
Published as a conference paper at ICLR 2025

CODEPLAN: UNLOCKING REASONING POTENTIAL IN
LLMS BY SCALING CODE-FORM PLANNING

Jiaxin Wen1,2∗, Jian Guan2∗, Hongning Wang1, Wei Wu2†, Minlie Huang1†
1Tsinghua University 2Ant Group
{jiaxinwenthu, jianguanthu, wang.hongn}@gmail.com
wuwei19850318@gmail.com, aihuang@tsinghua.edu.cn

ABSTRACT

Despite the remarkable success of large language models (LLMs) on traditional nat-
ural language processing tasks, their planning ability remains a critical bottleneck
in tackling complex multi-step reasoning tasks. Existing approaches mainly rely
on prompting or task-specific fine-tuning, often suffering from poor robustness and
cross-task generalization. To address the limitation, we introduce CODEPLAN, a
scalable framework that empowers LLMs to generate and follow code-form plans—
pseudocode that outlines high-level, structured reasoning processes. By leveraging
the structured and versatile nature of code, CODEPLAN effectively captures the
rich semantics and control flows inherent to sophisticated reasoning tasks. Impor-
tantly, CODEPLAN allows automatic extraction of code-form plans from massive,
wide-ranging text corpora without the need for curated, task-specific datasets. This
enables it to scale up efficiently and improve LLM’s reasoning capabilities across
diverse scenarios. To train CODEPLAN, we construct a large-scale dataset of 2M
examples that integrate code-form plans with standard prompt-response pairs from
existing corpora. With minimal computation overhead during both training and
inference, CODEPLAN achieves a 25.1% relative improvement compared with
directly generating responses, averaged across 13 challenging multi-step reasoning
benchmarks, spanning mathematical reasoning, symbolic reasoning, instruction-
following, multi-hop QA, and decision-making tasks. Further analysis reveals
CODEPLAN’s increasing performance gains on more complex reasoning tasks, as
well as significant data efficiency thanks to its generalization ability.

1 INTRODUCTION

With the rapid progress in pre-training and post-training (Brown, 2020; Chung et al., 2024), large
language models (LLMs) have exhibited remarkable performance across a wide range of natural
language processing (NLP) tasks. However, as LLMs are tasked with solving increasingly complex
problems that require multi-step reasoning, such as mathematical problems (Hendrycks et al., 2021),
multi-hop question-answering (Trivedi et al., 2022), and complex decision-making (Shridhar et al.,
2020; Xie et al., 2024), their limited planning capability has become a critical bottleneck (Yang et al.,
2023). As illustrated in Figure 1, LLMs often exhibit various failure modes in multi-step reasoning,
such as repetitive steps, incoherent logic, focus drift, and early answering (Yao et al., 2022; Lanham
et al., 2023). Effective planning, i.e., generating a high-level abstraction in advance (Yang, 2012;
Russell & Norvig, 2016), can frame the subsequent reasoning procedure, thereby guiding LLMs
through the intricate low-level steps to ultimately solve the tasks (Wang et al., 2023).

Delving deeper, LLMs’ planning deficiencies largely stem from the fact that massive pre-training
text corpora often do not explicitly exhibit the underlying reasoning structures, thereby obscuring the
latent, high-level planning signals that LLMs should learn (Zelikman et al., 2024). To remedy this
challenge, current approaches mainly frame LLMs’ reasoning procedures through either advanced
prompting techniques (Wei et al., 2022a; Yao et al., 2024) or task-specific fine-tuning (Zelikman et al.,
2022; Guan et al., 2024). However, prompting approaches typically impose strict requirements on

∗Equal Contribution
†Corresponding Authors

1

Published as a conference paper at ICLR 2025

Table 1: Comparison between CODEPLAN and representative methods in LM planning, evaluated
from two perspectives: (1) Expressiveness, including structuring for representing complex logic,
versatility for diverse domains and interpretability; and (2) Learning, including data abundance, and
training/inference efficiency.

Method Plan
Expressivness Learning

Structuring Versatility Interpretability Data EfficiencyAbundance
CoT (Wei et al., 2022a) Steps Intertwined with Surface Realization ✗ ✓ ✓ ✗ N/A
Plan-and-Solve Wang et al. (2023) Free-Form Natural Language Text ✗ ✓ ✓ ✗ ✗
AMOR (Guan et al., 2024) Expert-Designed Finite State Machine ✓ ✗ ✓ ✗ ✗
Predicted-PA (Cornille et al., 2024) Learnable Latent Codes ✗ ✓ ✗ ✓ ✗
Quiet-STaR (Zelikman et al., 2024) Learnable Latent Verbal Words ✗ ✓ ✗ ✓ ✗

CODEPLAN (This Work) Free-Form Programming Language Code ✓ ✓ ✓ ✓ ✓

models’ inherent capabilities as well as carefully designed prompts (Anagnostidis & Bulian, 2024),
while task-specific fine-tuning approaches limit the models’ ability to generalize to new domains.

To surmount the aforementioned issues, we propose CODEPLAN, a novel, scalable framework that
empowers LLMs to generate and follow code-form plans—pseudocode that serves as high-level,
structured blueprints of the reasoning process. By leveraging the structured and versatile nature
of code (Madaan et al., 2022), CODEPLAN effectively captures the rich semantics and control
flows inherent to sophisticated reasoning. As exemplified in Figure 1, code naturally supports
various common reasoning structures, including the hierarchical composition of multiple subtasks
(function making and calling), iterative steps (for-loops), and conditional multi-branch steps (if-
statements). Importantly, CODEPLAN allows the automatic extraction of code-form plans from
massive, wide-ranging text corpora that naturally embed the planning signals, bypassing the need for
curated, task-specific datasets. This enables CODEPLAN to scale efficiently and improve reasoning
capabilities across diverse tasks beyond specific ones like mathematical reasoning (Yu et al., 2023).
Table 1 summarizes the advantages of CODEPLAN against prior work.

To train CODEPLAN, we construct a large-scale dataset with 2M examples in the form of ⟨prompt,
code-form plan, response⟩. We validate the effectiveness of CODEPLAN in multiple models, includ-
ing Mistral (Jiang et al., 2023) and Llama (Touvron et al., 2023; Dubey et al., 2024). Extensive
experiments show that CODEPLAN consistently and significantly outperforms directly generating re-
sponses without planning, yielding a relative 25.1% performance gain averaged across 13 challenging
reasoning benchmarks spanning mathematical reasoning, symbolic reasoning, instruction-following,
multi-hop question answering, and decision-making tasks. These results provide compelling evidence
for the models’ enhanced ability to tackle complex multi-step reasoning problems. By leveraging
code-form plans as an intermediate representation during training, we pioneer a scalable framework
for endowing LLMs with structured, versatile, and interpretable reasoning – a capability that has
remained elusive when relying solely on natural language.

In summary, this work makes several pivotal contributions:

I. We introduce CODEPLAN, a novel, scalable framework that empowers LLMs to generate and
follow code-form plans—pseudocode that outlines high-level, structured reasoning processes. This
framework unlocks new frontiers for structured reasoning with LLMs, transcending the limitations
imposed by the obscured implicit planning signals in natural language text.

II. CODEPLAN allows efficient and cost-effective training data construction from massive, wide-
ranging corpora, enabling promising data scalability. We exemplify this by curating a large-scale
dataset comprised of 2M prompt-response pairs along with their corresponding code-form plans.
This dataset also establishes a rich resource for future research on reasoning in LLMs.

III. We demonstrate CODEPLAN’s remarkable efficacy and generality across 13 challenging reasoning
benchmarks on multiple backbone models, scaling from 7B to 13B. Further analysis reveals its
growing advantage over baselines as problem complexity increases, and its strong data efficiency.

2 METHODOLOGY

We formally define the multi-step reasoning task as follows: Given a prompt X that poses a problem,
the goal is to generate a response Y that requires a comprehensive solution through a sequence of log-

2

Published as a conference paper at ICLR 2025

Prompt: How many digits are required to number a book
containing 240 pages?

Response: You can number the pages from 1 to 240. Since 240 has
3 digits, the number of the book will have 3 digits
(EARLY ANSWERING)

(1a) Base Model

(1) Mathematical Reasoning

Response: To find the number of digits required, we can use the
formula:
Number of digits = floor(log10(number)) + 1
(INCORRECT FORMULA)
where floor(x) rounds x down to the nearest integer.
In this case, the number is 240, so:
Number of digits = floor(log10(240)) + 1
= floor(1.3802) + 1
= 2 + 1
= 3
Therefore, 3 digits are required to number a book containing 240
pages.

(1b) Standard Training

Plan:
def num_digits_in_book(num_pages):

if num_pages <= 9:
return 1

elif num_pages <= 99:
return 2

else:
return 3

def total_digits(num_pages):
total = 0
for i in range(1, num_pages + 1):

total += num_digits_in_book(i)
return total

print(total_digits(240))

Response:
To calculate the number of digits required, we can use the following steps:
1. Determine the number of digits required for each page number.

