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ABSTRACT

Communication is important in many multi-agent reinforcement learning (MARL)
problems for agents to share information and make good decisions. However, when
deploying trained communicative agents in a real-world application where noise
and potential attackers exist, the safety of communication-based policies becomes
a severe issue that is underexplored. Specifically, if communication messages are
manipulated by malicious attackers, agents relying on untrustworthy communica-
tion may take unsafe actions that lead to catastrophic consequences. Therefore,
it is crucial to ensure that agents will not be misled by corrupted communication,
while still benefiting from benign communication. In this work, we consider an
environment with N agents, where the attacker may arbitrarily change the commu-
nication from any C < N−1

2 agents to a victim agent. For this strong threat model,
we propose a certifiable defense by constructing a message-ensemble policy that
aggregates multiple randomly ablated message sets. Theoretical analysis shows
that this message-ensemble policy can utilize benign communication while being
certifiably robust to adversarial communication, regardless of the attacking algo-
rithm. Experiments in multiple environments verify that our defense significantly
improves the robustness of trained policies against various types of attacks.

1 INTRODUCTION

Neural network-based multi-agent reinforcement learning (MARL) has achieved significant advances
in many real-world applications, such as autonomous driving (Shalev-Shwartz et al., 2016; Sallab
et al., 2017). In a multi-agent system, especially in a cooperative game, communication usually plays
an important role. By feeding communication messages as additional inputs to the policy network,
each agent can obtain more information about the environment and other agents, and thus can learn
a better policy (Foerster et al., 2016; Hausknecht, 2016; Sukhbaatar et al., 2016). However, such
a communication-dependent policy may not make safe and robust decisions when communication
messages are perturbed or corrupted. For example, suppose an agent is trained in a cooperative
environment with benign communication, and it learns to trust all communication messages and
utilize them. But during test time, there exists a malicious attacker perturbing some communication
messages, such that this agent can be drastically misled by the false communication.

The robustness of policy against adversarial communication is crucial for the practical application of
MARL. For example, when several drones execute pre-trained policies and exchange information via
wireless communication, it is possible that messages get noisy in a hostile environment, or even some
malicious attacker eavesdrops on their communication and intentionally perturbs some messages to a
victim agent via cyber attacks. Moreover, even if the communication channel is protected by advanced
encryption algorithms, an attacker may also hack some agents and alter the messages before they
are sent out (e.g. hacking IoT devices that usually lack sufficient protection (Naik & Maral, 2017)).
Figure 1 shows an example of communication attacks, where the agents are trained with benign
communication, but attackers may perturb the communication during the test time. The attacker
may lure a well-trained agent to a dangerous location through malicious message propagation and

∗Part of this work was done when the first author was an intern at JPMorgan AI Research.

1



Published as a conference paper at ICLR 2023

Agent 2

Agent 3

Agent 4

Agent 5Agent 1

(a) Training time

Agent 2

Agent 3

Agent 4

Agent 5Agent 1(Victim)

“Gold at 
(3,-1)”

“Bomb at 
(3,-1)”

(3,-1)”(3,-1)”
“Bomb at 

Hack

Alter
“Gold at 

(b) Test time (in deployment)

Figure 1: An example of test-time communication attacks in a communicative MARL system. (a) During
training, agents are trained collaboratively in a safe environment, such as a simulated environment. (b) In
deployment, agents execute pre-trained policies in the real world, where malicious attackers may modify the
benign (green) messages into adversarial (red) signals to mislead some victim agent(s).

cause fatal damage. Although our paper focuses on adversarial perturbations of the communication
messages, it also includes unintentional perturbations, such as misinformation due to malfunctioning
sensors or communication failures; these natural perturbations are no worse than adversarial attacks.

Achieving high performance in MARL through inter-agent communication while being robust to
adversarial communication is a challenging problem due to the following reasons. Challenge I:
Communication attacks can be stealthy and strong. The attacker may construct a false communication
that is far from the original communication, but still semantically meaningful. In the example of
Figure 1b, the attacker alters “Bomb” to “Gold”, which can mislead the victim agent to the location
of a bomb. But the victim, without seeing the groundtruth, cannot see the maliciousness from the
message itself. Note that the widely-used ℓp threat model (Chakraborty et al., 2018) does not cover
this situation. Challenge II: The attacker can even be adaptive to the victim agent and significantly
reduce the victim’s total reward. For instance, for a victim agent who moves according to the average
of GPS coordinates sent by others, the attacker may learn to send extreme coordinates to influence
the average. Challenge III: There can be more than one attacker (or an attacker can perturb more
than one message at one step), such that they can collaborate to mislead a victim agent.

Although adversarial attacks and defenses have been extensively studied in supervised learning (Madry
et al., 2018; Zhang et al., 2019) and reinforcement learning (Zhang et al., 2020b; Sun et al., 2022),
there has been little discussion on the robustness issue against adversarial communication in MARL
problems. Some recent works (Blumenkamp & Prorok, 2020; Xue et al., 2022; Mitchell et al., 2020)
take the first step to investigate adversarial communications in MARL and propose several defending
methods. However, these empirical defenses do not fully address the aforementioned challenges, and
are not guaranteed to be robust, especially under adaptive attacks. In high-stakes applications, it is
also important to ensure robustness with theoretical guarantees and interpretations.

In this paper, we address all aforementioned challenges by proposing a certifiable defense named
Ablated Message Ensemble (AME), that can guarantee the performance of agents when a fraction
of communication messages get arbitrarily perturbed. Inspired by the ensemble methods which are
proved to be the optimal defense against poisoning attacks under the iid sample setting (Wang et al.,
2022), we propose to defend by ablation and ensemble of message sets, which tackles the challenging
interactive decision-making under partially observable environments with correlated message samples.
The main idea of AME is to make decisions based on multiple different subsets of communication
messages. Specifically, for a list of messages coming from different agents, we train a message-
ablation policy that takes in a subset of messages and outputs a base action. Then, we construct an
message-ensemble policy by aggregating multiple base actions coming from multiple ablated message
subsets. We show that when benign messages are able to reach some consensus, AME aggregates
the wisdom of benign messages and thus is resistant to adversarial perturbations, no matter how
strong the perturbation is. In other words, AME tolerates arbitrarily strong adversarial perturbations
as long as the majority of agents are benign and uniting. Levine & Feizi (2020) use a similar
randomized ablation idea to defend against ℓ0 attacks in image classification. However, they provide
high-probability guarantee for classification, which is not suitable for sequential decision-making
problems, as the guaranteed probability decreases when it propagates over timesteps.

Our contributions can be summarized as below:
(1) We formulate the problem of adversarial attacks and defenses in communicative MARL (CMARL).
(2) We propose a novel defense method, AME, that is certifiably robust against arbitrary perturbations
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of up to C < N−1
2 communications under mild conditions, where N is the number of agents.

(3) Experiment in four multi-agent environments shows that AME obtains significantly higher reward
than baseline methods under both non-adaptive and adaptive attackers.

2 COMMUNICATIVE MUTI-AGENT REINFORCEMENT LEARNING (CMARL)

Dec-POMDP Model. We consider a Decentralised Partially Observable Markov Decision Process
(Dec-POMDP) (Oliehoek, 2012; Oliehoek & Amato, 2015; Das et al., 2019) which is a multi-agent
generalization of the single-agent POMDP models. A Dec-POMDP can be modeled as a tuple
⟨D,S,AD,OD, O, P,R, γ, ρ0⟩. D = {1, · · · , N} is the set of N agents. S is the underlying state
space. AD = ×i∈DAi is the joint action space. OD = ×i∈DOi is the joint observation space, with
O being the observation emission function. P : S × A1 × · · ·AN → ∆(S) is the state transition
function1. R : S ×A1 × · · ·AN → R is the shared reward function. γ is the shared discount factor,
and ρ0 is the initial state distribution.

Communication Policy ξ in Dec-POMDP. Due to the partial observability, communication among
agents is crucial for them to obtain high rewards. Consider a shared message spaceM, where a
message m ∈ M can be a scalar or a vector, e.g., signal of GPS coordinates. The communication
policy of agent i ∈ D, denoted as ξi, generates messages based on the agent’s observation and
interaction history. We use mi→j to denote the message sent from agent i to agent j ̸= i. In practice,
the communication policy can be hand-coded with domain knowledge, or learned with function
approximators. Note that our paper focuses on how to defend against adversarial perturbations of
existing communication, and our defense is independent of the underlying communication policy ξi.

Acting Policy π with Communication. The goal of each agent i ∈ D is to maximize the discounted
cumulative reward

∑∞
t=0 γ

tr(t) by learning an acting policy πi. When there exists communication,
the policy input contains both its own interaction history, denoted by τi ∈ Γi, and the communication
messages m:→i := {mj→i|1 ≤ j ≤ N, j ̸= i}. Similar to the communication policy ξ, we do not
make any assumption on how the acting policy π is formulated, as our defense mechanism introduced
later can be plugged into any policy learning procedure.

3 PROBLEM SETUP: COMMUNICATION ATTACKS IN CMARL

Communication attacks in MARL has recently attracted increasing attention (Blumenkamp & Prorok,
2020; Tu et al., 2021; Xue et al., 2022) with different focuses, as summarized in Section 5. In this
paper, we consider a practical and strong threat model where malicious attackers can arbitrarily
perturb a subset of communication messages during test time.

Formulation of Communication Attack: The Threat Model. During test time, agents execute
well-trained policies π1, · · · , πN . As shown in Figure 1b, the attacker may perturb communication
messages to mislead a specific victim agent. Without loss of generality, suppose i ∈ D is the victim
agent. For notation simplicity, we assume agent i receives messages from all other agents as is
common in practice, resulting in N − 1 communication messages in total. But our defense also
works for partically-connected communication graphs. We consider the sparse attack setup where up
to C messages can be arbitrarily perturbed at every step, among all N − 1 messages. Here C is a
reflection of the attacker’s attacking power. The victim agent has no knowledge of which messages
are adversarial. This type of attack is related to ℓ0 perturbations to the input (Levine & Feizi, 2020),
as detailed in Appendix C. We make the following mild assumption for the attacking power.
Assumption 3.1 (Attacking Power). An attacker can arbitrarily manipulate fewer than a half of the
communication messages, i.e., C < N−1

2 .

This is a realistic assumption, as it takes the attacker’s resources to hack or control each communi-
cation channel. It is less likely that an attacker can change the majority of communications among
agents without being detected. Note that this is a very strong threat model as the C attacked messages
can be arbitrarily perturbed based on the attacker’s attacking algorithm. Compared to the commonly
used ℓp attacks, the above threat model can work for broader applications, such as adding a patch to
an image, replacing a word in a sentence, and etc.

We do not make any assumption on what attack algorithm the attacker uses, i.e., how a message is
perturbed. That is, we aim to achieve generic and provable robustness under a wide range of practical

1∆(X ) denotes the space of probability distributions over space X .
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scenarios. In practice, we do not require the learner to know the exact C, and having an upper bound
of C suffices to obtain the guarantees we introduce in the next section.

