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Abstract 

This study investigated the robustness of reinforcement learning (RL) based adaptive traffic control systems 
(ATCS) in managing unseen traffic patterns and conditions. This research evaluated the performance of these 
systems by analyzing their ability to adapt and recover to changes in traffic using the microsimulation software 
SUMO. Two distinct traffic scenarios were prepared in simulation to evaluate performance: a synthetic scenario 
based on a 4x4 grid network and a real-world scenario modeled after the city of Ingolstadt, Germany. Each 
scenario included various cases representing different traffic patterns and conditions such as morning rush hour, 
evening congestion, special events, blocked roads, and faulty sensors. Following initial training on a specific case 
for each scenario, various RL models representing different ATCS systems underwent evaluation on unseen traffic 
events. The time to recover to the optimum level of performance of an RL model after encountering an unseen 
event, or the recovery time and the average queue length of all non-empty lanes over each timestep were used to 
evaluate the robustness of these models. Results of this study indicated that RL models generally performed well 
in managing changes in traffic flow but faced challenges with unseen conditions such as roadblocks and sensor 
failures. Furthermore, models with higher recovery times resulted in larger queue accumulation when 
encountering unseen traffic events in long-running cases. 
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1. Introduction 

Traffic congestion is a serious issue in urban settings. Traffic delays from congestion result in lost work hours, 
higher fuel consumption, and increased economic costs [1–3]. To solve the problem of traffic congestion, one 
potential solution is to use Adaptive Traffic Control System (ATCS) to manage traffic in the city. However, 
implementing such systems is challenging due to the complexity of urban traffic flow [4, 5]. With this respect, 
many researchers explored the use of reinforcement learning (RL) for ATCS systems [5–9]. Compared to other 
systems, RL-based systems promise the ability to learn from traffic patterns and control traffic lights accordingly. 
However, current reinforcement learning (RL) models experience reduced performance when there is a shift in 
the underlying traffic distribution, such as encountering an unseen traffic pattern or condition [10]. There is limited 
research investigating the performance of reinforcement learning-based adaptive traffic control systems in 
response to unseen traffic events. 

This study seeks to fill this gap by examining the robustness of reinforcement learning-based adaptive traffic 
control systems. It accomplishes this by evaluating how well these systems manage unseen traffic patterns and 
conditions by comparing their performance after encountering changes in traffic patterns and conditions and 
measuring how much time is needed to recover to the optimum level of performance. 

2. Related Work 

There are various studies that touch on the topic of RL models dealing with unseen traffic patterns and conditions. 
Rodrigues et al. discussed the effects of missing traffic sensor data, blocked roads, and changing traffic demands 
in the context of RL models for traffic signal control, but the study only focused on a single intersection [11]. Mei 
et al. examined the problem of missing traffic sensor data and addressed the problem using data imputation [12]. 
Alegre et al. discussed the effect of non-stationary or shifting traffic patterns on RL models with tabular Q-
Learning [10]. Some researchers investigated the use of an ontology-based traffic signal control RL model to 
address the issue of robustness to faulty traffic sensor data and unseen traffic patterns [13–15]. Yoon et al. 
proposed using a graph-centric state representation to improve the performance of RL models for unseen traffic 
patterns  [16]. Some researchers explored using meta-reinforcement learning for more efficient training for unseen 
traffic patterns [17–19]. Han et al. examined using adversarial reinforcement learning to improve generalization 
ability which helps in improving robustness by more efficient training in unseen events [20]. 
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This study differs from other works in that it focuses on the methodology of analyzing the performance of RL-
based ATCS systems, focusing on the change in performance over time. For analyzing this aspect, a performance 
metric called recovery time is introduced in this paper. 

3. Methodology 

In this section, the methodology for analyzing the robustness of RL-based ATCS systems is discussed. Two 
scenarios were prepared having multiple cases representing various traffic patterns and conditions. Multiple 
models were evaluated for each case using the SUMO traffic simulation software [21] and the testing framework 
provided by LibSignal [22]. The RL models underwent initial training before evaluating their robustness using 
recovery time and average non-zero queue length. 

3.1 Testing Scenarios 

Two distinct traffic scenarios were prepared to evaluate performance: 

1. Grid 4x4 
2. Ingolstadt 

The networks for these two scenarios are shown in [Fig. 1] and [Fig. 2]. Further details about the two scenarios 
are described in the following subsections. Each scenario included various cases representing different traffic 
patterns and conditions. The details of the scenarios and cases are described in Table 1 below. Notably, events 
representing changes in traffic flow like morning rush hour, evening congestion, and special events are considered 
traffic patterns in this paper. Events representing changes in the environment like blocked roads and faulty sensors 
are considered traffic conditions in this paper. 