- For numbers 1-9, 1 digit is required.
- For numbers 10-99, 2 digits are required.
- For numbers 100-240, 3 digits are required.

2. Calculate the total number of digits required.
- For 1-9, there are 9 numbers, so 9 digits are required.
- For 10-99, there are 90 numbers, so 180 digits are required.
- For 100-240, there are 141 numbers, so 423 digits are required.
- Total digits required = 9 + 180 + 423 = 612.

Therefore, 612 digits are required to number a book containing 240 pages.

(1c) CODEPLAN

Prompt : Compare and contrast the different types of renewable
energy sources available today and discuss their feasibility.

Response: Solar energy is the most abundant and the most widely
used. It is captured by solar panels and used for heating and
electricity. Wind energy is generated by turbines and used to
generate electricity. Hydro energy is generated…Geothermal
energy is generated…(LACKS ANALYSIS AND COMPARISONS)
Solar energy is the most abundant and the most widely
used...(REPETITIVE WITH THE FIRST PARAGRAPH)

(2a) Base Model

(2) Instruction-Following

Response: The feasibility of each renewable energy source
depends on various factors such as the availability …
Renewable energy sources can be classified into three main types:
(THE FOLLOWING LIST IS NOT COMPREHENSIVE AND LACKS COMPARISONS)
1. Biomass:... Biomass is a widely used and sustainable energy
source…(BIOMASS ENERGY IS RELATIVELY NOTWIDELY USED IN FACT)
2. Hydropower: …
3. Geothermal energy: …
…the feasibility of using them depends on factors such as the
availability of the resource…. (REPETITIVEWITH THE FIRST PARAGRAPH)

(2b) Standard Training

Plan:
def compare_renewable_energy_sources():

energy_sources = {
'solar': {'feasibility': 0.8, 'accessibility': 0.8},
'wind': {'feasibility': 0.7, 'accessibility': 0.9},
'hydro': {'feasibility': 0.6, 'accessibility': 0.5},
'geothermal': {'feasibility': 0.4, 'accessibility': 0.3},
'biomass': {'feasibility': 0.5, 'accessibility': 0.4}

}
def calculate_feasibility(score):

if score >= 0.8:
return 'highly feasible'

elif score >= 0.5:
return 'feasible'

else:
return 'not feasible’

print("Comparison:")
for source, scores in energy_sources.items():

print(f“{source}: {calculate_feasibility(scores[‘feasibility’])}, {scores['accessibility']}")
return "Renewable energy sources compared and contrasted based on feasibility and accessibility.”

Response:
Solar energy is highly feasible as it is abundant and can be harnessed in various forms such
as photovoltaic (PV) panels and solar thermal systems. However, its accessibility is limited
by…weather conditions and the need for large-scale infrastructure.
Wind energy…is more accessible than solar energy but requires suitable wind conditions and
may face opposition from local communities...
Hydroelectric power….is a proven technology but can have significant environmental impacts,
including the displacement of communities and the fragmentation of ecosystems.
Geothermal energy …is a reliable source but requires specific geological conditions and can
be expensive to develop.
Biomass energy…is a renewable source but raises concerns about sustainability….

(2c) CODEPLAN

Figure 1: Two examples for the mathematical reasoning task (Top) and instruction-following task
(Bottom) with Mistral-7B as the base model. Words highlighted in red: Unreasonable reasoning
steps; Maroon words: Conditional branches in the plan; Blue words: Iterative loops in the plan;
Purple boxes: Function making in the plan; Golden underlined words: Function calling in the
plan; Words highlighted in green: Essential reasoning steps in the response adhering to the plan.

ical reasoning steps. In this section, we elaborate on the method for solving the task by decomposing
the generation process (§2.1) into two stages: planning (§2.2) and surface realization (§2.3).

2.1 FORMALIZATION

Typically, LLMs are trained to minimize the negative log-likelihood of ground-truth outputs:

L = − log p(Y |X). (1)

To imbue LLMs with structured and systematic reasoning capabilities, we propose decomposing
the generation process into two stages: planning and surface realization (Reiter & Dale, 2000). The
planning stage aims to generate a plan Z that outlines the control flow for solving the problem X ,
while the surface realization stage then translates this plan into the final natural language response Y ,
fleshing out the low-level reasoning details. The optimization objective L is then modeled as follows:

L = − log p(Y |X) = − logEp(Z|X)p(Y |X,Z), (2)

where p(Z|X) and p(Y |X,Z) refer to the planning model and surface realization model, respectively.
Nevertheless, marginalizing over the latent variable Z is generally intractable, as the search space

3

Published as a conference paper at ICLR 2025

could be vast. To circumvent the challenge, we minimize a variational upper bound of the loss with a
posterior q(Z|X,Y) (Kingma, 2013). Hence, the objective can be formulated as:

L = − logEp(Z|X)p(Y |X,Z) ⩽ −Eq(Z|X,Y) log p(Y |X,Z) + KL (q(Z|X,Y)||p(Z|X)) .).
(3)

In contrast to existing approaches (Wei et al., 2022a) that intertwine planning and realization steps, the
formulation explicitly disentangles these two stages, allowing for systematic generation of structured
plans that effectively guide low-level reasoning steps. Moreover, it overcomes the limitations caused
by the obscured planning signals in natural language data.

A well-defined q(Z|X,Y) is crucial for effectively optimizing Eq. 3. We provide two principled
approaches to model this posterior distribution:

(1) Explicit Plans. A straightforward assumption is that there exists a “gold annotator” who excels at
summarizing a high-quality plan Z∗ for any given (X,Y) pair. Under the assumption, q(Z|X,Y)
follows a Dirac distribution: q(Z|X,Y) = δ(Z = Z∗).

(2) Implicit Plans. Alternatively, plans can be modeled as learnable latent vectors that implicitly
encode expert knowledge, styles, or other nuances shaping the reasoning process (Kingma, 2013). In
this context, q(Z|X,Y) can be defined as continuous Gaussian distribution (Kingma, 2013), discrete
multinomial distribution over a learnable codebook (Van Den Oord et al., 2017; Cornille et al.,
2024) or a pre-defined vocabulary (Zelikman et al., 2024). Compared to explicit representations,
latent vectors might capture more subtle planning aspects. However, this approach often introduces
computation overhead and may suffer from posterior collapse (Bowman et al., 2016).

In this work, we adopt the simple and explainable “Explicit Plans” approach by setting q(Z|X,Y) =
δ(Z = Z∗), where Z∗ denotes the plan provided by a “gold annotator.” We reserve the exploration of
the implicit approach for future work. This setting then yields the following upper bound for Eq. 3:

L̃ = − log p(Y |X,Z∗)− log p(Z∗|X). (4)

For simplicity, we unify the planning model p(Z∗|X) and the surface realization model p(Y |X,Z∗)
into a single LM architecture with shared parameters θ. Crucially, this formulation implies that an
optimal plan Z∗ should achieve a delicate balance between informativeness for effective reasoning
guidance and conciseness for efficient generation. This balance minimizes the combined difficulty of
plan generation and subsequent realization, thereby optimizing overall model performance.

2.2 PLANNING

Given a prompt X , Z∗ should capture the rich semantics and control flows inherent in the reasoning
path Y . This motivates us to use programming languages—which are Turing complete (Boyer &
Moore, 1983)—as a general representation of Z∗, thereby framing planning as code generation.

As shown in Figure 1, this code-form representation is versatile across diverse scenarios with several
compelling advantages: (1) It seamlessly incorporates conditional branching (i.e., if-statements)
to dynamically adapt reasoning steps to intermediate results or contexts. (2) It integrates iterative
loops (i.e., for-loops) to handle sequential data or perform repeated operations. (3) It defines and
composes modular tools (i.e., Python functions), enhancing LLMs’ abilities to craft and use tools
(Cai et al., 2024). This also potentially endows our approach with the ability to build agents that
can interact with external environments through specific APIs (Hausknecht et al., 2020), which is
left for future work. (4) From a high-level perspective, it naturally supports a hierarchical reasoning
structure, by defining variables and attributes upfront, addressing sub-tasks via specific functions, and
orchestrating the main procedure using rigorous formal logic. This fosters the breakdown of complex
reasoning problems into modular sub-components, facilitating the effective transfer of planning
knowledge and enhancing the model’s systematic reasoning abilities (Yang et al., 2023).

Given a dataset of (X,Y) pairs, we obtain the annotation of Z∗ by prompting an LLM that has
been extensively pre-trained on code data, as detailed in §3.1. Specifically, we instruct the model
to generate a Python-style pseudocode that outlines the reasoning structure for solving the problem
X and arriving at the response Y . We do not mandate the generated plans to be executable in light
of three considerations: (1) encoding reasoning logic using code is sufficient for generality and
scalability, and execution might be unnecessary; (2) generating pseudocode is more token-efficient
than executable code; and (3) our pilot study finds that existing LLMs still struggle to generate fully

4

Published as a conference paper at ICLR 2025

Table 2: Instruction for generating the code-form plan for a given prompt-response pair.
Prompt: {{Prompt}}
Response: {{Response}}

Given a prompt-response pair, your task is to describe the high-level logic of the response
using a pseudo Python code. Such that following this code, models can easily generate the
response.

