
Supervised Pretraining Can Learn
In-Context Reinforcement Learning

Jonathan N. Lee∗1 Annie Xie∗1 Aldo Pacchiano2 3 Yash Chandak1

Chelsea Finn1 Ofir Nachum Emma Brunskill1

1Stanford University 2Broad Institute of MIT and Harvard 3Boston University

Abstract

Large transformer models trained on diverse datasets have shown a remarkable abil-
ity to learn in-context, achieving high few-shot performance on tasks they were not
explicitly trained to solve. In this paper, we study the in-context learning capabili-
ties of transformers in decision-making problems, i.e., reinforcement learning (RL)
for bandits and Markov decision processes. To do so, we introduce and study the
Decision-Pretrained Transformer (DPT), a supervised pretraining method where a
transformer predicts an optimal action given a query state and an in-context dataset
of interactions from a diverse set of tasks. While simple, this procedure produces
a model with several surprising capabilities. We find that the trained transformer
can solve a range of RL problems in-context, exhibiting both exploration online
and conservatism offline, despite not being explicitly trained to do so. The model
also generalizes beyond the pretraining distribution to new tasks and automatically
adapts its decision-making strategies to unknown structure. Theoretically, we show
DPT can be viewed as an efficient implementation of Bayesian posterior sampling,
a provably sample-efficient RL algorithm. We further leverage this connection
to provide guarantees on the regret of the in-context algorithm yielded by DPT,
and prove that it can learn faster than algorithms used to generate the pretraining
data. These results suggest a promising yet simple path towards instilling strong
in-context decision-making abilities in transformers.

1 Introduction

For supervised learning, transformer-based models trained at scale have shown impressive abilities
to perform tasks given an input context, often referred to as few-shot prompting or in-context
learning [1]. In this setting, a pretrained model is presented with a small number of supervised input-
output examples in its context, and is then asked to predict the most likely completion (i.e. output)
of an unpaired input, without parameter updates. Over the last few years, in-context learning has
been applied to solve a range of tasks [2] and a growing number works are beginning to understand
and analyze in-context learning for supervised learning [3, 4, 5, 6]. In this work, our focus is to
study and understand in-context learning applied to sequential decision-making, specifically in the
context of reinforcement learning (RL) settings. Decision-making (e.g. RL) is considerably more
dynamic and complex than supervised learning. Understanding and leveraging in-context learning
here could potentially unlock significant improvements in an agent’s ability to adapt and make
few-shot decisions in response to observations from the world. Such capabilities are instrumental for
practical applications ranging from robotics to recommendation systems.

∗Equal contribution. Correspondence to jnl@stanford.edu and anniexie@stanford.edu. Code is
available at https://github.com/jon–lee/decision-pretrained-transformer

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/jon--lee/decision-pretrained-transformer

For in-context decision-making [7, 8, 9], rather than input-output tuples, the context takes the form
of state-action-reward tuples representing a dataset of interactions with an unknown environment.
The agent must leverage these interactions to understand the dynamics of the world and what actions
lead to good outcomes. A hallmark of good decision-making in online RL algorithms is a judicious
balance of selecting exploratory actions to gather information and selecting increasingly optimal
actions by exploiting that information [10]. In contrast, an RL agent with access to only a suboptimal
offline dataset should produce a policy that conservatively selects actions [11]. An ideal in-context
decision-maker should exhibit similar behaviors.

To study in-context decision-making formally, we propose a new simple supervised pretraining
objective, namely, to train (via supervised learning) a transformer to predict an optimal action label2
given a query state and an in-context dataset of interactions, across a diverse set of tasks. We refer
to the pretrained model as a Decision-Pretrained Transformer (DPT). Once trained, DPT can be
deployed as either an online or offline RL algorithm in a new task by passing it an in-context dataset
of interactions and querying it for predictions of the optimal action in different states. For example,
online, the in-context dataset is initially empty and DPT’s predictions are uncertain because the new
task is unknown, but it fills the dataset with its interactions as it learns and becomes more confident
about the optimal action. We show empirically and theoretically that DPT yields a surprisingly
effective in-context decision-maker with regret guarantees. As it turns out, DPT effectively performs
posterior sampling — a provably sample-efficient Bayesian RL algorithm that has historically been
limited by its computational burden [12, 13]. We summarize our main findings below.

• Predicting optimal actions alone gives rise to near-optimal decision-making algorithms. The
DPT objective is solely based on predicting optimal actions from in-context interactions. At the
outset, it is not immediately apparent that these predictions at test-time would yield good decision-
making behavior when the task is unknown and behaviors such as online exploration are necessary
to solve it. Intriguingly, DPT as an algorithm is capable of dealing with this uncertainty in-context.
For example, despite not being explicitly trained to explore, DPT exhibits an exploration strategy
on par with hand-designed algorithms, as a means to discover the optimal actions.

• DPT generalizes to new decision-making problems, offline and online. We show DPT can
handle reward distributions unseen in its pretraining data on bandit problems as well as unseen
goals, dynamics, and datasets in simple MDPs. This suggests that the in-context strategies learned
during pretraining are robust and generalizable without any parameter updates at test time.

• DPT improves over the data used to pretrain it by exploiting latent structure. As an example,
in parametric bandit problems, specialized algorithms can leverage structure (such as linear rewards)
and offer provably better regret. However, a representation must be known in advance. Perhaps
surprisingly, we find that pretraining on linear bandit problems, even with unknown representations,
leads DPT to select actions and explore in a way that matches an efficient linear bandit algorithm.
This holds even when the source pretraining data comes from a suboptimal algorithm (i.e., one
that does not take advantage of any latent structure), demonstrating the ability to learn improved
in-context strategies beyond what it was trained on.