4 PROVABLY ROBUST DEFENSE FOR CMARL

In this section, we present our defense algorithm, Ablated Message Ensemble (AME), against test-time
communication attacks in CMARL. We first introduce the algorithm design in Section 4.1, then
present the theoretical analysis in Section 4.2. Section 4.3 discusses an extension of AME.

4.1 ABLATED MESSAGE ENSEMBLE (AME)

Our goal is to learn and execute a robust policy for any agent in the environment, so that the agent
can perform well in both a non-adversarial environment and an adversarial environment. To ease the
illustration, we focus on robustifying an arbitrary agent i ∈ D, and the same defense is applicable
to all other agents. We omit the agent subscript i, and denote the agent’s observation space, action
space, and interaction history space as O, A, and Γ, respectively.

Let m ∈ MN−1 denote a set of N − 1 messages received by the agent. Then, we can build an
ablated message subset of m with k randomly selected messages, as defined below.
Definition 4.1 (k-Ablation Message Sample (k-Sample)). For a message set m ∈MN−1 and any
integer 1 ≤ k ≤ N − 1, define a k-ablation message sample (or k-sample for short), [m]k ∈Mk, as
a set of k randomly sampled messages from m. LetHk(m) be the collection of all unique k-samples
of m, and thus |Hk(m)| =

(
N−1
k

)
.

We propose Ablated Message Ensemble (AME), a generic defense framework that can be fused with
any policy learning algorithm. Motivated by the fact that the benign messages sent from other agents
usually contain overlapping information of the environment that may suggest similar decisions, the
main idea of AME is to make decisions based on the consensus of the benign messages. AME has two
phases: the training phase where agents are trained in a clean environment, and a testing/defending
phase where communications may be perturbed. Algorithm 1 Training Phase of AME

1: Input: ablation size k
2: Initialize π̂i for every agent i ∈ [N ].
3: repeat
4: for i = 1 to N do
5: Receive m:→i, oi and update history τi
6: Randomly sample k messages and

form a k-sample [m:→i]k
7: Take action ai ← π̂i(τi, [m:→i]k)
8: Update policy π̂i

9: end for
10: until end of training
11: Output: π̂i,∀i ∈ [N ]

Algorithm 2 Defending Phase of AME

1: Input: ablation size k; trained message-
ablation policy π̂i,∀i ∈ [N ],

2: repeat
3: for i = 1 to N do
4: Receive m:→i, oi and update history τi
5: Take ãi ← π̃i(τi,m:→i) as in Def. 4.2.
6: end for
7: until end of test

Training Phase with Message-Ablation Policy π̂
(Algorithm 1). During training time, the agent
learns a message-ablation policy π̂ : Γ×Mk →
A which maps its own interaction history τ and
a random k-sample [m]k ∼ Uniform(Hk(m)) to
an action, where Uniform(Hk(m)) is the uniform
distribution over all k-samples from the message
set m it receives. Here k is a user-specified hyper-
parameter selected to satisfy certain conditions, as
discussed in Section 4.2. The training objective is
to maximize the cumulative reward of π̂ based on
randomly sampled k-samples in a non-adversarial
environment. Any policy optimization algorithm
can be used for training. Although by ablating a
subset of messages, the message-ablation policy
may compromise some natural reward (which is
typical for robust training methods), it can sig-
nificantly enhance the robustness of agents when
attacks exist, with our design of test-time defense
mechanism introduced below.

Defending Phase with Message-Ensemble Pol-
icy π̃ (Algorithm 2). Once we obtain a reason-
able message-ablation policy π̂, we can execute it
with ablation and aggregation during test time to defend against adversarial communication. The
main idea is to collect all possible k-samples fromHk(m), and select an action voted by the majority
of those k-samples. Specifically, we construct a message-ensemble policy π̃ : Γ×MN−1 → A that
outputs an action by aggregating the base actions produced by π̂ on multiple k-samples (Line 5 in
Algorithm 2). The construction of the message-ensemble policy depends on whether the agent’s
action space A is discrete or continuous, which is given below by Definition 4.2.
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Definition 4.2 (Message-Ensemble Policy). For a message-ablation policy π̂ with observation history
τ and received message set m, define the message-ensemble policy π̃ as

π̃(τ,m) := argmaxa∈A
∑

[m]k∈Hk(m)
1[π̂(τ, [m]k) = a], if A is discrete, and (1)

π̃(τ,m) := Median{π̂(τ, [m]k) : [m]k ∈ Hk(m)}, if A is continuous. (2)

Therefore, the message-ensemble policy π̃ takes the action suggested by the consensus of all k-
samples (majority vote in a discrete action space, and coordinate-wise median for a continuous action
space). Different from model-ensemble methods (Kurutach et al., 2018; Harutyunyan et al., 2014)
that learn multiple network models, we use the ensemble of messages, and only train a single policy
network π̂. Therefore, the training process does not require extra computations. We will show in the
next section that, with some mild conditions, π̃ under adversarial communications works similarly as
the message-ablation policy π̂ under all-benign communications.

4.2 ROBUSTNESS CERTIFICATES OF AME

In this section, we theoretically analyze the robustness of AME. During test time, at any step, let τ be
the interaction history, mbenign be the unperturbed benign message set, and madv be the perturbed
message set. Note that mbenign and madv both have N − 1 messages while they differ by up to C
messages. With the above notation, we define a set of actions rendered by purely benign k-samples
in Definition 4.3. As the agent using a well-trained message-ablation policy is likely to take these
actions in a non-adversarial environment, they can be regarded as “good” actions to take.
Definition 4.3 (Benign Action Set Abenign). For the execution of the message-ablation policy π̂ at
any step, define Abenign ⊆ A as a set of actions that π̂ may select under benign k-samples.

Abenign := ∪[mbenign]k∈Hk(mbenign) {π̂(τ, [mbenign]k)} . (3)

Our robustness certificates are based on the intuition that the consensus of ablated messages is benign,
under the condition that a consensus exists among benign messages. Next, we present the action
certificates and reward certificates for discrete and continuous actions, respectively.

4.2.1 ROBUSTNESS CERTIFICATES FOR DISCRETE ACTION SPACE

We first characterize the condition for the existence of consensus. Intuitively, the following condition
ensures that the action resulted by majority vote stands for the consensus of benign messages.
Condition 4.4 (Dominating Benign Votes). Denote the highest number of votes among all actions
given message set m as umax(m) := maxa∈A

∑
[m]k∈Hk(m) 1[π̂(τ, [m]k) = a] satisfies

umax(m) >

(
N − 1

k

)
−

(
N − 1− C

k

)
=: uadv, (4)

where uadv is the number of votes that adversarial messages may affect (the number of k-samples
that contain at least one adversarial message).

Remarks. (1) This condition ensures the consensus has more votes than the votes that adversarial
messages are involved in. Therefore, when π̃ takes an action, there must exist some purely-benign
k-samples voting for this action. (2) This condition is easy to satisfy when C ≪ N as

(
N−1
k

)
≈(

N−1−C
k

)
. (3) This condition can be easily checked during execution given an upper bound of C.

The following theorem suggests that under the above condition. the ensemble policy π̃ always takes
benign actions suggested by benign message combinations, no matter whether attacks exist.
Theorem 4.5 (Action Certificate for Discrete Action Space). For a perturbed message set madv, if
Condition 4.4 holds, the ensemble policy π̃ in Equation (1) produces benign actions under madv:

ã = π̃(τ,madv) ∈ Abenign. (5)
Then, we can further derive a reward certificate as introduced below.

Reward Certificate for Discrete Action Space When Condition 4.4 holds, the message-ensemble
policy π̃’s action in every step falls into a benign action set, and thus its cumulative reward under
adversarial communications is also guaranteed to be no lower than the worst natural reward the
base policy π̂ can get under random benign message subsets. Therefore, adversarial communication
under Assumption 3.1 cannot drop the reward of any agent trained with AME. The formal reward
certificate is shown in Corollary C.1 in Appendix C.1.
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4.2.2 ROBUSTNESS CERTIFICATES FOR CONTINUOUS ACTION SPACE

For a continuous action space, the following condition is needed, which can always be satisfied by
the proper selection of ablation size k.
Condition 4.6 (Dominating Benign Samples). The ablation size k of AME satisfies(

N − 1− C

k

)
>

1

2

(
N − 1

k

)
. (6)

Remarks. (1) For the message set madv that has up to C adversarial messages, this condition implies
that among all k-samples from madv, there are more purely benign k-samples than k-samples that
contain adversarial messages. (2) Under Assumption 3.1, this condition always has solutions for k.
(3) With an upper bound of C, one can choose k as the largest solution to Equation (6).
Theorem 4.7 (Action Certificate for Continuous Action Space). Under Condition 4.6, the action
ã = π̃(τ,madv) generated by the ensemble policy π̃ defined in Equation (2) satisfies

ã ∈ Range(Abenign) := {a : ∀1 ≤ l ≤ L,∃a, a ∈ Abenign s.t al ≤ al ≤ al}. (7)
Theoretically, Range(Abenign) is a set of actions that are coordinate-wise bounded by base actions
resulted from purely benign k-samples. In many practical problems, it is reasonable to assume
that actions in Range(Abenign) are relatively safe, especially when benign actions in Abenign are
concentrated. For instance, if benign message combinations have suggested driving at 40 mph or
driving at 50 mph, then driving at 45 mph is also safe. More interpretations are in Appendix C.2. The
above guarantee also leads to a bounded gap between natural reward and attacked reward.

Reward Certificate for Continuous Action Space. We can show that the difference between the
cumulative reward of the message-ensemble policy π̃ under adversarial communications and the
natural reward of π̂ is no larger than ϵR+γVmaxϵP

1−γ , where Vmax is the maximal value of the agent,
and ϵR, ϵP are constants measuring the smoothness of environment dynamics wrt Range(Abenign),
formally defined in Appendix C.2. When the environment dynamics are smooth (agents do not
immediately fail due to a single mistake) and the benign messages achieve consensus (Range(Abenign)
is concentrated), then ϵR and ϵP are small, and π̃ does not suffer from drastic reward drop.

4.2.3 INTERPRETATION OF CONDITIONS AND HYPERPARAMETER

How to Select Ablation Size k: Trade-off between Performance and Robustness. The ablation
size k is an important hyperparameter for the guarantees to hold. In general, a smaller k can tolerate
a larger C, and a smaller C can be defended by a wider range of k, as theoretically analyzed in
Appendix F. However, a smaller k restricts the power of information sharing, as the message-ablation
policy can access fewer messages in one step. Therefore, the value of k is related to the intrinsic
trade-off between robustness and natural performance (Tsipras et al., 2019; Zhang et al., 2019), which
suggests that seeking high natural performance may hurt robustness, and achieving strong robustness
may sacrifice some natural performance. In practice, one can also train several message-ablation
policies with different k’s during training, and later adaptively select a message-ablation policy to
construct a message-ensemble policy during execution (decrease k if higher robustness is needed).