The code should balance conciseness and informativeness.
The code should be high-level, instead of replicating low-level details in the response.
The code should be less than 200 words (adjust its length based on response lengths).

executable code plans for various tasks, as this requires a comprehensive understanding of various
libraries, APIs, and domain-specific knowledge. By circumventing the execution step, we can focus
on the core challenge of generating structured plans that capture the underlying reasoning logic,
without additional complexities. After obtaining the dataset of (X,Z∗, Y) triples, we optimize the
model for plan generation by minimizing the second term of Eq. 4 (i.e., − log p(Z∗|X)).

2.3 SURFACE REALIZATION

Next, we proceed to the surface realization stage, aiming to generate a comprehensive response Y to
the prompt X under the guidance of the high-level code-form plan Z∗. To this end, we optimize the
model by minimizing the first term of Eq. 4 (i.e., − log p(Y |X,Z∗)).

As illustrated in Figure 1, this enables the controllable generation of Y that adheres to the human-
readable plan Z. For instance, when realizing if-statements, the model is explicitly conditioned on
the multi-branch conditions specified in the code, ensuring adherence to the intended logic. Similarly,
when expanding for-loops, the model is guided to systematically process each element, following
the encoded iteration logic, which is critical for tasks involving iterative reasoning or sequential
decision-making (Shridhar et al., 2020; Xie et al., 2024). This tight coupling between the code-form
plan and the final reasoning path enables the model to produce coherent, logically sound solutions
that faithfully reflect the intricate reasoning structure.

3 EXPERIMENTS

3.1 TRAINING DATA CURATION

To facilitate effective learning of planning and surface realization, we curate a large-scale training
dataset of examples in the form (X,Z∗, Y). We start from WebInstruct (Yue et al., 2024) that is
automatically constructed from raw web data and contains diverse prompt-response pairs, and prompt
Llama-3-8B-Instruct (Dubey et al., 2024) to synthesize Z∗. Table 2 shows the prompt. We use
nucleus sampling (Holtzman et al., 2020) (p = 0.9) with a temperature of 0.7. This approach enables
efficient construction of large-scale datasets, and is readily extensible to other existing corpora such
as Li et al. (2024) and Cheng et al. (2024b). More details are presented in Appendix A.1.

3.2 BASELINES

We evaluate the following baselines: (1) Plan-and-Solve (PS) Prompting: It prompts the LLM
to first devise a natural language plan to decompose the entire task into smaller subtasks, and then
generate the response following the plan (Wang et al., 2023). (2) Quiet-STaR: It automatically
learns implicit plans for generating each token from WebInstruct (Zelikman et al., 2024). (3) Vanilla
Training: It first trains the LLM on WebInstruct and then prompts it to directly generate the response.

3.3 EXPERIMENTAL SETUP

We select Mistral-7B (Jiang et al., 2023) and Llama-2-7B/13B (Touvron et al., 2023) as our backbone
models. For Mistral/Llama, we use a learning rate of 5e-6/1e-5 and a global batch size of 512/256,
respectively. We set the maximum training epochs to 2. During inference, models are instructed to
generate CoT-style responses for all tasks. Unless stated otherwise, we conduct evaluations under the

5

Published as a conference paper at ICLR 2025

few-shot setting (from 2-shot to 4-shot) without fine-tuning on evaluation benchmarks. The above
settings are also applied on baselines for fair comparisons.

3.4 EVALUATION BENCHMARKS

We evaluate CODEPLAN across a diverse range of tasks necessitating multi-step reasoning:

Mathematical Reasoning. It involves three benchmarks: (1) GSM8K (Cobbe et al., 2021), a
collection of grade-school problems; (2) MATH (Hendrycks et al., 2021), a more challenging suite of
high-school-level problems; and (3) SVAMP (Patel et al., 2021), a robustness evaluation benchmark.

Symbolic Reasoning. We use four benchmarks requiring multi-step logical deductions: (1) Boolean
Expression from Big-bench-hard (BBH) (Suzgun et al., 2022), where the model infers the value of a
complex boolean expression; (2) Coin Flipping (Wei et al., 2022b), which requires determining the
final face after a sequence of flips. We use the challenging 4-flip version; (3) Last Letter Concatenation
(Wei et al., 2022b), which requires concatenating the last letter of a 4-word sequence; and (4) Dyck
Language from BBH, which requires predicting the closing parentheses of a Dyck-4 word. This task
often demands over 10 reasoning steps. We find all models struggle to cahieve non-trivial few-shot
performance on this task due to model degeneration (Holtzman et al., 2020). To mitigate these
confounding factors beyond planning capabilities, we synthesize 5K examples based on official
implementation to fine-tune each model before evaluation.

Instruction-Following. We assess the proficiency in following real-world instructions on two
benchmarks: (1) AlpacaEval 1.0 (Li et al., 2023) and 2.0 (Dubois et al., 2024), which capture
representative user interactions ; and (2) MT-Bench (Zheng et al., 2024), a meticulously curated set
of high-quality queries spanning eight domains. Since our training data are not specifically tailored
for instruction-following, we follow prior work (Tunstall et al., 2023) to continue fine-tuning each
trained model on 150K randomly sampled examples from UltraChat (Ding et al., 2023).

Multi-hop Question-Answering (QA). We assess multi-step reasoning over complex information
dependencies on two becnhmarks: (1) HotpotQA (Yang et al., 2018), which comprises 2-hop
questions requiring reasoning over two supporting passages; and (2) MuSiQue (Trivedi et al., 2022),
which consists of 2-hop to 4-hop questions with intricate dependency structures. Since our method
focuses primarily on enhancing planning capabilities rather than knowledge acquisition, we provide
the gold reference passages in the context during evaluation. We report the exact match (EM)scores.

Decision-Making. We use one benchmark to evaluate the performance in sequential decision-making
scenarios: ALFWorld (Shridhar et al., 2020), a text-based virtual household environment comprising
six distinct task types. It necessitates the model to navigate through intricate sequences of actions and
observations, posing a rigorous test of the models’ planning capabilities in dynamic environments.
We use ReAct-style reasoning steps (Yao et al., 2022) during evaluation.

3.5 MAIN RESULTS

As highlighted in Table 3, CODEPLAN shows consistent and substantial performance improve-
ments across all backbone models and most benchmarks against the baselines, underscoring
the efficacy of incorporating code-form plans in enhancing LLMs’ systematic reasoning capabilities.
Specifically, CODEPLAN generally outperforms the PS Prompting baseline, often by a substantial
margin. This indicates that the benefits of learning to plan in code are beyond what can be achieved
by planning in natural language with careful prompt engineering alone. Quiet-STaR demonstrates
inferior performance even compared to the backbone model despite significant computation over-
head1, illustrating the difficulty of learning implicit plans through latent variables. Notably, the
vanilla training approach, which solely learns low-level reasoning steps, does not always improve
backbone models’ performance on downstream tasks. For instance, the performance of Mistral-7B
drops by 2 to 9 points on several symbolic, multi-hop QA and decision-making tasks after vanilla
training. We attribute this to the distribution gap between the massive, wide-ranging corpus and
downstream benchmarks, thereby leading to suboptimal adaptation of the model’s reasoning capabili-
ties. In contrast, CODEPLAN consistently improves upon the initial backbone model across all
benchmarks, demonstrating its ability to develop more generalizable and transferable planning

1We use the official implementation for Quiet-STaR, which only supports Mistral and not Llama series.

6

Published as a conference paper at ICLR 2025

Table 3: Main results on five types of reasoning tasks. ∆ means the margin between vanilla
training (Vanilla) and CODEPLAN. On average, CODEPLAN yields a relative 25.1% performance
gain against vanilla training. We highlight the best results in bold. We report accuracies for
mathematical reasoning, symbolic reasoning, and decision-making tasks, the EM and F1 scores for
multi-hop QA tasks, the win rate for AlpacaEval, and the GPT-4 score for MT-bench.