• Posterior sampling can be implemented via in-context learning. Posterior sampling (PS), a
generalization of Thompson Sampling, can provably sample-efficiently solve online RL prob-
lems [12, 13], but a common criticism is the lack of computationally efficient ways to update and
sample from a posterior distribution. DPT can be viewed as learning a posterior distribution over
optimal actions, shortcutting the PS procedure. Under some conditions, we show theoretically that
DPT in-context is equivalent to PS. Furthermore, DPT’s prior and posterior updates are grounded
in data rather than needing to be specified a priori. This suggests that in-context learning could be
a possible path towards scalable and practical RL via posterior sampling.

2 Related Work

Meta-learning. Algorithmically, in-context learning falls under the meta-learning framework [14,
15]. At a high-level, these methods attempt to learn some underlying shared structure of the training
distribution of tasks to accelerate learning of new tasks. For decision-making and RL, there is often

2If not explicitly known, the optimal action can be determined by running any (potentially inefficient)
minimax-optimal regret algorithm for each pretraining task.

2

a choice in what shared ‘structure’ is specifically learned such as the dynamics of the task [16, 17,
18, 19], a task context identifier [20, 21, 22, 23], temporally extended skills and options [24, 25, 26],
or initialization of a neural network policy [27, 28]). In-context learning can be viewed as taking a
more agnostic approach by learning the learning algorithm itself, more similar to [29, 30, 31, 32, 8].
Algorithm Distillation (AD) [7, 33] falls under this category, using autoregressive supervised learning
to distill traces of a single-task RL algorithm into a task-agnostic model. While DPT also leverages
autoregressive SL, it does not distill an existing RL algorithm in order to imitate how to learn. Instead,
we train DPT to predict task-specific optimal actions, yielding potentially emergent strategies at test
time that automatically leverage the task structure to behave similarly to posterior sampling.

Autoregressive transformers for decision-making. In decision-making fields such as RL and
imitation learning, transformer models trained using autoregressive supervised action prediction have
proliferated [34], inspired by the successes of these techniques for large language models [35, 36, 1].
For example, Decision Transformer (DT) [37, 38, 8] uses a transformer to autoregressively model
sequences of actions from offline experience data, conditioned on the achieved return. During
inference, one can then query the model conditioned on a desired return value. This approach has
been shown to scale favorably to large models and multi-task settings [39], at times exceeding the
performance of large-scale multi-task imitation learning with transformers [40, 41, 42]. However, DT
is known to be provably (and unboundedly) sub-optimal in common scenarios [43, 44]. A common
criticism of DT, and supervised learned transformers in general, is their inability to improve upon
the dataset. For example, there is little reason for DT to output meaningful behavior if conditioned
on return higher than any observed in training, without strong extrapolation assumptions [43]. In
contrast, a major contribution of our work is theoretical and empirical evidence for the ability of DPT
to improve over behaviors seen in the dataset in terms of regret.

Value and policy-based offline RL. Offline RL algorithms offer the opportunity to learn from
existing datasets. To address distributional shift, many prior algorithms incorporate the principle of
value pessimism [45, 46, 47, 48], or policy regularization [49, 50, 51, 52, 53]. To reduce the amount
of offline data required in a new task, methods for offline meta-RL can reuse interactions collected
in a set of related tasks [54, 55, 56]. However, they still must address distribution shift, requiring
solutions such as policy regularization [54] or additional online interactions [57]. DPT follows
the success of autoregressive models like DT and AD, avoiding these issues. With our pretraining
objective, DPT also leverages offline datasets for new tasks more effectively than AD.

3 In-Context Learning Model

Basic decision models. The basic decision model of our study is the finite-horizon Markov decision
process (MDP). An MDP is specified by the tuple τ = ⟨S,A, T,R,H, ρ⟩ to be solved, where S is the
state space, A is the action space, T : S ×A → ∆(S) is the transition function, R : S ×A → ∆(R)
is the reward function, H ∈ N is the horizon, and ρ ∈ ∆(S) is the initial state distribution. A learner
interacts with the environment through the following protocol: (1) an initial state s1 is sampled from
ρ; (2) at time step h, the learner chooses an action ah and transitions to state sh+1 ∼ T (·|sh, ah),
and receives a reward rh ∼ R(·|sh, ah). The episode ends after H steps. A policy π maps states to
distributions over actions and can be used to interact with the MDP. We denote the optimal policy as
π⋆, which maximizes the value function V (π⋆) = maxπ V (π) := maxπ Eπ

∑
h rh. When necessary,

we use the subscript τ to distinguish Vτ and π⋆
τ for the specific MDP τ . We assume the state space is

partitioned by h ∈ [H] so that π⋆ is notationally independent of h. Note this framework encompasses
multi-armed bandit settings where the state space is a single point, e.g. S = {1}, H = 1, and the
optimal policy is a⋆ ∈ argmaxa∈A E [r1|a1 = a].

