developers can first check the SSCn score as a perfor-
mance summary and then examine the SCn, Pass@1, and SC1 scores to determine whether the
model is lacking more accuracy or self-consistency. More importantly, with IdentityChain, it’s easy
to pinpoint cases where a model is not self-consistent, which usually reveals subtle weaknesses of
the model. In Section 6.4, we showcase three such weaknesses of current Code LLMs.

5 EXPERIMENTS

Benchmarks. We evaluate the self-consistency of Code LLMs on two widely adopted benchmarks:
HumanEval and MBPP. HumanEval (Chen et al., 2021) contains 164 hand-crafted Python prob-
lems. Liu et al. (2023) proposes HumanEvalPlus to augment HumanEval with more test coverage.
Specifically, we use HumanEvalPlus-Mini-v0.1.6 where each problem has 16.5 test cases on aver-
age. MBPP Austin et al. (2021) includes 974 crowd-sourced Python problems with 3.0 test cases for
each problem on average. For more precise evaluations, we use the test split of the sanitized version
of MBPP, which contains 257 problems manually verified by Austin et al. (2021). We reformatted
the MBPP prompts into HumanEval-style docstrings so that the model can be instructed to generate
function bodies and docstrings based on its own outputs at the previous steps. In both datasets, all
problems have predefined meaningful function names, for example, “has close elements”. If the
model generates an incorrect function body at the initial step, there can be a conflict between the
semantics of the function body and the name, which weakens the soundness of self-consistency eval-
uation. Therefore, we replace meaningful function names with a generic “func” at all steps except
the initial one, so that the model solely relies on the semantics of the function body or docstring
instead of taking shortcuts using the function name. See Appendix C for a concrete example.

6



Under review as a conference paper at ICLR 2024

Models. We evaluate two types of Code LLMs: foundation models and instruct-tuned models. For
foundation models, we evaluate two open-source model families, StarCoderBase (Li et al., 2023)
and Code Llama (Rozière et al., 2023). StarCoderBase is a series of foundation Code LLMs trained
on the open-source code dataset, The Stack (Kocetkov et al., 2022). We evaluate 4 sizes of it from
1B to 15.5B. Code Llama is a version of Llama-2 (Touvron et al., 2023) fine-tuned on code data
and long-context inputs. We evaluate 2 sizes of it from 7B to 13B. For instruct-tuned models, we
evaluate the instruction fine-tuned versions of Code Llama and StarCoderBase as well as the two
most capable OpenAI models: GPT-3.5-turbo-0613 and GPT-4-0613 (OpenAI, 2023b). We choose
the parameter-frozen snapshots of them on 06/13/2023 so that the results can be reproduced. See
Appendix B for detailed environment, decoding, and prompt configurations of all experiments.

6 RESULTS

6.1 SELF-CONSISTENCY OF CODE LLMS

Code LLMs Fail to Preserve Self-Consistency. We observe in Table 1 that all models’ self-
consistency and strong self-consistency decreases as the number of iteration steps increases. For
example, all models’ SSC5 scores, which assess strong self-consistency within five steps, evidently
decline up to 78.0% compared to the initial Pass@1.7 Regardless of the accuracy of the initial gen-
eration, all models’ SC5 scores, which assess self-consistency within five steps, also decline up to
43.8% compared to SC1. Such a performance drop indicates that while the models might be initially
(strong) self-consistent, they are not able to preserve it. In Section 6.4, we delve deeper into the
some of root-cause errors that trigger violations of (strong) self-consistency.

Model Size
HumanEvalPlus MBPP Sanitized

Pass@1 SSC5 SC1 SC5 Pass@1 SSC5 SC1 SC5

Instruct-tuned Models
GPT-4 N/A 74.8 63.8 ↓ 14.8% 84.0 76.1 ↓ 9.5% 72.8 62.6 ↓ 13.9% 88.7 82.5 ↓ 7.0%

GPT-3.5 N/A 71.8 40.5 ↓ 43.6% 56.4 50.3 ↓ 10.9% 68.9 54.9 ↓ 20.3% 86.4 76.3 ↓ 11.7%

CodeLlama-Inst 7B 16.07 4.3 ↓ 73.1% 17.8 14.1 ↓ 20.7% 22.2 11.7 ↓ 47.4% 30.7 25.3 ↓ 17.7%

13B 30.7 17.8 ↓ 42.0% 40.5 33.1 ↓ 18.2% 40.5 23.0 ↓ 43.3% 50.2 42.8 ↓ 14.7%

StarChat-beta 15B 25.2 5.5 ↓ 78.0% 19.6 11.0 ↓ 43.8% 32.3 7.8 ↓ 75.9% 14.8 11.3 ↓ 23.7%