Model Mathematical Reasoning Symbolic Reasoning
GSM8K MATH SVAMP Boolean Coin Flip Last Letter Dyck Language

Mistral-7B 46.9 18.8 47.5 77.2 84.1 39.5 73.0

+ PS Prompting 45.5 17.3 58.5 75.6 79.5 41.5 70.1

+ Quiet-STaR 45.6 15.9 47.5 66.0 57.2 1.5 54.4
+ Vanilla 54.1 31.5 55.2 85.6 86.1 37.5 72.0
+ CODEPLAN 59.5 34.3 61.4 90.8 92.6 57.5 87.2

∆ +5.4 +2.8 +6.2 +4.4 +6.5 +20.0 +15.2
(Relative Gain) (+10.0%) (+8.9%) (+11.2%) (+5.1%) (+7.5%) (+53.3%) (+21.1%)

Llama-2-7B 16.5 7.8 34.9 58.8 60.0 2.0 71.6

+ PS Prompting 12.0 4.7 27.6 61.2 61.4 1.0 70.4

+ Vanilla 30.7 19.6 36.6 75.2 54.4 0.0 63.6
+ CODEPLAN 33.8 20.8 41.5 79.2 63.0 5.0 88.0

∆ +3.1 +1.2 +4.9 +4.0 +8.6 +5.0 +16.4
(Relative Gain) (+10.1%) (+6.1%) (+13.4%) (+5.3%) (+15.8%) (N/A) (+25.8%)

Llama-2-13B 30.2 9.9 41.9 72.4 85.5 1.0 65.2

+ PS Prompting 22.0 9.5 35.2 71.6 81.5 24.5 52.8

+ Vanilla 44.3 23.6 45.9 85.5 59.7 15.0 71.2
+ CODEPLAN 49.5 27.4 53.4 86.4 100.0 23.5 88.0

∆ +5.2 +3.8 +7.5 +0.9 +40.3 +8.5 +16.8
(Relative Gain) (+11.7%) (+16.1%) (+16.4%) (+1.1%) (+67.5%) (+56.7%) (+23.6%)

Model
Instruction-Following Multi-hop QA Decision-Making

AlpacaEval MT-Bench MuSiQue HotpotQA ALFWorld1.0 2.0

Mistral-7B 65.2 5.0 1.7 29.8 35.4 23.2

+ PS Prompting 56.7 4.9 6.0 36.2 35.8 25.2

+ Quiet-STaR 53.5 4.1 3.5 27.3 25.0 10.5
+ Vanilla 69.9 6.0 6.9 33.7 33.0 14.1
+ CODEPLAN 71.9 10.7 8.7 37.2 40.4 23.2

∆ +2.0 +4.7 +1.8 +3.5 +7.4 +9.1
(Relative Gain) (+2.9%) (+78.3%) (+26.1%) (+10.4%) (+22.4%) (+64.5%)

Llama-2-7B 61.5 5.8 5.7 22.2 9.2 6.1

+ PS Prompting 46.0 4.4 4.9 11.5 10.6 10.1

+ Vanilla 58.0 3.8 5.8 25.0 16.0 12.1
+ CODEPLAN 65.1 6.2 6.2 27.4 27.4 14.1

∆ +7.1 +2.4 +0.4 +2.4 +11.4 +2.0
(Relative Gain) (+12.2%) (+63.2%) (+6.9%) (+9.6%) (+71.3%) (+16.5%)

Llama-2-13B 66.7 6.5 6.1 26.8 38.0 23.2

+ PS Prompting 52.8 5.0 5.6 31.3 25.8 19.2

+ Vanilla 66.7 6.4 5.9 28.3 34.0 21.2
+ CODEPLAN 73.9 12.2 7.1 34.8 40.4 33.3

∆ +7.2 +5.8 +1.2 +6.5 +6.4 +12.1
(Relative Gain) (+10.8%) (+74.5%) (+20.3%) (+23.0%) (+18.8%) (+57.1%)

knowledge during training. The superiority may result from the inherent structured, concise, and
unambiguous semantics encoded within code-form plans. In this way, LLMs can more effectively
extract and internalize the underlying planning signals in natural language data.

3.6 ANALYSIS

We analyze two key benefits of CODEPLAN: (1) increasing superiority on more complex prob-
lems (Finding 1) and (2) improved training data efficiency (Finding 2). Furthermore, we compare

7

Published as a conference paper at ICLR 2025

CODEPLAN against two variants: planning in natural language (Finding 3) and reasoning through
executable code (Finding 4), offering empirical evidence for the merits of leveraging code as inter-
mediate plan representations. Appendix B also discusses the influence of plan annotation models, the
efficiency of CODEPLAN, and case studies highlighting the strength and limitations of CODEPLAN.

Figure 2: EM (Left) and F1 (Right) scores on the
MuSiQue benchmark. N -hop means that the ques-
tion requires N reasoning steps to answer based
on knowledge in Wikipedia passages.

Finding 1: CODEPLAN Yields Amplified Ben-
efits for Increasingly Complex Reasoning
Tasks. To gain deeper insights into the mer-
its of CODEPLAN, we conduct experiments on
MusiQue, which encompasses questions span-
ning various levels of complexity. As illustrated
in Figure 2, CODEPLAN yields increasing per-
formance gain as the task becomes more com-
plex. The relative improvements in EM scores
increase from 6.3% for 2-hop questions to a re-
markable 43.8% for 4-hop questions.

This finding highlights a key insight – as reason-
ing challenges grow more intricate, the ability
to generate and leverage structured code-form
plans grows more valuable. For simple tasks,
LLMs’ inherent language understanding capabilities often suffice. But as task complexity increases,
the limitation of vanilla training—the ambiguity and obfuscation of planning signals in natural
language data—becomes more clear. In such scenarios, CODEPLAN enables LLMs to systematically
understand and frame the reasoning process, thereby navigating solution pathways more effectively.

Figure 3: Performance trajectories on two down-
stream tasks via vanilla training and CODEPLAN.
“4-Hop” denotes evaluating on the 4-hop subset.

Finding 2: CODEPLAN Improves Data Effi-
ciency. We analyze the performance trajecto-
ries of CODEPLAN and vanilla training. As de-
picted in Figure 3, the LLM trained with CODE-
PLAN almost always outperforms its counter-
part trained on the same raw prompt-response
data, evincing superior knowledge acquisition
and generalization to out-of-distribution reason-
ing challenges. Moreover, CODEPLAN achieves
a more stable and consistent performance as-
cent, maintaining its supremacy throughout the
training process. This showcases the advantage
of CODEPLAN in developing transferable high-
level reasoning skills from wide-ranging data,
as illustrated by the case in Appendix B.4.

Mathematical
Reasoning

Symbolic
Reasoning

Instruction
following

Multi-hop
QA

Decision
Making

42.2
46.5

50.8
55.0

59.0

71.0

83.0

95.0

25.2
27.5

29.8
32.0

34.8

36.5

38.2

40.0

13.8

17.5

21.2

25.0

Vanilla
Natural Language Plan
CodePlan

Figure 4: Comparing natural language planning
with CODEPLAN. The scores of each type of task
are averaged across all corresponding benchmarks.

Finding 3: CODEPLAN Outperforms Plan-
ning in Natual Language. To investigate how
code-form plans compare to natural language
plans, we conduct comparative experiments by
replacing the code plans in our dataset with nat-
ural language counterparts2. Figure 4 shows the
results. Training with natural language plans
also leads to moderate improvement over the
vanilla baseline. However, CODEPLAN consis-
tently outperforms its natural language coun-
terparts across all benchmarks by substantial
margins. The performance gaps are particu-
larly pronounced on complex reasoning tasks
requiring structured planning, such as mathemat-
ical reasoning, symbolic reasoning, instruction-

2We generate natural language plans using the pipeline in §3.1 with a modified prompt in Appendix A.3.

8

Published as a conference paper at ICLR 2025

Table 4: The negative log-likelihood of generating responses in different plan forms. Stage 1/2 refers
to planning/surface realization, respectively. “Overall” is calculated by summing up the two parts.

Method Stage 1: − log p(Z∗|X) Stage 2: − log p(Y |X,Z∗) Overall

Vanilla 0. 0.689 0.689

Natural Language Plan 0.351 0.337 0.688
CODEPLAN 0.237 0.347 0.580

following, and decision-making tasks, with relative improvements of 4%, 27.2%, 6.5%, and 27.5%,
respectively. This validates the superiority of code representations over natural language.

Additionally, we are curious about why planning in code outperforms natural language. We evaluate
the performance of the two-stage process: planning and surface realization. For each plan form, Table
4 reports the model’s negative log-likelihood (NLL) on a 10K subset of the training data. The vanilla
baseline without explicit planning exhibits a high overall NLL, reflecting its difficulty in directly
modeling the complex mapping from prompts to final responses. While natural language planning
substantially reduces NLL for surface realization, it introduces a significant challenge in planning
compared to CODEPLAN. We attribute this to two reasons: (1) code provides a more structured and
precise representation of complex reasoning logic compared to natural language, thus offering more
concise and easier-to-learn plan labels. (2) by framing plan generation as code generation, LLMs can
better leverage their pre-training knowledge, as code is far more prevalent in pre-training corpora
than natural language plans. Consequently, CODEPLAN achieves a more substantial overall NLL
improvement, providing empirical validation for our theoretical framework in Eq. 4 that requires
minimizing the combined difficulty of planning and surface realization.

Figure 5: Comparing CODEREASON (i.e., exe-
cutable code-form reasoning) with CODEPLAN.

Finding 4: CODEPLAN Outperforms Exe-
cutable Code-form Reasoning. Prior work
primarily focuses on using executable code to di-
rectly solve mathematical reasoning tasks (Gao
et al., 2023). However, we posit that this ap-
proach is inherently limited when tackling broad,
multi-step reasoning challenges that necessitate
deep natural language understanding capabili-
ties. To substantiate this claim, we conduct com-
parative experiments by replacing the code plans
in our dataset with executable code solutions.
Specifically, instead of constructing pseudocode
plans, we directly translate each response into
executable code that can output the answer af-
ter execution with a code interpreter, using the
prompt in Appendix A.3. We refer to this base-
line as CODEREASON.

