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Abstract
Token masking has been proven useful for self-
supervised learning in various modalities, in-
cluding the sequential SMILES representation of
molecules. Yet, research for masking over molec-
ular graph structures has not received enough at-
tention and existing methods often focus on single
molecules. We propose ReaCTMask (Reaction
ConText-based Masking), a novel approach that
leverages reaction knowledge to provide critical
context outside of the molecular structures them-
selves to guide the graph masking. We show that
graph transformers are able to exploit the addi-
tional knowledge by applying a unified masking
scheme, within and across molecules inside a reac-
tion. Our experiments cover probing and transfer
learning, comparing to various baselines, and pro-
vide insights into the intricate nature of the task.
Overall, the results demonstrate the effectiveness
of our approach and, more generally, the useful-
ness of reaction context in graph pre-training.

1. Introduction
In recent years, people have witnessed the thriving of artifi-
cial intelligence in various scientific areas. Self-supervised
pretraining models have contributed greatly to its success,
as demonstrated by large language models. It also has been
playing a crucial role in enhancing model capabilities in
learning molecular representations for drug discovery (Liu
et al., 2023a; Zhao et al., 2024). By pretraining a back-
bone deep neural network on some large molecule datasets,
the pretrained models can be easily generalized to different
datasets and tasks.

Most of the self-supervised learning (SSL) approaches on
molecular representation use contrastive learning as the pre-
training scheme. For example, GraphCL (You et al., 2020)
maximizes the agreement between two different augmen-
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tations of the same molecule, such as edge dropping, and
subgraph sampling, of a single graph using a contrastive
loss, facilitating the model’s ability to extract invariant rep-
resentations; there are also works integrating additional
domain knowledge into contrastive learning, for instance,
customized topological features (Luo et al., 2024). An-
other common method for pre-training is mask prediction.
AttrMask (Hu et al., 2020) randomly samples nodes in a
graph and replaces the original node attributes with a non-
existent token; GROVER (Rong et al., 2020) masks sub-
graphs within a molecular graph and predicts a designed
contextual property constructed from the numbers and types
of neighboring atoms and bonds. However, during the pre-
training phase, these previous studies focus on the recon-
struction of single molecules while overlooking valuable
properties inherently presented in the raw data. Among
these properties, chemical reactions provide rich contextual
information that has the potential to enrich the training set.

Our proposed approach, ReaCTMask, integrates chemical
reactions in the pre-training process. Specifically, we con-
catenate the products and reactants in a chemical reaction
and leverage the power of a graph transformer, to embed
the context information of the chemical reactions. The reac-
tions can either be provided in the dataset or automatically
generated using existing open-source retrosynthesis tools,
thereby reducing the need for extensive manual annotation
or specialized expertise. Moreover, given the significant role
that motifs play in chemical reactions, we hypothesize that
motif-level masking and reconstruction is an effective pre-
training task that can yield substantial performance gains.
Our comprehensive evaluations on the MoleculeNet (Wu
et al., 2018) benchmarks demonstrate significant improve-
ments in the model’s representational power when equipped
with ReaCTMask.

2. Background and Related Works
Notation. We denote an input graph as G = (V, E , X,E),
where V represents the set of all nodes (or vertices), and
E represents the set of all edges. Here, X and E are the
corresponding node attribute matrix and edge attribute
matrix, respectively. Here we only consider undirected
graphs to represent the molecules in this paper.
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Masking in SSL. Previous methods, such as AttrMask (Hu
et al., 2020), GraphMAE (Hou et al., 2022) and Mole-BERT
(Xia et al., 2023), typically employ node-level attribute
masking. This approach involves replacing the attribute of
the selected atoms with a non-existent value m. For instance,
given a graph G = (V, E , X,E), we select a subset of nodes
Ṽ ⊂ V to be masked, we then replace the node attribute
matrix X by X̃ , where

x̃i =

{
m vi ∈ Ṽ
xi vi ̸∈ Ṽ

(1)

Then, the masked molecular graphs are fed into a graph
neural network, to reconstruct the masked features.