Pretraining. We give pseudocode in Algorithm 1 and a visualization of the transformer in Figure 1.
Details on the precise structure of the transformer can be found in Section A.1. Let Tpre be a
distribution over tasks at the time of pretraining. A task τ ∼ Tpre can be viewed as a specification
of an MDP, τ = ⟨S,A, T,R,H, ρ⟩. The distribution Tpre can span different reward and transition
functions and even different state and action spaces. We then sample a context (or a prompt) which
consists of a dataset D ∼ Dpre(·; τ) of interactions between the learner and the MDP specified by
τ . D = {sj , aj , s′j , rj}j∈[n] is a collection of transition tuples taken in τ . We refer to D as the
in-context dataset because it provides the contextual information about τ . D could be generated
through variety of means, such as: (1) random interactions within τ , (2) demonstrations from an
expert, and (3) rollouts of an algorithm. Additionally, we independently sample a query state squery
from the distribution Dquery over states S and a label a⋆ is sampled from the optimal policy π⋆

τ (·|squery)

3

Figure 1: A transformer model Mθ is pretrained to predict an optimal action a⋆
query from a state squery in a task,

given a dataset of interactions from that task. The resulting Decision-Pretrained Transformer (DPT) learns a
distribution over the optimal action conditioned on an in-context dataset. Mθ can be deployed in new tasks
online by collecting data on the fly or offline by immediately conditioning on a static dataset.

Algorithm 1 Decision-Pretrained Transformer (DPT): Training and Deployment
1: // Collecting pretraining dataset
2: Initialize empty pretraining dataset B
3: for i in [N] do
4: Sample task τ ∼ Tpre, in-context dataset D ∼ Dpre(·; τ), query state squery ∼ Dquery
5: Sample label a⋆ ∼ π⋆

τ (·|squery) and add (squery, D, a⋆) to B
6: end for
7: // Pretraining model on dataset
8: Initialize model Mθ with parameters θ
9: while not converged do

10: Sample (squery, D, a⋆) from B and predict p̂j(·) = Mθ(·|squery, Dj) for all j ∈ [n]
11: Compute loss in (2) with respect to a⋆ and backpropagate to update θ.
12: end while
13: // Offline test-time deployment
14: Sample unknown task τ ∼ Ttest, sample dataset D ∼ Dtest(·; τ)
15: Deploy Mθ in τ by choosing ah ∈ argmaxa∈A Mθ(a|sh, D) at step h
16: // Online test-time deployment
17: Sample unknown task τ ∼ Ttest and initialize empty D = {}
18: for ep in max_eps do
19: Deploy Mθ by sampling ah ∼ Mθ(·|sh, D) at step h
20: Add (s1, a1, r1, . . .) to D
21: end for

for task τ (see Section 5.3 for how to implement this in common practical scenarios). We denote the
joint pretraining distribution over tasks, in-context datasets, query states, and action labels as Ppre:

Ppre(τ,D, squery, a
⋆) = Tpre(τ)Dpre(D; τ)Dquery(squery)π

⋆
τ (a

⋆|squery). (1)

Given the in-context dataset D and a query state squery, we can train a model to predict the optimal
action a⋆ in response simply via supervised learning. Let Dj = {(s1, a1, s′1, r1), . . . , (sj , aj , s′j , rj)}
denote the partial dataset up to j samples. Formally, we aim to train a causal GPT-2 transformer
model M parameterized by θ, which outputs a distribution over actions A, to minimize the expected
loss over samples from the pretraining distribution:

minθ EPpre

∑
j∈[n] ℓ (Mθ(· | squery, Dj), a

⋆). (2)

Throughout, we set the loss to be the negative log-likelihood with ℓ(Mθ(· |squery, Dj), a
⋆) :=

− logMθ(a
⋆ | squery, Dj). This framework can work for both discrete and continuous A. For

our experiments with discrete A, we use a softmax parameterization for the distribution of Mθ,
essentially treating this as a classification problem. The resulting output model Mθ can be viewed
as an algorithm that takes in a dataset of interactions D and can be queried with a forward pass for
predictions of the optimal action via inputting a query state squery. We refer to the trained model Mθ

as a Decision-Pretrained Transformer (DPT).

4

Testing. After pretraining, a new task (MDP) τ is sampled from a test-task distribution Ttest. If the
DPT is to be tested offline, then a dataset (prompt) is a sampled D ∼ Dtest(· ; τ) and the policy that
the model in-context learns is given conditionally as Mθ(· | ·, D). Namely, we evaluate the policy
by selecting action ah ∈ argmaxa Mθ(a|sh, D) when the learner visits state sh. If the model is to
be tested online through multiple episodes of interaction, then the dataset is initialized as empty
D = {}. At each episode, Mθ(· | ·, D) is deployed where the model samples ah ∼ Mθ(·|sh, D) upon
observing state sh. Throughout a full episode, it collects interactions {s1, a1, r1, . . . , sH , aH , rH}
which are subsequently appended to D. The model then repeats the process with another episode,
and so on until a specified number of episodes has been reached. A key distinction of the testing
phase is that there are no updates to the parameters of Mθ. This is in contrast to hand-designed RL
algorithms that would perform parameter updates or maintain statistics using D to learn from scratch.
Instead, the model Mθ performs a computation through its forward pass to generate a distribution
over actions conditioned on the in-context D and query state sh.

4 Learning in Bandits

We begin with an empirical investigation of DPT in a multi-armed bandit, a well-studied special case
of the MDP where the state space S is a singleton and the horizon H = 1 is a single step. We will
examine the performance of DPT both when aiming to select a good action from offline historical
data and for online learning where the goal is to maximize cumulative reward from scratch. Offline, it
is critical to account for uncertainty due to noise as certain actions may not be sampled well enough.
Online, it is critical to judiciously balance exploration and exploitation to minimize overall regret.
For detailed descriptions of the experiment setups, see Appendix A.