As presented in Figure 5, while CODEREASON
achieves the highest performance on SVAMP, a
benchmark comprised of relatively simple math
word problems, it consistently underperforms CODEPLAN across a diverse array of reasoning
benchmarks that demand extensive natural language understanding capabilities, such as MATH,
MuSiQue, and HotpotQA. Notably, CODEREASON even lags behind the vanilla training baseline on
MATH and MuSiQue. In contrast, CODEPLAN’s novel framework of generating code plans as an
intermediate representation seamlessly integrates robust planning capabilities with the rich language
understanding abilities of LLMs, yielding superior performance on intricate multi-step reasoning
challenges.

9

Published as a conference paper at ICLR 2025

4 RELATED WORK

LLMs for Reasoning. Endowing LLMs with robust reasoning abilities remains a formidable
challenge. Existing approaches predominantly fall into three categories: (1) Prompting techniques,
which use expert-designed prompts to elicit reasoning skills without training (Wei et al., 2022b;
Press et al., 2023; Imani et al., 2023; Hong et al., 2024) (2) Task-specific fine-tuning, which curates
tailored fine-tuning data or rewards to improve reasoning in specific tasks like mathematical reasoning
(Yu et al., 2023; Mitra et al., 2024; Shao et al., 2024; OpenAI, 2024), code reasoning (Le et al., 2022;
Shen et al., 2023), instruction-following (Cui et al., 2023), visual reasoning (Cheng et al., 2024a), and
decision-making (Zeng et al., 2023; Guan et al., 2024) tasks. However, these approaches often falter
in generalizing beyond their intended tasks. (3) Tool integration, which seeks to augment LLMs’
reasoning capabilities by incorporating external tools like calculators (Schick et al., 2024), retrievers
(Asai et al., 2024), and code interpreters (Gao et al., 2023). Compared to these works, CODEPLAN
focuses on enhancing LLMs’ high-level planning capabilities in diverse domains, without relying on
task-specific prompts, fine-tuning data, rewards, or tools.

Deliberate Planning in LLMs. Enhancing LLMs’ planning capabilities is crucial for complex
reasoning tasks (Yang et al., 2023). Prior work primarily focuses on teaching LLMs to plan in natural
language via task-specific prompts (Wang et al., 2023; Khot et al., 2022) or curated fine-tuning data
(Yin et al., 2024; Guan et al., 2024). In contrast, CODEPLAN innovatively introduces code as a
structured and versatile plan representation. Recent works also attempt to learn implicit planning
(e.g., latent code or verbal words) from wide-ranging text corpora (Zelikman et al., 2024; Cornille
et al., 2024). However, these approaches may struggle to automatically unveil effective planning
signals from the vast space and often introduce significant computation overhead during training
due to online sampling over prior and posterior distributions. In contrast, CODEPLAN introduces
neglectable computation cost as illustrated in Appendix B.3. Additionally, recent works also explore
multi-path planning (Yao et al., 2024) and iterative plan refinement (Shinn et al., 2024), which are
orthogonal to our work. We leave integrating CODEPLAN with such techniques for future work.

Code-aided Reasoning. Recent works have explored leveraging code to empower LLMs for
complex reasoning. One approach directly employs prompting techniques (Gao et al., 2023; Ye et al.,
2023) or curated fine-tuning data (Gou et al., 2023; Zhou et al., 2023) to generate executable code as a
surrogate for natural language response, subsequently utilizing a code interpreter to derive the answer.
Despite the precision afforded by executing code, this framework suffers from limited data scalability
and is significantly limited to narrow domains such as mathematical calculation. Beyond direct
problem-solving, code has also been utilized to enhance LLMs’ capabilities in handling structured
reasoning tasks, such as graph generation (Madaan et al., 2022), event structure prediction (Wang
et al., 2022), and decision-making (Wang et al., 2024) tasks. Sharing a similar motivation, our work
leverages code to represent intricate reasoning structures.

5 CONCLUSION

In this work, we introduce a pioneering framework to endow LLMs with robust planning capabilities
through the explicit supervision of code-form plans. By reframing plan generation as a code generation
task, CODEPLAN harnesses the structured and versatile nature of code to capture the rich semantics
and control flows underpinning sophisticated reasoning processes. Importantly, CODEPLAN allows
the automatic extraction of code-form plans from massive, wide-ranging text corpora without the
need for curated, task-specific datasets. We demonstrate the effectiveness of this framework by
training CODEPLAN on a large-scale dataset comprised of 2M natural language problems paired
with their corresponding code-form plans. Across an extensive evaluation spanning 13 challenging
multi-step reasoning benchmarks, CODEPLAN demonstrates remarkable efficacy, consistently and
substantially outperforming vanilla training by a substantial margin. In-depth analyses further
corroborate CODEPLAN’s increasing performance gain on complex problems and generalization
ability. This work paves the way for several promising research directions, including exploring
diverse posterior distributions over plans, enabling multi-path planning, facilitating plan verification,
reflection and refinement, and realizing agents that can seamlessly leverage external knowledge
sources and APIs within their planning and reasoning processes.

10

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation for Distinguished Young Scholars (with
No. 62125604), and he Tsinghua University Initiative Scientific Research Program. This work was
also supported by the Ant Group Research Intern Program.

REFERENCES

Sotiris Anagnostidis and Jannis Bulian. How susceptible are LLMs to influence in prompts? In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
y7JnjDcIQa.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learn-
ing to retrieve, generate, and critique through self-reflection. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=hSyW5go0v8.

Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. In Proceedings of the 20th SIGNLL Conference
on Computational Natural Language Learning, pp. 10–21, 2016.

Robert S Boyer and J Strother Moore. A mechanical proof of the Turing completeness of pure LISP.
Citeseer, 1983.

Tom B Brown. Language models are few-shot learners. arXiv preprint ArXiv:2005.14165, 2020.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=qV83K9d5WB.

Chuanqi Cheng, Jian Guan, Wei Wu, and Rui Yan. From the least to the most: Building a plug-and-
play visual reasoner via data synthesis. arXiv preprint arXiv:2406.19934, 2024a.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. Instruction pre-
training: Language models are supervised multitask learners. arXiv preprint arXiv:2406.14491,
2024b.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Nathan Cornille, Marie-Francine Moens, and Florian Mai. Learning to plan for language modeling
from unlabeled data. arXiv preprint arXiv:2404.00614, 2024.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

11

https://openreview.net/forum?id=y7JnjDcIQa
https://openreview.net/forum?id=y7JnjDcIQa
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=qV83K9d5WB

Published as a conference paper at ICLR 2025

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen,
et al. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv preprint
arXiv:2309.17452, 2023.

Jian Guan, Wei Wu, Zujie Wen, Peng Xu, Hongning Wang, and Minlie Huang. Amor: A recipe
for building adaptable modular knowledge agents through process feedback. arXiv preprint
arXiv:2402.01469, 2024.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interac-
tive fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7903–7910, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 5: Industry Track), pp. 37–42, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in
chain-of-thought reasoning. arXiv preprint arXiv:2307.13702, 2023.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason E Weston,
and Mike Lewis. Self-alignment with instruction backtranslation. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=1oijHJBRsT.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of
code are few-shot commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

12

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT

Published as a conference paper at ICLR 2025

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023.

pytorch. Pytorch profiler, 2023. URL https://pytorch.org/tutorials/recipes/
recipes/profiler_recipe.html.

Ehud Reiter and Robert Dale. Building Natural Language Generation Systems. Cambridge University
Press, 2000.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

13

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

Published as a conference paper at ICLR 2025

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2609–2634, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.acl-long.
147.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot event structure
prediction. arXiv preprint arXiv:2210.12810, 2022.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. arXiv preprint arXiv:2402.01030, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=l5XQzNkAOe.

Qiang Yang. Intelligent planning: a decomposition and abstraction based approach. Springer Science
& Business Media, 2012.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decompose evidence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808, 2023.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12380–12403, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

14

https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147
https://openreview.net/forum?id=l5XQzNkAOe
https://openreview.net/forum?id=l5XQzNkAOe

Published as a conference paper at ICLR 2025

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023.

15

Published as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

A.1 TRAINING DATA CURATION DETAILS

The curation of high-quality training data is crucial for the success of our approach. To ensure the
integrity and relevance of the generated code-form plans, we filter examples without valid terminations
in the plans, as this is essential for maintaining logical coherence. Figure 6 illustrates the pipeline for
curating the training data.

Pre-trained on
Large-Scale Code Data

<Prompt, Response> <Prompt, Code-form Plan, Response>
Plan Annotation Model Filtering plans without

valid terminations Training Data

Figure 6: Training data curation pipeline.

