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Abstract

Fully Unsupervised Anomaly Detection (FUAD) is a practical extension of Un-1

supervised Anomaly Detection (UAD), aiming to detect anomalies without any2

labels even when the training set may contain anomalous samples. To achieve3

FUAD, we pioneer the introduction of Knowledge Distillation (KD) paradigm4

based on teacher–student framework into the FUAD setting. However, due to the5

presence of anomalies in the training data, traditional KD methods risk enabling6

the student to learn the teacher’s representation of anomalies under FUAD set-7

ting, thereby resulting in poor anomaly detection performance. To address this8

issue, we propose a novel Cross-Domain Distillation (CDD) framework based on9

the widely studied reverse distillation (RD) paradigm. Specifically, we design a10

Domain-Specific Training, which divides the training set into multiple domains11

with lower anomaly ratios and train a domain-specific student for each. Cross-12

Domain Knowledge Aggregation is then performed, where pseudo-normal features13

generated by domain-specific students collaboratively guide a global student to14

learn generalized normal representations across all samples. Experimental results15

on noisy versions of the MVTec AD and VisA datasets demonstrate that our method16

achieves significant performance improvements over the baseline, validating its17

effectiveness under FUAD setting.18

1 Introduction19

In the field of industrial image anomaly detection, acquiring or predefining anomalous samples20

is often impractical. Consequently, Unsupervised Anomaly Detection (UAD), which relies only21

on normal samples for training, has been extensively studied [5, 7]. To tackle the challenges of22

UAD task, a variety of methods are proposed, such as those based on memory banks [26, 2],23

anomaly synthesis [19, 35], and image reconstruction [4, 1]. In recent years, UAD methods based on24

Knowledge Distillation (KD) have gained increasing attention [6]. Compared to other techniques,25

they show greater potential in pixel-level anomaly localization. The KD-based UAD methods26

typically employ a teacher-student framwork, which allows the student network to imitate the feature27

representations of the teacher on normal samples. Since the student is never exposed to anomalous28

samples during training, its ability to generate teacher’s anomaly features is limited. This discrepancy29

in feature mimicking performance becomes a useful signal for anomaly identification.30

In real-world scenarios, however, it is often inevitable that the collected data contain a small proportion31

of anomalous samples. Relying entirely on manual data cleaning incurs high labor costs. This32

motivates the need for Fully Unsupervised Anomaly Detection (FUAD), a more practical and33

challenging setting where the training set may contain unlabeled anomalous samples. Although34

several studies have begun to explore this task, most existing methods rely heavily on memory35
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Figure 1: (a) Simplified schematic of Cross-Domain Distillation with 3 domains, where the top
represents Domain-Specific Training and the bottom depicts ross-Domain Knowledge Aggregation.
(b) Quantitative comparison against other FUAD methods on MVTec AD-noise-0.1 (with 10%
anomaly ratio in the train set) [5], with P-AUC (x-axis), PRO (y-axis), and circle size indicating FPS
(larger means faster inference), proves that CDD has the best overall performance. (c) Qualitative
comparison with other FUAD methods on MVTec AD-noise-0.1.

banks [17, 24, 16], which introduces additional storage overhead. In contrast, Knowledge Distillation36

paradigm offers a storage-efficient alternative, yet its potential in FUAD has not been fully explored.37

We make two key observations regarding the data under the FUAD setting: (1) From a probabilistic38

perspective, normal pixels still dominate the training set despite the presence of noise; (2) In terms39

of feature distribution, teacher representations of normal samples tend to be more compact and40

stable, making them easier for the student network to learn, whereas anomaly features are more41

dispersed and less likely to be captured. These insights suggest that, even under the FUAD setting,42

the student network trained via KD inherently focuses on learning normal representations, leading to43

poor fitting in anomalous regions. This makes the discrepancy between teacher and student features a44

reliable signal for anomaly detection, which indicates the feasibility and potential of applying the KD45

paradigm to the FUAD setting.46

However, meanwhile, Knowledge Distillation faces a long-standing over-generalization problem [28,47

32, 27]. Even though the student network is trained to learn teacher’s representations only on normal48

pixels, its learned representation ability may still generalize to anomalous ones, which leads to miss49

detections when testing on anomalous samples. This issue becomes more pronounced under the50

FUAD setting. If a certain type of anomaly appears frequently in the training data, the student may51

learn its common feature patterns and become capable of generating teacher-like representations for52

similar anomalies during inference.53

To address the above challenge, we propose a novel cross-domain distillation framework for FUAD,54

built upon the widely studied KD-based UAD method Reverse Distillation (RD) [9] with an encoder-55

decoder architecture. First, our intuition is that reducing the probability of anomalous samples56

being learned during training mitigates the student’s tendency to overfit to techer’s anomaly features.57

To achieve this, we design a domain division mechanism that distributes high-confidence normal58

samples across multiple domains while dispersing potentially anomalous samples, thereby lowering59

the anomaly ratio within each domain without discarding any data. Considering that data distributions60

vary across domains and that RD’s student decoder generates anomaly-free features for unseen61

anomalous samples, we hypothesize that domain-specific students trained on different domains62

produce pseudo-normal features when applied to other domains. Building on this insight, we63

introduce a Cross-Domain Distillation (CDD) framework: for each domain, we utilize domain-64

specific students from other domains to generate pseudo-normal features for its samples, guiding the65

training of a global student decoder. This global student learns to produce anomaly-free features66

across all samples, both normal and anomalous. Finally, the distance between the features generated67

by the global student decoder and the teacher encoder is used to detect and localize anomalies. Our68

contributions are summarized as follows:69

• We are the first to explore the application of the knowledge distillation paradigm to the Fully70

Unsupervised Anomaly Detection task.71

• We propose Domain-Specific Training (DST) as in Fig. 1 (a), which first performs72

Confidence-Guided Domain Construction to build data domains with low anomaly proba-73
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bility. Then, each domain is used to train a domain-specific student via Domain-Specific74

Distillation with Regularization.75

• We introduce Cross-Domain Knowledge Aggregation (CDKA), where domain-specific76

students provide pseudo-normal features for each sample to train a global student that77

integrates information across all domains as depicted in Fig. 1 (a).78

• Experimental verification shows that our CDD is significantly higher than the baseline RD,79

and has better performance and faster inference speed than the previous FUAD methods.80