Worst-Case Adversaries. Condition 4.4 and Condition 4.6 consider the worst-case scenario when
the adversarial messages collaborate to dominate the consensus, which is intrinsically harsh for the
victim — if the victim fails to identify or filter out the adversarial messages, its performance can be
arbitrarily bad in the worst case. In contrast, although AME sacrifices some natural performance, its
worst-case performance can be guaranteed. When these conditions do not hold, our algorithm can
still achieve strong robustness under sub-optimal attacks, as verified in experiments.

Information Redundancy Leads to Higher Robustness. Intuitively, AME prefers benign messages
to contain certain amount of redundant information (consensus), which is similar to a multi-factor
authentication in security-critical applications. This allows AME to tolerate arbitrary perturbations
without assumptions such as a bounded ℓp-norm. More importantly, AME provides a way to establish
and utilize such consensus, by explicitly setting k and checking the required conditions.

4.3 SCALING UP: ENSEMBLE WITH PARTIAL SAMPLES

So far we have discussed the proposed AME defense and the constructed ensemble policy that
aggregates all

(
N−1
k

)
number of k-samples out of N − 1 messages. However, if N is large, sampling

all
(
N−1
k

)
combinations of message subsets could be expensive. In this case, a smaller number of
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k-samples can be used. That is, given a sample size 0 < D ≤
(
N−1
k

)
, we randomly select D number

of k-samples from Hk(m) (without replacement), and then we aggregate the message-ablation
policy’s decisions on selected k-samples. In this way, we define a partial-sample version of the
ensemble policy, namely D-ensemble policy π̃D. In this case, the robustness guarantee holds with
high probability that increases as D gets larger. For example, in a continuous action space, we show
that Equation (7) holds with probability at least

pD =

∑D
j=⌊D

2 ⌋+1

(
n2

j

)(
n1−n2

D−j

)(
n1

D

) . (8)

Formal definitions and full theoretical analysis of this partial-sample variant of AME are in Ap-
pendix C.3. Our experiments show that AME works well with a relatively small D.

5 RELATED WORK

Certifiable Defenses. For more reliable application of deep learning, many approaches have been
developed to certify the performance of neural networks, including semidefinite programming-based
defenses (Raghunathan et al., 2018a;b), convex relaxation of neural networks (Gowal et al., 2019;
Zhang et al., 2018; Wong & Kolter, 2018; Zhang et al., 2020a; Gowal et al., 2018), randomized
smoothing of a classifier (Cohen et al., 2019; Hayes, 2020), etc. Most existing works focus on the ℓp
threat model where the perturbation is small in ℓp norm, while we consider a different and practical
threat model as discussed in Section 2.

Adversarial Robustness of RL Agents. Appendix A introduces existing adversarial attacks on
single-agent and multi-agent problems. To improve the robustness of agents, adversarial training
(i.e., introducing adversarial agents to the system during training (Pinto et al., 2017; Phan et al.,
2021; Zhang et al., 2021; Sun et al., 2022)) and network regularization (Zhang et al., 2020b; Shen
et al., 2020; Oikarinen et al., 2021) are empirically shown to be effective under ℓp attacks, although
such robustness is not theoretically guaranteed. In an effort to certify RL agents’ robustness, some
approaches (Lütjens et al., 2020; Zhang et al., 2020b; Oikarinen et al., 2021; Fischer et al., 2019)
apply network certification tools to bound the Q networks. Kumar et al. (2021) and Wu et al. (2022)
apply randomized smoothing (Cohen et al., 2019) to RL for provable robustness.

Adversarial Attacks and Defenses in CMARL. Appendix A discusses literature of learning effective
communication among agents (Foerster et al., 2016; Sukhbaatar et al., 2016; Das et al., 2019). Note
that the focus of this paper is defending against adversarial perturbations on existing communications,
which is orthogonal to the concrete communication strategy. Recently, the existence of adversarial
communication in MARL has attracted increasing attention. Blumenkamp & Prorok (2020) show
that in a cooperative game, communication policies of some self-interest agents can hurt other
agents’ performance. To achieve robust communication, Mitchell et al. (2020) adopt a Gaussian
Process-based probabilistic model to compute the posterior probabilities that whether each partner
is truthful. Tu et al. (2021) investigate the vulnerability of multi-agent autonomous systems against
ℓp communication attacks on vision tasks. Xue et al. (2022) propose to learn an anomaly detector
and a message reconstructor to recover the true messages, and train two populations of defenders
and attackers to improve the generalizability of defense. But in our formulation, the attacker may
arbitrarily replace the messages so that recovering the true message is infeasible.

To the best of our knowledge, our AME is the first certifiable defense in MARL against communication
attacks. Moreover, we consider a strong threat model where up to half of the communication messages
can be arbitrarily corrupted, capturing many realistic types of attacks.

6 EMPIRICAL STUDY

In this section, we verify the robustness of our AME in multiple different CMARL environments
against various communication attack algorithms. Then, we conduct hyperparameter tests for the
ablation size k and the sample size D (for the variant of AME introduced in Section 4.3).

Environments. To evaluate the effectiveness of AME, we consider the following four environments
that cover various environment and communication settings.
• FoodCollector (discrete/continuous action, pre-defined communication): N = 9 agents with
different colors search for foods with the same colors. Agents use their limited-range sensors to
observe the surrounding objects, while communicating with each other to share their recently observed
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food locations. The action space can be either discrete (9 moving directions and 1 no-move action),
or continuous (2-dimensional vector denoting acceleration). Agents are penalized for having leftover
foods at every step, so they seek to find all foods as fast as possible.
• InventoryManager (continuous action, pre-defined communication): N = 10 cooperative distributor
agents carry inventory for 3 products. There are 300 buyers sharing an underlying demand distribution.
At every step, each buyer requests products from a randomly selected distributor. Then, each
distributor agent observes random demand requests, takes restocking actions to adjust its own
inventory, and communicates with others by sending its demand observations. Distributors are
penalized for mismatches between their inventory and the demands.
• MARL-MNIST (discrete action, learned communication)(Mousavi et al., 2019): N = 9 agents
aim to classify images in MNIST within a limited time horizon. At every step, each agent observes
a patch of the image, and can take an action to move to an adjacent patch. Agents are allowed to
exchange information (encoded local beliefs) with other agents to update their own beliefs.
• Traffic Junction (discrete action, learned communication) (Sukhbaatar et al., 2016): N = 10 cars
move along potentially intersecting routes on one or more road junctions. Each car has a limited
visibility but is free to communicate with all other cars. The goal is pass the road without collision.
The detailed description and policy implementation for each task are in Appendix E.1 and E.2.

Baselines. Based on the same policy learning paradigm for each environment, we compare our AME
with two defense baselines: (1) (Vanilla): vanilla training without defense, which learns a policy
based on all benign messages. (2) (AT) adversarial training as in Zhang et al. (2021), which alternately
trains an adaptive RL attacker and an agent. During training and defending, we set the ablation size
AME as k = 2, the largest solution to Equation (6) for C = 2. For AT, we train the agent against
C = 2 learned adversaries. More implementation details are provided in Appendix E.2.

Evaluation Metrics. To evaluate the effectiveness of our defense strategy, we test the performance
of the trained policies under no attack and under various values of C (for simplicity, we refer to C as
the number of adversaries). Different from previous work (Blumenkamp & Prorok, 2020) where the
adversarial agent disrupts all the other agents, we consider the case where the attacker deliberately
misleads a selected victim, which could evaluate the robustness of the victim under the harshest
attacks. We report the victim’s local reward under the following two types of attack methods:
(1) Heuristic attack that perturbs messages based on heuristics. In FoodCollector, MARL-MNIST and
Traffic Junction, we consider randomly generated messages within the valid range of communication
messages. Note that this is already a strong attack since a random message could be arbitrarily far
from the original message. For InventoryManager where messages have clear physical meanings
(demand of buyers), we consider 3 realistic attacks: Perm-Attack, Swap-Attack, Flip-Attack, which
permute, swap or flip the demand observations, respectively, as detailed in Appendix E.2.2.
(2) Learned adaptive attack that learns the strongest/worst adversarial communication with an RL
algorithm to minimize the victim’s reward (a white-box attacker which knows the victim’s reward).
The learned attack can strategically mislead the victim. As shown in prior works (Zhang et al., 2020b;
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Figure 2: Rewards of our AME and baselines in all environments, under no attacker and varying numbers of
adversaries for adaptive and various non-adaptive attacks. The dashed red lines stand for the average performance
of a non-communicative agent. Results are averaged over 5 random seeds. Our AME outperforms all baseline
methods in all tasks, and stays robust for varying number of adversaries (denoted by C).
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2021; Sun et al., 2022), the theoretically optimal attack (which minimizes the victim’s reward) can be
formed as an RL problem and learned by RL algorithms. Therefore, we can regard this attack as a
worst-case attack for the victim agents. More details are in Appendix E.2.

Experiment Results. The major results are shown in Figure 2, where we present the discrete-action
FoodCollector, and use Swap-Attack as the heuristic attack for InventoryManager. More results
including continuous-action FoodCollector and other heuristic attacks for InventoryManager are
put in Appendix E.3. We can see that the rewards of Vanilla and AT drastically drop under attacks.
Under strong adaptive attackers, Vanilla and AT sometimes perform worse than a non-communicative
agent shown by dashed red lines, which suggests that communication can be a double-edged sword.
Although AT is usually effective for ℓp attacks (Zhang et al., 2021), we find that AT does not achieve
better robustness than Vanilla, since it can not adapt to arbitrary perturbations to several messages.
(More analysis of AT is in Appendix E.3.5.) In contrast, AME can utilize benign communication well
while being robust to adversarial communication.
We use k = 2 for our AME, which in theory provides performance guarantees against up to C = 2
adversaries for N = 9 and N = 10. We can see that the reward of AME under C = 1 or C = 2 is
similar to its reward under no attack, matching our theoretical analysis. Even under 3 adversaries
where the theoretical guarantees no longer hold, AME still obtains superior performance compared to
Vanilla and AT. Therefore, AME makes agents robust under varying numbers of adversaries.
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Figure 3: Natural and robust performance of AME with
various values of (left) ablation size k and (right) sample
size D, in discrete-action FoodCollector under C = 2.