Furthermore, we explored several fine-grained filtering mechanisms to refine our dataset. One notable
approach involved assessing the information gain of each plan Z∗ by comparing the perplexity
of generating Y with and without the plan (i.e., P (Y |X) vs. P (Y |X,Z∗)). However, our pilot
experiments revealed that these additional filtering steps yielded only marginal improvements in the
performance of LLMs. In the interest of efficiency and to avoid potential overfitting, we opted to omit
these more complex filtering mechanisms in our final process. Appendix B.2 shows more discussion
about plan quality.

A.2 DATA STATISTICS

Table 5 and Table 6 present the detailed statistics of our training data and evaluation benchmarks,
respectively. For mathematical reasoning tasks, we use the full test set of GSM8K and SVAMP,
and a non-calculation-intensive subset of MATH, including “Prealgebra,” “Geometry,” “Counting
& Probability” since we focus on planning. For symbolic reasoning tasks, we use the official test
set of Boolean and Dyck Language, and use the official code to generate a challenging 4-hop test
set for Coin Flipping and Last Letter Concatenation. For instruction-following tasks, we use the
official test set of AlpacaEval and MT-Bench. For multi-hop QA tasks, we randomly sample 200
questions from the 2/3/4-hop subset of MuSiQue (600 in total) and randomly sample 500 questions
from HotpotQA. For the decision-making task, we use four task types, including “pick&place,”
“clean&place,” “heat&place,” and “cool& place.”

Table 5: Statistics of the curated training data.
Aspects # Examples Avg. Prompt Length Avg. Plan Length Avg. Response Length
Statistics 2,335,072 36.2 45.7 134.7

Table 6: Number of test examples in the evaluation benchmarks.
Mathematical Reasoning Symbolic Reasoning Instruction-Following Multi-hop QA Decision-Making
GSM8K/MATH/SVAMP Boolean/Coin Flip/Last Letter/Dyck Language AlpacaEval 1.0/2.0/MT-Bench MuSiQue/HotpotQA ALFWorld

1,319/1,824/1,000 250/1,000/1,000/250 805/805/80 600/500 100

A.3 PROMPTS

Prompt for Annotating Natural Language Plans. We present the prompt for annotating the
natural language plans for the original WebInstruct data of prompt-response pairs in Table 7.

16

Published as a conference paper at ICLR 2025

Table 7: Instruction for generating the natural language plan for a given prompt-response pair.
Prompt: {{Prompt}}
Response: {{Response}}

Given a prompt-response pair, your task is to describe the high-level logic of the response
using natural language. Such that following this logic, models can easily generate the
response.

The logic should balance conciseness and informativeness.
The logic should be high-level, instead of replicating low-level details in the response.
The logic should be less than 200 words (adjust its length based on response lengths).

Prompt for Annotating Executable Code for Reasoning. We present the prompt for annotating
executable codes for the original training data in Table 8.

Table 8: Instruction for generating the executable code for a given prompt-response pair.
Prompt: {{Prompt}}
Response: {{Response}}

Given a prompt-response pair, your task is to convert a natural language response into an
executable Python code that can print the same response.

The execution output should be consistent with the natural language answer.

B ADDITIONAL RESULTS

B.1 EXPERIMENTS ON LLAMA-3 MODELS

B.2 ASSESSING THE ROBUSTNESS OF CODEPLAN TO PLAN QUALITY DRIFT

To ensure the reliability and generalizability of our approach, it is crucial to assess the robustness
of CODEPLAN with respect to various factors that could potentially influence its performance.
Specifically, we focus on the choice of plan annotation models. This analysis aims to provide insights
into the stability of our method across different experimental conditions.

We initially used Llama-3-8B-Instruct to construct code-form plans from natural language responses,
balancing efficiency and performance. To investigate the impact of label quality on CODEPLAN, we
conducted an ablation study using two additional models for plan annotation: Gemma-2B-instruct3
and Llama-3-70B-instruct (Dubey et al., 2024). These models represent a spectrum of capabilities,
allowing us to assess how variations in label quality affect overall performance.

Table 9: Performance of CODEPLAN on three representative types of reasoning tasks when using dif-
ferent models for annotating code-form plans. Scores are averaged across corresponding benchmarks
for each task.
Annotation Model Gemma-2B-Instruct Llama-3-8B-Instruct Llama-3-70B-Instruct

Mathematical Reasoning 45.1 51.7 50.8
Multi-hop QA 29.9 38.8 37.7

Table 9 presents the results of this comparative analysis. While there is a substantial performance gap
between Gemma-2B-Instruct and Llama-3-8B-Instruct, the difference between Llama-3-8B-Instruct
and the more powerful Llama-3-70B-Instruct is relatively small across all reasoning tasks. This
suggests that once the annotation model reaches a sufficient level of competence, CODEPLAN’s
performance becomes largely insensitive to further improvements in plan quality, underscoring its
stability and resilience. The robustness of CODEPLAN to variations in plan quality offers several
key advantages. First, it alleviates the need for employing the most computationally expensive and
resource-intensive models for plan annotation, enabling more efficient data curation and training.

3https://huggingface.co/google/gemma-2b-it

17

https://huggingface.co/google/gemma-2b-it

Published as a conference paper at ICLR 2025

Table 10: Efficiency of CODEPLAN compared with vanilla training.

Model Memory (GB) Time (Second)

Vanilla 30G 0.055
CODEPLAN 30G 0.058

Table 11: One example for the mathematical reasoning task (from the MATH benchmark).
Prompt:
There is a number C. The number C is a multiple of 7, but is NOT a multiple of 3. The number C is greater than 20, but less than 30. What is
this number C?
Plan and Response from CODEPLAN:

d e f f i n d n u m b e r c () :
m u l t i p l e s o f 7 = [i f o r i i n r a n g e (2 1 , 30) i f i % 7 == 0]
m u l t i p l e s o f 3 = [i f o r i i n r a n g e (2 1 , 30) i f i % 3 == 0]
r e s u l t = [i f o r i i n m u l t i p l e s o f 7 i f i n o t i n m u l t i p l e s o f 3]
r e t u r n r e s u l t [0]

The multiples of 7 between 20 and 30 are 21 and 28. The multiples of 3 between 20 and 30 are 21, 24, 27, and 30. Therefore, the number C is
28. The answer is 28.
Response from Vanilla:
The number C is a multiple of 7, but is NOT a multiple of 3. This means that C is a multiple of 21, but is NOT a multiple of 27. The only
number that fits this description is 21. The answer is 21

Second, it enhances the generalizability of our approach, as CODEPLAN can maintain its effectiveness
even when the plan annotations deviate from perfection due to factors such as domain shift or
annotation noise.

B.3 EFFICIENCY ANALYSIS

For efficiency evaluation, Table 10 reports the memory usage, and average per-example inference
time of CODEPLAN and the vanilla training baseline. During evaluating, we set the batch size to 1
and use one A100 GPU. We calculate memory consumption using PyTorch toolkits pytorch (2023).
The per-example inference time is averaged over 1000 generations.

The results demonstrate the comparable computational efficiency of CODEPLAN with vanilla training,
with only a negligible increase in inference memory usage. Moreover, the average inference time
of CODEPLAN is only marginally higher (∼5%) than that of vanilla training. These efficiency
metrics highlight that CODEPLAN does not sacrifice much computation overhead to get substantial
performance improvements, since we use pseudocode to concisely outline the reasoning structures.

B.4 CASE STUDY

To provide deeper insights into how CODEPLAN enhances LLM reasoning capabilities, we present
a detailed case study. This analysis involves the testing benchmarks used in the main paper, the
reusability of functions in the code-form plans to explain the high data efficiency of CODEPLAN, as
well as the strong performance of CODEPLAN for two popular tests, including Value Comparison and
Letter Counting, thus comprehensively illustrating the concrete benefits of our code-based planning
approach across diverse reasoning challenges.

Cases for Benchmarks. We present one example for each type of task in Table 11, 12, 13, 14,
respectively. Note that the example for the instruction-following task has been shown in Figure 1
in the main paper. As exemplified, the code-form plan clearly outlines the step-by-step reasoning
process:

• Mathematical Reasoning (Table 11): This example requires identifying a number that
satisfies multiple constraints. The vanilla pre-trained model fails to correctly incorporate all
conditions, yielding an incorrect answer. In contrast, CODEPLAN’s code plan methodically
enumerates the relevant number ranges, applies the given criteria through logical operations,

18

Published as a conference paper at ICLR 2025

Table 12: One example for the symbolic reasoning task (from the Last Letter Concatenation bench-
mark).
Prompt:
Take the last letters of the words in “Ofe Aliza Betzy Rohan” and concatenate them.
Plan and Response from CODEPLAN:

d e f e x t r a c t a n d c o n c a t e n a t e l a s t l e t t e r s (i n p u t s t r) :
words = i n p u t s t r . s p l i t ()
c o n c a t e n a t e d r e s u l t = ” ”
f o r word i n words :

l a s t l e t t e r = word [−1]
c o n c a t e n a t e d r e s u l t += l a s t l e t t e r

r e t u r n c o n c a t e n a t e d r e s u l t
i n p u t s t r = ” Ofe A l i z a Betzy Rohan ”
r e s u l t = e x t r a c t a n d c o n c a t e n a t e l a s t l e t t e r s (i n p u t s t r)

Current word is “Ofe”, last letter is “e”, concatenated result is “e”. Current word is “Aliza”, last letter is “a”, concatenated result is “ea”. Current
word is “Betzy”, last letter is “y”, concatenated result is “eay”. Current word is “Rohan”, last letter is “n”, concatenated result is “eayn”. The
answer is eayn.
Response from Vanilla:
Current word is “Ofe”, last letter is “e”, concatenated result is “e”. Current word is “Aliza”, last letter is “a”, concatenated result is “ea”. Current
word is “Betzy”, last letter is “y”, concatenated result is “ey”. Current word is “Rohan”, last letter is “n”, concatenated result is “eya”. The
answer is eaeya.