Pretraining distribution. For the pretraining task distribution Tpre, we sample 5-armed bandits
(|A| = 5). The reward function for arm a is a normal distribution R(·|s, a) = N (µa, σ

2) where
µa ∼ Unif[0, 1] independently and σ = 0.3. To generate in-context datasets Dpre, we randomly
generate action frequencies by sampling probabilities from a Dirichlet distribution and mixing them
with a point-mass distribution on one random arm (see details in Appendix A.3). Then we sample the
actions accordingly from this distribution. This encourages diversity of the in-context datasets. The
optimal policy π⋆

τ for bandit τ is argmaxa µa, which we can easily compute during pretraining. We
pretrain the model Mθ to predict a⋆ from D as described in Section 3 for datasets up to size n = 500.

Comparisons. We compare to several well-known algorithms for bandits3. All of the algorithms
are designed to reason in a particular way about uncertainty based on their observations.

• Empirical mean algorithm (Emp) selects the action with the highest empirical mean reward naively.
• Upper Confidence Bound (UCB) selects the action with the highest upper confidence bound.
• Lower Confidence Bound (LCB) selects the action with the highest lower confidence bound.
• Thompson Sampling (TS) selects the action with the highest sampled mean from a posterior

distribution over reward models. The prior and likelihood functions are Gaussian.

Emp and TS [58, 59] can both be used for offline or online learning; UCB [60] is an online algorithm
that achieves exploration via optimism under uncertainty; and LCB [61, 62] is used to minimize
suboptimality given an offline dataset by selecting actions pessimistically. We evaluate algorithms
with standard bandit metrics. Offline, we use the suboptimality µa⋆ −µâ where â is the chosen action.
Online, we use cumulative regret:

∑
k µa⋆ − µâk

where âk is the kth action chosen.

DPT learns to reason through uncertainty. As shown in Figure 2a, in the offline setting, DPT
significantly exceeds the performance of Emp and LCB while matching the performance of TS, when
the in-context datasets are sampled from the same distribution as during pretraining. The results
suggest that the transformer is capable of reasoning through uncertainty caused by the noisy rewards
in the dataset. Unlike Emp which can be fooled by noisy, undersampled actions, the transformer has
learned to hedge to a degree. However, it also suggests that this hedging is fundamentally different
from what LCB does, at least on this specific distribution4.

Interestingly, the same transformer produces an extremely effective online bandit algorithm when
sampling actions instead of taking an argmax. As shown in Figure 2b, DPT matches the performance

3See Appendix A.2 for additional details such as hyperparameters.
4Note our randomly generated environments are equally likely to have expert-biased datasets and adversarial

datasets, so LCB is not expected to outperform here [61].

5

0 100 200 300 400 500
Data

0.1

0.3

0.02

Su
bo

pt
im

al
ity

Offline Bandit
Emp
LCB
TS
DPT (ours)

(a)

0 100 200 300 400 500
Data

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Cu
m

ul
at

iv
e

Re
gr

et

Online Bandit
Emp
UCB
TS
DPT (ours)

(b)

0.0 0.3 0.5
Noise standard deviation

0

5

10

15

20

25

30

Fin
al

 C
um

ul
at

iv
e

Re
gr

et

Online Robustness to Reward Shift
Emp UCB TS DPT (ours)

(c)

Figure 2: (a) Offline performance on in-distribution bandits, given random in-context datasets. (b) Online
cumulative regret on bandits. (c) Final (after 500 steps) cumulative regret on out-of-distribution bandits with
different Gaussian noise standard deviations. The mean and standard error are computed over 200 test tasks.

of classical optimal algorithms, UCB and TS, which are specifically designed for exploration. This is
notable because DPT was not explicitly trained to explore, but its emergent strategy is on par with
some of the best. In Figure 2c, we show this property is robust to noise in the rewards not seen during
pretraining by varying the standard deviation. In Appendix B, we show this generalization happens
offline too and even with unseen Bernoulli rewards.

Leveraging latent structure from suboptimal data. We now investigate whether DPT can learn
to leverage the inherent structure of a problem class, even without prior knowledge of this structure
and even when learning from in-context datasets that do not explicitly utilize it. More precisely,
we consider Tpre to be a distribution over linear bandits, where the reward function is given by
E [r | a, τ] = ⟨θτ , ϕ(a)⟩ and θτ ∈ Rd is a task-specific parameter vector and ϕ : A → Rd is fixed
feature vector that is the same for all tasks. Given the feature representation ϕ, LinUCB [63], a
UCB-style algorithm that leverages ϕ, should achieve regret Õ(d

√
K) over K steps, a substantial

gain over UCB and TS when d ≪ |A|. We do not assume ϕ is known to DPT, besides whatever can
be gleaned from the pretraining data. To evaluate the ability of DPT to uncover latent structure, we
collect pretraining data with in-context datasets gathered by standard TS, which does not leverage the
linear structure. Figures 3a and 3b show that DPT can exploit the unknown linear structure, implicitly
learning a surrogate for ϕ, allowing to do more informed exploration online and decision-making
offline. It is nearly on par with LinUCB (which is given ϕ). We also see that DPT significantly
outperforms the source of its pretraining data, TS which did not know or use the latent structure to
gather the in-context datasets. These results present evidence that (1) DPT can automatically leverage
structure, and (2) supervised learning-based approaches to RL can potentially learn novel exploration
strategies that transcend the quality of their pretraining data.