Discussion on Ablation Size k We demon-
strate AME’s natural reward and attacked reward
in discrete-action FoodCollector under C = 2
adversaries with all possible values of k ranging
from 1 to N − 1 in Figure 3(left). Results in
other environments are similar and are put in
Appendix E.3.4. The green curve shows that the
natural performance of AME increases as k gets
larger, where k = 1 is the most conservative
version of AME, and k = N − 1 degenerates to
the vanilla policy without message ablation. It
is intuitive because a larger k allows the agent to gather more information from others. Although
a larger k is beneficial in a clean environment, gathering information without defense makes the
agent more vulnerable to communication attacks. The red and blue curves show that the reward of
agents decreases under attacks when k gets larger, especially when attacks are adaptive. Therefore,
increasing ablation size k trades off robustness for natural performance, matching the analysis in
Section 4.2.3. As the largest solution to Equation (6) in Condition 4.6, ablation size k = 2 achieves a
good balance between performance and robustness. Even when k > 2 which breaks Condition 4.6,
AME is still more robust than baselines, showing the flexibility of AME.

Discussion on for Sample Size D We evaluate the partial-sample variant of AME introduced in
Section 4.3 with D varying from

(
N−1
k

)
(ensemble of all message combinations) to 1 (randomly take

one k-sample), under k = 2 and C = 2. Figure 3(right) demonstrates the performance of different
D’s in discrete-action FoodCollector, and Appendix E.3 shows results in other environments. As D
goes down, AME obtains lower reward under attackers, but it is still significantly more robust than
baseline methods. Note that D = 1 is equivalent to executing the message-ablation policy without
ensemble, which is robust to heuristic attacks but less robust to adaptive attacks than the original
AME, verifying the effectiveness of message ensemble.

7 CONCLUSION AND DISCUSSION

This paper proposes a defense framework AME, which is certifiably robust against multiple arbitrarily
perturbed adversarial communication messages, for any existing communication protocol. Our pro-
posed ablation and ensemble method can be extended to robustify other decision makers which takes
in multiple possibly-untrustworthy information sources. The limitation of AME is the requirement of
several conditions. Although these conditions can be quantified and checked in practice, our future
work aims to relax these conditions, or to learn a communication policy satisfying these conditions.
AME utilizes the information redundancy of communication, which can be achieved by the learning
of a communication policy in many tasks, as an extension of the current method.
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8 REPRODUCIBILITY STATEMENT

Our implementation of the AME algorithm and the FoodCollector environment are available at
https://github.com/umd-huang-lab/cmarl ame.git.
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Appendix: Certifiably Robust Policy Learning against Adversarial
Multi-Agent Communication

A ADDITIONAL RELATED WORK

Communication in MARL Communication is crucial in solving collaborative MARL problems.
There are many existing studies learning communication protocols across multiple agents. Foerster
et al. (2016) are the first to learn differentiable communication protocols that is end-to-end trainable
across agents. Another work by Sukhbaatar et al. (2016) proposes an efficient permutation-invariant
centralized learning algorithm which learns a large feed-forward neural network to map inputs
of all agents to their actions. Attention mechanisms are also proven to be effective in learning
communication (Jiang & Lu, 2018; Rangwala & Williams, 2020). Some recent works (Yuan et al.,
2022; Kim et al., 2021) propose new communication schemes that models other agents’ actions
or intentions. It is also important to communicate selectively, since some communication may be
less informative or unnecessarily expensive. To tackle this challenge, Das et al. (2019) propose an
attention mechanism for agents to adaptively select which other agents to send messages to. Liu et al.
(2020) introduce a handshaking procedure so that the agents communicate only when needed.
This paper proposes a certifiably robust algorithm against perturbations on communications, which
is orthogonal to the concrete communication strategy. Our AME can be combined with the above
communication MARL methods to improve their robustness.

Other Attacks in RL and MARL Adversarial attacks and defenses in RL systems have recently
attracted more and more attention, and are considered in many different scenarios. The majority
of related work on adversarial RL focuses on directly attacking a victim by perturbing its observa-
tions (Huang et al., 2017; Oikarinen et al., 2021; Zhang et al., 2020b; Sun et al., 2022; Korkmaz,
2021; 2022; 2023; Liang et al., 2022) or actions (Tessler et al., 2019; Pinto et al., 2017). However,
an attacker may not have direct access to the specific victim’s observation or action. In this case,
indirect attacks via other agents can be an alternative. Gleave et al. (2020); Liu et al. (2022) propose
to attack the victim by changing the other agent’s actions. Therefore, even if the victim agent has
well-protected sensors, the attacker can still influence it by manipulating other under-protected agents.
But the intermediary agent whose actions are altered will obtain sub-optimal reward, which makes the
attack noticeable and less stealthy. In contrast, we consider the scenario where an attacker alters the
communication messages sent from some other agents to the victim without changing the behaviors
of these agents. In this case, it is relatively hard for the victim to identify the attacks.
Training-time attacks, or poisoning (Behzadan & Munir, 2017; Huang & Zhu, 2019; Rakhsha et al.,
2020; Sun et al., 2021) propose to manipulate the training data such that the agent learns a bad or
target policy, different from evasion attacks that deprave a well-trained policy. Investigation on how
training-time communication perturbations influence the learned policies would be an interesting
future direction.

B ALGORITHM PSEUDOCODE

Algorithm 3 and Algorithm 4 demonstrate the procedures of AME in training and defending phases,
respectively.

C ADDITIONAL THEORETICAL DEFINITIONS AND ANALYSIS

Relation between Communication Attack and ℓ0 Observation Attack The communication
threat model described in Section 3 is analogous to a constrained ℓ0 attack on policy inputs. When
agent i is attacked, the input space of its acting policy πi is Xi := Γi ×MN−1. Therefore, when
C communication messages are corrupted, the original input xi gets perturbed to x̃i. Let d be the
dimension of a communication message, then xi and x̃i differ by up to dC dimensions, which is
similar to an ℓ0 attack constrained in certain dimensions.
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Algorithm 3 Training Phase of AME

1: Input: ablation size k
2: Initialize π̂i for every agent i ∈ [N ].
3: repeat
4: for i = 1 to N do
5: Receive a list of messages m:→i, get local observation oi and update interaction history τi
6: Randomly sample [m:→i]k ∼ Uniform(Hk(m:→i))
7: Take action based on τi and the k-sample [m:→i]k, i.e., ai ← π̂i(τi, [m:→i]k)
8: Update the replay buffer and policy π̂i

9: end for
10: until end of training
11: Output: message-ablation policy π̂i,∀i ∈ [N ]

Algorithm 4 Defending Phase of AME

1: Input: ablation size k; trained message-ablation policy π̂i,∀i ∈ [N ],
2: repeat
3: for i = 1 to N do
4: Receive a list of messages m:→i with at most C malicious messages, get local observation

oi and update interaction history τi
5: Take ãi ← π̃i(τi,m:→i), where π̃i is the message-ensemble policy defined with π̂ by

Equation (1) for discrete Ai, and Equation (2) for continuous Ai

6: end for
7: until end of test

C.1 ADDITIONAL ANALYSIS OF AME IN DISCRETE ACTION SPACE

Reward Certificate Theorem 4.5 justifies that under sufficient majority votes, the message-
ensemble policy π̃ ignores the malicious messages in madv and executes a benign action that
is suggested by some benign message combinations, even when the malicious messages are not
identified. It is important to note that, when the message-ensemble policy π̃ selects an action ã, there
must exist at least one purely benign k-sample that let the message-ablation policy π̂ produce ã.
Therefore, as long as π̂ can obtain high reward with randomly selected benign k-samples, π̃ can also
obtain high reward with ablated adversarial communication due to its design.

Specifically, we consider a specific agent with message-ablation policy π̂ and message-ensemble
policy π̃ (suppose other agents are executing fixed policies). Let ν :MN−1 →MN−1 be an attack
algorithm that perturbs at most C messages in a message set. Let ζ ∼ Z(P, π̂) be a trajectory of
policy π̂ under no attack, i.e., ζ = (o(0),m(0), a(0), r(0), o(1),m(1), a(0), r(0), · · · ). (Recall that a
message-ablation policy π̂ takes in a random size-k subset of m(t) and outputs action a(t).) When
there exists attack with ν, let ζν ∼ Z(P, π̃; ν) be a trajectory of policy π̃ under communication
attacks, i.e., ζν = (o(0), ν(m(0)), a(0), r(0), o(1), ν(m(1)), a(0), r(0), · · · ). For any trajectory ζ, let
r(ζ) be the discounted cumulative reward of this trajectory.

With the above notations, we propose the following reward certificate.

Corollary C.1 (Reward Certificate for Discrete Action Space). When Condition 4.4 holds at every step
of execution, the cumulative reward of ensemble policy π̃ defined in Equation (1) under adversarial
communication is no lower than the lowest cumulative reward that the ablation policy π̂ can obtain
with randomly selected k-samples under no attacks, i.e.,

min
ζν∼Z(P,π̃;ν)

r(ζν) ≥ min
ζ∼Z(P,π̂)

r(ζ), (9)

for any attacker ν satisfying Assumption 3.1 (C < N−1
2 ).
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Remarks. (1) The certificate holds for any attack algorithm ν with C < N−1
2 . (2) The message-

ablation policy π̂ has extra randomness from the sampling of k-samples. That is, at every step, π̂ takes
a uniformly randomly selected k-sample from Hk(m). Therefore, the minζ in the RHS considers
the worst-case message sampling in the clean environment without attacks. Since π̃ always takes
actions selected by some purely-benign message combinations, the trajectory generated by π̃ can
also be produced by the message-ablation policy. (3) Note that the RHS (minζ∼Z(P,π̂) r(ζ)) can be
approximately estimated by executing π̂ during training time, so that the test-time performance of π̃
is guaranteed to be no lower than this value, even if there are up to C corrupted messages at every
step.

Appendix D provides detailed proofs for the above theoretical results.

C.2 ADDITIONAL ANALYSIS OF AME IN CONTINUOUS ACTION SPACE

Note that Theorem 4.7 certifies that the selected action is in a set of actions that are close to benign
actions Range(Abenign), but does not make any assumption on this set. Next we interpret this result
in details.

How to Understand Range(Abenign)? Theoretically, Range(Abenign) is a set of actions that are
coordinate-wise bounded by base actions resulted from purely benign k-samples. In many practical
problems, it is reasonable to assume that actions in Range(Abenign) are relatively safe, especially
when benign actions in Abenign are concentrated. The following examples illustrate some scenarios
where actions in Range(Abenign) are relatively good.

1. If the action denotes the price a seller sells its product in a market, and the communication
messages are the transaction signals in an information pool, then Range(Abenign) is a price
range that is determined based on purely benign messages. Therefore, the seller will set a
reasonable price without being influenced by a malicious message.

2. If the action denotes the driving speed, and benign message combinations have suggested
driving at 40 mph or driving at 50 mph, then driving at 45 mph is also safe.

3. If the action is a vector denoting movements of all joints of a robot (as in many MuJoCo
tasks), and two slightly different joint movements are suggested by two benign message
combinations, then an action that does not exceed the range of the two benign movements at
every joint is likely to be safe as well.