Foundation Models

CodeLlama 7B 23.97 8.0 ↓ 66.7% 22.1 19.0 ↓ 13.9% 38.9 20.6 ↓ 47.0% 45.1 43.6 ↓ 3.4%

13B 35.6 9.8 ↓ 72.4% 17.8 14.1 ↓ 20.7% 46.3 23.0 ↓ 50.4% 47.9 42.0 ↓ 12.2%

StarCoderBase

1B 11.0 3.7 ↓ 66.7% 12.3 9.8 ↓ 20.0% 28.8 11.3 ↓ 60.8% 34.2 31.5 ↓ 8.0%

3B 17.8 4.9 ↓ 72.4% 12.3 11.0 ↓ 10.0% 37.4 14.4 ↓ 61.5% 39.3 34.2 ↓ 12.9%

7B 24.5 8.6 ↓ 65.0% 19.0 16.0 ↓ 16.1% 43.6 23.0 ↓ 47.3% 47.1 43.6 ↓ 7.4%

15B 27.0 8.0 ↓ 70.5% 20.9 17.2 ↓ 17.6% 44.0 21.0 ↓ 52.2% 44.7 41.2 ↓ 7.8%

Table 1: Performance of Code LLMs evaluated by IdentityChain. Pass@1 indicates the NL-to-PL
accuracy. SC1 representing self-consistency within 1 step indicates PL-to-NL accuracy. SC5 rep-
resents self-consistency within 5 steps and SSC5 represents strong self-consistency within 5 steps.
These four metrics holistically evaluate the overall performance of Code LLMs.

Self-Consistency is Different from General Accuracy. Existing evaluations of Code LLMs refer to
the general accuracy (e.g. Pass@K) as the model’s overall capacity, which is confirmed by our results
in Table 1: larger models in the same model families (Code Llama-Instruct, CodeLlama, StarCoder-
Base) indeed have higher Pass@1 scores. However, our results in Table 1 show that self-consistency
assesses the models from a different aspect than accuracy. We observe that stacking more parame-
ters does not necessarily guarantee the improvement of self-consistency. For example, the Pass@1
score of StarChat-beta (15B), which indicates accuracy, is higher than Code Llama-Instruct-7B for
both benchmarks, but the SC5 score of the former, which indicates self-consistency, is lower than
the latter for both benchmarks. For another example, while StarCoderBase-7B performs worse than
StarCoderBase-15B in Pass@1 for both benchmarks, it outperforms the double-sized version of
itself in SSC5, which indicates strong self-consistency, for both benchmarks.

7For Code Llama-Instruct and Code Llama 7B, the Pass@1 we measured are noticeably different from those
reported by Rozière et al. (2023) even after considering the difficulty difference between HumanEvalPlus and
HumanEval. We conjecture that it might be caused by the models’ sensitivity to prompts.

7



Under review as a conference paper at ICLR 2024

Moreover, general accuracy can underestimate the capability difference between two models. For
example, GPT-4, which is recognized as a significantly more capable model than GPT-3.5, reports
a Pass@1 score of 74.8 on HumanEvalPlus, which is only a 4.2% relative improvement. However,
GPT-4 is significantly more self-consistent. It achieves an SC5 score of 76.1, which is 51.2% higher
than GPT-3.5, highlighting a non-trivial capability gap between GPT-4 and GPT-3.5.

6.2 EFFECTIVENESS OF TOM SCORE

To show the effectiveness of TOM, we excerpt a 1-step chain (nl0, pl0, nl1, pl1) from an Identity-
Chain experiment of GPT-3.5, and gathered human-judged ground truth of whether nl1 is semanti-
cally identical to pl0 i.e. sem(pl0) = sem(nl1).8

Metric r ρ τ

EM .285 .285 .285
CodeBLEU .179 .173 .144

P/FM .294 .292 .292
TOM .461 .454 .410

Metric r ρ τ

BLEU .285 .275 .227
ROUGE-L .254 .239 .196
chrF .271 .256 .210
BERTScore .381 .389 .319

TOM .500 .482 .445

Table 2: Pearson (r), Spearman (ρ), and Kendall-Tau (τ ) correlations with human-judged ground
truth of whether pl0 is semantically identical to nl1, the model-generated docstring for pl0.

