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ABSTRACT

Selecting appropriate training data is crucial for successful instruction fine-tuning,
which aims to (1) elicit strong capabilities from pretrained large language models
(LLMs), and (2) achieve balanced performance across a diverse range of tasks.
Algorithms based on influence estimation have shown promise in achieving (1)
through estimating the contribution of each training example to model’s prediction
on a downstream task, but they often struggle with (2). Through systematic
experiments, we attribute their underperformance to an inherent bias—certain tasks
intrinsically have greater influence than others. Directly comparing influence scores
across different tasks would thus bias the selected data towards these tasks, hurting
the LM’s performance not only on other capabilities, but also, surprisingly, on the
tasks for which the selected data has high influence.
To address this issue, we propose BIDS, a Balanced and Influential Data Selection
algorithm. BIDS first normalizes influence scores of the training data with respect
to each downstream task at an instance level. It then applies an iterative process to
further balance the selection of influential training data. At each step, BIDS selects
the training example that bears the highest influence on the most underrepresented
capability by the currently selected data. We perform comprehensive experiments
using both Llama-3 and Mistral-v0.3 on seven evaluation benchmarks spanning five
diverse capabilities. Results demonstrate that BIDS consistently outperforms both
state-of-the-art influence-based data selection algorithms and other non-influence-
based selection frameworks under various budgets. Surprisingly, training on a 15%
subset selected by BIDS can even outperform full-dataset training with a much
more balanced performance across different tasks. Our analysis further highlights
the importance of both instance-level normalization and iterative optimization of
selected data for balanced learning of diverse capabilities.

1 INTRODUCTION

Supervised instruction finetuing (SFT) plays a crucial role in eliciting strong capabilities from large
language models (LLMs) and adapting them for various downstream tasks. Typically, a pretrained
LLM is finetuned on a mixture of different datasets to achieve strong and balanced performance
across a vareity of tasks (Touvron et al., 2023; Dubey et al., 2024; Jiang et al., 2023). Recent efforts
have identified the importance of instruction data quality for SFT (Zhou et al., 2024), spawning many
works on instruction tuning data selection (Cao et al., 2023; Chen et al., 2023; Liu et al., 2023).
Among them, influence-based algorithms have shown promise. They estimate each individual training
example’s influence on model’s prediction on a downstream task (Koh & Liang, 2017; Pruthi et al.,
2020). Recent advances in influence estimation methods have enabled their scaling to LLM scales,
where they have demonstrated success. These works generally select high-quality data from a large
and diverse collection of instruction datasets in order to boost a specific capability of the model (Xia
et al., 2024; Yang et al., 2024).

Most real-world applications call for general-purpose LLMs that have both strong and balanced
capabilities on a wide range of tasks (e.g., a math tutor that excels in both math problem solving and
user instruction following). However, existing influence-based data selection algorithms actually fall
short in this aspect (Section 3; Xia et al., 2024). As our analysis reveals, the core of this issue lies in
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the fact that when influence-based methods are applied across various tasks, the influence on some
of them is inherently higher than others. As a result, directly comparing influence across tasks and
selecting examples with highest influence values often result in a selected dataset biased towards the
tasks with inherently higher influence. This leads to a couple of pitfalls. First, biasing the selection
towards some tasks inevitably comes at the cost of the model’s performance on others, making it
more challenging for the LLM to achieve balanced capabilities. Second, perhaps unexpectedly, it
may even hurt the model’s performance on the very task that the data selection is biased towards.
These issues call for an influence-based data selection algorithm designed for helping LLMs achieve
balanced capabilities across a wide range of diverse tasks through instruction finetuning.

BIDS, our proposed method, addresses these challenges with two key designs. It first normalizes
influence values with respect to each validation instance, enabling influence for different instances to
be distributed on the same scale. Then BIDS applies an iterative selection algorithm which, at each
iteration, selects the training example that provides largest influence improvement for the current
selected data. This ensures that each selected example contributes most to the underrepresented tasks
in the selected subset.

Our experimental results on two base models of different model families, Llama-3-8B (Dubey et al.,
2024) and Mistral-7B-v0.31, show the consistent and exceptional effectiveness of BIDS. In our
evaluation suite composed of seven tasks that span five diverse capabilities including coding, math,
logical inference, world knowledge and general instruction following, BIDS consistently outperforms
both influence- and non-influence-based selection algorithms, not only in terms of macro-average
performance across diverse tasks, but also in most of the task-specific performance, demonstrating its
effectiveness in achieving both balanced and influential data selection. Remarkably, a 15% subset by
BIDS even outperforms full-dataset training, emphasizing the huge potential of selective training
in fostering multi-capability learning of LLMs. Further analysis reveals the positive contributions
from both the instance-level normalization and iterative selection. Investigation of the influence
distribution of BIDS-selected data also provides valuable insight on how BIDS reduces the influence
disparity across tasks and what might be the good properties of a balanced set of influential data.

We summarize the contribution of this work in the following three aspects:

1. We identify the problem of influence-based data selection methods in instruction tuning
LLMs for learning diverse tasks, and attribute this problem to an inherent bias in cross-task
influence through systematic analysis.

2. We propose BIDS, a simple and effective influence-based data selection algorithm that
selects influential data for balanced capability learning.

3. Through extensive experiments, we confirm the consistent and significant improvement by
BIDS, and provide valuable insights on what makes a balanced set of influential data.

2 BACKGROUND AND PRELIMINARIES

Influence-based instruction tuning data selection. Estimating the influence of individual training
examples on model predictions is critical for understanding model behaviors and selecting influential
training data to improve model predictions. Traditional methods, including retraining-based and
gradient-based approaches (Ilyas et al., 2022; Koh & Liang, 2017), have proven effective but are
computationally prohibitive when scaling to LLMs. Several recent advances have sought to address
these challenges by extending gradient-based approaches to scale more effectively. Given a large
training dataset to select from and a validation set representing some targeted capabilities, LESS (Xia
et al., 2024) models the influence between each pair of training and validation example through LoRA-
based low-dimensional gradient similarity, and then selects training points with highest influence on
the validation set. LOGRA (Choe et al., 2024) leverages a low-rank gradient projection algorithm
to further improve the efficiency. MATES (Yu et al., 2024) formulates the pointwise data influence
between each training point and the whole validation set, and uses a small data influence model to
learn this pointwise influence.