The above examples show by intuition why the message-ensemble policy can be regarded as a
relatively robust policy. However, in extreme cases where there exists “caveat” in Range(Abenign),
taking an action in this set may also be unsafe. To quantify the influence of Range(Abenign) on the
long-term reward, we next analyze the cumulative reward of the message-ensemble policy in the
continuous-action case.

How Does Range(Abenign) Lead to A Reward Certificate? Different from the discrete-action
case, the message-ensemble policy π̃ in a continuous action space may take actions not in Abenign

such that it generates trajectories not seen by the message-ablation policy π̂. However, since the
action of π̃ is guaranteed to stay in Range(Abenign), we can bound the difference between the value
of π̃ and the value of π̂, and how large the different is depends on some properties of Range(Abenign).

Concretely, Let R and P be the reward function and transition probability function of the current
agent when the other agents execute fixed policies. So R(s, a) is the immediate reward of taking
action a at state s, and P (s′|s, a) is the probability of transitioning to state s′ from s by taking action
a. (Note that s is the underlying state which may not be observed by the agent.)

Definition C.2 (Dynamics Discrepancy of π̂). A message-ablation policy π̂ is called ϵR,ϵP -discrepant
if ϵR, ϵP are the smallest values such that for any s ∈ S and the corresponding benign action set
Abenign, we have ∀a1, a2 ∈ Range(Abenign),

|R(s, a1)−R(s, a2)| ≤ ϵR, (10)∫
|P (s′|s, a1)− P (s′|s, a2)|ds′ ≤ ϵP . (11)
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Remarks. (1) Equation (11) is equivalent to that the total variance distance between P (·|s, a1) and
P (·|s, a2) is less than or equal to ϵP /2. (2) For any environment with bounded reward, ϵR and ϵP
always exist.

Definition C.2 characterizes how different the local dynamics of actions in Range(Abenign) are, over
all possible states. If Range(Abenign) is small and the environment is relatively smooth, then taking
different actions within this range will not result in very different future rewards. The theorem below
shows a reward certificate for the message-ensemble policy π̃.

Theorem C.3 (Reward Certificate for Continuous Action Space). Let V π̂(s) be the clean value
(discounted cumulative reward) of π̂ starting from state s under no attack; let Ṽ π̃

ν (s) be the value
of π̃ starting from state s under attack algorithm ν, where ν satisfies Assumption 3.1; let k be an
ablation size satisfying Condition 4.6. If π̂ is ϵR,ϵP -discrepant, then for any state s ∈ S, we have

min
ν

Ṽ π̃
ν (s) ≥ V π̂(s)− ϵR + γVmaxϵP

1− γ
, (12)

where Vmax := sups,π |V π(s)|.

Remarks. (1) The certificate holds for any attack algorithm ν with C < N−1
2 . (2) If ϵR and ϵP are

small, then the performance of message-ensemble policy π̃ under attacks is similar to the performance
of the message-ablation policy π̂ under no attack.

It is important to note that ϵR and ϵP are intrinsic properties of π̂, independent of the attacker.
Therefore, one can approximately measure ϵR and ϵP during training. Similar to Condition 4.4
required for a discrete action space, the gap between the attacked reward of π̃ and the natural reward
of π̂ depends on how well the benign messages are reaching a consensus. (Smaller ϵR and ϵP imply
that the actions in Abenign are relatively concentrated and the environment dynamics are relatively
smooth.)

Moreover, one can optimize π̂ during training such that ϵR and ϵP are as small as possible, to further
improve the robustness guarantee of π̃. This can be a future extension of this work.

Technical proofs of all theoretical results can be found in Appendix D.

C.3 EXTENSION OF AME WITH PARTIAL SAMPLES

As motivated in Section 4.3, our AME can be extended to a partial-sample version, where the
ensemble policy is constructed by D instead of

(
N−1
k

)
samples. LetHk,D(m) be a subset ofHk(m)

that contains D random k-samples fromHk(m). Then the D-ensemble policy πD is defined as

π̃D(τ,m) := argmaxa∈A
∑

[m]k∈Hk,D(m)

1[π̂(o, [m]k) = a], (13)

for a discrete action space, and
π̃D(τ,m) = Median{π̂(τ, [m]k)}[m]k∈Hk,D(m). (14)

for a continuous action space.

In the partial-sample version of AME, we can still provide high-probability robustness guarantees.

For notation simplicity, let n1 =
(
N−1
k

)
, n2 =

(
N−C−1

k

)
. Define the majority vote as

umax(m) := max
a∈A

∑
[m]k∈Hk,D(m)

1[π̂(τ, [m]k) = a]. (15)

The following theorem shows a general guarantee for D-ensemble policy in a discrete action space.

Theorem C.4 (General Action Guarantee for Discrete Action Space). Given an arbitrary sample
size 0 < D ≤

(
N−1
k

)
, for the D-ensemble policy π̃D defined in Equation (13), Equation (5) holds

deterministically if the majority vote umax(madv) > n1 − n2. Otherwise it holds with probability at
least

pD =

∑umax(madv)−1
j=0

(
n1−n2

j

)(
n2

D−j

)(
n1

D

) . (16)

Note that Theorem 4.5 is a special case of Theorem C.4, since it assumes umax(madv) > n1 − n2.

Theorem C.5 below further shows the theoretical result for a continuous action space.
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Theorem C.5 (General Action Guarantee for Continuous Action Space). Given an arbitrary sample
size 0 < D ≤

(
N−1
k

)
, for the D-ensemble policy π̃D defined in Equation (14) with an ablation size k

satisfying Condition 4.6, Equation (7) holds with probability at least

pD =

∑D
j=D̃

(
n2

j

)(
n1−n2

D−j

)(
n1

D

) , (17)

where D̃ = ⌊D2 ⌋+ 1.

The larger D is, the higher the probability pD is, the more likely that the message-ensemble policy
selects an action in Range(Abenign). In Theorem C.5, when D =

(
N−1
k

)
, the probability pD is 1 and

the result matches Theorem 4.7.

Technical proofs of all theoretical results can be found in Appendix D.

D TECHNICAL PROOFS

For the simplicity of the proof, we make the following definition.

Definition D.1. (Purely Benign k-sample and contaminated k-sample) A k-sample [m]k ∈ Hk(m) is
purely benign if every message in [m]k comes from a benign agent and is unperturbed. A k-sample
[m]k ∈ Hk(m) is contaminated if there exists some message in [m]k that is perturbed.

For notation simplicity, let n1 := |Hk(m)| =
(
N−1
k

)
be the total number of k-samples from a

message set m. Note that the total number of purely benign k-samples is n2 :=
(
N−C−1

k

)
, and the

total number of contaminated k-samples is n1 − n2 =
(
N−1
k

)
−

(
N−C−1

k

)
.

D.1 PROOFS IN DISCRETE ACTION SPACE

Action Certificates We first prove the action certificates in the discrete action. For notation
simplicity, we slightly abuse notation and use umax to denote umax(madv). Note that Theorem 4.5
is a special case of Theorem C.4 (umax > n1 − n2 and D =

(
N−1
k

)
), so we first prove the general

version Theorem C.4 and then Theorem 4.5 holds as a result.

Proof of Theorem C.4 and Theorem 4.5. The majority voted action ã is a benign action, i.e., ã ∈
Abenign, if the ablation policy π̂ renders action ã for at least one purely benign k-sample. If
umax > n1 − n2, since n1 − n2 is exactly the total number of contaminated k-samples, then it is
guaranteed that there is at least one purely benign k-sample for which π̂ renders ã. Thus, ã ∈ Abenign,
and Theorem 4.5 holds.

On the other hand, if umax ≤ n1 − n2, then in order for ã to be in Abenign, among the umax

k-samples resulting in ã there can be at most umax − 1 contaminated k-samples. There are∑umax−1
j=0

(
n1−n2

j

)(
n2

D−j

)
such combinations in terms of the sampling of D, and the total number of

combinations are
(
n1

D

)
. Therefore, we get Equation (16).

Reward Certificate. Next, following Theorem 4.5, we proceed to prove the reward certificate.

Proof of Corollary C.1. Based on the definition of benign action set Abenign, π̃ selects an action ã
if and only if there exists a purely benign k-sample [m]k ∈ Hk(m) such that the message-ablation
policy π̂ selects ã = π̂(τ, [m]k). Therefore, for any trajectory generated by π̃ under attacks, there is
a trajectory of π̂ with a list of k-samples [m]

(1)
k , [m]

(2)
k , · · · that renders the same cumulative reward

under no attack.
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D.2 PROOFS IN CONTINUOUS ACTION SPACE

Action Certificate. Similar to the discrete-action case, we first prove Theorem C.5, and then prove
Theorem 4.7 as a special case of Theorem C.5.

Proof of Theorem C.5. To understand the intuition of element-wise median operation in continuous
action space, let us first start with an intuitive example: consider 5 arbitrary numbers x1, ..., x5, if we
already know 3 of them x1, x2, x3, then it is certain that min(x1, x2, x3) ≤ Median(x1, · · · , x5) ≤
max(x1, x2, x3). Therefore, when purely benign k-samples form the majority (Condition 4.6), the
element-wise median action falls into the range of actions produced by safe messages.

To be more general, in a continuous action space, ã ∈ Range(Abenign) is equivalent to the condition
that out of the D sampled k-samples, purely benign k-samples make up the majority. There are∑D

j=D̃

(
n2

j

)(
n1−n2
D−j

)
such combinations in terms of the sampling of D, where D̃ = ⌊D2 ⌋+ 1. Once

again the total number of combinations is
(
n1

D

)
. Therefore, we get Equation (17).

Proof of Theorem 4.7. The proof of Theorem 4.7 follows as a special case of Theorem C.5 when
D =

(
N−1
k

)
= n1. In this case, the only non-zero term left in the numerator of pD is

(
n2

j

)(
n1−n2

n1−j

)
=(

n2

n2

)(
n1−n2

n1−n2

)
= 1 (we need n2 ≥ j and n1 − n2 ≥ n1 − j to keep the numerator from vanishing,

which implies j = n2, which is no lower than D̃ since n2 > n1/2 due to Condition 4.6). Hence we
have pD = 1.

Reward Certificate. Next, we derive the reward guarantee for the continuous-action case.

Proof of Theorem C.3. We let P(a|s;π) be the probability of the message-ablation policy π̂ taking
action a at state s, where π can be either the message-ablation policy π̂ or the message-ensemble
policy π̃. Note that this is a conditional probability function, and the policy does not necessarily
observe s.