Adapting to expert-biased datasets. A common assumption in offline RL is that datasets tend to
be a mixture between optimal data (e.g. expert demonstrations) and suboptimal data (e.g. random
interactions) [64]. Hence, LCB is generally effective in practice and the pretraining and testing
distributions should be biased towards this setting. Motivated by this, we pretrain another DPT
model where Dpre is generated by mixing the in-context datasets with varying fractions of expert
data, biasing Dpre towards datasets that contain more examples of the optimal action. We denote this
model by DPT-Exp. In Figure 3c, we plot the test-time performance of both pretrained models when
evaluated on new offline datasets with varying percentages of expert data5. Our results suggest that
when the pretraining distribution is also biased towards expert-suboptimal data, DPT-Exp behaves
similarly to LCB, while DPT continues to resemble TS. This is quite interesting as, for other methods
such as TS, it is less clear how to automatically incorporate the right amount of expert bias to yield
the same effect, but DPT can leverage this from pretraining.

5 Learning in Markov Decision Processes

We next study how DPT can tackle Markov decision processes by testing its ability to perform
exploration and credit assignment. In the following experiments, the DPT demonstrates generalization
to new tasks, scalability to image-based observations, and capability to stitch in-context behaviors
(Section 5.2). This section also examines whether DPT can be pretrained with datasets and action
labels generated by a different RL algorithm, rather than the exact optimal policy (Section 5.3).

5That is, 0% is fully random while 100% has only optimal actions in the in-context dataset.

6

0 25 50 75 100 125 150 175 200
Data

10 2

10 1

Su
bo

pt
im

al
ity

Offline Linear Bandit
TS (source)
LinReg
DPT (ours)

(a)

0 25 50 75 100 125 150 175 200
Data

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Cu
m

ul
at

iv
e

Re
gr

et

Online Linear Bandit
TS (source)
LinUCB
DPT (ours)

(b)

0 50 100
% of Expert Data

0.00

0.01

0.02

0.03

0.04

0.05

Fin
al

 S
ub

op
tim

al
ity

Offline Adaptation to Expert Datasets
Emp
LCB
TS
DPT (ours)
DPT-Exp (ours)

(c)

Figure 3: (a) Offline performance of DPT trained on linear bandits from TS source data. LinReg does linear
regression and outputs the greedy action. (b) Online cumulative regret of the same model. The mean and standard
error are computed over 200 test tasks. (c) Offline performance on expert-biased datasets. DPT pretrained on a
different prior continues to match TS, but DPT-Exp trained from a more representative prior excels.

Random Expert
Dataset Composition

0

20

40

60

80

Re
tu

rn

Offline Dark Room (Test Tasks)
Dataset
AD
DPT (ours)

(a)

0 5 10 15 20 25 30 35 40
Episodes

0

20

40

60

80

Re
tu

rn

Online Dark Room (Test Tasks)

DPT (ours)
AD
PPO
RL2

(b)

Random Expert
Dataset Composition

0

10

20

30

40

Re
tu

rn

Offline Miniworld
Dataset
AD
DPT (ours)

(c)

0 5 10 15 20 25 30 35 40
Episodes

0

10

20

30

40

50

Re
tu

rn

Online Miniworld

DPT (ours)
AD
PPO
RL2

(d)

Figure 4: (a) Offline performance on held-out Dark Room goals, given random and expert datasets. (b) Online
performance on held-out Dark Room goals. (c) Offline performance on Miniworld (images), given random and
expert datasets. (d) Online performance on Miniworld (images) after 40 episodes. We report the average and
standard error of the mean over 100 different offline datasets in (a) and (c) and 20 online trials in (b) and (d).

5.1 Experimental Setup

Environments. We consider environments that require targeted exploration to solve the task. The
first is Dark Room [22, 7], a 2D discrete environment where the agent must locate the unknown goal
location in a 10× 10 room, and only receives a reward of 1 when at the goal. We hold out a set of
goals for generalization evaluation. The second is Miniworld [65], a 3D visual navigation problem to
test the scalability of DPT to image observations. The agent is in a room with four boxes of different
colors, and must find the target box. The target color is unknown initially. It receives a reward of 1
only when near the correct box. Environments and pretraining dataset details are in App. A.4 and A.5.

Comparisons. Our experiments aim to understand the effectiveness of DPT by comparing it to
other context-based meta-RL algorithms based on supervised and RL objectives.

• Proximal Policy Optimization (PPO) [66]: We compare to this single-task RL algorithm, which
trains from scratch without any pretraining data, to contextualize the performance of DPT and
other meta-RL algorithms.

• Algorithm Distillation (AD) [7]: AD first generates a dataset of learning histories by running an RL
algorithm in each training task. Then, given a sampled subsequence hj = (sj , aj , rj , . . . , sj+c)
from a learning history, a transformer is trained to predict the next action aj+c from the history.

• RL2 [29]: This online meta-RL comparison uses a recurrent neural network to adapt the agent’s
policy from the given context. Unlike AD and DPT, which are trained with a supervised objective,
the RL2 agent is trained to maximize the expected return with PPO.

PPO and RL2 are online algorithms, while AD is capable of learning both offline and online. Details
on the implementation of these algorithms can be found in Appendix A.2.