Upon closer investigation, these three LLM-scale influence-based data selection methods all use
similar problem formulations. They all need a validation set to represent a targeted data distribution

1https://huggingface.co/mistralai/Mistral-7B-v0.3
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that the selected data are optimized for, and require the computation of pointwise data influence
between each training instance and the validation data. In this work, we aim to extend these influence-
based methods to a multi-capability instruction tuning setup. Concretely, since only LESS directly
targets instruction tuning among the three LLM-scale approaches, we ground our study on the specific
formulation of LESS. But we emphasize that due to the highly similar influence modeling patterns
shared among these methods, the results of our work should also provide useful insight for other
influence-based selection methods.

Setup. Below we introduce the problem setup and lay the groundwork for further discussion.

Definition 1 (Attribution Matrix (AM)). Assume an instruction tuning dataset D, a validation
dataset V , which spans m diverse tasks that we want to optimize the LLM’s performance for:
V = V1 ∪ · · · ∪ Vm, and an influence estimation method that can compute the influence of each
training example on each validation example. We first compute influences between all training and
validation instance pairs, yielding a |D| × |V| matrix A. Each row of A corresponds to an individual
training example, and each column a validation example. Element Aij indicates the influence of the
i-th example from D on the j-th example from V . We dub A an Attribution Matrix as it reveals
the overall attribution pattern from the training set to all target tasks, and each row Ai the Influence
Distribution of the i-th training example.

Our goal is to design a data selection algorithm that can effectively select a subset T from D with
size under a pre-defined budget. based on the influence information in A. Finetuning the LLM
on T is supposed to help the model achieve strong and balanced performance on all targeted tasks.
Specifically, the tasks are chosen to ensure minimal overlap in terms of the capabilities they evaluate,
so that we can maximize the scope of abilities that are evaluated for an LLM. The validation set size
for each task is also kept equal to avoid bias in the selection process.

3 EXPLORATORY ANALYSIS

Models, datasets, and tasks. We use Llama-3-8B (Dubey et al., 2024) as the base model for both
influence estimation and evaluation of selected datasets in the exploratory analysis. For the instruction
dataset to select from, we use UltraInteract (Yuan et al., 2024), a state-of-the-art, large-scale, high-
quality dataset designed to enhance diverse reasoning capabilities, including mathematical reasoning,
coding, and general logical inference. We also follow the evaluation setup of Yuan et al. (2024),
with seven datasets spanning five diverse capabilities. We use HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) for coding, GSM-Plus (Li et al., 2024) and MATH (Hendrycks et al.,
2021) for math, and BigBench-Hard (BBH) (Suzgun et al., 2022) for general logical inference. We
also use MMLU (Hendrycks et al., 2020) to assess the model’s ability to understand and reason over
world knowledge, and IFEval (Zhou et al., 2023) for the fine-grained instruction following ability.
For more details about the training and evaluation setups, please refer to Appendix A.2.

For the influence estimation method, we follow the original pipeline introduced by LESS throughout
this work, with an equal number of validation instances sampled uniformly from each of the seven
evaluation tasks. In this exploratory analysis, we also adopt the task-wise max selection algorithm
(Appendix A.3) by LESS, which, for each training example, first computes its mean influence over
validation examples within the same task, followed by selecting training examples with the highest
maximum influence across different tasks. We compare this algorithm against a random selection
baseline, which represents the average performance of models trained on two sets of randomly
selected data.

LESS fails to balance among multiple capabilities. Table 1 compares LESS against a random
selection baseline. Although LESS achieves better task-specific performance in some cases, its overall
performance is unbalanced across different tasks, consistently underperforming the random baseline
under both the 10% and 15% budgets in terms of macro-average score. LESS also demonstrates
significant variability across different tasks. For all budget levels, it significantly lags behind in BBH,
while consistently outperforms the random baseline in IFEval.

The unexpectedly low and unbalanced performance of LESS may stem from the fact that it is not
designed for learning multiple diverse capabilities, thus less suitable for general-purpose instruction
tuning. But the observations above still raise critical questions, especially given that an equal number
of validation examples were used for each task during selection. This suggests a potential inherent
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Table 1: Comparison between LESS and the random baseline. The highest performance for each
task and macro-average is bolded. LESS only outperforms the random baseline in macro-average
under the 5% budget, while lags behind under both two other budgets with imbalanced performance
distribution.

Budget Method
Coding Logic STEM Math Ins-Following

Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%
Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 43.4
LESS 43.9 50.7 62.7 65.1 42.5 22.6 19.7 43.9

10%
Random 47.8 50.6 65.0 64.9 43.9 24.0 17.8 44.9
LESS 44.7 51.3 62.0 64.7 44.6 24.3 19.3 44.4

15%
Random 48.7 51.9 65.2 65.1 45.6 25.0 18.8 45.7
LESS 46.5 51.0 63.2 64.6 44.9 24.9 21.2 45.2

bias in the influence values across different tasks, which could skew the selection algorithm towards
certain capabilities. If the overall influence on certain task is inherently higher, then the naive
task-wise max selection algorithm will naturally prioritize training examples that have high influence
on these tasks, possibly at the expense of others. Further, if the oversampling of such training data
doesn’t bring correspondingly high improvement on this specific task, then the model would not only
suffer from an imbalanced learning of the required capabilities, but also a poor overall performance.

To explore this, we need to examine the following two questions: 1) whether influence values
differ across tasks and to what extent, and 2) whether higher influence values correlate with greater
performance improvements. We aim to answer both questions below.
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Figure 1: Unnormalized Average Influence Dis-
tribution (AID) for all seven tasks under the 10%
budget, showing great inter-task and intra-task
influence scale differences.
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Figure 2: Task frequency with Highest Influence
(THI) under the 10% budget. MMLU is obvi-
ously oversampled for in LESS-selected data.

Key takeaways: What causes the imbalanced failure of LESS?

We first define the following two data analysis techniques to examine the influence distribution of
LESS-selected data: for any training subset T = {ti}Ni=1:

• Average Influence Distribution (AID). The AID of T is defined as the average of influence
distributions of all the training points inside, i.e., AID ≜ 1

N

∑N
i=1 Ai

• Task frequency with Highest Influence (THI). For each training point ti ∈ T , if its average
influence on task j is the highest across all tasks, i.e., j = argmaxk=1,...,m{

∑
vj∈Vk

Aij},
then the THI frequency for task j increases by one.

Our AID analysis of the whole UltraInteract dataset (Figure 1) reveals both task- and instance-level
discrepancies. Notably, MMLU exhibits the highest average influence which is nearly 50% less
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negative than BBH, despite neither of them being in-distribution for the training data. Moreover,
discrepancies of average influence inside the same task can exceed the largest instance-wise average
influence by 2.5 times. These results answer our question 1) by confirming that the scales of influence
values indeed differ significantly across various tasks.