Motifs in SSL. Besides, motif-level (or subgraph-level)
information has been demonstrated to be effective in past
studies. MGSSL (Zhang et al., 2021) adopts a motif gen-
eration task, where a search algorithm–either depth-first
search (DFS) or breadth-first search (BFS)–is used to pre-
dict the motif labels of the next motif node auto-regressively,
starting from a motif in a motif-level graph. On the other
hand, GROVER (Rong et al., 2020) devises a graph-level
motif prediction task: they utilize RDKit (Landrum, 2006)
to extract a few functional groups and use the graph embed-
dings to predict the presence of specific motifs within the
molecules.

Reaction-Based Pre-training Strategies. While most
studies of SSL on molecular data have focused on single
molecule data, there are works emerging in recent years that
attempt to incorporate chemical reactions into SSL as well.
Firstly, since chemical reactions can be represented using
SMILES strings, most prior works leverage these represen-
tations as inputs for language models. For instance, a BERT-
style pre-training scheme can be employed, as demonstrated
by (Schwaller et al., 2021). One can also predict the prod-
ucts given the reactants and reagents (Broberg et al., 2022),
or conversely, the reactants from the products (Jiang et al.,
2023). Nevertheless, methods involving graph representa-
tions of chemical reactions are currently under-explored.
Recent works have primarily employed contrastive learning
frameworks. One approach uses contrastive loss to differ-
entiate reactants across various substrate scopes (Gao et al.,
2024). Another method treats the reactants and products on
either side of a chemical equation as distinct views, hypoth-
esizing an equivalence relation between them (Wang et al.,
2022; Zeng et al., 2023). In particular, MolR (Wang et al.,
2022) assumes that: ∑

i

Ri =
∑
j

Pj

Here Ri and Pj are learned graph-level embeddings of a
reactant graph and a product graph in a chemical equa-
tion, respectively. Under this assumption, a margin-based

contrastive loss inspired by (Bordes et al., 2013) is opti-
mized. However, our experiments indicate that the con-
trastive method is not the most ideal way to incorporate
reaction information. Observe that the theoretical hypoth-
esis in MolR, specifically the reaction equivalence, might
not always hold, due to structural and property changes in
chemical reactions. A subsequent work, ReaKE (Xie et al.,
2024), referred to this issue as the ambiguous embeddings
problem. They proposed alleviating this issue by construct-
ing a knowledge graph that connects products and reactants
by the extracted reaction templates using RDChiral (Coley
et al., 2019).

3. Methods
3.1. Motif-Masking Strategies in Single Molecules.

Considering the importance of chemical substructures for
molecule property prediction and the demonstrated use-
fulness of motifs in previous approaches, we begin with
the motif-masking strategies in a single molecule G =
(V, E , X,E). The first step aims to fragment G to a col-
lection of motifs M = {Mi}ni=1. Each motif Mi =
(Vi, Ei, Xi, Ei) is defined as a subgraph of the molecular
graph, such that

n⋃
i=1

Mi = G

There are various approaches to do so. We adopt the refined
BRICS algorithm proposed by (Zhang et al., 2021), which
decomposes the motifs from BRICS (Degen et al., 2008)
further to finer subgraphs to reduce the number of infrequent
large motifs. Based on this, we create a straightforward
yet efficient mapping between motifs and atoms, which
facilitates the masking of atoms corresponding to motifs, as
well as the extraction of motif-level representations. In an
abstract way, we can define it as

F : M → 2V

Mi 7→ Vi

where 2V is the power set of V .

After obtaining the motif-atom correspondence, we uni-
formly sample the motifs in M with a ratio r ∈ (0, 1).
Then, we mask out the nodes within the sampled motifs,
according to eq. (1). Particularly, we do not mask out all
the nodes within a motif to avoid completely losing the in-
formation within the motif. Masking all nodes would force
the model to rely solely on the information from nodes sur-
rounding the motif, leading to insufficient information and
thus poorer learning performance. Therefore, we choose an
atom sampling ratio to mask only part of the motifs. See
Figure 1 for an example of this process.