TOM is Effective for Self-Consistency Evaluation. We compared TOM to two static PL space
metrics: Exact Match (EM) and CodeBLEU and the naive dynamic metric Pass/Faill Match (P/FM)
using Pearson (r), Spearman (ρ), and Kendall-Tau (τ ) correlations with human judgment in Ta-
ble 2. Recall our conjectures in Section 4.1: PL space metrics can approximate the truth value of
sem(pl0) = sem(nl1), dynamic metrics are better than static ones, and the fin-grained TOM score
is better than naive P/FM. All three of them are verified in this experiment.

TOM is Effective for PL-to-NL Evaluation. Within the same experiment setting, we compare
TOM with four NL space metrics: BLEU, ROUGE-L, chrF, and BERTScore in Table 2. Note that
for this comparison, the correlations are only computed on 117 out of the total 163 problems where
pl0 passes all test cases. Otherwise, if pl0 is not semantically the same as nl0, we can’t use nl0 as a
ground truth reference for nl1 to calculate those NL space metrics. We show that TOM outperforms
all NL space metrics given that their ground truth references exist, not to mention that TOM works
well for the remaining 46 problems, for which the ground truth references are absent.

6.3 EFFICIENCY OF GREEDY DECODING

Figure 2: SSCi and SCi at Computed Each Step i.

Greedy Decoding Efficiently
Evaluates Self-Consistency. We
find that using greedy decoding,
IdentityChain efficiently reveals
most not self-consistent cases
within the initial three steps. Fig-
ure 2 shows an evident decline
of both SCi and SSCi scores
within the first three steps. After
that, all models stabilize or show
only minimal decreases in their
(strong) self-consistency scores,
which underscores the efficiency of
IdentityChain as an evaluation tool.
Although we set the chain length to
five in our experiments, for mode developers and researchers with tighter time limits or computing
resources, it’s reasonable to choose a shorter chain length when using greedy decoding.

8Different from the grading policy used in Chen et al. (2021), which ignores incorrect input-output examples
in the generated docstrings, we consider a docstring with correct description but wrong examples still wrong.

8



Under review as a conference paper at ICLR 2024

Figure 3: SC5 Evaluated at Different Temperatures.

Greedy Decoding Results are Gen-
eralizable to Different Tempera-
tures. To show the generalizabil-
ity of greedy decoding results, we
additionally evaluate the SC5 score
at four different temperatures. As
illustrated in Figure 3, while the
SC5 scores of all models decrease
as the temperature increases, their
relative rankings mostly remain i.e.
more self-consistent models are al-
ways more self-consistent regardless
of temperature, which shows that the greedy decoding results are indeed generalizable. Moreover,
it is reasonable that the absolute self-consistency of all models drops as the temperature increases.
There is always a balance between exploration, which introduces novel solutions but weakens self-
consistency, and exploitation, which ensures self-consistency but may overlook novel solutions.

From our observations, greedy decoding is both more efficient and more appropriate for self-
consistency evaluation. See Appendix D for the SSC5 scores evaluated at different temperatures.

6.4 IDENTITYCHAIN AS A MODEL DEBUGGING TOOL

Evaluating Code LLMs with IdentityChain, we can easily pinpoint the cases where the model is
not self-consistent. Studying these not self-consistent cases, we identify three major weaknesses of
current models in code understanding, which are not captured by accuracy-oriented evaluations.

Code LLMs Have Weak Sense of Data Types. We observe that Code LLMs are not sensitive to
data types. In all programming languages, data type is a fundamental element that specifies how
variables should be stored, manipulated, and interacted with. However, we find that current models
tend to overlook data type information. We show such an example in Appendix Figure 6. Inaccurate
interpretations of data types will inevitably result in erroneous code usage. In real software develop-
ment scenarios, it can lead to intricate issues like memory management, performance bottlenecks,
or unexpected behaviors during code execution (Ding et al., 2022; He & Vechev, 2023).

Code LLMs Have Weak Sense of Implicit Code Semantics. We observe that Code LLMs cannot
accurately capture the implicit code semantics, which is a major root cause of non-self-consistency.
Current models tend to only capture the shallow semantics that are explicitly presented in the pro-
gram while overlooking the implicit logic. For example, they tend to only summarize the explicit
if-checks while ignoring the implicit else-branch. We show two concrete examples in Appendix
Figure 7. Ignoring implicit code semantics during PL-to-NL Generation will unavoidably result in
misleading or ambiguous documentation. When building real automated documentation applica-
tions with Code LLMs, it becomes more than crucial to refine these models so that they recognize
and understand both explicit and implicit code semantics.

Code LLMs Have Weak Sense of Code Execution. We also observe that Code LLMs cannot ac-
curately predict the execution outcomes Austin et al. (2021); Ding et al. (2023a). Specifically, when
instructed to summarize programs, the models often generate correct natural language specifications
but incorrect input-output examples. We show two concrete examples in Appendix Figure 8. This
weakness is particularly concerning if we want to generate test cases to guide the entire software
development process (Test-Driven Development), which underscores the importance of aligning the
models’ PL-to-NL Generation ability with their understanding of code execution.