Further, the THI analysis of LESS-selected data (Figure 2) validates that the scale differences indeed
make the selection algorithm of LESS disproportionately favor certain tasks over others. Specifically,
MMLU has the highest frequency of being the most influential task, which is consistent with the
observations in Figure 1 that MMLU has the highest task-level average influence. However, the
oversampling of MMLU training data does not translate into proportionally better performance—
LESS often underperforms the random baseline on MMLU, even though it targets this task with its
selected data. This crucial observation underscores that a higher influence score does not necessarily
imply a larger performance improvement, and, paradoxically, it may hinder the learning of other
necessary capabilities. Thus, we answer the question 2) by concluding that the inherent difference
in the influence value scales across tasks is indeed a harmful bias that can severely undermine the
performance of the data selection algorithm employed by LESS.

4 BIDS: SELECTING INFLUENTIAL DATA FOR BALANCED CAPABILITY
LEARNING

To address the imbalanced learning issue caused by the inherent bias in multi-task influence, we
propose BIDS, a simple and effective Data Selection algorithm aiming to select Influential training
data in a Balanced way. Given the Attribution Matrix (AM) A, BIDS applies two crucial operations
to A sequentially: instance-level normalization, and iterative selection favoring underrepresented
tasks.

Instance-level normalization. The analyses presented in the above section reveal that validation
instances exhibit substantial variability in the scales of their influence values. If left unaddressed, such
variability introduces bias into influence-based data selection processes, thus hindering the balanced
optimization of model performance across tasks. To mitigate this, we implement an instance-level
normalization technique. From the perspective of Attribution Matrix, this technique applies a column-
wise normalization in order to align the influence scores on a consistent scale. Specifically, for each
validation instance vj , the influence of each training example ti is normalized as below:

Anorm
ij =

Aij − µj

σj

where µj and σj are the sample mean and standard deviation of all values in column j of the AM.
After such normalization, the influence scores of different columns should be distributed on the same
scale, with scores of similar rankings in different columns having similar values.

One potential issue with such a normal standardization technique is that it may not work sufficiently
well when the distribution of unnormalized data differs much from an approximate normal distribution.
But we show that after normalization, most of the columns in the AM indeed approximate a standard
normal distribution, justifying the use of this technique for instance-level normalization of influence
scores. Please refer to Appendix A.4 for more details.

Iterative selection favoring underrepresented tasks. To further ensure a balanced distribution of
influence across the selected data, we propose an iterative greedy selection algorithm (detailed in
Algorithm 1). The algorithm begins with an empty set of selected instances and, at each iteration,
selects the training instance that provides the largest improvement in influence on any validation
instance, ensuring that each newly added instance contributes maximally to underrepresented tasks or
capabilities. The iterative process continues until the selection budget is fully utilized. This approach
essentially differs from LESS, which only scores each training instance independently and then
selects the top-ranked instances, by considering the interactions of influence distributions among
different selected instances and promoting the balance of overall influence distribution of the selected
dataset.

5
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Algorithm 1 BIDS: Iterative Selection Favoring Underrepresented Tasks
1: Input: D: a set of training examples, each of which is represented by its normalized influence distribution;

B: the number of examples to be selected; V: the set of validation examples.
2: Initialization: T = ∅, D = {Ai}Ni=1

3: while |T | < B do
4: A∗ = argmaxAi∈D max

|V|
j=1

{
Aij − 1

|T |
∑

Ak∈T Akj

}
5: T = T ∪ {A∗}
6: D = D \ {A∗}
7: end while
8: Return: T : selected training examples.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Basic setup. We follow the experimental setup outlined in Section 3, including the same set of LLMs,
datasets, tasks, and influence estimation implementations. To further validate the generalizability of
BIDS, we also perform experiments on base models from different model families. Please find more
details in Appendix A.5.

More Baselines. For a more thorough comparison, we evaluate BIDS against several other algorithms
tailored for influence-based selection, extending beyond the original task-wise max algorithm in
the exploratory analysis. Please refer to Appendix A.3 for the mathematical definition of all the
influence-based selection algorithms compared in this work. To further show the strength of BIDS
among different classes of data selection frameworks, we also compare with a frequently used
non-influence-based data selection method. All the additional baselines included in this section are
listed below:

• Instance-wise max. For each training example, this algorithm first computes the maximum
of its influence values over all the validation instances and assigns it as the overall score.
Then it selects training examples with highest overall scores.

• Sum. Similar to the instance-wise max algorithm, this algorithm also assigns an overall
score to each training example and then selects the highest, but by computing the summation
of its influence instead of maximum.

• RDS (Representation-based Data Selection) (Zhang et al., 2018; Hanawa et al., 2020). We
follow the same experimental setup in Xia et al. (2024) and opt for RDS as the non-influence-
based baseline to compare with. RDS uses the language model’s hidden representation for
data selection. More concretely, it extracts the final layer representation of the last token
of each example sequence, and computes the cosine similarity scores between training
and validation examples. Training examples with the highest similarity to any one of the
validation examples are selected. In order to ensure fair comparison, we use the same model
that computes gradient features in BIDS to extract the final layer representations for RDS.

5.2 MAIN RESULTS

Comparison under the same budget. We first compare BIDS with various influence-based se-
lection algorithms as well as RDS under the same budget, as is shown in Table 2. Across multiple
budgets spanning 5%, 10% and 15%, we find BIDS consistently outperforms both influence-based
algorithms and RDS in terms of the macro-average score across all seven benchmarks. Moreover,
when comparing the specific performance on each task separately, we find BIDS ranked either
first or second among the six candidate methods on 4/7, 6/7 and 5/7 benchmarks under the three
budgets respectively. These two findings together show that BIDS indeed helps improve the LLM’s
performance on multiple tasks in a significant but also balanced way.

It is also noteworthy that RDS-selected data are significantly biased towards the two coding tasks,
HumanEval and MBPP, at the cost of severely degraded performance on almost all other tasks.
Specifically, RDS shows the most significant performance drop in math and instruction-following,
outperformed by the random baseline on almost all of these results. These observations confirm the

6
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Table 2: Comparison between BIDS and other selection algorithms. The task-specific and macro-
average performance is bolded if it ranks first under the same budget, and underlined if it ranks
second. "BIDS (epochs=4)" is compared with 100% full training. When scaling the training of
BIDS to four epochs, it outperforms full-dataset training with both one and four epochs, showing its
consistently strong and balanced performance.