2 Related Work81

Unsupervised Anomaly Detection. Unsupervised Anomaly Detection (UAD) has been widely82

studied in recent years due to its ability to operate without requiring anomalous samples during83

training. Existing methods are broadly categorized into the following types: (1) reconstruction-based84

generative models [4, 1, 29, 25, 33, 37], which learn to reconstruct only normal samples and identify85

anomalies based on reconstruction errors during inference; (2) density estimation-based methods [8,86

12, 39], which assume that normal samples follow a specific distribution in the feature space and87

detect deviations from this distribution; (3) synthetic anomaly-based approaches [19, 35, 21, 38],88

which generate pseudo-anomalies using image transformations, external generators, or diffusion89

models to enhance the model’s ability to perceive anomalies; and (4) methods that incorporate pre-90

trained models and memory bank mechanisms [26, 2, 15], comparing the features of test samples with91

those of normal samples to identify anomalies. In recent years, Knowledge Distillation-based UAD92

methods [6, 20, 28, 32, 27, 3, 22] using the teacher-student framework have emerged as excellent93

methods for anomaly localization. These methods learn representations of normal regions and94

detect anomalies by measuring the discrepancy in features between the teacher and student networks95

on anomalous regions. To mitigate the student’s over-generalization to anomalies, some studies96

introduce heterogeneous architectures or reverse information flow, such as Reverse Distillation [9]97

and its variants [30, 13, 11, 18, 14, 36], which further improve anomaly detection accuracy.98

Fully Unsupervised Anomaly Detection. Fully Unsupervised Anomaly Detection (FUAD) has99

attracted increasing attention, owing to its ability to operate without manual annotations and its suit-100

ability for tackling noisy training data in real-world scenarios [31]. Existing methods are categorized101

as follows: (1) SoftPatch [17], based on PatchCore [26], adopts a memory-based patch-level denoising102

strategy using noise discriminators to mitigate overconfidence. (2) InReaCh [24] builds detection103

models by associating high-confidence patch channels across training images. (3) FUN-AD [16]104

leverages nearest-neighbor distances and class homogeneity, employing an iteratively reconstructed105

memory bank (IRMB) to handle noisy data. However, these methods often rely on explicit memory106

banks, which impose storage burdens in practice. Knowledge Distillation has shown strong potential107

in unsupervised anomaly localization without additional storage, but its application to FUAD remains108

unexplored. This work aims to explore this promising direction.109

3 Motivation and Assumptions110

3.1 Rethinking Reverse Distillation for FUAD111

What is Reverse Distillation? Early KD-based AD methods typically adopt a homogeneous teacher-112

student framework, where the student only learns the teacher’s representation ability on normal113

samples. During inference, anomalies are detected by measuring the discrepancy between teacher and114

student features. Reverse Distillation (RD) [9] builds upon KD by introducing an encoder-decoder115

structure. The teacher network is a frozen encoder, while the student consists of a trainable one-class116

bottleneck embedding (OCBE) module B(·;ϕ) and a trainable decoder DS(·;ψ).117

Let the training set be Itrain. Given a training image Itraini ∈ Itrain, the teacher extracts multi-layer118

features FT ,i = T (Itraini ) = {f lT ,i}Ll=1, which are then reconstructed by the student network as119

FS,i = S(FT ,i; θS) = {f l
S ,i}Ll=1. The student network is denoted as S(·; θS), with parameters120

θS = {ϕ, ψ}. The training objective is to minimize the cosine distance between teacher and student121

features across all L = 3 layers on normal samples as:122

cos(f1, f2) =
f1 · f2

∥f1∥∥f2∥
(1)
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123

ℓcos(FT ,FS) =

L∑
l=1

(
1− cos(f l

T , f l
S)

)
(2)

124
argmin

θS
EIi∼Itrainℓcos(FT ,i,S(FT ,i; θS)) (3)

Why does RD Work for FUAD? Although Reverse Distillation (RD) is initially designed for training with only125

normal samples, it demonstrates strong adaptability in Fully Unsupervised Anomaly Detection. We attribute this126

to two key factors:127

(1) Probability Perspective - Dominance of Normal Samples128

In industrial scenarios, normal samples are much more common than anomalies, which results in low proportion129

of anomalous images in the training set. Moreover, anomalies typically occupy only a small region within an130

image. Consequently, the student network, driven by the dominance of normal samples, primarily learns to131

represent normal features, while the sparsity of anomalies limits their impact on the optimization process.132

(2) Distribution Perspective - Concentrated Normal vs. Diverse Anomalous133

Normal samples exhibit compact and consistent feature patterns, while anomalous samples are diverse and134

scattered. This makes it difficult for the student to generalize learned anomalous features.135

Challenges of Applying RD to FUAD. In FUAD task, the training set naturally includes a certain proportion136

of anomalous samples. If specific anomaly patterns appear repeatedly during training, the student can easily137

learn to reconstruct the teacher features of these conmmon anomalies. This results in poor discrimination against138

similar anomalies during testing and further intensifies over-generalization. Therefore, the key challenge in139

applying RD to FUAD is how to prevent the student from modeling common anomaly patterns during training,140

to ensure that it generates anomaly-free features.141

3.2 Assumptions142

To address over-generalization problem in FUAD, we propose two assumptions based on the diversity and143

sparsity of anomalies, guiding the following design of our method Cross-Domain Distillation.144

Assumption 1 (Limited Representation of Rare Anomalies) When a particular anomaly type is sufficiently145

rare in training data, the student fails to learn its corresponding teacher anomaly features, and instead tends to146

produce features that closely resemble normal patterns.147

Due to the consistency of normal samples and the diversity of anomalies (i.e., anomalies exhibit multiple distinct148

patterns), we assume the training set contains one normal type and Mtrain anomaly types, expressed as:149

Itrain = N ∪A = N ∪
Mtrain⋃
m=1

Am (4)

where N denotes the set of normal samples, Am denotes the set of the m-th anomaly type, and:150

P(N ) ≫ P(Am) ∀m = 1, . . . ,Mtrain (5)