Nevertheless, masking motifs in a single molecule might
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Figure 1. Atom sampling within a motif

overlook the implicit information from the chemical reac-
tion. Take the Fischer esterification as an example:

CH3COOH+C2H5OH → CH3COOC2H5 +H2O

The ester group −COO− in ethyl acetate (CH3COOC2H5)
is formed by the reaction between a carboxyl group
(−COOH) of acetic acid and a hydroxyl group (−OH) of
ethanol. In a typical message-passing neural network, if
we solely mask and reconstruct the motif −COO− in the
single molecule CH3COOC2H5, the network might overly
focus on the information from the methyl group (−CH3)
and ethyl group −C2H5. These functional groups, however,
do not significantly impact the properties of the resulting
ester group. If we can integrate the chemical reaction that
produces a molecule into a graph neural network, we will be
able to encode information from the reactants, meaning that
the model can learn more reliable chemical properties from
the masked motif prediction task (the details are outlined in
section 3.5). In this example, the carboxyl group and the
hydroxyl group in the reactants can guide the model to learn
a more chemically meaningful representation of the masked
ester group.

Therefore, we devise ReaCTMask, which concurrently
encodes the products and reactants in a chemical equation,
to ensure the model effectively and efficiently learns from
the reaction context of each molecule.

3.2. Construction of Reaction Graphs

ReaCTMask is flexible in choosing the pre-training datasets
no matter whether the reaction information is ready or not.
It can be the dataset that already contains chemical reactions,
such as USPTO-30K (Schneider et al., 2016), where each
record contains the SMILES representations (Weininger,
1988) of both reactants and products. Alternatively, we can
also choose datasets that only contain individual molecules,
such as those in the ZINC15 database (Sterling & Irwin,
2015). In this case, we can employ the open-source ret-
rosynthesis tool AiZynthFinder (Genheden et al., 2020) to
solve the synthetic routes for a target molecule in ZINC. By

extracting the last step of a synthetic route, we can deter-
mine the SMILES representations of the necessary reactants
to synthesize the target molecule.

Based on the data pre-processing pipelines in (Hu et al.,
2020), we transform the SMILES of reactants and products
to corresponding molecular graphs via RDKit. A pivotal
step involves merging these graphs to create a disjoint union
of graphs. Within this union, integer labels {0, 1} are gener-
ated to distinguish atoms belonging to reactants from those
belonging to products. We treat this disjoint union as a
single entity to be fed into the graph neural networks for
pre-training.

Formally, in a simplified chemical reaction

R1 +R2 → P

let the reactant graphs be GR1 = (VR1 , ER1 , XR1 , ER1)
and GR2 = (VR2 , ER2 , XR2 , ER2), the product graph be
GP = (VP , EP , XP , EP ), we define the reaction graph to
be the disjoint union of them (see Figure 2):

GU := (VU , EU , XU , EU ) (2)

where

VU := VP ⊔ (VR1 ∪ VR2)

= (VP × {0}) ∪ ((VR1 ∪ VR2)× {1})
EU := VP ⊔ (ER1 ∪ ER2)

= (EP × {0}) ∪ ((ER1 ∪ ER2)× {1})

and

XU :=
[
XT

P , X
T
R1

, XT
R1

]T
EU :=

[
ET

P , E
T
R1

, ET
R2

]T
3.3. Motif-Masking Strategies in Reaction Graphs

It requires minor modifications to adapt the motif-masking
scheme from single molecules to reaction graphs: we de-
compose each molecular graph (e.g. GP , GR1 and GR2)
within the reaction graph GU and establish their motif vocab-
ulary and motif-atom correspondences. Consequently, the
motif sampling is now across the entire reaction graph rep-
resenting a chemical equation rather than a single molecule.
As depicted in Figure 2, products and reactants typically
contain some motifs that are either similar or identical. This
design aligns with the earlier example, where the functional
groups from other molecules in a chemical reaction can be
leveraged to learn the representation of the masked motifs.

3.4. Model Architecture

To fully exploit the information from the reaction graphs,
the commonly used message-passing graph neural networks
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Figure 2. Overview of the self-supervised learning framework of ReaCTMask.