Budget Method
Coding Logic STEM Math Ins-Following

Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%

Random 43.5 48.9 64.8 64.9 41.5 22.5 18.1 43.4
Task-max (LESS) 43.9 50.7 62.7 65.1 42.5 22.6 19.7 43.9

Sum 45.6 51.9 63.6 64.8 42.4 21.3 20.1 44.2
Instance-max 43.9 52.1 63.2 65.0 42.6 22.3 20.6 44.2

RDS 45.6 52.7 62.2 65.0 34.5 17.2 15.5 41.8
BIDS 45.6 51.0 64.3 64.9 42.1 22.9 21.4 44.6

10%

Random 47.8 50.6 65.0 64.9 43.9 24.0 17.8 44.9
Task-max (LESS) 44.7 51.3 62.0 64.7 44.6 24.3 19.3 44.4

Sum 45.6 51.6 61.6 64.6 43.8 23.7 21.0 44.6
Instance-max 46.5 47.3 64.6 65.0 44.1 24.7 22.8 45.0

RDS 50.0 54.7 63.2 64.6 39.3 22.4 18.3 44.6
BIDS 48.2 50.4 65.1 64.9 45.1 25.1 23.4 46.0

15%

Random 48.7 51.9 65.2 65.1 45.6 25.0 18.8 45.7
Task-max (LESS) 46.5 51.0 63.2 64.6 44.9 24.9 21.2 45.2

Sum 48.2 51.0 62.6 64.6 44.8 24.0 19.3 44.9
Instance-max 47.4 48.1 63.2 65.0 45.8 25.1 20.3 45.0

RDS 50.0 53.9 63.7 64.5 41.1 23.5 18.1 45.0
BIDS 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1

BIDS (epochs=4) 50.0 53.0 64.4 64.7 47.0 26.9 23.4 47.1

100%
Full (epochs=1) 52.6 53.6 65.5 64.1 47.2 27.9 17.5 46.9
Full (epochs=4) 48.2 54.4 59.2 63.1 51.5 32.3 17.9 46.7

value of further improving influence-based data selection methods in the multi-capability learning
setup. More interestingly, they also suggest the possibility that the imbalance of utility scores (Yin &
Rush, 2024) may exist for both influence- and non-influence-based data selection approaches. We
leave detailed investigations to future work.

Comparison with full-dataset training. As shown in the last three rows in Table 2, training on
a 15% subset selected by BIDS over four epochs consistently outperforms full-dataset training.
Further analysis on task-specific performance reveals that BIDS achieves superior performance by
maintaining balanced proficiency across six reasoning-related tasks while significantly improving
instruction-following capabilities. These results demonstrate that BIDS not only excels in selecting
influential and balanced data, but also that full-dataset training may not always be optimal for
fostering robust, multi-capability learning in LLMs. This finding highlights the potential for training
on selective subsets to offer more efficient and effective learning effects for LLMs.

6 ADDITIONAL ANALYSIS

In this section we mainly discuss the respective contribution of the two additional techniques
introduced in BIDS: instance-level normalization, and iterative selection favoring underrepresented
tasks. Through extensive ablation experiments and data analysis, we not only validate the respective
positive contribution of these two techniques, but also explore how they affect the distribution of
selected data specifically, providing valuable insight on what might be the good properties of a
balanced set of influential data.
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Table 3: Respective contribution of normalization and iterative selection. The highest performance for
each task and macro-average is bolded. "Unnormalized" refers to algorithm (1), and "Normalized"
and BIDS refer to (2) and (3) respectively. It shows both normalization and iterative selection make
positive contribution to model performance.

Budget Method
Coding Logic STEM Math Ins-Following

Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%
Unnormalized 43.9 52.1 63.2 65.0 42.6 22.3 20.6 44.2
Normalized 45.6 52.1 62.5 64.8 42.5 22.5 20.1 44.3
BIDS 45.6 51.0 64.3 64.9 42.1 22.9 21.4 44.6

10%
Unnormalized 46.5 47.3 64.6 65.0 44.1 24.7 22.8 45.0
Normalized 47.4 48.4 64.6 65.1 45.4 25.2 23.0 45.6
BIDS 48.2 50.4 65.1 64.9 45.1 25.1 23.4 46.0

15%
Unnormalized 47.4 48.1 63.2 65.0 45.8 25.1 20.3 45.0
Normalized 47.4 50.1 64.9 65.0 45.6 26.0 20.8 45.7
BIDS 49.1 50.7 63.7 64.6 45.8 26.2 22.6 46.1

6.1 BOTH NORMALIZATION AND ITERATIVE SELECTION CONTRIBUTE POSITIVELY

Algorithms to compare. In the ablation experiments, we compare the following three selection
approaches: (1) Instance-wise max algorithm applied to the original, unnormalized Attribution Matrix
computed by LESS; (2) Instance-wise max algorithm applied to the Attribution Matrix after instance-
level normalization; (3) BIDS. These three algorithms all originate from the naive instance-wise
max approach, but from (1) to (2) the technique of normalization is applied, and from (2) to (3) the
iterative selection algorithm is further employed. Therefore, the comparison of these three approaches
enables us to clearly see the respective contribution of the two techniques of interest.

Conclusions. From Table 3, we observe that instance-level normalization alone can already consis-
tently boost the overall performance of selected data under various selection budgets. And applying
the iterative selection not only further elevates the macro-average score, but also improves the balance
of model capability across diverse tasks. These two observations confirm that the remarkable perfor-
mance of BIDS comes from the compound positive effects from both normalization and iterative
greedy selection.

6.2 EFFECTS OF BIDS ON INFLUENCE DISTRIBUTION OF SELECTED DATA

After confirming the positive contribution from both of the two components of BIDS, we then proceed
to explore how they respectively affect the influence distribution of selected data, and whether such
effects can provide some insight on why BIDS advances balanced learning of diverse capabilities.

In this section we still compare among the data selected by the three algorithms mentioned in above
section: (1) Unnormalized; (2) Normalized; (3) BIDS, based on the two types of data analysis
techniques defined in Section 3:

1. Average Influence Distribution (AID) across all the 350 validation examples. For better
comparison among different algorithms, here we unify the AID analysis with influence
values after instance-level normalization.

2. Task frequency with Highest Influence (THI) across all seven tasks. Here we use a
slightly different definition of task frequency than the one defined in Section 3, by replacing
task-wise average influence with instance-wise influence, since the three algorithms we are
comparing now are all built upon the instance-wise max approach. Concretely, for each
training point ti, if its influence on validation point vk is the highest across all |V| validation
instances and vk ∈ Vj , then the THI frequency for task j increases by one.