Following Empirical Risk Minimization (ERM), the training objective is to minimize the distance between151

student features and teacher features over all samples. The empirical risk can be expressed as152

L = P(N ) · EIi∼N [ℓcos(FT,i,FS,i)] +

Mtrain∑
m=1

P(Am) · EIj∼Am [ℓcos(FT,i,FS,i)] (6)

The gradient of parameters θS is:153

∂L
∂θS

= P(N ) · EIi∼N

[
∂ℓcos
∂θS

]
+

Mtrain∑
m=1

P(Am) · EIj∼Am

[
∂ℓcos
∂θS

]
(7)

If P(Am) is small enough, the contribution of the anomaly type Am to the gradient is negligible. Thus, the154

student receives limited learning signals for this type of anomaly and fails to reconstruct the corresponding155

teacher features effectively.156

Assumption 2 (Lack of Cross-Anomaly Generalization) Even if a student learns to reconstruct some specific157

anomaly patterns during training, this reconstruction ability is not generalized to other unseen anomaly types.158

This assumption is based on the diversity of anomalies. Anomalies are often unstructured and come from159

different sources or physical mechanisms. As a result, they follow multiple, structurally different patterns in the160

feature space:161

FT,i | Ii ∈ Am ∼ Pm (8)
where each pattern Pm represents the teacher’s feature distribution for the m-th type of anomaly. The total162

number of types is M , which may even be infinite in practice.163
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Figure 2: Overall framework of our proposed CDD.
During training, the student network only sees a subset of these anomaly patterns:164

Ptrain = {P1, . . . ,PMtrain}, Mtrain ≪ M (9)

According to the No Free Lunch theorem, if an input anomalous sample Ij ∼ Pm′ with Pm′ /∈ Ptrain, its165

distribution is outside the training support. Then, the student may fail to generate the correct teacher features:166

FS,j ̸≈ FT,j , Ij /∈ Ptrain (10)

Since normal samples dominate the training set, the student tends to generate features similar to the normal167

distribution.168

4 Method169

Problem Definition. In FUAD, we denote the training set as Itrain = {Itraini }Ni=1, where each image170

Itraini ∈ {N ,A} is unlabeled and may be normal or anomalous. The test set Itest = {Itestj }Mj=1 comprises171

both normal and anomalous images, with normal samples following the same distribution as Itrain. The172

objective is to learn the distribution of normal samples from Itrain to detect anomalies in Itest.173

Overview. Fig. 2 illustrates the training process of each epoch (top and lower right) and the inference process174

(lower left). All teacher and student networks follow the design of Reverse Distillation. The teacher is a175

WideResNet-50 [34] pre-trained on ImageNet [10]. And each student includes an OCBE module and a decoder.176

Each training epoch consists of two stages: Domain-Specific Training and Cross-Domain Knowledge Aggrega-177

tion. In the first stage, we propose Confidence-Guided Domain Construction to extract high-confidence normal178

samples from the original training set and use them as the intersection between multiple data domains. In this way,179

each domain has a reduced anomaly ratio compared to the full dataset. Then, we train a domain-specific student180

for each domain using Domain-Specific Distillation with Regularization. Based on Assumption 1, these students181

ease off from modeling anomaly features and thus focus on modeling normal features in their local domains. The182

second stage Cross-Domain Knowledge Aggregation mainly explains how to use the domain-specific students183

obtained in the first stage to train a global student that reconstructs normal features on all samples. According184

to Assumption 2, for anomalous samples in a specific domain k , domain-specific students that are not trained185

on domain k still generates normal-like features. We use these features as pseudo-normal supervision signals186

to perform Cross-Domain Pseudo-Normal Feature Distillation for the global student. After that, we further187

distill the global student using the teacher on high-confidence normal samples, enabling it to effectively learn the188

reliable reconstruction of normal patterns.189

The lower left part of Fig. 2 depicts the inference process. During inference, for each image Itestj ∈ Itest, cosine190

distances across multi-layer features generated by the teacher T and the global student trained for E epochs191

SGlo
E are fused to generate a pixel-level anomaly map M, whose maximum value serves as the image-level192

anomaly score s:193

M(h,w) =
L∑

l=1

(
1− cos(f l

T (h,w), f l
SGlo
E

(h,w))
)
, s = max(M) (11)

194
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4.1 Domain-Specific Training195

Confidence-Guided Domain Construction Based on Assumption 1, reducing the anomaly probability196

in the training set helps the student better learn normal patterns. A naive way to achieve this is to retain only197

high-confidence normal samples or discard low-confidence anomalous ones. However, such strategies fail to198

fully utilize the training data, as potentially useful normal regions are also discarded along with the anomalies.199

To address this issue, we introduce a confidence-guided strategy on top of naive equal partitioning. Specifically,200

we inject a portion of highly confident normal samples into each domain based on normality confidence scores,201

which ensures that: (1) The anomaly ratio in each domain becomes lower than that in the original training set,202

reducing the interference of anomalous samples on the modeling of normal patterns. (2) The normal distribution203

in each domain remains more similar to the overall normal distribution, mitigating the negative impact of domain204

partitioning on student normality modeling.205

We use the features output by the global student of the previous epoch SGlo
e−1 as the basis for confidence evaluation.206

For each training sample Ii, the average cosine similarity between teacher features fT and global student features207

fSG
e−1

across L layers is calculated to obtain the corresponding Confi:208

Confi =

L∑
l=1

{
1

HlWl

Hl∑
h=1

Wl∑
w=1

cos(f l
T ,i(h,w), f l

SGlo
e−1,i

(h,w))

}
(12)

All samples are sorted by confidence in descending order. The top r(e) samples form the high-confidence set209

DHC . The confidence threshold r(e) increases with training, up to 50%. Let e be the current epoch and E the210

total epochs, r(e) is calculated as211

r(e) = min
( e

E
, 0.5

)
(13)

The remaining low-confidence samples are randomly and evenly divided into K subsets, denoted212

DLC
k , k = 1, . . . ,K. By combining DHC and DLC

k , each domain is expressed as213

Dk = DHC ∪ DLC
k , k = 1, . . . ,K. (14)