 

Fig. 1 Grid 4x4 scenario network. Circular yellow 
markers indicate the position of traffic signal controls. 

 

Fig. 2 Ingolstadt scenario network. Circular yellow 
markers indicate the position of traffic signal controls. 

3.1.1 Grid 4x4 

The Grid 4x4 scenario was based on a 4x4 grid network consisting of 16 traffic lights. This scenario used synthetic 
data for testing across ten cases, as shown in Table 1. Only having 16 traffic signal controls, the small size of the 
network made it easy to prototype and develop cases for evaluation. Five models from the LibSignal library (IDQN 
[23], MPLight [4], CoLight [24], FixedTime, and MaxPressure [25]) were used for this scenario. 

The morning traffic cases involved inserting a vehicle every 3 seconds, moving from the edge nodes toward the 
center node. For the evening traffic cases, it followed the same pattern in reverse. For the blocked road cases, two 
roads were blocked, one near the center and one near the edges, preventisng vehicle passage. For the special event 
traffic case, vehicles moved from the uppermost to lowermost nodes at a rate of one every 3 seconds. For 
simulating faulty sensors in the faulty sensor cases, sensors had a 10% chance of failing to provide any data and 
all sensors added noise to the outputs based on a Poisson distribution with a mean of 0.5. The morning to evening 
traffic cases combined three patterns: morning traffic (0-4 hours), evening traffic (9-14 hours), and special event 
traffic (13-14 hours). Also, since the duration of these cases was 14 hours, these are long-running cases.  
Additionally, all cases included trips with random origins and destinations occurring every 5 seconds representing 
random traffic, which are added to the case traffic. The traffic comprised cars, buses, delivery vans, motorcycles, 
bicycles, and emergency vehicles.  

3.1.2 Ingolstadt 

The Ingolstadt scenario was based on real-world traffic data from the city of Ingolstadt, Germany, and consisted 
of 59 traffic lights. This scenario used real-world data for testing across six cases, as shown in Table 1. For ease 
of testing, the network used in this study is a simplified version of the original network [26]. This dataset was 
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chosen because it is the only publicly available dataset that contained 24-hour traffic data over multiple days. In 
addition, this dataset also recorded the actual traffic signal control activations used in the city. These qualities 
made it ideal for testing the robustness of RL models and comparing them with real-world performance. Three 
models from the LibSignal library (IDQN, CoLight, and MaxPressure) were used for this scenario. The FixedTime 
model used actual traffic signal control activations included in the scenario rather than the FixedTime model 
available from LibSignal. 

Since the focus of this scenario involved understanding real-world impacts, no synthetic data were used. Traffic 
data from 16/09/2020 provided in the dataset was used for preparing the cases. The morning, evening, and evening 
traffic cases were simulated by running the simulation at the specified time mentioned in Table 1. There were no 
separate blocked roads and special event cases as the dataset did not have any traffic flow data representing these 
cases. However, there were two cases covering faulty sensors included in the scenario, as they did not involve 
modifying the existing traffic flow data. The morning to evening traffic cases were 12 hours long and they are 
long-running cases. 

3.2 Initial Training of RL Models 

There were five models (IDQN, MPLight, CoLight, FixedTime, and MaxPressure) that were tested in this study. 
IDQN, MPLight, and CoLight are RL models, and they are trainable. FixedTime and MaxPressure are non-RL 
models and were provided as a baseline. IDQN, also referred to as DQN in this paper, is a deep Q-learning model 
that works independently at each intersection. MPLight also works independently but it uses shared parameters 
across all the agents. Unlike IDQN and MPLight, CoLight model agents can communicate with each other. 
FixedTime is the traditional timing-based traffic signal model that has a fixed cycle time. MaxPressure is a model 
that works on the principle of the max pressure algorithm. 

For the Grid 4x4 scenario, three of the models (IDQN, MPLight, CoLight) were trained on Case 1 with an alternate 
random traffic distribution for 200 episodes. For the Ingolstadt scenario, two of the models (IDQN and CoLight) 
were trained on traffic data from 8:00 AM-9:00 AM for 100 episodes. For each scenario, the models were tested 
for all cases with training mode on. Training mode ensured that the models continued to learn and adjust to changes 
in traffic while the cases were running. The epsilon and learning start parameter was set to the minimum of 
individual models and 70 steps respectively after initial training was done. The epsilon and learning start 
parameters minimized the effects of randomness of an RL model in the early stages of training models in LibSignal. 