Observing the THI analysis results (Figure 3) of these three sets of selected data, we notice that
after normalization, the task frequency distribution becomes much more balanced. The frequencies
for tasks such as MMLU, GSM-Plus, MATH and IFEval all increase by a great extent, while those
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Figure 3: Comparative analysis of THI under the 10% budget. Both Normalized and BIDS have
more balanced task frequencies compared with Unnormalized.
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Figure 4: Comparative analysis of normalized AID under the 10% budget. From Unnormalized to
Normalized to BIDS, the disparity among different tasks and instances in AID gradually diminishes,
with both decreasing upper bounds and increasing lower bounds.

for BBH and the two coding tasks decrease. This is fairly surprising when compared with the
experimental results in Table 3, where algorithms (2) and (3) actually show improvements both in
tasks with decreased and increased THI frequencies compared with (1). This observation suggests
that a balanced selection of influential data may improve data efficiency not only by allocating more
budget to capabilities that is underrepresented, but also reducing the redundancy in over-represented
capabilities.

Additionally, the AID results (Figure 4) provide further insights from a different perspective. From
algorithm (1) to (2) to (3), we observe a gradual reduction in the disparity of average influence across
tasks. This change unfolds in two interesting ways:

1. The upper bounds of average influence diminish almost for each task. Despite generally
lower influence scores across these evaluation tasks, the performance of BIDS improves
consistently compared to both the normalized and unnormalized instance-wise max selection
algorithms. We remark that this observation actually reveals a limitation of the first-order
linearity assumption by the influence estimation method of LESS: simply selecting high-
influence points using a top-K algorithm increases the average influence distribution on
almost all tasks, but their effectiveness doesn’t linearly add up, thus not necessarily improv-
ing task-level or overall performance.

2. The lower bounds of average influence increase, especially for tasks with validation instances
that have exceptionally low influence values, such as HumanEval and MBPP. This obser-
vation again suggests the effectiveness of one of BIDS’s key motivations: improving the
model’s overall performance by enhancing the capabilities that are most underrepresented in
the current selected data.
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7 RELATED WORK

Data Selection for LLM Instruction Finetuning. Since the pioneering work LIMA (Zhou et al.,
2024) showed that a mere 1000 carefully curated high-quality instruction data can already lead to
significant performance improvement, many works have been exploring automatic data selection
pipelines guided by different metrics. Quality-guided selection mostly defines the quality for each
data point based on natural language indicators (Cao et al., 2023), quality scores from strong
evaluators such as GPT-4 (Chen et al., 2023; Parkar et al., 2024), or principled metrics derived from
various learning dynamics (Kang et al., 2024; Mekala et al., 2024; Xia et al., 2024; Choe et al.,
2024). Diversity-guided methods usually perform clustering over certain informative representation
of each data point (Yang et al., 2024), and also take inspiration from traditional core-set selection
approaches (Das & Khetan, 2023). Both of these dimensions have been proved effective for instruction
tuning LLMs (Bukharin & Zhao, 2023; Liu et al., 2023), and we remark that our method BIDS
considers both quality and diversity metrics through its iterative selection algorithm based on influence
distributions.

Influence Estimation. Influence estimation has long been an important type of data attribution
method, which can be classified into gradient-based and retraining-based approaches (Hammoudeh
& Lowd, 2024; Ko et al., 2024). Gradient-based influence estimation focuses on the gradient
trace of each training point, and assesses the gradient alignment between training and validation
examples (Koh & Liang, 2017; Pruthi et al., 2020). Retraining-based estimation usually starts by
training models on various subsets, and then inspects how the performance of these models changes
when a training example is added to these subsets (Ghorbani & Zou, 2019; Ilyas et al., 2022; Park
et al., 2023). Recently both lines of influence estimation works have been extended to LLM-scale
applications, covering various aspects including pretraining (Engstrom et al., 2024; Yu et al., 2024;
Choe et al., 2024) and instruction tuning (Xia et al., 2024; Liu et al., 2024).

8 CONCLUSION

In this work, we introduce BIDS, an influence-based instruction tuning data selection algorithm
specifically designed for balanced learning of multiple diverse capabilities. Motivated by the ob-
servation of an inherent bias in influence across various tasks, BIDS first applies instance-level
normalization to a given Attribution Matrix. Together with an iterative selection algorithm favoring
underrepresented tasks, BIDS consistently outperforms various selection algorithms as well as
full-dataset training with much more balanced performance. Our analysis further provides insight on
the good properties of an influential dataset with balanced capabilities.
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A APPENDIX

A.1 INFLUENCE ESTIMATION PIPELINE OF LESS

In this section we briefly introduce the influence estimation pipeline of LESS. For more detailed
motivation and step-by-step mathematical deduction, we suggest referring to (Xia et al., 2024).

Assume a model Ms which scores and selects data, and another model Mt which is trained on
the selected data. For a training dataset D and validation dataset V , LESS formulates the pairwise
influence between each training point ti ∈ D and validation point vj ∈ V using the following two
steps:

Step 1: Warmup training with LoRA. LESS first trains Ms on a random subset Dwarmup ⊂ D for
N epochs using LoRA (Hu et al., 2021), checkpointing the model after each epoch to store LoRA
parameters {θt}Nt=1.

Step 2: Gradient computation and projection. For each checkpoint θt of LoRA-trained Ms, LESS
computes the SGD gradient of validation point vj , and further uses random projection (Johnson &
Lindenstrauss, 1984; Park et al., 2023) to project the gradient to a tractable lower dimension. The
resulting projected gradient is denoted as ∇l(vj ;θt). LESS also computes and projects the gradient
of training point ti, but uses the Adam gradient defined as follows:

Γ(ti,θt) ≜
mt+1

√
vt+1 + ϵ

where mt+1 and vt+1 are the first and second moments in the parameter update rule for Adam
optimizer.

Step 3: Gradient matching and influence calculation. Finally, LESS employs the following
cosine-similarity-based approach to calculate the similarity between the gradient of each training and
validation example, accumulated over all the warmup training epochs:

InfAdam(ti,vj) ≜
N∑
t=1

ηt cos(∇l(vj ;θt),Γ(ti,θt))

where ηt is the average learning rate in the t-th epoch.

A.2 DETAILS OF TRAINING AND EVALUATION SETUPS

Based on the LESS pipeline described above, we further introduce the implementation details of the
training and evaluation setups in this work. All the experiments are carried out on 2 80GB H100
GPUs.