Domain-Specific Distillation with Regularization After domain construction, we train a corresponding214

domain-specific student SDS
k for the k-th domain, who learns to reconstruct the features of samples within its215

corresponding domain. The initial parameters of each domain-specific student are inherited from the global216

student of the previous epoch SGlo
e−1. This training process of SDS

k follows the basic framework of Reverse217

Distillation, which minimizes the cosine distance between the features generated by the student FSDS
k

and the218

features of the teacher FT . In this way, the domain-specific students are able to model the teacher’s feature219

representation ability of data in their local domain.220

However, even with controlled anomaly ratios and dispersed common anomalies, the domain-specific student221

may still learn representations of abnormal samples, especially when a particular type of anomaly is overly222

represented in the domain. To further tackle this problem, we introduce pseudo-normal features generated by223

the global student obtained from the previous epoch SGlo
e−1 as the regularization signal. As the global student224

becomes more and more capable of modeling normal patterns during training, it provides useful guidance to help225

domain-specific students avoid over-learning anomaly features. The loss LDS
k used to train each domain-specific226

student SDS
k combines two terms: the primary distillation loss (from the teacher) and the regularization loss227

(from the global student), which is expressed as228

LDS
k = EIi∼Dk (ℓcos(FT ,i,FSDS

k
,i)︸ ︷︷ ︸

Teacher Guidance LDS−T
k

+λ(e) · ℓcos(FSGlo
e−1,i

,FSDS
k

,i)︸ ︷︷ ︸
Regularization LDS−R

k

) (15)

where λ(e) is a dynamic increasing coefficient that adjusts the regularization strength over the training epochs.229

It is controlled using an S-shaped scheduling function with p = 4.0 as230

λ(e) =
(e/E)p

(e/E)p + (1− e/E)p
(16)

4.2 Cross-Domain Knowledge Aggregation231

Cross-Domain Pseudo-Normal Feature Distillation Due to the high consistency of normal samples232

across domains, domain-specific students reconstruct correct normal features on normal samples in all domains.233

Based on Assumption 2, the diversity of anomalies prevents domain-specific students from generalizing to out-of-234

domain anomaly patterns, even if they learn the reconstruction of anomaly features in local domains. Following235

this idea, we propose using domain-specific students to generate pseudo-normal features for out-of-domain236

samples. providing supervision for the training of the global student to generate normal features on all samples.237

To prevent pseudo-normal feature contamination caused by some domain-specific students learning the ability to238
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Table 1: Anomaly detection and localization results I-AUC / P-AUC / PRO under No Overlap setting
on MVTec AD-noise-0.1 with the best in bold. and the second best underlined.

Category Unsupervised Fully Unsupervised

RD [9] URD [23] SoftPatch [17] InReaCh [24] FUN-AD [16] CDD (Ours)

bottle 0.997 / 0.983 / 0.955 0.992 / 0.984 / 0.961 1.000 / 0.986 / 0.956 1.000 / 0.981 / 0.915 1.000 / 0.992 / 0.960 1.000 / 0.987 / 0.959
cable 0.931 / 0.835 / 0.768 0.955 / 0.881 / 0.824 0.996 / 0.984 / 0.919 0.958 / 0.978 / 0.862 0.952 / 0.920 / 0.740 0.981 / 0.969 / 0.891
capsule 0.939 / 0.980 / 0.956 0.951 / 0.981 / 0.958 0.961 / 0.990 / 0.965 0.446 / 0.914 / 0.657 0.922 / 0.987 / 0.855 0.942 / 0.984 / 0.950
carpet 0.985 / 0.988 / 0.957 0.993 / 0.991 / 0.972 0.989 / 0.992 / 0.959 0.980 / 0.992 / 0.958 1.000 / 0.995 / 0.953 0.989 / 0.989 / 0.960
grid 0.956 / 0.994 / 0.979 1.000 / 0.990 / 0.976 0.965 / 0.991 / 0.963 0.917 / 0.983 / 0.929 0.991 / 0.993 / 0.935 1.000 / 0.992 / 0.976
hazelnut 1.000 / 0.992 / 0.936 0.994 / 0.993 / 0.953 1.000 / 0.994 / 0.942 0.997 / 0.988 / 0.907 0.999 / 0.991 / 0.885 1.000 / 0.993 / 0.945
leather 1.000/ 0.995 / 0.988 1.000 / 0.995 / 0.990 1.000 / 0.994 / 0.988 1.000 / 0.992 / 0.985 1.000 /0.998 / 0.986 1.000 / 0.991 / 0.971
metal_nut 0.988 / 0.833 / 0.859 0.994 / 0.848 / 0.869 0.998 / 0.886 / 0.838 0.970 / 0.958 / 0.887 0.997 / 0.992 / 0.864 1.000 / 0.962 / 0.870
pill 0.960 / 0.966 / 0.956 0.961 / 0.956 / 0.950 0.953 / 0.977 / 0.945 0.889 / 0.956 / 0.883 0.939 / 0.972 / 0.893 0.971 / 0.978 / 0.958
screw 0.980 / 0.995 / 0.983 0.954 / 0.994 / 0.977 0.952 / 0.994 / 0.975 0.779 / 0.982 / 0.936 0.913 / 0.981 / 0.772 0.934 / 0.992 / 0.974
tile 0.988 / 0.961 / 0.858 1.000 / 0.964 / 0.897 1.000 / 0.959 / 0.878 0.999 / 0.965 / 0.878 0.999 / 0.978 / 0.939 0.997 / 0.955 / 0.879
toothbrush 1.000 / 0.991 / 0.939 1.000 / 0.992 / 0.943 1.000 / 0.986 / 0.915 0.990 / 0.989 / 0.904 0.972 / 0.981 / 0.850 0.997 / 0.987 / 0.916
transistor 0.943 / 0.882 / 0.753 0.948 / 0.901 / 0.812 0.996 / 0.952 / 0.819 0.929 / 0.982 / 0.786 0.962 / 0.975 / 0.520 0.998 / 0.980 / 0.831
wood 0.990 / 0.978 / 0.906 0.994 / 0.983 / 0.924 0.997 / 0.979 / 0.912 0.947 / 0.962 / 0.875 1.000 / 0.977 / 0.960 0.993 / 0.979 / 0.916
zipper 0.924 / 0.976 / 0.941 0.861 / 0.973 / 0.926 0.974 / 0.989 / 0.969 0.952 / 0.937 / 0.796 0.984 / 0.970 / 0.925 0.958 / 0.980 / 0.950