(MPNNs) such as GCN (graph convolutional networks)
(Kipf & Welling, 2016), GIN (graph isomorphism networks)
(Xu et al., 2019), have limitations in their standard form.
This is because the message-passing mechanism in these
networks only allows information transfer among connected
nodes, isolating the nodes in the product graphs from those
in the reactant graphs. While it is possible to extend MPNNs
with techniques like virtual nodes/edges to connect them in
a reaction, these adaptations still face challenges in effec-
tively capturing global interactions and dependencies due to
the inherent local nature of message passing.

To address this, we employ a graph transformer to uniformly
process these reaction graphs and combine their information
in one model architecture. Our model, based on GraphGPS
(Rampášek et al., 2022), provides several advantages: Each
GPS layer consists of a transformer layer and an MPNN
layer. In the transformer layer, the self-attention mechanism
allows a node to update its embedding by considering all
nodes in the disjoint union GU = (VU , EU , XU , EU ):

X̃
(k+1)
U = Attn(k)(X

(k)
U ) (3)

where Attnk denotes the global attention layer in the k-th
GPS layer.

The MPNN layer, on the other hand, integrates the local in-
formation from its adjacent nodes and edges via the message-
passing mechanism:

X̂
(k+1)
U = MPNN(k)(X

(k)
U , E

(k)
U , EU ) (4)

For each node xi ∈ VU with neighborhood Ni, MPNN(k)

updates its k-th embedding as

h
(k+1)
i = MLP

(
Agg{h(k)

i , h
(k)
j , e

(k)
ij }xj∈Ni

)
(5)

where h and e represent the node and edge embeddings,
respectively. For instance, in the GINE layer (GIN with
edge features) (Hu et al., 2020), the aggregation function is:

Agg{hi, hj , eij} = (1 + ϵ)hi +
∑
j∈Ni

ReLU(hj + eij) (6)

Then, the node embeddings will be updated by:

X
(k+1)
U = MLP(k)(X̃

(k+1)
U + X̂

(k+1)
U ) (7)

In addition, we generate positional encodings to distinguish
products nodes (xp, 0) ∈ VP × {0} and reactants nodes
(xr, 1) ∈ VR × {1}, using the learnable embedding matrix
W ∈ R2×emb dim:

ReactPE((xp, 0)) = [1, 0]W

ReactPE((xr, 1)) = [0, 1]W
(8)

which is added before the GPS layers.

3.5. Learning objective

We use the motif label prediction as our learning objective.
Formally, let VM be the set of all nodes in a masked motif M .
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We have the collection of node embeddings {h(K)
i }xi∈VM

in the last layer. The motif embedding of M is then obtained
by:

hM = Pool({h(K)
i }xi∈VM

) (9)

where K is the total number of GPS layers, and Pool can
be any conventional pooling function used in graph-level
pooling, such as mean, sum, or set2set. Finally, we use a
multi-layer perceptron MLP as the prediction head to obtain
the logits from hM and compute the cross-entropy loss with
the motif label yM :

L =
1

|M|
∑

M∈M
CE(MLP(hM ), yM ) (10)

Here M is the collection of all masked motifs in a reaction
graph GU .

4. Experiments
4.1. Experimental Settings

In this section, we present the configuration of our experi-
ments and assess the performance of ReaCTMask on molec-
ular property prediction tasks.

Pre-training Datasets and Downstream tasks. Following
the settings outlined in (Hu et al., 2020), we used the 2 mil-
lion unlabeled SMILES representations of molecules from
the ZINC-15 database (Sterling & Irwin, 2015), referred to
as ZINC-2m. Originally, it contains only the SMILES repre-
sentation of single molecules. Thus, to extract the reactants
that synthesize the molecules in ZINC, we utilized the open-
source retrosynthesis tool, AiZynthFinder (Genheden et al.,
2020). We extracted one to three reaction routes for each
molecule, depending on the solvability of the routes. To re-
duce pre-training duration, we sampled 500,000 molecules
from ZINC-2m, generated their corresponding reactants,
and named this subset ZINC-500k. We then combined it
with the original ZINC-2m dataset for pre-training. In ad-
dition, we used of USPTO-30k dataset (Schneider et al.,
2016), which contains 30,000 pre-existing reaction data, to
validate ReaCTMask in various settings due to its smaller
size.