Training Details. We basically follow the same set of hyperparameters as LESS when training both
Ms and Mt. Specifically, a batch size of 128 is used throughout all the training processes in this work,
along with a learning rate scheduler with linear warm-up, cosine decay, and a peak learning rate of
2× 10−5. For the influence estimation pipeline, we consistently conduct the warmup training of Ms

using four epochs and the full training set. For gradient computation and projection, we uniformly
sample 50 validation examples from either the validation or the test split (when there is not a separate
validation split) of each of the seven evaluation tasks, leading to a total of 350 validation examples.
The projection dimension is set as 8192 for all the training and validation instances. For training Mt

on the selected data, we consistently train for two epochs if not otherwise specified.

Both the warmup training for influence estimation and the training on selected data are carried out
with LoRA. The LoRA configurations are kept the same throughout the experiments, with a rank of
128, an α value of 512, a dropout rate of 0.1, and LoRA matrices being applied to all the attention
modules.

Evaluation Details. We follow the evaluation convention of UltraInteract (Yuan et al., 2024) by
using greedy decoding (i.e., temperature = 0) for all the evaluation tasks except for IFEval, where we
use temperature = 0.7 and take the median result of three random seeds due to the high variability of
this task.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 MATHEMATICAL DEFINITION OF INFLUENCE-BASED SELECTION ALGORITHMS

In this section, we provide the mathematical definition of all the three influence-based selection
algorithms that are used in this work. They share the same framework of first assigning an overall
influence score si to each training example ti and then selecting examples with the highest scores,
and only differ in the specific definition of si.

Task-wise Max: si ≜ maxk=1,...,m{
∑

vj∈Vk
Aij}.

Instance-wise Max: si ≜ maxj=1,...,|V|{Aij}.

Sum: si ≜
∑|V|

j=1 Aij .

A.4 EFFECT OF NORMAL STANDARDIZATION ON ATTRIBUTION MATRIX

In this section we aim to justify the application of normal standardization to Attribution Matrix
(AM). Specifically, we randomly select five validation instances (i.e., five columns in AM) from
each task, and compare their empirical distributions after normalization with a standard normal
distribution. The results show that almost all of the columns sampled approximate a standard normal
distribution after the instance-level normalization, which justifies the use of normal standardization
as the normalization method in BIDS.
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Figure 5: The effect of normal standardization. Five AM columns are sampled for each task.
Most of the columns in the AM indeed approximate a standard normal distribution after normal
standardization.

A.5 RESULTS WITH DIFFERENT BASE MODELS
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In order to further validate the generalizability of BIDS, we compare BIDS with other baseline data
selection algorithms using Mistral-7B-v0.3 as the backbone for both selection and training. The
results are presented in Table 4. The two algorithms compared here, Unnormalized and Normalized,
follow the same definition in Section 6. And the random baseline is also the average result of two
different random seeds.

Table 4: Additional results when using Mistral-7B-v0.3 as the base model for selection and training.
The highest performance for each task and macro-average is bolded. Under the two selection budgets,
BIDS still outperforms all other three baselines with a better macro-avg and more balanced task-
specific performance. Also, the performance improvements from Unnormalized to Normalized to
BIDS are consistent with prior observation with Llama-3-8B in Section 6. Finally, the top 15%
BIDS-selected subset again outperforms full dataset training in macro average, by steadily improving
on coding and math while maintaining its remarkable instruction-following ability.

Budget Method
Coding Logic STEM Math Ins-Following

Macro Avg
HumanEval MBPP BBH MMLU GSM-Plus MATH IFEval

5%

Random 36.8 44.3 59.5 61.7 37.0 19.9 22.2 40.2
Unnormalized 33.3 45.0 59.3 61.6 38.0 18.7 22.0 39.7

Normalized 36.8 44.1 59.1 61.5 38.2 19.6 27.5 41.0
BIDS 37.7 44.4 59.5 61.8 38.0 19.8 26.1 41.0

10%

Random 37.7 44.8 59.8 61.8 40.0 21.2 22.0 41.0
Unnormalized 36.0 43.8 59.7 61.5 41.6 20.8 24.6 41.1

Normalized 37.7 45.0 59.7 61.6 40.2 20.2 26.7 41.6
BIDS 40.4 46.1 60.5 61.7 40.5 21.0 27.1 42.5

15% BIDS (epochs=4) 40.4 47.0 58.9 61.1 44.1 23.5 28.1 43.3

100% Full (epochs=4) 41.2 49.3 54.6 59.4 48.1 30.1 19.6 43.2

Similar to the analysis framework in Section 3, we also present the AID analysis of the whole
UltraInteract dataset (Figure 6) and the THI analysis of LESS-selected data (Figure 7). Then we
follow the workflow in Section 6 to present both the THI and AID analysis for the three progressive
algorithms: Unnormalized, Normalized and BIDS (Figure 8, 9). The only difference here is that the
selection model is Mistral-7B-v0.3 instead of Llama-3-8B.
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Figure 6: Unnormalized Average Influence Dis-
tribution (AID) for all seven tasks under the 10%
budget, with the base model being Mistral-7B-
v0.3. It still shows great inter-task and intra-task
influence scale differences.
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ence (THI) of LESS-selected data under the 10%
budget, with the base model being Mistral-7B-
v0.3. In this case, MMLU is even more obvi-
ously oversampled than prior observation with
Llama-3-8B.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0

1000

2000

3000

4000

5000 5061 4894
4247

1924

4546
3855

4330

(a) Unnormalized

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0

1000

2000

3000

4000

5000 4985
4593

3726

2645

3868

4751
4289

(b) Normalized

hu
man

_ev
al
mbp

p
bb

h
mmlu

gsm
_pl

us
MAT

H
if_e

va
l0

1000

2000

3000

4000

5000
5171

4765

3360
2747 2880

4839 5095

(c) BIDS

Figure 8: Comparative analysis of THI under the 10% budget, with the base model being Mistral-
7B-v0.3. Similar to prior observations with Llama-3-8B, both Normalized and BIDS have more
balanced task frequencies compared with Unnormalized.
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(b) Normalized
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Figure 9: Comparative analysis of normalized AID under the 10% budget, with the base model being
Mistral-7B-v0.3. Similar to prior observations with Llama-3-8B, from Unnormalized to Normalized
to BIDS, the disparity among different tasks and instances in AID gradually diminishes, with both
decreasing upper bounds and increasing lower bounds, although the degree of the original imbalance
for Mistral-v0.3 is not as high as Llama-3.