Average 0.972 / 0.957 / 0.916 0.973 / 0.962 / 0.929 0.985 / 0.977 / 0.930 0.917 / 0.971 / 0.877 0.975 / 0.980 / 0.869 0.984 / 0.981 / 0.930

reconstruct certain types of teacher anomaly features, we design a Consensus-driven Pseudo-Normal Feature239

Selection strategy.240

Specifically, we select the most "consensual" domain-specific student to generate the normal feature supervision241

for each sample. The core motivation is that for the same sample, multiple domain-specific students that have242

not been trained on the sample should generate similar normal features. In the implementation, we achieve243

pseudo-normal feature selection by eliminating outlier features that are more likely to be abnormal features from244

the output features of domain-specific students with the help of the global student from the previous epoch SGlo
e−1.245

For a sample Ii from domain Dk, we first extract features FSDS
h

,i = {f l
SDS
h

,i
}Ll=1, h = {1, . . . ,K} \ k246

using the domain-specific students from domains Dh, h = {1, . . . ,K} \ k, and obtain the reference features247

FSGlo
e−1,i

= {f l
SGlo
e−1,i

}Ll=1 the global student from the previous epoch. We construct an affinity matrix Affi ∈248

R(K−1)×1, where each element measures the cosine similarity between the flattened features of each student249

and the global student:250

Affi(h) =
L∑

l=1

cos(f l
SDS
h

,i, f
l
SGlo
e−1,i

), h = {1, . . . ,K} \ k (17)

The pseudo-normal feature for the training sample is then selected as the one with the highest similarity:251

Fpseudo,i = FSDS
h∗ ,i, h∗ = argmax

h
Affi(h) (18)

However, the selected pseudo-normal features may still be contaminated with anomaly features. To prevent252

the trainable global student from overfitting these pseudo-normal features, we inject Gaussian noise with253

σnoise = 0.2 as feature perturbation into its input:254

F∗
SGlo
e ,i = S(FT ,i + δ; θSGlo), δ ∼ N (0, σ2

noise) (19)

The loss of Cross-Domain Pseudo-Normal Feature Distillation LCross
Glo is then defined as:255

LCross
Glo =

K∑
k=1

EIi∼Dkℓcos(Fpseudo,i,F∗
SGlo
e ,i) (20)

Confident Distillation for High-Confidence Domain In addition to pseudo-normal feature guidance,256

we also leverage the previously defined high-confidence sample set DHC , using teacher features as direct257

supervision to further enhance the global student’s ability to model true normal patterns:258

LHC
Glo = EIi∼DHC ℓcos(FT ,i,FSGlo

e ,i) (21)

5 Experiments259

5.1 Experimental Setup260

Datasets. We conduct experiments on two widely-used datasets: MVTec AD and VisA. Since both datasets261

are originally designed for unsupervised anomaly detection, we adapt them to the FUAD setting following262

SoftPatch [17]. Specifically, we keep the normal training images unchanged and randomly inject a portion of263

anomalous test samples into the training set with a predefined anomaly ratio Rnoise. We evaluate under two264

settings: (1) No overlap setting, where injected anomalous samples are removed from the test set; and (2)265

Overlap setting, where these anomalies remain in the test set, making the task more challenging.266
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Table 2: Anomaly detection and localization results I-AUC / P-AUC / PRO under Overlap setting on
MVTec AD-noise-0.1 with the best in bold. and the second best underlined.

Unsupervised Fully Unsupervised

RD [9] URD [23] SoftPatch [17] InReaCh [24] FUN-AD [16] CDD (Ours)

Average 0.708 / 0.818 / 0.901 0.696 / 0.792 / 0.909 0.984 / 0.957 / 0.915 0.879 / 0.943 / 0.861 0.976 / 0.977 / 0.870 0.971 / 0.973 / 0.921

(a) I-AUC (b) P-AUC (c) PRO

Figure 3: Comparison of anomaly detection performance with baseline RD under different Rnoise.
Implementation Details. We train a separate model for each category. The backbone follows RD, using a267

WideResNet-50 pretrained on ImageNet. Following SoftPatch [17], all images are resized to 256× 256 and then268

center cropped to 224× 224 during both training and inference. All domain-specific students and the global269

student are optimized by its own Adam optimizer with a learning rate of 0.005 and trained for 200 epochs. To270

smooth the obtained anomaly maps, we apply Gaussian filtering with σ = 4. All our experiments are performed271

on a single Nvidia GTX 3090 GPU.272

Evaluation Metrics. We use the area under the ROC curve (AUC) at both image and pixel levels, denoted as273

I-AUC and P-AUC, to evaluate anomaly detection and localization performance. The per-region-overlap (PRO)274

metric is also reported to better evaluate the localization performance of anomalies with small sizes.275

5.2 Anomaly Detection under FUAD setting276

Results on MVTec AD. We evaluate our proposed Cross-Domain Distillation (CDD) on the MVTec-AD dataset277

with Rnoise = 0.1, denoted as MVTec-AD-noise-0.1. CDD is compared with unsupervised KD-based UAD278

methods including RD [9], and FUAD methods, such as SoftPatch [17], InReaCh [24], and FUN-AD [16].279

Tab. 1 and Tab. 2 present the anomaly detection and localization results under No Overlap and Overlap settings,280

respectively, where each method reports I-AUC, P-AUC, and PRO metrics, all reproduced through 200 epochs of281

model training under a unified dataset split. In the No Overlap setting, CDD matches SoftPatch’s I-AUC while282

achieving a P-AUC of 0.981 and PRO of 0.930, surpassing all methods including RD in pixel-level localization.283

In the Overlap setting, despite some methods’ performance dropping sharply, CDD retains robustness with a284

P-AUC of 0.973 and PRO of 0.921, significantly outperforming the baseline and demonstrating strong resistance285

to anomaly noise. Furthermore, we compare RD and CDD on MVTec AD-noise-{0.2-0.15} as in Fig. 3. At low286

Rnoise, CDD’s advantage over RD is subtle, but as Rnoise rises, RD becomes unstable, especially in the Overlap287

setting, while CDD shows consistent performance with minimal fluctuations.288

Table 3: Anomaly detection and localization re-
sults on VisA-noise-0.05.