5.2 Main Results

Generalizing to new offline datasets and tasks. To study the generalization capabilities of DPT,
we evaluate the model in Dark Room on a set of 20 held-out goals not in the pretraining dataset.
When given an expert dataset, DPT achieves near-optimal performance. Even when given a random
dataset, which has an average total reward of 1.1, DPT obtains a much higher average return of

7

0.0 2.5 5.0 7.5
x

2

0

2

4

6

8

10

y

(a)

Random Expert
Dataset Composition

0

20

40

60

80

100

Re
tu

rn

Offline PPO Ablations (Test Tasks)
DPT
DPT (Rand, PPO)
DPT (PPO, PPO)
AD

(b)

0 5 10 15 20 25 30 35 40
Episodes

0

20

40

60

80

Re
tu

rn

Online PPO Ablations (Test Tasks)

DPT
DPT (Rand, PPO)
DPT (PPO, PPO)
AD

(c)

Figure 5: (a) In Dark Room (Three Tasks), DPT stitches a new, optimal trajectory to the goal (blue) given two
in-context demonstrations of other tasks (pink and orange). (b) Offline Dark Room performance of DPT trained
on PPO data. (c) Online Dark Room performance of DPT trained on PPO data.

61.5 (see Fig. 4a). Qualitatively, we observe that when the in-context dataset contains a transition to
the goal, DPT immediately exploits this and takes a direct path to the goal. In contrast, while AD
demonstrates strong offline performance with expert data, it performs worse in-context learning with
random data compared to DPT. The difference arises because AD is trained to infer a better policy
than the in-context data, but not necessarily the optimal one.

We next evaluate DPT, AD, RL2, and PPO online without any prior data from the 20 test-time Dark
Room tasks, shown in Fig. 4b. After 40 episodes, PPO does not make significant progress towards
the goal, highlighting the difficulty of learning from such few interactions alone. RL2 is trained to
perform adaptation within four episodes each of length 100, and we report the performance after the
four adaptation episodes. Notably, DPT on average solves each task faster than AD and reaches a
higher final return than RL2, demonstrating its capability to explore effectively online even in MDPs.
In Appendix B, we also present results on generalization to new dynamics.

Learning from image-based observations. In Miniworld, the agent receives RGB image observa-
tions of 25× 25 pixels. As shown in Fig. 4d, DPT can solve this high-dimensional task offline from
both random and expert datasets. Compared to AD and RL2, DPT also learns online more efficiently.

Stitching novel trajectories from in-context subsequences. A desirable property of some offline
RL algorithms is the ability to stitch suboptimal subsequences from the offline dataset into new
trajectories with higher return. To test whether DPT exhibits stitching, we design the Dark Room
(Three Tasks) environment in which there are three possible tasks. The pretraining data consists only
of expert demonstrations of two of them. At test-time DPT is evaluated on third unseen task, but its
offline dataset is only expert demonstrations of the original two. Despite this, it leverages the data to
infer a path solving the third task (see Fig. 5a).

5.3 Learning from Algorithm-Generated Policies and Rollouts

So far, we have only considered action labels provided by an optimal policy. However, in some tasks,
an optimal policy is not readily available even in pretraining. In this experiment, we use actions
labeled by a policy learned via PPO and in-context datasets sampled from PPO replay buffers. We
train PPO agents in each of the 80 train tasks for 1K episodes to generate 80K total rollouts, from
which we sample the in-context datasets. This variant, DPT (PPO, PPO), performs on par with DPT
and still better than AD, as shown in Figures 5b and 5c. DPT (PPO, PPO) can be viewed as a direct
comparison between our pretraining objective and that of AD, given the same pretraining data but
just used differently. We also evaluated a variant, DPT (Rand, PPO), which pretrains on random
in-context datasets (like DPT), but still using PPO action labels. The performance is worse than other
DPT variants in some settings, but only marginally so. In Appendix B, we analyze the sensitivity of
DPT to other hyperparameters, such as context size and amount of pretraining data. These results
give further evidence that DPT can learn an algorithm that transcends its pretraining data.

6 Theory

We now shed light on the observations of the previous empirical results through a theoretical analysis.
Our main result shows that DPT (under a slight modification to pretraining) essentially is capable
of executing posterior sampling (PS) reinforcement learning in-context. PS is a generalization of

8

Thompson Sampling for RL in MDPs [12]. It maintains and samples from a posterior over tasks τ
given historical data D and executes optimal policies π⋆

τ (see Appendix C for a formal outline). It is
provably sample-efficient with online Bayesian regret guarantees [13], but maintaining posteriors is
generally computationally intractable. The ability for DPT to perform PS in-context suggests a path
towards computation- and provably sample-efficient RL with priors learned from the data.

6.1 History-Dependent Pretraining and Assumptions

We start with a modification to the pretraining of DPT. Rather than conditioning only on squery and
D to predict a⋆ ∼ π⋆

τ (·|squery), we propose also conditioning on a sequence ξh = (s1:h, a
⋆
1:h) where

s1:h ∼ Sh ∈ ∆(Sh) is a distribution over sets of states, independent of τ , and a⋆h′ ∼ π⋆
τ (·|sh′)

for h′ ∈ [h]. Thus, we use π⋆
τ to label both the query state (which is the prediction label) and the

sequence of states sampled from Sh. Note that this does not require any environment interactions
and hence no sampling from either Tτ or Rτ . At test-time at step h, this will allow us to condition on
the history ξh−1 of states that Mθ visits and the actions that it takes in those states. Formally, the
learned Mθ is deployed as follows, given D. (1) At h = 0, initialize ξ0 = () to be empty. (2) At
step h, visit sh and find ah by sampling from Mθ(·|squery, D, ξh−1). (3) Append (sh, ah) to ξh−1 to
get ξh. Note for bandits and contextual bandits (H = 1), there is no difference between this and the
original pretraining procedure of prior sections because ξ0 is empty. For MDPs, the original DPT can
be viewed as a practically convenient approximation.6

We now make several assumptions to simplify the analysis. First, assume Dquery, Dpre, and S have
sufficient support such that all conditional probabilities of Ppre are well defined. Similar to other
studies of in-context learning [67], we assume Mθ fits the pretraining distribution exactly with enough
coverage and data, so that the focus of the analysis is just the in-context learning abilities.
Assumption 1. (Learned model is consistent). Let Mθ denote the pretrained model. For all
(squery, D, ξh), we have Ppre(a|squery, D, ξh) = Mθ(a|squery, D, ξh) for all a ∈ A.