Table 13: One example for the multi-hop QA task (from the MuSiQue benchmark).
Prompt:
The beautiful country used as a backdrop for the movie The Lord of the Rings was founded on what date?
Plan and Response from CODEPLAN:

d e f g e t a n s w e r () :
movie = que ry (”What movie i s used as a backdrop ”) = ” The Lord of t h e Rings ”
c o u n t r y = que ry (”What c o u n t r y i s used as a backdrop ”) = ”New Zea land ”
e v e n t = query (”What e v e n t i s r e l a t e d t o t h e c o u n t r y ”) = ” T r e a t y o f W a i t a n g i ”
d a t e = query (”What i s t h e d a t e o f t h e e v e n t ”) = ” 6 F e b r u a r y 1840 ”
answer = d a t e
r e t u r n answer

The movie The Lord of the Rings was filmed in New Zealand. The Treaty of Waitangi was signed in New Zealand on 6 February 1840. The
answer is 6 February 1840.
Response from Vanilla:
he movie The Lord of the Rings was released in 2001. The country was founded in 1840. The answer is 1840.

and precisely identifies the correct solution. The code naturally captures the step-by-step
reasoning process, breaking down the complex problem into interpretable sub-tasks.

• Symbolic Reasoning (Table 12): Here, the task involves concatenating the last letters
of words in a given string. While the vanilla model makes a mistake in tracking the
concatenation order, CODEPLAN’s code plan clearly delineates the iterative process of
extracting each word’s last letter and appending it to the result string. The structured nature
of the code ensures precise execution of the required operations, leading to the correct
solution.

• Multi-hop QA (Table 13): Answering this question requires reasoning over multiple pieces
of information and making implicit connections. The vanilla model struggles to synthesize
the relevant facts, providing an incorrect response. However, CODEPLAN’s code plan
explicitly outlines the necessary steps: identifying the key entities mentioned, querying
relevant information about each, and logically combining the retrieved knowledge to derive
the final answer. This structured approach enables CODEPLAN to navigate the multi-hop
reasoning process successfully.

• Decision-Making (Table 14): In this task set in a simulated environment, the agent must
execute a sequence of actions to accomplish the given goal. While the vanilla-trained
LM struggles to maintain a coherent plan of action, CODEPLAN’s code-form plan clearly
specifies the high-level steps required, such as locating and obtaining the target object,
cooling it, and placing it in the designated location. This explicit planning stage allows
CODEPLAN to systematically break down the complex task and execute the necessary
actions to achieve the desired outcome.

19

Published as a conference paper at ICLR 2025

Table 14: One example for the decision-making task (from the ALFWorld benchmark).
Prompt:
Cool a mug and put it in coffeemachine
Plan and Response from CODEPLAN:

d e f c o o l m u g p u t i n c o f f e m a c h i n e () :
f o r r e c e p t a b l e i n r e c e p t t o c h e c k :

o b s e r v a t i o n = go to (r e c e p t a b l e)
i f ’ c l o s e d ’ i n o b s e r v a t i o n :

o b s e r v a t i o n = open (r e c e p t a b l e)
i f ”mug” i n o b s e r v a t i o n :

found mug = t a k e (”mug” , r e c e p t a b l e)
go to (” f r i d g e ”)
c o o l (found mug , ” f r i d g e ”)
go to (” c o f f e e m a c h i n e ”)
p u t (found mug , ” c o f f e e m a c h i n e ”)

Act: think: To solve the task, I need to find and take a mug, then cool it with fridge, then put it in coffeemachine.
Obs: OK.
Act: think: First I need to find a mug. A mug is more likely to appear in drawer (1-5), cabinet (1-16), countertop (1-3), sinkbasin (1), stoveburner
(1-4), fridge (1), toaster (1), shelf (1-3). I can check one by one, starting with drawer 1.
Obs: OK.
Act: go to drawer 1
Obs: The drawer 1 is closed.
....
Act: go to countertop 1
Obs: On the countertop 1, you see a apple 1, a creditcard 2, a mug 2, and a spatula 1.
Act: think: Now I find a mug 2. Next, I need to take it.
Obs: OK.
Act: take mug 2 from countertop 1.
Obs: You pick up the mug 2 from countertop 1
Act: think: Now I take a mug 2. Next, I need to go to a fridge 1 and cool it.
Obs: OK.
Act: go to fridge 1
Obs: The fridge 1 is closed.
Act: cool mug 2 with fridge 1
Obs: You cool the mug 2 using the fridge 1.
Act: think: Now I cool a mug (1). Next, I need to put it in/on coffeemachine 1.
Obs: OK.
Act: go to coffeemachine 1
Obs: On the coffeemachine 1, you see nothing.
Act: put mug 2 in/on coffeemachine 1
Obs: You put the mug 2 in/on the coffeemachine 1.
Response from Vanilla:
Act: think: To solve the task, I need to find and take a cool mug, then put it in coffeemachine.
Obs: OK.
Act: think: First I need to find a cool mug. A cool mug is more likely to appear in fridge (1), countertop (1-3), cabinet (1-4), drawer (1-3). I can
check one by one, starting with fridge 1.
Obs: OK.
...
Act: take mug 2 from countertop 1 Obs: You pick up the mug 2 from the countertop 1.
Act: think: Now I find a cool mug 2. Next, I need to go to a coffeemachine 1
Obs: OK.
Act: go to coffeemachine 1
Obs: Nothing happens.
Act: put mug 2 in coffeemachine 1
Obs: Nothing happens.
Act: think: Now I put a cool mug (2). Next, I need to turn on coffeemachine 1.
Obs: OK.
Act: turn on coffeemachine 1
Obs: Nothing happens.
Act: think: Now I turn on a coffeemachine (1). Next, I need to wait until it is done.
Obs: OK.
...
Act: think: Now I wait until a coffeemachine (1) is done. Next, I need to take a mug (2).
Obs: OK.
...
Act: think: Now I put a mug (2) in/on a dishwasher (1). Next, I need to turn on a dishwasher (1). Obs: OK.
...

Through these diverse examples, we observe that CODEPLAN’s code-based plans consistently provide
clear, structured representations of the reasoning process across various task types. The formal
semantics of code enable the explicit encoding of intricate logic, control flow, and hierarchical task
decompositions. This explicit planning stage allows the model to methodically navigate complex
problems, leading to more accurate, reliable, and interpretable solutions compared to direct response
generation without structured planning.

20

Published as a conference paper at ICLR 2025

Table 15: Two examples from the training data of CODEPLAN, where two different questions can be
solved through similar code-form plans.

Prompt 1: Prompt 2:
Which numbers in the following set are prime numbers: (4,7,31,
117, 324)?

What is the 10th prime number greater than 50, if they are listed in
order?

Plan and Response for Prompt 1:

d e f i s p r i m e (n) :
i f n <= 1 :

r e t u r n F a l s e
f o r i i n r a n g e (2 , i n t (n ** 0 . 5) + 1) :

i f n % i == 0 :
r e t u r n F a l s e

r e t u r n True
d e f f i n d p r i m e n u m b e r s (numbers) :

p r ime numbers = []
f o r num i n numbers :

i f i s p r i m e (num) :
p r ime numbers . append (num)

r e t u r n pr ime numbers
numbers = [4 , 7 , 31 , 117 , 324]
p r ime numbers = f i n d p r i m e n u m b e r s (numbers)
p r i n t (p r ime numbers)

A prime number is a natural number greater than 1 that is only
divisible by 1 and itself.
From the given set, 4 and 324 are not prime numbers because they
are even.
117 is not a prime number because it can be written as 117 =
3x39 = 3x3x13 = 32x13, which means it has factors other
than 1 and itself.
Therefore, the only prime numbers in the set are 7 and 31.

Plan and Response for Prompt 2:

d e f f i n d 1 0 t h p r i m e g r e a t e r t h a n 5 0 () :
p r im es = []
num = 53
w h i l e l e n (p r im es) < 1 0 :

i f i s p r i m e (num) :
p r im es . append (num)

num += 1
r e t u r n p r i me s [−1]

d e f i s p r i m e (n) :
i f n <= 1 :

r e t u r n F a l s e
f o r i i n r a n g e (2 , i n t (n ** 0 . 5) + 1) :

i f n % i == 0 :
r e t u r n F a l s e

r e t u r n True

The prime numbers greater than 50 are: 53, 59, 61, 67, 71, 73, 79,
83, 89, 97, ...The 10th prime number greater than 50 is 97.