Setting Metrics RD [9] SoftPatch [17] InReaCh [24] CDD (Ours)

No Overlap
I-AUC 0.945 0.927 0.827 0.954
P-AUC 0.979 0.985 0.974 0.982
PRO 0.897 0.904 0.793 0.911

Overlap
I-AUC 0.656 0.924 0.725 0.936
P-AUC 0.909 0.954 0.914 0.977
PRO 0.892 0.883 0.721 0.911

Results on VisA. For the VisA dataset, we set289

Rnoise = 0.05 (VisA-noise-0.05) based on the ratio of290

normal to anomalous samples in the original dataset291

and conduct relevant experiments as in Tab. 3. The292

compared methods include unsupervised and fully293

unsupervised AD methods. Our method achieves the294

best performance in both No Overlap and Overlap295

settings. Notably, in the Overlap setting, we outper-296

form the baseline RD by 28.0% in I-AUC, 6.8% in P-AUC, and 1.9% in PRO, respectively, demonstrating that297

our cross-domain training strategy effectively enhances the baseline’s resilience to anomaly interference.298

carpetbottle grid transistor

RD

(Baseline)

CDD

(Ours)

Train Test Train Test Train Test Train Test

Figure 4: Comparison of histograms of anomaly scores obtained by RD and our CDD.
Visualization Comparisons. We perform additional visualization experiments to compare our proposed299

CDD with the baseline RD. First, we obtain anomaly scores on both the training and test sets of MVTec-300

AD-noise-0.1 using the trained RD and CDD, generating histograms of anomaly scores for all the samples301

as depicted in Fig. 4. On one hand, RD proves effective in the FUAD setting, yet it inadvertently learns302

certain anomaly patterns from the training set, impairing its ability to accurately detect anomalies. No-303

tably, our CDD overcomes this limitation, markedly improving anomaly detection ability on the training set.304
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Normal Anomalous GT RD CDD Normal Anomalous GT RD CDD Normal Anomalous GT RD CDD

Figure 5: Visualization comparison of anomaly maps generated by RD and our CDD.
Table 4: Ablation study of module effectiveness on
MVTec AD-noise-0.1 with K = 2.

DST CDKA

D.C. Conf.G. Reg. P.N. F.P. Conf.D. I-AUC P-AUC PRO Average

- - - - - - 0.9721 0.9566 0.9156 0.9481
✓ - - ✓ - - 0.9701 0.9731 0.9225 0.9552
✓ ✓ - ✓ - - 0.9709 0.9764 0.9223 0.9565
✓ ✓ - ✓ - ✓ 0.9761 0.9779 0.9230 0.9590
✓ ✓ - ✓ ✓ ✓ 0.9802 0.9821 0.9287 0.9637
✓ ✓ ✓ ✓ ✓ ✓ 0.9836 0.9818 0.9287 0.9647

Fig. 5 further compares anomaly maps gener-305

ated by RD and CDD. Compared to RD, CDD306

exhibits greater sensitivity to anomalies, intu-307

itively demonstrating its ability to mitigate over-308

fitting to some extent, preventing the student309

network from excessively learning the teacher’s310

anomaly representations.311

5.3 Ablation Analysis312

Effectiveness of Proposed Designs. We first conduct the stepwise ablation experiments to evaluate the313

effectiveness of module designs based on K = 2 as in Tab. 4. Without any additional designs, the setup reverts to314

the baseline RD. For Domain-Specific Training (DST), D.C. represents a simple even-split domain construction,315

while C.G. integrates Confidence-Guided Domain Construction for improved division. Initially, domain-specific316

training relies exclusively on the teacher for supervision, with Reg. introducing regularization by distilling from317

the previous global student. For Cross-Domain Knowledge Aggregation (CDKA), P.N. denotes the basic cross-318

domain distillation, generating pseudo-normal features across domains for feature distillation. The inclusion of319

F.P. involves applying feature perturbation to the global student’s input during training. Lastly, Conf.D. refers to320

training the global student directly on High-Confidence Domains to learn teacher representations. The results in321

Tab. 4 confirm that the addition of each module consistently enhances performance over the baseline.322

Table 5: Ablation study of domain number K
on MVTec-noise-0.1.

K I-AUC P-AUC PRO Average

2 0.9836 0.9818 0.9287 0.9647
3 0.9821 0.9793 0.9252 0.9622
4 0.9791 0.9811 0.9271 0.9624

{2,3,3,2} 0.9840 0.9812 0.9297 0.9650
{2,3,4,3,2} 0.9837 0.9806 0.9260 0.9634

Table 6: Ablation study of pseudo-normal feature
selection strategies on MVTec-noise-0.1.

K = 3

Select Strategy I-AUC P-AUC PRO Average

All 0.9753 0.9747 0.9251 0.9584

One Next 0.9510 0.9692 0.9142 0.9448
Consensual 0.9821 0.9793 0.9252 0.9622

Number of Domains. To investigate the impact of the number of domains K, we conduct an ablation study323

on MVTec-AD, with performance results in Tab. 5. Moreover, we observe that as training progresses, the324

student can gradually generate normal teacher features. In this case, appropriately increasing K better isolate325

anomalies. In the later stages, as the global student learns to generate normal features even in anomaly regions,326

finer domain division becomes less critical, allowing K to be reduced. To test this, we experimented with327

dynamic K strategies. Results show that the {2, 3, 3, 2} strategy achieves a PRO of 0.9297, a 1% improvement328

over the fixed K = 2. This indicates that dynamically adjusting K effectively balances anomaly suppression329

and normal feature modeling. Therefore, our final design adopts K varying as {2, 3, 3, 2} across epochs.330

Selection of Pseudo-Normal Features. We conduct an ablation study on pseudo-normal feature selection331

strategies, all performed with K = 3, with results presented in Tab. 6. One strategy, labeled All, uses pseudo-332

normal features generated by domain-specific students from all other domains for distillation. Alternatively,333

we select features from only one domain, either via our Consensus-driven Pseudo-Normal Feature Selection334