Conclusion and Future Work. We reveal that different from accuracy, self-consistency is in-
deed a crucial missing link in current evaluations of Code LLMs, and our evaluation frame-
work IdentityChain effectively and efficiently bridges the gap. More importantly, we show that
IdentityChain can be used not only as a holistic evaluation tool but also as a model debugging tool
that helps model developers study weaknesses in their models and thus potentially inspire future
improvements. See Appendix A for future directions that can potentially extend the scope of self-
consistency evaluation or improve current Code LLMs using IdentityChain.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for
program understanding and generation. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 2655–2668, Online, June 2021. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2021.naacl-main.211.

Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin, and Michael Collins. Synthetic qa corpora
generation with roundtrip consistency, 2019.

Akari Asai and Hannaneh Hajishirzi. Logic-guided data augmentation and regularization for con-
sistent question answering, 2020.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Pro-
gram synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray, and Saikat
Chakraborty. Towards learning (dis)-similarity of source code from program contrasts. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 6300–6312, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.436. URL https://aclanthology.org/2022.
acl-long.436.

Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. Traced:
Execution-aware pre-training for source code, 2023a.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly modeling
in-file and cross-file context, 2023b.

GitHub. Github copilot x: The ai-powered developer experience, 2023. URL https://github.
blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adver-
sarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS’23), 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021.

10

https://www.aclweb.org/anthology/2021.naacl-main.211
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2022.acl-long.436
https://aclanthology.org/2022.acl-long.436
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/


Under review as a conference paper at ICLR 2024

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code
in programmatic context, 2018.

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James T. Kwok.
Forward-backward reasoning in large language models for verification, 2023.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for consistency
of neural models, 2019.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Ré mi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with AlphaCode. Science, 378(6624):1092–1097, dec 2022. doi: 10.1126/science.
abq1158. URL https://doi.org/10.1126%2Fscience.abq1158.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie LIU. CodeXGLUE: A machine learning benchmark dataset for code
understanding and generation. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 1), 2021. URL https://openreview.net/
forum?id=6lE4dQXaUcb.

Pasquale Minervini and Sebastian Riedel. Adversarially regularising neural nli models to integrate
logical background knowledge, 2018.

Xenia Ohmer, Elia Bruni, and Dieuwke Hupkes. Separating form and meaning: Using self-
consistency to quantify task understanding across multiple senses, 2023.

OpenAI. Code interpreter: An experimental chatgpt model that can use python, handle uploads and
downloads, 2023a. URL https://openai.com/blog/chatgpt-plugins.

OpenAI. Gpt-4 technical report, 2023b.

11

https://doi.org/10.1126%2Fscience.abq1158
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openai.com/blog/chatgpt-plugins


Under review as a conference paper at ICLR 2024

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language
models reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 27496–27520. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/pei23a.html.

Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pp. 392–395, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/W15-3049. URL https:
//aclanthology.org/W15-3049.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis,
2020.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu
Chen. Repocoder: Repository-level code completion through iterative retrieval and generation.
arXiv preprint arXiv:2303.12570, 2023.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert, 2020.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code
generation with pretrained models of code, 2023.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K.
Reddy. Xlcost: A benchmark dataset for cross-lingual code intelligence, 2022.

12

https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://aclanthology.org/W15-3049
https://aclanthology.org/W15-3049


Under review as a conference paper at ICLR 2024

A FUTURE WORK

There are several future directions to explore that potentially extend the scope of self-consistency
evaluation or improve current Code LLMs using IdentityChain:

Introducing PL-to-PL and NL-to-NL Generation. It is natural to extend the self-consistency
definitions on a large set of multiple programming and natural languages by introducing PL-to-PL
Generation i.e. Code Translation and NL-to-NL Generation i.e. Machine Translation. In practice,
IdentityChain can be improved to support more programming languages and natural languages.

Studying Weaknesses of Code LLMs. Following the three examples in Section 6.4, future work
can further identify and categorize more subtle weaknesses in Code LLMs. More importantly, we
encourage future work to investigate the relationship between those weaknesses and the training
data. It is possible that the weaknesses are barely addressed within current training paradigms.

Fine-tuning Code LLMs for Better Self-Consistency. It is not yet clear how we can improve the
self-consistency of Code LLMs. For a model with imbalanced NL-to-PL and PL-to-NL accuracy,
fine-tuning the task that the model performs worse can possibly work. For a model with balanced
accuracy, we might need to customize a fine-tuning dataset that contains input-output pairs gener-
ated by the model itself. Many fair hypotheses can be made following this line of reasoning. We
encourage future work to raise more and test them accordingly.