Without loss of generality, let ν∗ be the optimal attacking algorithm that minimizes Ṽ π̃
ν . Let As

denote the range of benign action at state s induced by the current message-ablation policy π̂. Then
we have

sup
s∈S

∣∣∣V π̂(s)− Ṽ π̃
ν∗(s)

∣∣∣
= sup

s∈S

∣∣∣∣Ea∼P(a|s;π̂)

[
R(s, a) + γ

∫
P (s′|s, a)V π̂(s′)ds′

]
− Ea∼P(a|s;π̃)

[
R(s, a) + γ

∫
P (s′|s, a)Ṽ π̃

ν∗(s′)ds′
]∣∣∣∣

≤ sup
s∈S

sup
a1,a2∈As

∣∣∣∣R(s, a1) + γ

∫
P (s′|s, a1)V π̂(s′)ds′ −R(s, a2)− γ

∫
P (s′|s, a2)Ṽ π̃

ν∗(s)(s′)ds′
∣∣∣∣

≤ sup
s∈S

sup
a1,a2∈As

|R(s, a1)−R(s, a2)|+ sup
a1,a2∈As

∣∣∣∣γ ∫ P (s′|s, a1)V π̂(s′)ds′ − γ

∫
P (s′|s, a2)Ṽ π̃

ν∗(s′)ds′
∣∣∣∣

≤ ϵR + γ sup
s∈S

sup
a1,a2∈As

∣∣∣∣∫ P (s′|s, a1)V π̂(s′)ds′ −
∫

P (s′|s, a2)Ṽ π̃
ν∗(s′)ds′

∣∣∣∣
≤ ϵR + γ sup

s∈S
sup

a1,a2∈As

∣∣∣∣∫ P (s′|s, a1)V π̂(s′)ds′ −
∫

P (s′|s, a1)Ṽ π̃
ν∗(s′)ds′

∣∣∣∣
+ γ sup

s∈S
sup

a1,a2∈As

∣∣∣∣∫ P (s′|s, a1)Ṽ π̃
ν∗(s′)ds′ −

∫
P (s′|s, a2)Ṽ π̃

ν∗(s′)ds′
∣∣∣∣

≤ ϵR + γ sup
s∈S

∣∣∣V π̂(s)− Ṽ π̃
ν∗(s)

∣∣∣+ γ

∣∣∣∣∫ P (s′|s, a1)Ṽ π̃
ν∗(s′)ds′ −

∫
P (s′|s, a2)Ṽ π̃

ν∗(s′)ds′
∣∣∣∣

≤ ϵR + γ sup
s∈S

∣∣∣V π̂(s)− Ṽ π̃
ν∗(s)

∣∣∣+ γVmaxϵP .

(18)
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By solving for the recurrence relation over sups∈S

∣∣∣V π̂(s)− Ṽ π̃
ν∗(s)

∣∣∣, we obtain

sup
s∈S

∣∣∣V π̂(s)− Ṽ π̃
ν∗(s)

∣∣∣ ≤ ϵR + γVmaxϵP
1− γ

. (19)

which leads to the desired relation in Theorem C.3.

E EXPERIMENT DETAILS AND ADDITIONAL RESULTS

E.1 ENVIRONMENT DESCRIPTION

E.1.1 FOODCOLLECTOR

Figure 4: The FoodCollector En-
vironment. For figure readability,
we only show 3 agents colored as
red/green/blue. In our experiments,
there are 9 agents.

The FoodCollector environment is a 2D particle world adapted
from the WaterWorld task in PettingZoo (Terry et al., 2020),
shown by Figure 4(left). There are N = 9 agents with different
colors, and N foods with colors corresponding to the N agents.
Agents are rewarded when eating foods with the same color. A
big round obstacle is located in the center of the map, which
the agent cannot go through. There are some poisons (shown
as black dots) in the environment, and the agents get penalized
whenever they touch the poison. Each agent has 6 sensors
that detect the objects around it, including the poisons and the
colored foods. The game is episodic, with horizon set to be 200.
In the beginning of each episode, the agents, foods and poisons
are randomly generated in the world.

State Observation Each of the 6 sensors can detect the fol-
lowing values when the corresponding element is within the
sensor’s range (the corresponding dimensions are 0’s if nothing
is detected):
(1) (if detects a food) the distance to a food (real-valued);
(2) (if detects a food) the color of the food (one-hot);
(3) (if detects an obstacle) the distance to the obstacle (real-valued);
(4) (if detects the boundary) the distance to the boundary (real-valued);
(5) (if detects another agent) the distance to another agent (real-valued).
The observation of an agent includes an agent-identifier (one-hot encoding), its own location (2D
coordinates), its own velocity, two flags of colliding with its food and colliding with poison, and the
above sensory inputs. Therefore, the observation space is a (7N + 30)-dimensional vector space.

Agent Action The action space can be either discrete or continuous. For the discrete version, there
are 9 actions including 8 moving directions (north, northwest, west, southwest, south, southeast, east,
northeast) and 1 no-move action. For the continuous version, the action is an acceleration decision,
denoted by a 2-dimensional real-valued vector, with each coordinate taking values in [−0.01, 0.01].
Reward Function At every step, each agent will receives a negative reward −0.5 if it has not eaten
all its food. In addition, it receives extra −1 reward if it collides with a poison. Therefore, every
agent is expected to explore the environment and eat all food as fast as possible. The team reward is
calculated by the average of all agents’ local rewards. Note that the agents’ actions do not affect each
other, because they have different target foods to collect. Agents collaborate only via communication
introduced below.
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Figure 5: FoodCollector: Reward of agents trained by PPO with
communication v.s. without communication. Black dashed line
stands for the mean performance of the agent when selecting actions
uniformly randomly.

Communication Protocol Due to
the limited sensory range, every agent
can only see the objects around it
and thus only partially observes the
world. Therefore, communication
among agents can help them find their
foods much faster. Since our focus
is to defend against adversarially per-
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turbed communications, we first de-
fine a valid and beneficial communica-
tion protocol, where an agent sends a
message to a receiver once it observes
a food with the receiver’s color. For
example, if a red agent encounters a
blue food, it can then send a message
to the blue agent so that the blue agent
knows where to find its food. To re-
member the up-to-date communication, every agent maintains a list of most recent N − 1 messages
sent from other N − 1 agents. A message contains the sender’s current location and the relative
distance to the food (recorded by the 6 sensors), which are bounded between -1 and 1. Therefore, a
message is a 8-dimensional vector, and each agent’s communication list has 8(N − 1) dimensions in
total.

Communication Gain During training with communication, we concatenate the observation and
the communication list of the agent to an MLP-based policy, compared to the non-communicative case
where the policy only takes in local observations. More implementation details are in Appendix E.2.1.
As verified in Figure 5, communication does help the agent to obtain a much higher reward in both
discrete action and continuous action cases, which suggests that the agents tend to rely heavily on the
communication messages for finding their food.

E.1.2 INVENTORYMANAGER

The InventoryManager environment is an inventory management setup, where N = 10 cooperative
heterogeneous distributors carry inventory for M = 3 products. A population of B = 300 buyers
request a product from a randomly selected distributor agent according to a demand distribution
p = [p1, . . . , pM ]. We denote the demand realization for distributor i with di = [di,1, . . . , di,M ].
Distributor agents manage their inventory by restocking products through interacting with the buyers.
The game is episodic with horizon set to 50. At the beginning of each episode, a realization of
the demand distribution p is randomly generated and the distributors’ inventory for each product is
randomly initialized from [0, B

N ], where B
N is the expected number of buyers per distributor. The

distributor agents are penalized for mismatch between their inventory and the demand for a product,
and they aim to restock enough units of a product at each step to prevent insufficient inventory without
accruing a surplus at the end of each step.

State Observation A distributor agent’s observation includes its inventory for each product, and
the products that were requested by buyers during the previous step. The observation space is a
2M -dimensional vector.

Agent Action Distributors manage their inventory by restocking new units of each product or
discarding part of the leftover inventory at the beginning of each step. Hence, agents take both
positive and negative actions denoted by an M -dimensional vector, and the action space can be either
discrete or continuous. In our experiments, we use continuous actions assuming that products are
divisible and distributors can restock and hold fractions of a product unit.

Reward Function During each step, agent i’s reward is defined as ri = −||max(Ii+ai, 0)−di||2,
where Ii denotes the agents initial inventory vector, and ai denotes the inventory restock vector from
action policy πi. Note that the agents’ actions do not affect each other. Agents collaborate only via
communication introduced below.
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Figure 6: InventoryManager:
Reward of agents trained with
communication v.s. without com-
munication.

Communication Protocol Distributors learn the demand distri-
bution and optimize their inventory by interacting with their own
customers (i.e., portion of buyers that request a product from that
distributor). Distributors would benefit from sharing their observed
demands with each other, so that they could estimate the demand
distribution more accurately for managing inventory. At the end
of each step, a distributor communicates an M -dimensional vector
reporting its observed demands to all other agents. In the case of ad-
versarial communications, this message may differ from the agents’
truly observed demands.
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Communication Gain During training with communication, mes-
sages received from all other agents are concatenated to the agent’s
observation, which is used to train an MLP-based policy, compared
to the non-communicative case where the policy is trained using only local observations. As observed
from Figure 6, communication helps agents obtain higher rewards since they are able to manage their
inventory based on the overall demands observed across the population of buyers rather than their
local observation. Results are reported by averaging rewards corresponding to 5 experiments run with
different training seeds.

E.1.3 MARL-MNIST

We use the environment setup proposed by Mousavi et al. Mousavi et al. (2019), where agents
collaboratively classify an unknown image by their observations and inter-agent communication.
More specifically, we use N = 9 agents in the MNIST dataset of handwritten digits (LeCun et al.,
1998). The dataset consists of 60,000 training images and 10,000 testing images, where each image
has 28 × 28 pixels. There are h = 5 steps in an episode. In the beginning, all agents start from a
pre-determined spatial configuration. At every step, each agent observes a local 5× 5 patch, performs
some local data processing, and shares the result with neighboring agents (we use a fully connected
communication graph). With given observation and communication, each agent outputs an action
in {Up,Down,Left,Right}. By each movement, the agent is translated in the desired direction
by 5 pixels. In the end of an episode, agents make predictions, and all of them are rewarded by
−prediction loss.

E.1.4 TRAFFIC JUNCTION

We use the same environment setup as the one in (Singh et al., 2019). In this environment, N cars
enter a junction from all entry points with a given probability parr. The maximum number of cars at
any given time in the junction is limited. Cars can take two actions at each time-step, gas and brake
respectively. At every step, each agent observes its previous action, route identifier, and a vector
specifying the sum of one-hot vectors for all objects present at that agent’s location. A collision
occurs when two cars are at the same location, and the agent will get a -10 reward if a collision
occurs. In addition, to prevent traffic jams, for each time step when the agent is in the junction, it will
get a negative reward of -0.01. The horizon of the environment is set to be 60. We use the hardest
environment setup as in (Singh et al., 2019), where we have 10 cars, the vision is set to zero, and the
horizon of the environment is set to 80.