We evaluate our pre-trained model on the 8 commonly-
used datasets with several binary classification tasks from
MoleculeNet (Wu et al., 2018). For each dataset, We em-
ploy a single-layer MLP as the prediction head, and report
the test ROC-AUC’s based on the best validation scores.
Each experiment is repeated 10 times with different ran-
dom seeds to ensure robustness. Furthermore, to obtain
deeper insights into whether the reaction context improves
the pre-training of the model, we conduct extensive probing
experiments: specifically, we freeze the parameters of the
graph transformer and train only the prediction head.

Model and Training Configuration. We adopt the
GraphGPS (Rampášek et al., 2022) model with the Lapla-
cian positional encoder (LapPE), and random-walk struc-
tural encoder (RWSE) (Dwivedi et al., 2021). Our model
consists of five GPS layers, each with a hidden dimension
of 300. Additionally, we construct a reaction positional
encoder before the GPS block, which is described in eq. (8).
We set the sampling ratio of motifs to 0.3, and the masking
ratio of nodes within a motif to be 0.5. See Figure 3 and
Figure 4 for more details on how performance changes with
different sampling ratios and motif masking ratios.

Figure 3. Average ROC-AUC with different atom masking ratio
within motifs

Figure 4. Average ROC-AUC with different motif sampling ratio

In the pre-training phase, we set the total number of epochs
to 60 and the batch size to 128, using the Adam optimizer
with a learning rate of 0.001. Pre-training is performed on
an NVIDIA A6000 GPU, with each epoch taking approxi-
mately 30 minutes on ZINC-2m+ZINC500k.
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Table 1. Binary classification over MoleculeNet: ROC-AUC; bold: best, underline: second best

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average
Num. of Tasks 12 617 27 2 17 1 1 1

No pre-train (GINE) 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 58.4 (6.4) 70.7 (1.8) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 67.15

ContextPred (Hu et al., 2020) 73.6 (0.3) 62.6 (0.6) 59.7 (1.8) 74.0 (3.4) 72.5 (1.5) 75.6 (1.0) 70.6 (1.5) 78.8 (1.2) 70.93
GraphCL (You et al., 2020) 75.1 (0.7) 63.0 (0.4) 59.8 (1.3) 77.5 (3.8) 76.4 (0.4) 75.1 (0.7) 67.8 (2.4) 74.6 (2.1) 71.16
JOAO (You et al., 2021) 74.8 (0.6) 62.8 (0.7) 60.4 (1.5) 66.6 (3.1) 76.6 (1.7) 76.9 (0.7) 66.4 (1.0) 73.2 (1.6) 69.71
GraphLoG (Xu et al., 2021) 75.0 (0.6) 63.4 (0.6) 59.6 (1.9) 75.7 (2.4) 75.5 (1.6) 76.1 (0.8) 68.7 (1.6) 78.6 (1.0) 71.56
MGSSL (Zhang et al., 2021) 75.2 (0.6) 63.3 (0.5) 61.6 (1.0) 77.1 (4.5) 77.6 (0.4) 75.8 (0.4) 68.8 (0.6) 78.8 (0.9) 72.28
SimGRACE (Xia et al., 2022) 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 75.4 (1.3) 75.0 (0.6) 71.2 (1.1) 74.9 (2.0) 71.15
GraphMVP (Liu et al., 2022) 74.9 (0.8) 63.1 (0.2) 60.2 (1.1) 79.1 (2.8) 77.7 (0.6) 76.0 (0.1) 70.8 (0.5) 79.3 (1.5) 72.64
GraphMAE (Hou et al., 2022) 75.2 (0.9) 63.6 (0.3) 60.5 (1.2) 76.5 (3.0) 76.4 (2.0) 76.8 (0.6) 71.2 (1.0) 78.2 (1.5) 72.30
Mole-BERT (MAM) (Xia et al., 2023) 76.2 (0.5) 63.9 (0.3) 61.4 (1.9) 75.1 (3.0) 77.4 (2.1) 77.5 (1.0) 66.8 (1.5) 78.9 (1.1) 72.16
Mole-BERT (TMCL) 74.9 (0.7) 63.2 (0.7) 59.6 (1.4) 77.0 (4.2) 77.2 (0.3) 75.3 (1.1) 67.6 (1.3) 75.1 (1.2) 71.24
Mole-BERT (MAM+TMCL) 76.8 (0.5) 64.3 (0.2) 62.8 (1.1) 78.9 (3.0) 78.6 (1.8) 78.2 (0.8) 71.9 (1.6) 80.8 (1.4) 74.04