A.6 DISCUSSION ON THE COMPUTATIONAL COST OF BIDS

In this section we aim to discuss and show that BIDS does not incur much memory or latency
overhead, and can thus serve as an efficient plug-and-play module. In our training and evaluation
setup, the |D| dimension for the Attribution Matrix (AM) is about 288K, and the |V | dimension is 350.
Therefore, the memory cost for storing the AM using FP64 precision is less than 800M. The latency
cost for running the whole BIDS algorithm is less than 1 minute with GPU CUDA acceleration. More
generally, since most of the popular mixtures of instruction finetuning data are maintained on the
scale of hundreds of thousands (Wang et al., 2023; Ivison et al., 2023; Yuan et al., 2024; Yue et al.,
2023), the memory and latency cost of BIDS should be light for most practical training setups.

A.7 QUALITATIVE ANALYSIS

In this section, we aim to show the following two properties of BIDS by providing some qualitative
examples:

1. Models trained on BIDS-selected data can indeed achieve a stronger balance between
mastering task-specific skills (e.g., math reasoning/coding knowledge, etc.) and fully
understanding various types of instructions given by the user (e.g., format-following/response
style, etc.).

2. Such a stronger balance is indeed helpful to improving the accuracy or human-perceived
quality of model response.
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Concretely, we present three sets of model responses in the task of coding (Table 5), math (Table 6)
and general instruction-following (Table 7) respectively. Each set contains a correct response by a
Mistral-7B-v0.3 model trained on top-15% BIDS-selected data, and a false response by the same base
model trained on the full (i.e., 100%) UltraInteract, both to exactly the same prompt. We analyze how
the BIDS-trained model correctly answers all these prompts due to the greater balance of capabilities
it achieved.
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Table 5: For the example 1, the model trained on the full dataset fails to handle the corner case of
numbers = []. For the example 2, the full-trained model also fails at not adding the constraint of
y != x in its sorting rule. In both cases, BIDS-trained model returns the correct code completion
because it better considers and handles corner cases. It reflects that BIDS-trained model balances its
capability in correct coding knowledge and comprehensive thinking behavior.

HumanEval: Example 1 HumanEval: Example 2

Prompt Prompt

1 def rolling_max(numbers):
2 # Write a Python function ‘rolling_max(

numbers: List[int]) -> List[int]‘ to solve
the following problem:

3 # From a given list of integers, generate a
list of rolling maximum element found until
given moment

4 # in the sequence.
5 # >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
6 # [1, 2, 3, 3, 3, 4, 4]

1 def find_closest_elements(numbers: List[float])
-> Tuple[float, float]

2 # From a supplied list of numbers (of length
at least two) select and return two that

are the closest to each other and return
them in order (smaller number, larger number
).

3 # >>> find_closest_elements([1.0, 2.0, 3.0,
4.0, 5.0, 2.2])

4 # (2.0, 2.2)
5 # >>> find_closest_elements([1.0, 2.0, 3.0,

4.0, 5.0, 2.0])
6 # (2.0, 2.0)

Wrong Completion: Full-trained model Wrong Completion: Full-trained model

1 # Initialize the result list with the first
element of the input list

2 result = [numbers[0]]
3 # Initialize the maximum value with the first

element of the input list
4 max_value = numbers[0]
5 # Iterate through the input list starting from

the second element
6 for num in numbers[1:]:
7 # If the current number is greater than the

maximum value, update the maximum value and
append the current number to the result list

8 if num > max_value:
9 max_value = num

10 result.append(num)
11 # If the current number is not greater than

the maximum value, append the maximum value
to the result list

12 else:
13 result.append(max_value)
14 # Return the result list
15 return result

1 closest_pair = min(numbers, key=lambda x: min(
abs(x - y) for y in numbers))

2 return closest_pair, min(numbers, key=lambda x:
abs(x - closest_pair))

Correct Completion: BIDS-trained model Correct Completion: BIDS-trained model

1 if not numbers:
2 return []
3 n = len(numbers)
4 result = [numbers[0]]
5 for i in range(1, n):
6 result.append(max(numbers[i], result[-1]))
7 return result

1 # Step 1: Sort the list of numbers in ascending
order

2 numbers.sort()
3 # Step 2: Initialize the closest_numbers

variable with the first two elements of the
sorted list

4 closest_numbers = (numbers[0], numbers[1])
5 # Step 3: Iterate through the list to find the

two numbers that are the closest to each
other

6 for i in range(1, len(numbers) - 1):
7 # Step 4: Calculate the difference between

the current number and the next number
8 diff = abs(numbers[i] - numbers[i + 1])
9 # Step 5: If the difference is less than the

difference between the current closest
numbers, update the closest numbers

10 if diff < abs(closest_numbers[0] -
closest_numbers[1]):

11 closest_numbers = (numbers[i], numbers[i
+ 1])

12 # Step 6: Return the two closest numbers in
order (smaller number, larger number)

13 return closest_numbers
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Table 6: For the example 1, BIDS-trained model understands the implicit condition contained in
the question that only after a whole number of years can a tree grow oranges for sale, and thus goes
on to round the calculated the calculation to integer (Step 7). For the example 2, the model trained
on the full dataset fails to understand the meaning of "a person was born 8 years before another"
(Step 3) and thus performs the calculation in the wrong way. In both examples, BIDS-trained
model correctly answers the question because it balances its capability in math reasoning and natural
language understanding.

GSM-Plus: Example 1 GSM-Plus: Example 2

Question Question

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final
answer as \boxed{Your Answer}.
Carlos is planting an orange tree. The tree will cost $120 to
plant. Each year it will grow 10 oranges, which he can sell for
$2 each. It costs $4 a year to water and feed the tree. How many
years will it take before he starts earning money on the orange
tree?

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final
answer as \boxed{Your Answer}.
Raymond and Samantha are cousins. Raymond was born 8
years before Samantha. Raymond had a son at the age of 25. If
Samantha is now 35, how many years ago was Raymond’s son
born?

Wrong Response: Full-trained model Wrong Response: Full-trained model

Step 1: To determine the number of years it will take for
Carlos to start earning money from the orange tree, we need
to consider the initial cost of planting the tree and the annual
expenses associated with watering and feeding it.
Step 2: The tree costs $120 to plant, and it incurs an annual
expense of $4 for watering and feeding.
Step 3: Each year, the tree produces 10 oranges, which he can
sell for $2 each.
Step 4: So, the total income from selling the oranges each year
is 10 * $2 = $20.
Step 5: However, we need to subtract the annual expenses of $4
from the income to find the net profit from the oranges.
Step 6: Therefore, the net profit from the oranges each year is
$20 - $4 = $16.
Step 7: To determine the number of years it will take for Carlos
to start earning money, we can divide the initial cost of planting
the tree by the net profit from the oranges each year.
Step 8: This gives us the number of years it will take for the
tree to start generating a positive return on investment.
Step 9: So, the number of years it will take before Carlos starts
earning money on the orange tree is $120 / $16 = 7.5$ years.