(denoted as Consensual) or by choosing the next domain’s feature (denoted as Next, akin to random selection).335

Results show that our Consensual strategy markedly achieves the best performance, which demonstrates that the336

Consensus-driven strategy significantly enhances cross-domain distillation quality.337

6 Conclusions338

In this paper, we propose a novel Cross-Domain Distillation framework to address the FUAD task. To reduce339

the impact of anomalies during training, we introduce two key strategies: Domain-Specific Training, which340

constructs multiple low-anomaly domains and trains corresponding domain-specific students; and Cross-Domain341

Knowledge Aggregation, which transfers pseudo-normal features in a cross-domain manner to guide a global342

student. Compared with the original Reverse Distillation (RD) baseline, our approach significantly improves343

robustness and accuracy under noisy training conditions. Compared with the original RD baseline, CDD is less344

affected by anomaly interference under the FUAD setting, as supported by our experimental results.345

Discussion. Although CDD is implemented based on the RD paradigm, the core design is conceptually346

general and could be extended to other UAD paradigms. However, our experiments are restricted to RD-based347

architectures. Future work will focus on adapting and validating CDD under other paradigms, such as feature348

reconstruction, to further demonstrate its generality.349
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1. Claims456

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s457

contributions and scope?458

Answer:[Yes]459

Justification: The main claims made in the abstract and introduction accurately reflect the paper’s460

contributions and scope.461

Guidelines:462

• The answer NA means that the abstract and introduction do not include the claims made in the463

paper.464

• The abstract and/or introduction should clearly state the claims made, including the contributions465

made in the paper and important assumptions and limitations. A No or NA answer to this466

question will not be perceived well by the reviewers.467

• The claims made should match theoretical and experimental results, and reflect how much the468

results can be expected to generalize to other settings.469

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not470

attained by the paper.471

2. Limitations472

Question: Does the paper discuss the limitations of the work performed by the authors?473

Answer: [Yes]474

Justification: We’ve discussed the limitations of our work in Sec. 6.475

Guidelines:476

• The answer NA means that the paper has no limitation while the answer No means that the paper477

has limitations, but those are not discussed in the paper.478

• The authors are encouraged to create a separate "Limitations" section in their paper.479

• The paper should point out any strong assumptions and how robust the results are to violations of480

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,481

asymptotic approximations only holding locally). The authors should reflect on how these482

assumptions might be violated in practice and what the implications would be.483

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested484

on a few datasets or with a few runs. In general, empirical results often depend on implicit485

assumptions, which should be articulated.486

• The authors should reflect on the factors that influence the performance of the approach. For487

example, a facial recognition algorithm may perform poorly when image resolution is low or488
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closed captions for online lectures because it fails to handle technical jargon.490

• The authors should discuss the computational efficiency of the proposed algorithms and how491

they scale with dataset size.492

• If applicable, the authors should discuss possible limitations of their approach to address problems493

of privacy and fairness.494

• While the authors might fear that complete honesty about limitations might be used by reviewers495

as grounds for rejection, a worse outcome might be that reviewers discover limitations that496

aren’t acknowledged in the paper. The authors should use their best judgment and recognize497

that individual actions in favor of transparency play an important role in developing norms that498

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize499

honesty concerning limitations.500

3. Theory assumptions and proofs501

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete502

(and correct) proof?503

Answer: [Yes]504

Justification: Sec. 3.2 provides the full set of assumptions to support our work.505

Guidelines:506

• The answer NA means that the paper does not include theoretical results.507

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.508

• All assumptions should be clearly stated or referenced in the statement of any theorems.509
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(c) If the contribution is a new model (e.g., a large language model), then there should either be544

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,545

with an open-source dataset or instructions for how to construct the dataset).546

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are547

welcome to describe the particular way they provide for reproducibility. In the case of548

closed-source models, it may be that access to the model is limited in some way (e.g.,549

to registered users), but it should be possible for other researchers to have some path to550

reproducing or verifying the results.551
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Guidelines:557

• The answer NA means that paper does not include experiments requiring code.558

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/559

guides/CodeSubmissionPolicy) for more details.560

• While we encourage the release of code and data, we understand that this might not be possible,561

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless562

this is central to the contribution (e.g., for a new open-source benchmark).563

• The instructions should contain the exact command and environment needed to run to reproduce564

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/565

guides/CodeSubmissionPolicy) for more details.566
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• The authors should provide instructions on data access and preparation, including how to access567

the raw data, preprocessed data, intermediate data, and generated data, etc.568

• The authors should provide scripts to reproduce all experimental results for the new proposed569

method and baselines. If only a subset of experiments are reproducible, they should state which570

ones are omitted from the script and why.571

• At submission time, to preserve anonymity, the authors should release anonymized versions (if572

applicable).573

• Providing as much information as possible in supplemental material (appended to the paper) is574

recommended, but including URLs to data and code is permitted.575

6. Experimental setting/details576

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,577

how they were chosen, type of optimizer, etc.) necessary to understand the results?578

Answer: [Yes]579

Justification: We’ve provided the training and test details in Sec. 5.1.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• The experimental setting should be presented in the core of the paper to a level of detail that is583

necessary to appreciate the results and make sense of them.584

• The full details can be provided either with the code, in appendix, or as supplemental material.585

7. Experiment statistical significance586

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-587

tion about the statistical significance of the experiments?588

Answer: [No]589

Justification: We do not report error bars. Instead, we provide comparative results under different590

dataset with different anomaly noise ratio.591

Guidelines:592

• The answer NA means that the paper does not include experiments.593

• The authors should answer "Yes" if the results are accompanied by error bars, confidence594

intervals, or statistical significance tests, at least for the experiments that support the main claims595

of the paper.596

• The factors of variability that the error bars are capturing should be clearly stated (for example,597

train/test split, initialization, random drawing of some parameter, or overall run with given598

experimental conditions).599

• The method for calculating the error bars should be explained (closed form formula, call to a600

library function, bootstrap, etc.)601

• The assumptions made should be given (e.g., Normally distributed errors).602

• It should be clear whether the error bar is the standard deviation or the standard error of the603

mean.604

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report605

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is606

not verified.607

• For asymmetric distributions, the authors should be careful not to show in tables or figures608

symmetric error bars that would yield results that are out of range (e.g. negative error rates).609