E.2 IMPLEMENTATION DETAILS

E.2.1 FOODCOLLECTOR

Implementation of Trainer In our experiments, we use the Proximal Policy Optimization (PPO)
(Schulman et al., 2017) algorithm to train all agents (with parameter sharing among agents) as well
as the attackers. Specifically, we adapt from the elegant OpenAI Spinning Up (Achiam, 2018)
Implementation for PPO training algorithm. On top of the Spinning Up PPO implementation, we
also keep track of the running average and standard deviation of the observation and normalize the
observation. All experiments are conducted on NVIDIA GeForce RTX 2080 Ti GPUs.

For the policy network, we use a multi-layer perceptron (MLP) with two hidden layers of size 64.
For a discrete action space, a categorical output distribution is used. For a continuous action space,
since the valid action is bounded within a small range [-0.01,0.01], we parameterize the policy
as a Beta distribution, which has been proposed in previous works to better solve reinforcement
learning problems with bounded actions (Chou et al., 2017). In particular, we parameterize the
Beta distribution by αθ and βθ, such that α = log(1 + eαθ(s)) + 1 and β = log(1 + eβθ(s)) + 1
(1 is added to make sure that α, β ≥ 1). Then, π(a|s) = f(a−h

2h ;α, β), where h = 0.01, and
f(x;α, β) = Γ(α+β)

Γ(α)Γ(β)x
α−1(1− x)β−1 is the density function of the Beta Distribution. For the value

network, we also use an MLP with two hidden layers of size 64.

In terms of other hyperparameters used in the experiments, we use a learning rate of 0.0003 for
the policy network, and a learning rate of 0.001 is used for the value network. We use the Adam
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optimizer with β1 = 0.99 and β2 = 0.999. For every training epoch, the PPO agent interacts with
the environment for 4000 steps, and it is trained for 500 epochs in our experiments.

Attacker An attacker maps its own observation to the malicious communication messages that it
will send to the victim agent. Thus, the action space of the attacker is the communication space of a
benign agent, which is bounded between -1 and 1.

• Heuristic Attacker We implement a fast and naive attacking method for the adversary. At
every dimension, the naive attacker randomly picks 1 or -1 as its action, and then sends the
perturbed message which consists entirely of 1 or -1 to the victim agent.

• Adaptive RL Attacker We use the PPO algorithm to train the attacker, where we set the
reward of the attacker to be the negative reward of the victim. The attacker uses a Gaussian
policy, where the action is clipped to be in the valid communication range. The network
architecture and all other hyperparameter settings follow the exact same from the clean
agent training.

Implementation of Baselines

• Vanilla Learning For Vanilla method, we train a shared policy network to map observations
and communication to actions.

• Adversarial Training (AT) For adversarial training, we alternate between the training of
attacker and the training of the victim agent. Both the victim and attackers are trained by
PPO. For every 200 training epochs, we switch the training, where we either fix the trained
victim and train the attacker for the victim or fix the trained attacker and train the victim
under attack. We continue this process for 10 iterations.

Note that the messages are symmetric (of the same format), we shuffle the messages before feeding
them into the policy network for both Vanilla and AT, to reduce the bias caused by agent order. We
find that shuffling the messages helps the agent converge much faster (50% fewer total steps). Note
that AME randomly selects k-samples and thus messages are also shuffled.

E.2.2 INVENTORYMANAGER

Implementation of Trainer As in the FoodCollector experiments, we use the PPO algorithm to
train all agent action policy as well as adversarial agent communication policies. We use the same
MLP-based policy and value networks as the FoodCollector but parameterize the policy as a Gaussian
distribution. The PPO agent interacts with the environment for 50 steps, and it is trained for 10000
episodes. The learning rate is set to be 0.0003 for the policy network, and 0.001 for the value network.

Attacker The attacker uses its observations to communicate malicious messages to victim distribu-
tors, and its action space is the communication space of a benign agent. We consider the following
non-adaptive and adaptive attackers:

• Heuristic Attackers: The attacker’s goal is to harm the victim agent by misreporting its
observed demands so that the victim distributor under-estimates or over-estimates the re-
stocking of products. In our experiments, we evaluate the effectiveness of defense strategies
against the following attack strategies:

– Perm-Attack: The communication message is a random permutation of the true demand
vector observed by the attacker.

– Swap-Attack: In order to construct a communication vector as different as possible
from its observed demand, the attacker reports the most requested products as the least
request ones and vice versa. Therefore, the highest demand among the products is
interchanged with the lowest demand, the second highest demand is interchanged with
the second lowest demand and so forth.

– Flip-Attack: Adversary i modifies its observed demand di by mirroring it with respect
to η = 1

M

∑M
j=1 dij , such that products demanded less than η are reported as being

requested more, and conversely, highly demanded products are reported as less popular.
• Adaptive Attacker: The attacker communication policy is trained using the PPO algorithm,

and its reward is set as the negative reward of the victim agent. The attacker uses a
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Gaussian policy with a softmax activation in the output layer to learn a adversarial probability
distribution across products, which is then scaled by the total observed demands

∑M
j=1 dij

to construct the communication message.

Implementation of Baselines

• Vanilla Learning: In the vanilla training method with no defense mechanism against adver-
sarial communication, we train a shared policy network using agents’ local observations and
their received communication messages.

• Adversarial Training (AT): We alternate between training the agent action policy and the
victim communication policy, both using PPO. For the first iteration we train the policies for
10000 episodes, and then use 1000 episodes for 5 additional training alteration iterations
for both the action policy and the adversarial communication policy. For more efficient
adversarial training, we first shuffle the received communication messages before feeding
them into the policy network. Consequently, the trained policy treats communications
received from different agents in a similar manner, and we are able to only train the
policy with a fixed set of adversarial agents rather than training the network on all possible
combinations of adversarial agents.

For Vanilla and AT, we do not shuffle the communication messages being input to the policy, as we
did not observe improved convergence, as in the FoodCollector environment.

E.2.3 MARL-MNIST

We use the same network architecture and hyperparameter setting as Mousavi et al. Mousavi et al.
(2019), which are implemented in Berrien (2019).

Network Architecture Concretely, at every step, the input of every agent contains 3 components:
(1) an encoded observation with two convolutional layers followed by vectorization and a fully
connected layer; (2) the average of all communication messages from other agents; (3) a position
encoding computed by feeding the current position into a single linear layer. These 3 components are
concatenated and passed to two independent LSTM modules, one is for an acting policy, another is
for a message generator. In the end of an episode, every agent uses its final cell state to generate a
prediction using a 2-layer MLP. Then we take the average of the output logits of all agents, and use a
softmax function to obtain the final probabilistic label prediction. The reward is the opposite number
of the L2 difference between the prediction and the one-hot encoding of true image label.

Hyperparameters In our experiments, we follow the default hyperparameter setting in Berrien
(2019). We use N = 9 agents. The size of LSTM belief state is 128. The hidden layers have size
160. The message size is set to be 32. The state encoding has size 8. We use an Adam optimizer with
learning rate 1e-3. We train the agents in the MNIST dataset for 40 epochs.

Attackers Since the communication messages are learned by neural networks, we perturb the C
messages received by each agent. To make sure that the messages are not obviously detectable, we
clip every dimension of the perturbed message into the range of [−3, 3]. The non-adaptive attacker
randomly generates a new message. The adaptive attacker learns a new message generator based on
its own belief state, which is trained with learning rate 1e-3 for 50 epochs.

E.2.4 TRAFFIC JUNCTION

To learn the agents’ policy and communication protocol on traffic junctions, we follow exactly the
implementation of (Singh et al., 2019).

Network Architecture In particular, the policy of the j-th agent in IC3Net takes the form of:
gt+1
j = fg(ht

j)

ht+1
j , st+1

j = LSTM(e(otj) + ctj , h
t
j , s

t
j)

ct+1
j =

1

N − 1
C

∑
j′ ̸=j

ht+1
j′ ⊙ gt+1

j′

atj = π(ht
j)
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Here, gtj is a binary action that specifies whether the agent j should communicate with other agents,
and so it acts as a gating function when calculating the communication messages ct+1

j . fg(·) is a
simple network containing a soft-max layer for 2 actions (communicate or not) on top of a linear
layer with non-linearity. e is an encoder of the agent’s observation and C is a linear transformation
matrix for transforming gated average hidden state to a communication tensor that has the same size
as the observation encoding.

Hyperparameter The encoder e is a linear layer of size 128, and fg(·) is also a linear layer of size
128. The LSTM module is of two layers with hidden size 128, and the policy head π is a linear layer
with an output size 2 equal to the number of actions.

Attacker We perturb the C messages received by each agent. To make sure that the messages
are not obviously detectable, we clip every dimension of the perturbed message into the range of
[−0.5, 0.5]. The non-adaptive attacker randomly generates a new message containing either -0.5 or
0.5. For the adaptive attacker, it is trained with a recurrent PPO through stable-baselines3 (Raffin
et al., 2021) for 500,000 steps.

E.3 ADDITIONAL RESULTS

E.3.1 FULL RESULTS OF FOODCOLLECTOR

Figure 7 below shows the results of both discrete-action FoodCollector and continuous-action
FoodCollector.
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Figure 7: Rewards of our AME and baselines in FoodCollector, under no attacker and varying numbers of
adversaries for adaptive and heuristic (random message) attacks.
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Figure 8: Reward comparison between original QMIX
and QMIX combined with our AME in FoodCollector
with discrete action space, under no attacker or non-
adaptive/adaptive attacks under varying numbers of ad-
versaries. For AME, the ablation size k is set as 2.

Additional Results on Discrete-action Food-
Collector with QMIX AME is a generic
defense approach that can be used for any
RL/MARL learning algorithm. In Figure 8, we
show the results of AME combined with an
MARL algorithm QMIX (Rashid et al., 2018) in
the discrete-action FoodCollector environment
(QMIX does not work for continuous actions so
it is not applicable in continuous-action Food-
Collector and InventoryManager). Compared
to the vanilla QMIX algorithm, QMIX+AME
achieves much higher robustness and stable per-
formance under various numbers of adversaries.

E.3.2 FULL RESULTS OF INVENTORYMANAGER

Figure 9 below shows the results of InventoryManager under adaptive attacks and several heuristic
attacks.

E.3.3 FULL RESULTS OF MARL-MNIST

Figure 10 demonstrates the robust performance of the MARL algorithm proposed by Mousavi et al.
(2019) with our AME defense or baseline defenses (Vanilla and AT). We set N = 9 and k = 2 for
all experiments. Under learned adaptive attackers, the original MARL classifier (Vanilla) (Mousavi
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Figure 9: Rewards of our AME and baselines in InventoryManager, under no attacker and varying numbers of
adversaries for adaptive and various heuristic attacks.

et al., 2019) without AME suffers from significant performance drop in terms of both precision and
recall. Defending with adversarial training (AT) does not achieve good robustness, either. But AME
considerably improves the robustness of agents across different numbers of attackers.
Under random attacks, we find that the original MARL classifier (Mousavi et al., 2019) is moderately
robust when a few communication signals are randomly perturbed. However, when noise exists in
many communication channels (e.g. C = 6), the performance decreases a lot. In contrast, our AME
still achieves high performance when C = 6 communication messages are corrupted, even if the
guarantee of ablation size k only holds for C ≤ 2. Therefore, we again emphasize the the theoretical
guarantee considers the worst-case strong attack, while under a relatively weak attack, we can achieve
better robustness beyond what the theory suggests.
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Figure 10: (MARL-MNIST): Precision and recall of MARL classification on MNIST without or with AME,
under learned adaptive attacks and non-adaptive random attacks. All results are averaged over 5 random seeds.