Cases for Reusable Functions. One of the key advantages of CODEPLAN ’s code-form planning is
the ability to reuse functions across different instances. By abstracting certain common operations
into reusable code blocks, CODEPLAN can achieve higher data efficiency. For instance, when tackling
tasks involving mathematical reasoning, frequently used operations can be encapsulated in distinct
functions that are reusable across multiple examples, as illustrated in Table 15.

Cases for “Value Comparison” and “Letter Counting.” Recent studies showed that value
comparison and letter counting are difficult even for GPT-4o. The former requires determining
the larger one of two digits (e.g., comparing 9.8 and 9.11), while the latter requires counting the
number of occurrences of a specific letter within a word, such as counting the number of “r”s in
“strawberry.” LLMs often falter when asked to handle these seemingly simple tasks because they lack
a structured process for dealing with multi-part numerical representations or iterating through the
word and applying conditions.

In contrast, CODEPLAN ’s code-form plan effectively disambiguates the tasks by explicitly defining
how to compare values and count letters, as shown in Table 16. For example, when comparing 9.8
and 9.11, CODEPLAN generates a code-form plan that systematically parses and compares each part
of the numbers, ensuring that the comparison logic is clear and correct. If asked to count the number
of “r”s in “strawberry,” CODEPLAN produces a pseudocode plan that explicitly tracks each letter and
increments the count when the specified letter is found.

B.5 ERROR ANALYSIS

While CODEPLAN demonstrates significant improvements in reasoning capabilities, it is crucial to
conduct a thorough error analysis to identify areas for future research and refinement. We categorize
and examine three primary types of errors observed in the code plan generation and execution process:

• Subtask Execution Error (Table 17): This error occurs when the model correctly generates
an appropriate high-level plan but fails to execute individual subtasks accurately. For
example, in a multi-step math problem, the plan might correctly outline the sequence of
operations, but an arithmetic error in one step leads to an incorrect final answer. Table 17
presents another error case from the Last Letter Concatenation benchmark. Here, the plan
is correct, but an error in the reasoning path leads to an incorrect final result. This type of

21

Published as a conference paper at ICLR 2025

Table 16: Examples from OpenAI’s o1-preview with and without code-form planning for the “Value
Comparison” task and “Letter Counting” task.

Prompt for ‘‘Value Comparison’’: Prompt for ‘‘Letter Counting’’:
9.8 and 9.11 which is larger? how many r is there in “strawberry”
Response with Code-form Planning:

d e f compare () :
d e l t a = 9 . 8 − 9 . 1 1
i f d e l t a > 0 .

answer = ’ 9 . 8 i s l a r g e r ’
e l s e :

answer = ’ 9 . 1 1 i s l a r g e r

delta = 9.8 - 9.11= 0.69. Since 0.69 > 0, 9.8 is larger.

Response with Code-form Planning:

d e f g e t f r e q u e n c () :
c n t =0
f o r c i n ” s t r a w b e r r y ” :

i f c=” r ” :
c n t += 1

r e t u r n c n t

There are 3 “r”s in the word “strawberry”

Response without Planning:
9.11 is larger.

Response without Planning:
The word ”strawberry” contains two letter ”r”s.
Here’s the breakdown:
S T R A W B E R R Y The two ”r”s are located in the third and
eighth positions.

Table 17: One example from the Last Letter Concatenation benchmark, which exhibits the subtask
execution error highlighted in red.
Prompt:
Take the last letters of the words in “Nguyec5n Danish Aminta Javon” and concatenate them.
Plan and Response from CODEPLAN:

d e f e x t r a c t a n d c o n c a t e n a t e l a s t l e t t e r s (i n p u t s t r) :
words = i n p u t s t r . s p l i t ()
c o n c a t e n a t e d r e s u l t = ” ”
f o r word i n words :

l a s t l e t t e r = word [−1]
c o n c a t e n a t e d r e s u l t += l a s t l e t t e r

r e t u r n c o n c a t e n a t e d r e s u l t
i n p u t s t r = ” Ofe A l i z a Betzy Rohan ”
r e s u l t = e x t r a c t a n d c o n c a t e n a t e l a s t l e t t e r s (i n p u t s t r)

Current word is “Nguyec5n”, last letter is “n”, concatenated result is “n”. Current word is “Danish”, last letter is “i”, concatenated result is “ni”.
Current word is “Aminta”, last letter is “a”, concatenated result is “nia”. Current word is “Javon”, last letter is “n”, concatenated result is “nian”.
The answer is nian.

Table 18: One example from the AlpacaEval benchmark, which exhibits the plan following error
highlighted in red.
Prompt:
Please read the paragraph below and count how many times the words “Amazon”, “river”, and “you” appear.
Please present the results in the format of “word, number of appearances” with each word on a separate line. Sort the lines in order of the number
of appearances.

The Amazon, a mesmerizing expanse of nature’s wonders, is home to the legendary Amazon River. Flowing through awe-inspiring landscapes
like the Amazon rainforest, the river weaves its way through Brazil, Colombia, and Peru, giving life to countless creatures. From the mighty
jaguars prowling the Amazon jungle to the vibrant macaws soaring above the canopy, this remarkable region teems with biodiversity...
Plan and Response from CODEPLAN:

d e f c o u n t w o r d s (t e x t) :
words = [”Amazon” , ” r i v e r ” , ” you ”]
r e s u l t s = {}
f o r word i n words :

r e s u l t s [word] = 0
f o r s e n t e n c e i n t e x t . s p l i t (” . ”) :

f o r word i n words :
i f word i n s e n t e n c e :

r e s u l t s [word] += 1
s o r t e d w o r d s = s o r t e d (r e s u l t s . i t e m s () , key=lambda x : x [1] , r e v e r s e =True)
r e t u r n ”\n ” . j o i n ([f ”{word } : { c o u n t }” f o r word , c o u n t i n s o r t e d w o r d s])

Amazon, 20
river, 13
you, 1

error suggests that while CODEPLAN enhances high-level reasoning, there is still room for
improvement in the performance of low-level reasoning steps.

22

Published as a conference paper at ICLR 2025

Table 19: One Example from the MATH benchmark, which exhibits the plan error.
Prompt:
February 1, 2008 is a Friday. The last Friday of February 2008 will be February x, 2008. If 2008 is a leap year, what is the value of x?
Plan and Response from CODEPLAN:

d e f f i n d l a s t f r i d a y o f f e b r u a r y (y e a r) :
i f i s l e a p y e a r (y e a r) :

d a y s i n f e b r u a r y = 29
e l s e :

d a y s i n f e b r u a r y = 28
l a s t f r i d a y = d a y s i n f e b r u a r y − (d a y s i n f e b r u a r y % 7)
r e t u r n l a s t f r i d a y

d e f i s l e a p y e a r (y e a r) :
r e t u r n y e a r % 4 == 0 and (y e a r % 100 != 0 or y e a r % 400 == 0)

y e a r = 2008
x = f i n d l a s t f r i d a y o f f e b r u a r y (y e a r)
p r i n t (x)

Since 2008 is a leap year, February has 29 days. Since 1 is a Friday, 29 − 29%7 = 28 is a Friday. Thus, x = 28. The answer is 28

• Plan Following Error (Table 18): This error type reveals potential disconnects between the
planning and realization stages. In Table 18, the model generates a correct plan but deviates
from it during the execution phase, omitting crucial steps. Addressing this error type could
involve strengthening the coupling between planning and execution phases during training.

• Plan Error (Table 19): The most fundamental type of error occurs when the generated
plan itself is flawed or incomplete. This indicates limitations in the model’s ability to
formulate comprehensive strategies for complex problems. Consider the example in Ta-
ble 19 from a mathematical reasoning task. The generated plan incorrectly calculates
“days in february % 7”, which should be “(days in february -1) % 7”. This type of error
suggests that further refinement of the planning mechanism is necessary, particularly for
tasks requiring nuanced multi-step reasoning.

Our analysis reveals that while CODEPLAN significantly enhances reasoning capabilities, there
remain opportunities for improvement across various aspects of the planning and execution process.
The subtask execution errors highlight the need for enhanced numerical precision and robustness in
low-level computations. Plan following errors suggest potential benefits from stronger integration
between the planning and realization stages during training. Finally, plan errors underscore the
importance of further refining the model’s ability to generate comprehensive and nuanced strategies
for complex reasoning tasks.

23

	Introduction
	Methodology
	Formalization
	Planning
	Surface Realization

	Experiments
	Training Data Curation
	Baselines
	Experimental Setup
	Evaluation Benchmarks
	Main Results
	Analysis

	Related Work
	Conclusion
	Acknowledgements
	Implementation Details
	Training Data Curation Details
	Data Statistics
	Prompts

	Additional Results
	Experiments on Llama-3 Models
	Assessing the Robustness of CodePlan to Plan Quality Drift
	Efficiency Analysis
	Case Study
	Error Analysis