• If error bars are reported in tables or plots, The authors should explain in the text how they were610

calculated and reference the corresponding figures or tables in the text.611

8. Experiments compute resources612

Question: For each experiment, does the paper provide sufficient information on the computer613

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?614

Answer: [Yes]615

Justification: Please see Sec. 5.1.616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud619

provider, including relevant memory and storage.620
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• The paper should provide the amount of compute required for each of the individual experimental621

runs as well as estimate the total compute.622

• The paper should disclose whether the full research project required more compute than the623

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into624

the paper).625

9. Code of ethics626

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code627

of Ethics https://neurips.cc/public/EthicsGuidelines?628

Answer: [Yes]629

Justification: Our work conform with the NeurIPS Code of Ethics.630

Guidelines:631

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.632

• If the authors answer No, they should explain the special circumstances that require a deviation633

from the Code of Ethics.634

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due635

to laws or regulations in their jurisdiction).636

10. Broader impacts637

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts638

of the work performed?639

Answer: [Yes]640

Justification: Please see Sec. 1.641

Guidelines:642

• The answer NA means that there is no societal impact of the work performed.643

• If the authors answer NA or No, they should explain why their work has no societal impact or644

why the paper does not address societal impact.645

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,646

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-647

ment of technologies that could make decisions that unfairly impact specific groups), privacy648

considerations, and security considerations.649

• The conference expects that many papers will be foundational research and not tied to particular650

applications, let alone deployments. However, if there is a direct path to any negative applications,651

the authors should point it out. For example, it is legitimate to point out that an improvement in652

the quality of generative models could be used to generate deepfakes for disinformation. On the653

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks654

could enable people to train models that generate Deepfakes faster.655

• The authors should consider possible harms that could arise when the technology is being used656

as intended and functioning correctly, harms that could arise when the technology is being used657

as intended but gives incorrect results, and harms following from (intentional or unintentional)658

misuse of the technology.659

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies660

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-661

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the662

efficiency and accessibility of ML).663

11. Safeguards664

Question: Does the paper describe safeguards that have been put in place for responsible release of665

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or666

scraped datasets)?667

Answer: [NA]668

Justification: Our work poses no such risks.669

Guidelines:670

• The answer NA means that the paper poses no such risks.671

• Released models that have a high risk for misuse or dual-use should be released with necessary672

safeguards to allow for controlled use of the model, for example by requiring that users adhere to673

usage guidelines or restrictions to access the model or implementing safety filters.674

• Datasets that have been scraped from the Internet could pose safety risks. The authors should675

describe how they avoided releasing unsafe images.676
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• We recognize that providing effective safeguards is challenging, and many papers do not require677

this, but we encourage authors to take this into account and make a best faith effort.678

12. Licenses for existing assets679

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,680

properly credited and are the license and terms of use explicitly mentioned and properly respected?681

Answer: [Yes]682

Justification: We’ve cited the related work.683

Guidelines:684

• The answer NA means that the paper does not use existing assets.685

• The authors should cite the original paper that produced the code package or dataset.686

• The authors should state which version of the asset is used and, if possible, include a URL.687

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.688

• For scraped data from a particular source (e.g., website), the copyright and terms of service of689

that source should be provided.690

• If assets are released, the license, copyright information, and terms of use in the package should691

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for692

some datasets. Their licensing guide can help determine the license of a dataset.693

• For existing datasets that are re-packaged, both the original license and the license of the derived694

asset (if it has changed) should be provided.695

• If this information is not available online, the authors are encouraged to reach out to the asset’s696

creators.697

13. New assets698

Question: Are new assets introduced in the paper well documented and is the documentation provided699

alongside the assets?700

Answer: [NA]701

Justification: We does not release new assets.702

Guidelines:703

• The answer NA means that the paper does not release new assets.704

• Researchers should communicate the details of the dataset/code/model as part of their sub-705

missions via structured templates. This includes details about training, license, limitations,706

etc.707

• The paper should discuss whether and how consent was obtained from people whose asset is708

used.709

• At submission time, remember to anonymize your assets (if applicable). You can either create an710

anonymized URL or include an anonymized zip file.711

14. Crowdsourcing and research with human subjects712

Question: For crowdsourcing experiments and research with human subjects, does the paper include713

the full text of instructions given to participants and screenshots, if applicable, as well as details about714

compensation (if any)?715

Answer: [NA]716

Justification: Our work does not involve crowdsourcing nor research with human subjects.717

Guidelines:718

• The answer NA means that the paper does not involve crowdsourcing nor research with human719

subjects.720

• Including this information in the supplemental material is fine, but if the main contribution of the721

paper involves human subjects, then as much detail as possible should be included in the main722

paper.723

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other724

labor should be paid at least the minimum wage in the country of the data collector.725

15. Institutional review board (IRB) approvals or equivalent for research with human subjects726

Question: Does the paper describe potential risks incurred by study participants, whether such727

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an728

equivalent approval/review based on the requirements of your country or institution) were obtained?729

Answer: [NA]730
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Justification: Our work does not involve crowdsourcing nor research with human subjects.731

Guidelines:732

• The answer NA means that the paper does not involve crowdsourcing nor research with human733

subjects.734

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be735

required for any human subjects research. If you obtained IRB approval, you should clearly state736

this in the paper.737

• We recognize that the procedures for this may vary significantly between institutions and738

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for739

their institution.740

• For initial submissions, do not include any information that would break anonymity (if applica-741

ble), such as the institution conducting the review.742

16. Declaration of LLM usage743

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard744

component of the core methods in this research? Note that if the LLM is used only for writing,745

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or746

originality of the research, declaration is not required.747

Answer: [No]748

Justification: We do not use LLMs as the component of the core methods.749

Guidelines:750

• The answer NA means that the core method development in this research does not involve LLMs751

as any important, original, or non-standard components.752

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what753

should or should not be described.754
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