3.3 Performance Metrics 

Two metrics were used to evaluate the robustness of the models: recovery time and average non-zero queue length 
over each timestep. The details of these metrics are described in the following subsections. For measuring recovery 
time, the average travel time recorded by LibSignal was used to calculate it. However, in the case of the FixedTime 
model in the Ingolstadt scenario, the statistics file generated by SUMO was used to calculate it. This was done 
because to use the real-world traffic signal control activations contained in the Ingolstadt scenario, the simulation 
had to be run outside the LibSignal framework. The two average travel times differ by a small amount. For 
measuring the queue length, the Queue Output of SUMO was used to obtain the queue data for each lane. 

Table 1 All traffic pattern cases for each scenario 

Scenario Case No. 1 2 3 4 5 6 

Grid 4x4 Description Morning 
Traffic 

Morning 
Traffic 
Scaled Up by 
20% 

Morning 
Traffic 
Scaled Down 
by 20% 

Case 1 with 
Blocked 
Road 

Case 2 with 
Blocked 
Road 

Evening 
Traffic 

Case No. 7 8 9* 10* - - 

Description Case 6 with 
Special Event 
Traffic 

Case 1 with 
Faulty 
Sensors 

Morning to 
Evening 
Traffic 

(14 Hours) 

Case 9 with 
Faulty 
Sensors 

- - 

Scenario Case No. 1 2 3 4 5* 6* 

Ingolstadt Description Morning 
Traffic 

(9:00 AM-
10:00 AM) 

Noon Traffic 

(1:00 PM-
2:00 PM) 

Evening 
Traffic 

(6:00 PM-
7:00 PM) 

Case 1 with 
Faulty 
Sensors 

Morning to 
Evening 
Traffic 

(8:00 AM-
8:00 PM) 

Case 5 with 
Faulty 
Sensors 

* These are considered long-running cases in this paper because the duration of these cases is greater than 12 hours, other cases are only 1 hour long 
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3.3.1 Recovery Time 

After an RL model faces an unseen traffic event, it takes some time to train in the unseen event before it reaches 
the optimum level of performance. This will be referred to as a model’s recovery time. Different models yield 
different recovery times in different cases. To measure the recovery time, the model was trained on a case after 
initial training was done for a pre-specified number of episodes. Then the lowest average travel time was recorded 
and compared with the other travel times. If three consecutive travel times were below a certain threshold 
percentage, then the number of episodes to reach that window was the recovery time. If there were no windows 
where they did not fall under the threshold, then the recovery time was taken as the highest possible episodes for 
the scenario. However, at the start of the training of each case, even after taking precautions to minimize 
randomness, the average travel time was a little higher than what was expected after loading in a trained model. 
So when calculating the recovery time, the minimum recovery time was taken as 1 hour. It is worth mentioning 
that each episode has 3600 timesteps, each timestep representing 1 second in the simulation. So, each episode can 
be said to cover an hour of traffic flow. The recovery time was reported in hours rather than number of episodes. 

For the Grid 4x4 scenario, the models were trained for 20 episodes from Case 1 to Case 8 after initial training was 
done. For the Ingolstadt scenario, the models were trained for 10 episodes from Case 1 to Case 4 after initial 
training was done. 

3.3.2 Average Non-zero Queue Length 

Average queue length is the average length of queues in vehicles in all lanes for a certain period. Average non-
zero queue length is like the metric of queue length used in other papers with two differences. Firstly, it filters out 
the empty queues when calculating the average. This helps in the case of large networks like Ingolstadt, where 
only a small fraction of the roads experience significant traffic. Secondly, the queue length is observed over each 
timestep. This is helpful in the case of long-running cases (12 hours+) where this metric is easier to measure and 
compare the performance of the model in different periods. 

For each scenario, the models were run for one episode with training mode for each case after the initial training 
was done. The data obtained indicated the performance of the model right after it was deployed after initial training, 
rather than the optimum level of performance. For the Grid 4x4 scenario, Case 9 and Case 10 were tested and for 
the Ingolstadt scenario, Case 5 and Case 6 were tested. 

4. Results and Discussions 

In this section, the results of the initial training and the evaluations of the models using recovery time and average 
non-zero queue length for all cases for each scenario are discussed. The training curve for training the models on 
each case after initial training is done is shown in [Fig. 3] and [Fig. 4]. The calculated recovery time for each 
scenario and model is shown in [Fig. 5]. The average non-zero queue length over each timestep for each scenario 
is shown in [Fig. 6]. 