No pre-train (GPS) 70.0 (0.5) 57.5 (0.7) 57.1 (1.1) 65.7 (2.8) 66.5 (1.9) 66.2 (0.6) 56.7 (1.9) 69.9 (2.7) 63.8

ReaCTMask (ours) 77.5 (0.4) 67.3 (0.3) 59.4 (0.3) 78.2 (1.5) 76.7 (1.3) 76.8 (0.1) 68.9 (0.7) 82.5 (0.7) 73.4

Table 2. Ablation Study - Finetuning: Pre-trained on ZINC

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

Node-level mask w/o reaction 74.3 (1.1) 64.8 (0.5) 59.5 (1.1) 70.8 (3.2) 73.5 (1.0) 76.6 (0.5) 67.7 (1.3) 82.6 (1.2) 71.2
Node-level mask w reaction 75.4 (1.0) 65.1 (0.7) 58.9 (0.9) 75.4 (2.0) 74.0 (2.0) 76.5 (1.0) 69.4 (1.8) 82.2 (1.4) 72.1

Motif-level mask w/o reaction 76.5 (0.9) 67.1 (0.6) 59.0 (0.7) 71.0 (0.8) 77.3 (1.3) 76.1 (1.1) 68.5 (0.9) 82.2 (1.1) 72.2
Motif-level mask w reaction (ReaCTMask) 77.5 (0.4) 67.3 (0.3) 59.4 (0.3) 78.2 (1.5) 76.7 (1.3) 76.8 (0.1) 68.9 (0.7) 82.5 (0.7) 73.4

MolR pre-trained on ZINC500k 71.4 (0.6) 61.1 (0.5) 57.7 (2.1) 63.1 (4.7) 71.8 (1.5) 72.0 (1.1) 63.4 (1.5) 77.8 (1.8) 67.3
ReaCTMask pre-trained on ZINC500k 76.3 (0.5) 66.3 (0.5) 57.6 (1.7) 75.7 (3.3) 76.3 (1.3) 76.0 (0.4) 68.5 (0.5) 81.2 (1.2) 72.2

In the finetuning and probing phase on downstream tasks,
we set the batch size to 32 and use the scaffold splitting
(Ramsundar et al., 2019) to partition our train/validation/test
datasets, using the 8:1:1 ratio.

4.2. Results and Analysis

We present the finetuning results of molecular property pre-
diction in Table 1, comparing with other renowned previous
works, based on the statistics presented in Mole-BERT (Xia
et al., 2023). Note that we do not conduct probing exper-
iments for other methods. Beyond the substantial compu-
tational resources and time required for reimplementation
and tuning, our decision is also based on the observation
that fine-tuning and probing often reflect similar trends, see
Figures 3 and 4. For ablation studies, we also evaluate the
performance of our method under different settings, see
Table 2, Table 3, and 4. We have the following observations:

Observation 1: Reaction context improves model per-
formance. In Table 1, ReaCTMask achieves comparable
or superior performance. In Table 2, we observe that the
model’s performance has improved compared to the one
pre-trained without incorporating reaction context. Since
other methods utilize GINE as their backbone model while
we employ GraphGPS, we also present binary classification
results for both GINE and GraphGPS without pre-training.

Notably, our method demonstrates a more significant im-
provement over its respective backbone model. Moreover,
in the ClinTox dataset, the performance increases signifi-
cantly when the reaction context is included in the training
data. We can see this more clearly from the probing results
in Table 3 and Table 4, where in both pre-training datasets,
the reaction context enhances the model’s ability to extract
more useful features: across the 8 downstream tasks, our
method boosts the performance of the majority of tasks
while having minimal impact on the remaining tasks.