To provide some cursory justification, if Mθ is the global minimizer of (2), then we might expect that
EPpre∥Ppre(·|squery, D, ξh)−Mθ(·|squery, D, ξh)∥21 → 0 as the number of pretraining samples N →
∞ with high probability for transformer model classes of bounded complexity (see Proposition C.1).
Approximate versions of the above assumptions are easily possible but obfuscate the key elements
of the analysis. We also assume that the in-context dataset D ∼ Dpre is compliant [62], meaning
that the actions from D can depend only on the observed history and not additional confounders.
Note that this still allows Dpre to be very general — it could be generated randomly or from adaptive
algorithms like PPO or TS. Without compliance Dpre can influence Mθ. In Proposition 6.4, we show
that all compliant Dpre form a sort of equivalence class that generate the same Mθ. For the remainder,
we assume all Dpre are compliant.
Definition 6.1 (Compliance). The in-context dataset distribution Dpre(·; τ) is compliant if, for all
i ∈ [n], the ith action of the dataset, ai, is conditionally independent of τ given the ith state si and
partial dataset, Di−1, so far. In other words, the distribution Dpre(ai|si, Di−1; τ) is invariant to τ .

6.2 Main Results

Equivalence of DPT and PS. We now state our main result which shows that the trajectories
generated by a pretrained Mθ will follow the same distribution as those from a well-specified PS
algorithm. In particular, let PS use the well-specified prior Tpre. Let τc be an arbitrary task. Let
Pps(· |D, τc) and PMθ

(· |D, τc) denote the distributions over trajectories ξH ∈ (S ×A)H generated
from running PS and Mθ(·|·, D, ·), respectively, in task τc given historical data D.
Theorem 1 (DPT ⇐⇒ PS). Let the above assumptions hold. Then, Pps(ξH | D, τc) =
PMθ

(ξH | D, τc) for all trajectories ξH .

Regret implications. With almost no extra work besides verifying assumptions, we can see this
result in action. Let us specialize to the finite MDP setting [13]. Suppose we pretrain Mθ on a
distribution Tpre over MDPs with S := |S| and A := |A|. Let Dpre be constructed by uniform
sampling (si, ai) and observing (ri, s

′
i) for i ∈ [KH]. Let E [rh|sh, ah] ∈ [0, 1]. And let Dquery and

Sh be uniform over S and Sh (for all h) respectively. Finally, let Ttest be the distribution over test
6It is still possible to implement this version, but it leaves some undesirable design choices to be made.

9

tasks with the same cardinalities. For a task τ , define the online cumulative regret of DPT over K
episodes as Regτ (Mθ) :=

∑
k∈[K] Vτ (π

⋆
τ)−Vτ (π̂k) where π̂k(·|sh) = Mθ(·|sh, D(k−1), ξh−1) and

D(k) contains the first k episodes collected from π̂1:k.

Corollary 6.2 (Finite MDPs). Suppose that supτ Ttest(τ)/Tpre(τ) ≤ C for some C > 0. For the
above MDP setting, the pretrained model Mθ satisfies ETtest [Regτ (Mθ)] ≤ Õ(CH3/2S

√
AK).

A similar analysis due to [68] allows us to see theoretically why pretraining on (latently) linear bandits
can lead to an in-context algorithm competitive with linear bandit algorithms, even when the in-
context datasets are generated by algorithms unaware of this structure. We observed this empirically
in Section 4. Consider a similar setup as there where S is a singleton, A is finite but large, θτ ∈ Rd

is sampled as θτ ∼ N (0, I/d), ϕ : A → Rd is a fixed feature map with supa∈A ∥ϕ(a)∥2 ≤ 1, and
the reward of a ∈ A in task τ is distributed as N (⟨θτ , ϕ(a)⟩, 1). This time, we let Dpre(·; τ) be given
by running Thompson Sampling with Gaussian priors and likelihood functions on τ .
Corollary 6.3 (Latent representation learning in linear bandits). For Ttest = Tpre in the above linear
bandit setting, Mθ satisfies ETtest [Regτ (Mθ)] ≤ Õ(d

√
K).

This significantly improves over the Õ(
√

|A|K) upper regret bound for TS that does not leverage the
linear structure. This highlights how DPT can have provably tighter upper bounds on future bandit
problems than the algorithms used to generate its (pretraining) data. Note that if there is additional
structure in the tasks which yields a tighter regret bound (for example if there are only a small finite
number of MDPs in the possible distribution), that may further improve performance, such as by
removing the dependence on the state, action, or dimension in these cases.

Invariance of Mθ to compliant Dpre. Our final result sheds light on how Dpre impacts the final
DPT behavior Mθ. Combined with Assumption 1, Mθ is invariant to Dpre satisfying Definition 6.1.

Proposition 6.4. Let P 1
pre and P 2

pre be pretraining distributions that differ only by their in-context
dataset distributions, denoted by D1

pre and D2
pre. If D1

pre and D2
pre are compliant with the same support,

then P 1
pre(a

⋆|squery, D, ξh) = P 2
pre(a

⋆|squery, D, ξh) for all a⋆, squery, D, ξh.