E.3.4 ADDITIONAL RESULTS OF HYPERPARAMETER TEST

In addition to Figure 3, we also provide the plot for hyper-parameter tests in discrete-action FoodCol-
lector and InventoryManager in Figure 11 below.
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Figure 11: Hyper-parameter tests of ablation size k and sample size D. We show how natural reward and
attacked performance change with (a) various k in continuous-action FoodCollector, (b) various D in continuous-
action FoodCollector, (c) various k in InventoryManager, and (d) various D in InventoryManager.
Dashed green lines refer to the performance of Vanilla agent under C = 2 attacks.
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E.3.5 INTERPRETATION OF ADVERSARIAL TRAINING

As we observed in Figure 2, adversarial training (AT) does not improve the robustness of the agent in
both discrete and continuous action space, although AT achieves good robustness againt ℓp attacks in
vision tasks (Madry et al., 2018; Zhang et al., 2019), and against observation attacks (Zhang et al.,
2021; Sun et al., 2022) and action attacks (Pinto et al., 2017) in RL. We hypothesize that it is due to
(1) the large number of total agents, (2) the uncertainty of adversarial message channels, and (3) the
relatively large perturbation length. To be more specific, in related works (Pinto et al., 2017; Zhang
et al., 2021; Sun et al., 2022), an agent and an attacker are alternately trained, during which the agent
learns to adapt to the learned attacker. However, in the threat model we consider, there are C out of
N messages significantly perturbed, which it is hard for the agent to adapt to attacks during alternate
training.

F ADDITIONAL DISCUSSION ON THE CHOICE OF ABLATION SIZE k

Our AME defensive mechanism proposed in Section 4.1 requires an extra hyperparameter: the
ablation size k. (The sample size D is only for the partial-sample variant introduced in Section 4.3,
not needed in the original form of AME.) In this section, we discuss the selection of k in practice.
We start by discussing the relationship between k and the required theoretical conditions.

I. (For Continuous Action Space) Condition 4.6 and k

We first decompose Equation (6) as below.(
N − 1− C

k

)
>

1

2

(
N − 1

k

)
(20)

(N − 1− C)!

(N − 1− C − k)!k!
>

(N − 1)!

2(N − 1− k)!k!
(21)

1 >
(N − 1) · · · (N − C)

2(N − k − 1) · · · (N − k − C)
(22)

Therefore, Equation (6) is equivalent to

(N − k − 1) · · · (N − k − C) >
1

2
(N − 1) · · · (N − C) (23)

When k = 1, the above inequality becomes

(N − 2) · · · (N − C)(N − C − 1) >
1

2
(N − 1)(N − 2) · · · (N − C) (24)

(N − C − 1) >
1

2
(N − 1) (25)

1

2
(N − 1) > C, (26)

which holds under Assumption 3.1. Therefore, k = 1 is always a feasible solution for Condi-
tion 4.6.

Then, when C is fixed and k goes up from 1, the LHS of Equation (23) goes down while the RHS
does not change. Therefore, for a given number of agents (N ) and a fixed number of adversaries (C),
there exists an integer k0 such that any k ≤ k0 satisfies Condition 4.6. In practice, if we have an
estimate of the number of adversarial messages that we would like to defend against, then we could
choose the maximum k satisfying Equation (6).

On the other hand, when k is fixed, there exists a C0 such that any C ≤ C0 can let Equation (23)
hold. Therefore, if C is unknown, for any selection of k, Equation (23) can justify the maximum
number of adversaries for the current selection.

From Equation (23), we can see the interdependence between three parameters: total number of agents
N , number of adversaries C, and the ablation size k. In Figure 12 we visualize their relationship by
fixing one variable at a time. From these figures, we can see an obvious trade-off between C and
k — if there are more adversaries, k has to be set smaller. But when C is small, e.g. C = 1, k can
be relatively large, so the agent does not need to compromise much natural performance to achieve
robustness.
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Figure 12: Relationship between the total number of agents N , number of attackers C, and ablation size k. (a):
Maximum certifiable ablation size k under different number of attackers. (b): Maximum defensible number of
attackers C with different total number of agents N . (c): Maximum certifiable ablation size k with different
total number of agents N .

II. (For Discrete Action Space) Condition 4.4 and k

Different from Condition 4.6 which is independent of the environment, Condition 4.4 required in
a discrete action space is related to the environment and the communication quality. Intuitively,
Condition 4.4 can be satisfied if the benign messages can reach some “consensus”, i.e., there
are enough purely benign k-samples voting for the same action. This can be achieved when the
environment is relatively deterministic (e.g., there is a certainly optimal direction to go). Fortunately,
Condition 4.4 can be checked during training time, and we can train the message-ablation policy and
the communication policy to increase umax as much as possible.

On the other hand, Condition 4.4 is also related to the selection of ablation size k. The ratio of

contaminated votes is (N−1
k )−(N−1−C

k )
(N−1

k )
, and it is easy to show that this rate increases as k when

k ≤ N − C − 1. Therefore, when k is smaller, it is relatively easier to satisfy Condition 4.4 as the
adversarial messages can take over a smaller proportion of the total number of votes.

k Balances between Natural Performance and Robustness The above analysis shows that a smaller
k makes the agent more robust, while the natural performance may be sacrificed as the message-
ablation policy makes decisions based on less benign information. Such a trade-off between natural
performance and robustness is common in the literature of adversarial learning (Tsipras et al., 2019;
Zhang et al., 2019). Note that AME randomize the message ablation process at every step, such that
important messages are less likely to be missed, as communication from every agent usually does not
drastically change over time. Our experimental results in Section 6 show that the robustness gain of
AME is much greater than the compromise in natural performance in all tested domains.

How to Select k in Practice? In practice, we suggest setting k to be the largest integer satisfying
Equation (6). If higher robustness is needed, then k can be further decreased. If robustness is not
the major concern while higher natural performance is required, one can increase k. Note that if
k = N − 1, AME degenerates to the original vanilla policy without defense.

What If Conditions Are Not Satisfied? Even if Condition 4.6 and Condition 4.4 are not satisfied,
the agent can still be robust under attacks as verified in our experiments (AME with k = 2 still
achieves relatively robust performance under C = 3 which exceeds the theoretically largest number
of certifiable adversaries). Because these conditions are needed for the certificates which consider
the theoretically worst-case attacks. However, in practice, an attacker has restricted power and
knowledge (e.g., it does not know the victim policy/reward, and does not know the environment
dynamics as prior), and is likely to be even weaker than the learned adaptive white-box attacker we
use in experiments. As a result, even if a larger k may break the conditions, it can still improve the
empirical robustness of an agent in practice. Our Figure 3 and Figure 11, where AME maintains
good empirical performance for almost all choices of k < N − 1. (K = N − 1 is the original vanilla
policy without defense.)

Extension: Adaptive Defense with Different k’s Moreover, to allow higher flexibility, one can
train multiple message-ablation policies with different selections of k’s during training. Then, an
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adaptive strategy can be used in test time. For example, if umax is too small, we can use a larger k
with the corresponding trained message-ablation policy.

Extension: Gaining both Natural Performance and Robustness by Attack Detection From
the analysis of the relation between N , C and k, we can see that when the number of adversaries
is large, the corresponding ablation size k is supposed to be smaller. This is reasonable because
a more conservative defense is needed against a stronger attacker. But if we can identify some
adversarial messages and rule them out before message ablation and ensemble, we can still defend
with guarantees using a relatively large k. For example, if we have identified c adversarial messages,
then we only need to deal with the remaining C − c adversarial messages out of N − 1− c messages.
By Equation (6), a larger k can be used compared to defending C adversarial messages out of N − 1
messages. We also provide an adversary detection algorithm in Appendix G using a similar idea of
AME.

G DISCUSSION: DETECTING MALICIOUS MESSAGES WITH ABLATION

As discussed in Appendix F, to defend against a larger C, one has to choose a relatively small k
for certifiable performance. However, Figure 11 suggests that a small k also sacrifices the natural
performance of the agent to obtain higher robustness. This is known as the trade-off between
robustness and accuracy (Tsipras et al., 2019; Zhang et al., 2019). Can we achieve better robustness
while not sacrificing much natural performance, or obtain higher natural reward while not losing
robustness?
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Figure 13: Attacker identification
based on action bias νj . Adv1 and
Adv2 stands for two agents hacked by
the attacker. B1 up to B6 stands for six
other benign agents.

We point out that with our proposed AME defense, it is possible
to choose a larger k than what is required by Condition 4.6 with-
out sacrificing robust performance by identifying the malicious
messages beforehand. The idea is to detect the adversarial
messages and to rule out them before message ablation and
ensemble, during the test time.

We hypothesize that given a well-trained victim policy, ma-
licious messages tend to mislead the victim agent to take an
action that is ”far away” from a ”good” action that the vic-
tim is supposed to take. To verify this hypothesis, we first
train a message-ablation policy π̂i with k = 1 for agent i.
Then for every communication message that another agent
j sends, we compute the action aj that the victim policy π̂i

chooses based on all message subsets containing message
mj→i, i.e. aj = π̂(τi,mj→i) (note that k = 1 so π̂ only
takes in one message at a time). We then define the action bias
as βj = ∥aj −Median{ak}Nk=1∥1. Based on our hypothesis, an agent which has been hacked by
attackers should induce a significantly larger action bias since they are trying to mislead the victim to
take a completely different action. Here, we execute the policy of two hacked agents together with six
other good agents for twenty episodes and calculate the average action bias for each agent. As shown
in in Figure 13, the agents hacked by attackers indeed induce a larger action bias compared to other
benign agents, which suggests the effectiveness of identifying the malicious messages by action bias.

After filtering out c messages, one could compute the required k by Equation equation 6 based on
C − c malicious messages and N − 1 − c total messages, which can be larger than the largest k
induced by C malicious messages out of N − 1 total messages. For example, if N = 30, C = 3, then
the largest k satisfying Equation equation 6 is 5, but when 1 adversarial message is filtered out, the
largest k that can defend against the remaining 2 adversarial messages is 8. Although the adversary
identification is not theoretically guaranteed to be accurate, Figure 13 demonstrates the effectiveness
of the adversarial message detection, which, combined with AME with larger k’s, has the potential to
achieve high natural performance and strong robustness in practice.
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