Answer:
\boxed{7.5}

Step 1: To solve this problem, we need to first understand the
given information and then work through the steps to find the
age of Raymond’s son.
Step 2: We’re given that Raymond was born 8 years before
Samantha, and Samantha is currently 35 years old.
Step 3: This means that Raymond was born 35 - 8 = 27 years
ago.
Step 4: Now, we know that Raymond had a son at the age of 25.
So, we need to find out how many years ago Raymond’s son
was born.
Step 5: To do this, we can simply subtract Raymond’s age when
his son was born (27 years) from the current age of Samantha
(35 years).
Step 6: This gives us 35 - 27 = 8 years.
Step 7: Therefore, Raymond’s son was born 8 years ago.

Answer:
\boxed{8}

Correct Response: BIDS-trained model Correct Response: BIDS-trained model

Step 1: To determine how many years it will take for Carlos to
start earning money from his orange tree, we need to consider
the costs involved in planting and maintaining the tree, as well
as the revenue generated from selling the oranges.
Step 2: First, we need to calculate the total cost of planting the
tree, which is $120.
Step 3: Each year, the tree will grow 10 oranges that can be
sold for $2 each, resulting in a total revenue of $20 per year.
Step 4: However, it also costs $4 per year to water and feed the
tree.
Step 5: Therefore, the net revenue from selling the oranges
each year is $20 - $4 = $16.
Step 6: To determine how many years it will take for Carlos to
start earning money, we can divide the total cost of planting the
tree by the net revenue each year. This gives us 120 / 16 = 7.5
years.
Step 7: Since we can’t plant a tree for half a year, Carlos will
need to wait 8 years before he starts earning money from the
orange tree.

Answer:
\boxed{8}

Step 1: To solve this problem, we need to understand the
relationship between Raymond and Samantha, and then
calculate the age of Raymond’s son based on the given
information.
Step 2: Raymond is Samantha’s cousin, and he was born 8
years before her. This means that Raymond is 8 years older
than Samantha.
Step 3: Raymond had a son at the age of 25, so we need to
calculate Raymond’s age at that time. Since Raymond is 8
years older than Samantha, and Samantha is currently 35, we
can calculate Raymond’s age as 35 + 8 = 43.
Step 4: Now, we know that Raymond had his son at the
age of 25, so we can calculate the age of Raymond’s son by
subtracting 25 from Raymond’s age at that time, which is 43 -
25 = 18.
Step 5: Therefore, Raymond’s son was born 18 years ago.

Answer:
\boxed{18}
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Table 7: For the example 1, the model trained on the full dataset ignores the explicit requirement of
forming its output as a single JSON block. It is especially overfit to the response format of Step
X: ... which is frequently seen in the training data. In contrast, BIDS-trained model handles
its CoT in a nifty way by expressing its thinking process in the values of a JSON block. For the
example 2, full-trained model not only fails to completely follow the explicitly required format, but
also hardly writes a poem, compared with the high-quality one generated by BIDS-trained model. In
both examples, BIDS-trained model generates content with significantly higher quality due to the
balance between strict format-following and flexible use of parametric knowledge.

IFEval: Example 1 IFEval: Example 2

Prompt Prompt

Please provide the names of 5 famous moms in JSON format.
Please, use any interesting or weird tone. Your entire output
should just contain a JSON block, nothing else.

Write a poem about how I am missing my classes. The poem
must have 4 sections marked with SECTION X. Finish the
poem with this exact phrase: "Can I get my money back for
the classes I missed?"

Wrong Response: Full-trained model Wrong Response: Full-trained model

Step 1: Let’s think of 5 famous moms who have made a
significant impact in their respective fields.
Step 2: Oprah Winfrey - Talk show host, media mogul,
producer, actress, philanthropist
Step 3: Angelina Jolie - Actress, filmmaker, humanitarian
Step 4: Michelle Obama - Former First Lady of the United
States
Step 5: Serena Williams - Professional tennis player
Step 6: Create a JSON block with the names of the 5 famous
moms.

‘‘‘javascript
// Step 7: Create a JSON block with the names of the 5
famous moms.
[
"Oprah Winfrey",
"Angelina Jolie",
"Michelle Obama",
"Serena Williams"
]
‘‘‘

Section 1:
I missed my first class today and I’m feeling quite disap-
pointed.
Section 2:
I really wanted to learn all the new material, but I had to stay
home due to illness.
Section 3:
I hope I can make up for the missed class by studying extra
hard for the next exam.
Section 4:
Can I get my money back for the classes I missed?

Answer:
"I missed my first class today and I’m feeling quite
disappointed.
I really wanted to learn all the new material, but I had to stay
home due to illness.
I hope I can make up for the missed class by studying extra
hard for the next exam.
Can I get my money back for the classes I missed?"

Correct Response: BIDS-trained model Correct Response: BIDS-trained model

{
"Meryl Streep": "An American actress and filmmaker, known
for her versatile and powerful performances in films like
Kramer vs. Kramer, Sophie’s Choice, The Devil Wears Prada,
and many more.",
"Oprah Winfrey": "An American media mogul, talk show
host, actress, producer, and philanthropist. She is best known
for her talk show The Oprah Winfrey Show, which ran for 25
years.",
"Sarah Jessica Parker": "An American actress, producer, and
designer. She is best known for her role as Carrie Bradshaw
in the HBO series Sex and the City.",
"Jennifer Garner": "An American actress, producer, and en-
trepreneur. She is best known for her roles in films like 13
Going on 30, Juno, and Alias.",
"Angelina Jolie": "An American actress, filmmaker, and hu-
manitarian. She is best known for her work as a United
Nations Special Envoy and as a Goodwill Ambassador."
}

SECTION 1:
I’m sitting here feeling so lonely,
Missing my classes with all my friends,
Wishing I could be there with them,
Instead of sitting at home and mend.
SECTION 2:
I’m looking at my empty calendar,
Wondering what I’m missing out on,
Wishing I could join in on the fun,
Instead of staring at the screen and frown.
SECTION 3:
I’m listening to the sound of silence,
While my friends are making memories,
Wishing I could join in on the laughter,
Instead of feeling left out and sadder.
SECTION 4:
I’m staring at the clock, counting the minutes,
Until I can see my teachers and classmates,
Wishing I could just teleport there,
Instead of waiting for the next class to start.

Finish:
Can I get my money back for the classes I missed?
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