4.1 Initial Training 

The final average travel time after initial training for all models for each scenario is listed in Table 2. Notably, 
FixedTime performed much better in the Ingolstadt scenario compared to the Grid 4x4 scenario. This happened 
because it used traffic signal data from the real city of Ingolstadt and the existing traffic control system is well 
optimized for the observed traffic. Even so, if properly trained, RL models like IDQN outperformed it. However, 
as will be demonstrated in the following subsections, it has some difficulties when encountering new traffic events 
and underperforms compared to the existing traffic control system in some cases. 

Table 2 Final average travel time after initial training in seconds 

 IDQN MPLight CoLight MaxPressure FixedTime 

Grid 4x4 158.0 200.7 162.8 224.9 341.9 

Ingolstadt 301.7 - 392.1 480.17 351.1 

 

4.2 Recovery Time of Models 

In general, the models experienced an increase of 15% and 21% in average travel time compared to the optimum 
level for Grid 4x4 and Ingolstadt scenarios respectively across all cases.  
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Focusing on the cases, for the Grid 4x4 scenario, change in traffic pattern has a relatively low recovery time (Case 
1, Case 3, Case 6, Case 7) except for Case 2 as shown in [Fig. 5(a)]. The RL models needed more time to recover 
when faced with an increase in traffic flow. However, in the blocked road and faulty sensor cases, all models 
needed a higher recovery time. This indicates that RL models are relatively better at dealing with changes in traffic 
but struggle when dealing with unseen conditions like blocked roads and faulty sensors. 

For the Ingolstadt scenario, it showed a slightly different picture. Here, change in traffic has a high recovery time 
across the board as shown in [Fig. 5(b)]. One possible explanation for this is that the difference in network 
topology and traffic flow data affected the recovery time of a model. Another possible explanation is that training 
the models just for a small period of one hour was not adequate to deal with change in traffic in the context of a 
large real-world network. Also worth noting is that the IDQN model achieved better average travel time than 
FixedTime for the shift in traffic cases (Case 1 to Case 3) but suffered in the faulty sensor case where it performed 
worse than the baseline FixedTime model for around 5 hours as shown in [Fig. 4]. Faulty sensors had a larger 
effect on the performance drop compared to the shifts in traffic. This supports the same observation of RL models 
struggling with unseen conditions like in the Grid 4x4 scenario. 

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

 
(e) Case 5 

 
(f) Case 6 

 
(g) Case 7 

 
(h) Case 8 

Fig. 3 Grid 4x4 case training curves for calculating the recovery time of the RL models. Three RL models are 
tested, and two non-RL models are included as baseline.  

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

Fig. 4 Ingolstadt case training curves for calculating the recovery time of the RL models. Two RL models are 
tested, and two non-RL models are included as baseline. 

  
(a) Grid 4x4 Recovery Times (b) Ingolstadt Recovery Times 

Fig. 5 Recovery Time for all cases for all models. The recovery time is obtained by comparing the lowest found 
average travel time and comparing with the other travel times during the case training process and noting the 
number of episodes or hours to reach the lowest average travel time.  
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Focusing on the models, for the Grid 4x4 scenario, IDQN and CoLight performed the best across all cases for 
reaching the optimum level of performance, in terms of average travel time, as seen in [Fig. 3]. CoLight had the 
lowest average recovery time across all cases at 3.75 hours. Notably, CoLight had the fastest recovery in the faulty 
sensor case as seen in [Fig. 3(h)] and [Fig. 5], in contrast to other models having a higher recovery time. One 
possible explanation for this is that the effects of missing information resulting from faulty sensors are mitigated 
when traffic signals communicate with each other as in CoLight.  

For the Ingolstadt scenario, IDQN performed the best across all cases as observed in [Fig. 4]. However, in the 
case of faulty sensors, it performed worse than the baseline model of FixedTime initially. This supports the 
observation that RL models deal with changes in traffic flow better compared to unseen traffic conditions like 
faulty sensors as noted previously.  

An interesting observation, although not directly related to robustness analysis, can be noted for the results of the 
CoLight model for the Ingolstadt scenario. CoLight performed poorly when faced with traffic shifts. Even in the 
initial training results Table 2, CoLight performed worse than one of the baseline models of FixedTime. The 
simpler model of IDQN where agents do not communicate with each other performed the best across all models. 
A possible explanation for this may be that CoLight struggles to optimize for large networks like the Ingolstadt 
scenario (59 traffic lights). In the LibSignal paper, for the Manhattan network containing 196 traffic signals, IDQN 
had the best average travel time with 1319.49 seconds compared with CoLight achieving 1493.42 seconds. With 
this respect, the results regarding CoLight in a large network like the Ingolstadt scenario in this study are consistent 
with other works. 