Observation 2: Motif-label prediction provides a more
robust encoding of chemical equations. In Tables 2 and
Table 3, we compare ReaCTMask to node-label prediction
using the same mask rate for atoms (0.3× 0.5 = 0.15). The
results show that integrating reaction context significantly
enhances model performance. However, motif-level predic-
tion consistently outperforms node-attribute masking. This
likely occurs because motifs encapsulate richer chemical
information compared to the limited atomic types consid-
ered in node-attribute masking, leading to more effective
and comprehensive molecular representations.

In addition, we also compare ReaCTMask with another
reaction-based pretraining method, MolR (Wang et al.,
2022), in Table 2 and Table 4. Recall that MolR explic-
itly hypothesizes the equivalence relation on the graph-level
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Table 3. Ablation Study - Linear probing: Pre-trained on ZINC

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

Node-level mask w/o reaction 67.9 (0.2) 58.9 (0.1) 51.8 (0.1) 56.8 (0.7) 62.5 (0.6) 63.0 (0.3) 50.2 (0.3) 65.0 (0.6) 59.5
Node-level mask w reaction 71.3 (0.1) 63.1 (0.2) 53.0 (0.3) 65.5 (0.6) 74.9 (0.2) 72.2 (0.1) 55.9 (0.2) 75.4 (0.2) 66.4

Motif-level mask w/o reaction 71.8 (0.1) 63.9 (0.1) 59.8 (1.1) 67.2 (0.1) 75.0 (0.2) 75.0 (0.2) 66.6 (0.2) 80.7 (0.1) 69.8
Motif-level mask w reaction (ReaCTMask) 72.9 (0.1) 64.1 (0.2) 57.2 (0.4) 75.6 (0.5) 77.6 (0.4) 74.4 (0.2) 65.6 (0.2) 80.1 (0.2) 71.0

Table 4. Ablation Study - Linear probing: GPS-based model pretrained on USPTO-30K

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

MolR 63.1 (0.1) 52.8 (0.1) 52.9 (0.3) 53.5 (0.1) 56.4 (0.2) 58.1 (0.5) 48.8 (0.2) 63.2 (0.1) 56.1
Motif-level mask + MolR 65.2 (0.3) 58.2 (0.2) 56.6 (0.1) 59.0 (0.5) 65.7 (0.2) 72.1 (0.2) 59.6 (0.3) 74.8 (0.5) 63.9

Motif-level mask w/o reaction 71.4 (0.1) 62.3 (0.1) 60.6 (0.3) 60.8 (0.4) 76.0 (0.2) 69.7 (0.1) 61.9 (0.2) 76.5 (0.3) 67.4
Motif-level mask w reaction (ReaCTMask) 71.1 (0.2) 61.3 (0.2) 60.1 (0.2) 69.5 (0.6) 82.1 (0.4) 70.0 (0.3) 63.7 (0.2) 73.0 (0.2) 68.8

embeddings between reactants and products, as the two
views of the same instance. We implement MolR in our
own settings, and the results indicate that ReaCTMask is
consistently better.

5. Conclusion
In this paper, we introduce a novel approach, ReaCTMask,
which leverages reaction context for self-supervised learn-
ing in molecular graphs. By exploiting the global attention
mechanism and motif-masking strategies, we enable the
model to effectively learn from reaction graphs consisting
of disjoint reactants and products during the pre-training
phase. Our experiments demonstrate significant improve-
ments in molecular property prediction tasks, achieving
comparable performance to existing methods. Moreover,
the results indicate that masked motif prediction is more
favorable than other pre-training tasks used in the reaction
context. This study not only highlights the potential of using
reaction context in pre-training graph neural networks but
also opens new possibilities for joint pre-training schemes
for any closely related disjoint graphs.

Future work includes incorporating the proposed method
with other empirically validated pre-training techniques,
such as the re-mask encoder of node embeddings (Hou et al.,
2022) and the first-layer embedding prediction scheme (Liu
et al., 2023b). We believe that integrating these techniques
could further enhance our method’s performance.
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