B EXPERIMENT CONFIGURATIONS

Environment. For open-source models, all model checkpoints are downloaded using the Python
library “transformers” from Hugging Face. Note that we downloaded Code Llama and Code Llama-
Instruct, from https://huggingface.co/codellama instead of the link provided by Meta
AI. We run open-source model experiments on NVIDIA RTX A6000 GPUs with CUDA 11.3,
cuDNN8-devel, PyTorch 1.12.1, and Python 3.10.9. For efficiency, we set the max prompt length to
be 1,024 tokens, the max generation length to be 512 tokens, and the inference precision to be FP16.

Decoding. For all models, we use greedy decoding for our main experiment in Section 6.1. The
closed-source OpenAI models GPT-3.5 and GPT-4 are non-deterministic. When the experiments
were conducted there was no way to set them to perform greedy decoding deterministically using
APIs, so we set the temperature to 0 to minimize the randomness.

Prompts. We use one-shot prompting for all the models on both benchmarks to better guide the
model to generate the expected format. For MBPP Sanitized, we use task 2 in the prompt split as
the one-shot example. For HumanEvalPlus, since there’s no dedicated prompt split, we use Hu-
manEval/0 as the one-shot example and exclude it from all experiments. For instruct-tuned models,
we formulate the prompt as chats (Ouyang et al., 2022), where the “system” role provides general
instructions, the “user” role provides the input of the one-shot example, and the “assistant” role pro-
vides the output of the one-shot example. For foundation models, the prompt is only the one-shot
example. To maximize the capacity of all Code LLMs, we carefully customize the prompt template
for each model. See the “examples” folder in our code repository for details of the prompt templates.

13

https://huggingface.co/codellama
https://github.com/anonymousauthor567/IdentityChain/tree/main/examples


Under review as a conference paper at ICLR 2024

C REPLACING MEANINGFUL FUNCTION NAMES

Figure 4: Replacing Meaningful Function Names with A Generic ”func”. Given the docstring with
the original function name, GPT-3.5 generates an incorrect program that conflicts with the function
name. When further summarizing that program along with the original function name, GPT-3.5
completely ignores the code and generates a new docstring based on the function name. In this
case, we will falsely conclude that GPT-3.5 is not self-consistent. However, when summarizing
the program along with a generic name “func” in replacement, GPT-3.5 correctly captures the code
semantics and thus is self-consistent w.r.t. the original docstring. Therefore, when generating nli
and pli for i ≥ 1, we replace the original meaningful function name with the generic “func”.

14



Under review as a conference paper at ICLR 2024

D GENERALIZABILITY OF GREEDY DECODING

Figure 5: SSC5 Evaluated at Different Temperatures. Similar to the SC5 results in Section 6.3, for
the strong self-consistency score SSC5, the relative rankings of models mostly remain regardless of
temperature i.e. more strong self-consistent models are always more strong self-consistent no matter
the temperature, which confirms that greedy results are generalizable to different temperatures.

E EXAMPLES OF CODE LLMS’ WEAKNESSES

Figure 6: Code LLMs Have Weak Sense of Data Types. The implementation checks whether all
three inputs are type int at the same time, but the summarization only mentions that the inputs are
three “numbers” failing to capture the data type information.

15



Under review as a conference paper at ICLR 2024

Figure 7: Code LLMs Have Weak Sense of Implicit Code Semantics. In the left example, the
implementation has an implicit “else” branch that returns −1 when no even number is found. In the
right example, the implementation also has an implicit “else” branch that returns −1 when no larger
satisfying number is found. However, both summarizations fail to capture that implicit logic.

Figure 8: Code LLMs Have Weak Sense of Code Execution. In both examples, some input-output
pairs in the summarization are wrong, which means that the model fails to predict execution.

16


	Introduction
	Related Work
	Formalization
	Self-Consistency Definition
	Self-Consistency Evaluation

	The IdentityChain Framework
	Effective Self-Consistency Evaluation
	Efficient Self-Consistency Evaluation
	Holistic Evaluation of Code LLMs

	Experiments
	Results
	Self-Consistency of Code LLMs
	Effectiveness of TOM score
	Efficiency of Greedy Decoding
	IdentityChain As a Model Debugging Tool

	Future Work
	Experiment Configurations
	Replacing Meaningful Function Names
	Generalizability of Greedy Decoding
	Examples of Code LLMs' Weaknesses