4.3 Non-zero Average Queue Length for Models 

For the Grid 4x4 scenario, all RL models had low queue length in Case 9 as shown in [Fig. 6(a)]. In Case 10, 
IDQN and CoLight performed well in keeping queue lengths low but MPLight performed worse than one of the 
baseline models of FixedTime as shown in [Fig. 6(b)]. For MPLight, the queue length increased very quickly and 
remained high. Another interesting observation is that for the IDQN and CoLight models, there was a spike in 
queue length right at the start of the case, which indicated increased average queue length due to faulty sensors. 
However, these models brought the average queue length down in the next three hours. CoLight experienced 
another spike right when the evening traffic started and recovered to similar levels to IDQN later. One possible 
explanation for this observation can be found by looking at the minimum average recovery time of the models in 
Table 3. MPLight has the highest recovery time compared to the other models. A lower recovery time means the 
model will be able to decrease the queue length before it starts accumulating. So, the reason the MPLight model 
maintained a high queue throughout Case 10 might be that due to its high recovery time, it was not able to recover 
to its optimum level fast enough to counter the vehicle accumulation. For IDQN and CoLight models, their low 
recovery time enabled them to deal with the queue spike encountered at the start and at the evening start event of 
the case. So, lower recovery time leads to lower queue accumulation and vice versa. 

For the Ingolstadt scenario, the effect of recovery time was more pronounced. Although the IDQN model 
performed the best when trained on a single case for 10 episodes as seen in [Fig. 4], due to the high recovery time, 
even the best-performing RL model performed poorly in terms of maintaining low queue length when tested in a 
long-running case like Case 3 and Case 4 as shown in [Fig. 6(c)] and [Fig. 6(d)]. The curves show a similar 
pattern when running the MPLight model in Case 10 of the Grid 4x4 scenario. Like in the Grid 4x4 scenario, 
higher recovery time led to higher queue accumulation in the Ingolstadt scenario. 

Table 3 Minimum Average Recovery Time in hours for all cases for each scenario for all models 

 IDQN MPLight CoLight 

Grid 4x4 7.9 8.5 3.8 

Ingolstadt 7.3 - 7.3 

 
(a) Grid 4x4 Case 9 

 
(b) Grid 4x4 Case 10 

 
(c)  Ingolstadt Case 5 

 
(d) Ingolstadt Case 6 

Fig. 6 Average non-zero queue length over each timestep for long-running cases. Models that manage to 
accumulate traffic slowly see a rapid and sustained increase in average queue length. Models with higher 
recovery times are better able to accommodate unseen traffic events. 
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4.4 Limitations 

In terms of limitations, the primary weakness of this study is that it focused on breadth rather than depth for 
analyzing robustness. There were five models evaluated using 16 cases representing various traffic events across 
two scenarios for understanding the general effects of unseen traffic events. But all the cases were run once rather 
than being conducted multiple times. However, due to the difficulty of running many experiments, especially for 
large networks like Ingolstadt, this arrangement was needed to accomplish this project with limited time and 
resources. So, the obtained recovery time can become more accurate by running the cases multiple times and 
taking the average value of the performance metrics for multiple runs of each case. 

5. Conclusion 

This study examines the robustness of reinforcement learning-based adaptive traffic control systems, analyzing 
their performance and recovery time after encountering unseen traffic patterns and conditions. It uses both 
synthetic and real-world data to conduct the analysis. The results of the analysis indicate that RL models are good 
at dealing with fluctuations in traffic flow but struggle when dealing with unseen traffic conditions like blocked 
roads and faulty sensors. Moreover, in long-running cases, higher recovery time leads to increased queue 
accumulation when encountering new traffic events. When deploying RL systems in practical settings, these ideas 
would aid in building the robustness needed to meet real-world standards. 

Several directions for future research exist. One of them is making the procedure for calculating recovery time 
more rigorous and repeatable. Another interesting approach is to find the relationship between recovery time and 
queue accumulation. Additionally, beyond the robustness of RL models, investigating how network size 
influences RL model performance and optimizing RL models for larger networks presents another promising area 
of study. 

The raw data and the code for this study can be found in https://github.com/Red-Pheonix/robust_data. 
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