That is, if we generate in-context datasets D by running various algorithms that depend only on the
observed data in the current task, we will end up with the same Mθ. For example, TS could be used
for D1

pre and PPO for D2
pre. Expert-biased datasets discussed in Section 4 violate Definition 6.1, since

privileged knowledge of τ is being used. This helps explain our empirical results that pretraining on
expert-biased datasets leads to a qualitatively different learned model at test-time (Fig. 3c).

7 Discussion

We studied the problem of in-context RL. We introduced a new pretraining method and transformer
model, DPT, which is trained via supervised learning to predict optimal actions given an in-context
dataset of interactions. Through in-depth evaluations in classic decision problems in bandits and
MDPs, we showed that this simple objective naturally gives rise to an in-context RL algorithm that is
capable of online exploration and offline decision-making in a way that leverages structure in the
pretraining data. In some cases, the RL algorithm learned can transcend the quality of the pretraining
data. Our empirical and theoretical results provide first steps towards understanding these capabilities
and what factors are important for success. Via the simplicity of pretraining, we can sidestep the
complexities of hand-designing exploration or conservatism in RL algorithms while simultaneously
allowing the transformer to derive novel few-shot strategies. These findings underscore the potential
of supervised pretraining to equip transformer models with in-context RL abilities.

Limitations and future work. One limitation of DPT is the requirement of optimal actions at
pretraining. Empirically, we find that this requirement can be relaxed by using actions generated
by another RL-trained agent during pretraining, which only leads to a slight loss in performance.
However, fully understanding this problem and how best to leverage multi-task decision-making
datasets remains a key open problem. We also discussed that the practical implementation for
MDPs differs from true posterior sampling. It would be interesting to further understand and bridge
this empirical-theoretical gap in the future. Finally, further investigation is required to understand
the implications of these findings for existing transformer-based large language models that are
increasingly being deployed in decision-making settings [69].

10

Acknowledgments and Disclosure of Funding

We thank Yu Bai, Anirudh Goyal, Akshay Krishnamurthy, Evan Liu, Subhojyoti Mukherjee, Tung
Nguyen, Lucy Shi, Ben Van Roy, and Sherry Yang for helpful discussions, feedback, and suggestions
on related work. We also thank anonymous reviewers for their careful and constructive feedback.
This work was supported in part by NSF grant 2112926 and ONR grant N00014-21-1-2685. JNL
acknowledges support from the NSF GRFP. AP would like to thank the support of the Eric and
Wendy Schmidt Center at the Broad Institute of MIT and Harvard. This work was supported in part
by funding from the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard.

References

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[2] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837, 2022.

[3] Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre
Richemond, James McClelland, and Felix Hill. Data distributional properties drive emer-
gent in-context learning in transformers. Advances in Neural Information Processing Systems,
35:18878–18891, 2022.

[4] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

[5] Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

[6] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

[7] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steiger-
wald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement
learning with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

[8] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In International
Conference on Machine Learning, pages 24631–24645. PMLR, 2022.

[9] Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-
decision transformer for efficient online policy adaptation. arXiv preprint arXiv:2304.08487,
2023.

[10] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[11] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[12] Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000,
pages 943–950, 2000.

[13] Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

[14] Tom Schaul and Jürgen Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.

11

[15] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Citeseer,
1990.

[16] Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4019–4026. IEEE, 2016.

[17] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

[18] Nicholas C Landolfi, Garrett Thomas, and Tengyu Ma. A model-based approach for sample-
efficient multi-task reinforcement learning. arXiv preprint arXiv:1907.04964, 2019.

[19] Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J Hsu, Thodoris Lykouris,
Miro Dudik, and Robert E Schapire. Bayesian decision-making under misspecified priors with
applications to meta-learning. Advances in Neural Information Processing Systems, 34:26382–
26394, 2021.

[20] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient
off-policy meta-reinforcement learning via probabilistic context variables. In International
conference on machine learning, pages 5331–5340. PMLR, 2019.

[21] Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,
2019.

[22] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. In International Conference on Learning Representation (ICLR), 2020.

[23] Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and
exploitation for meta-reinforcement learning without sacrifices. In International conference on
machine learning, pages 6925–6935. PMLR, 2021.

[24] Theodore J Perkins, Doina Precup, et al. Using options for knowledge transfer in reinforcement
learning. Technical report, Citeseer, 1999.

[25] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. Advances in neural information
processing systems, 31, 2018.

[26] Yiding Jiang, Evan Liu, Benjamin Eysenbach, J Zico Kolter, and Chelsea Finn. Learning options
via compression. Advances in Neural Information Processing Systems, 35:21184–21199, 2022.

[27] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[28] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

[29] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[30] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[31] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. arXiv preprint arXiv:1707.03141, 2017.

12

[32] Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608,
2023.

[33] Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. arXiv
preprint arXiv:2303.03982, 2023.

[34] Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[37] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[38] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273–
1286, 2021.

[39] Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio
Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game
decision transformers. Advances in Neural Information Processing Systems, 35:27921–27936,
2022.

[40] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[41] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[42] Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing
systems, 35:22955–22968, 2022.

[43] David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna.
When does return-conditioned supervised learning work for offline reinforcement learning?
arXiv preprint arXiv:2206.01079, 2022.

[44] Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control:
Separating what you can control from what you cannot. arXiv preprint arXiv:2210.13435, 2022.

[45] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–
1191, 2020.

[46] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. Advances in neural
information processing systems, 34:28954–28967, 2021.

13

[47] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch
off-policy reinforcement learning without great exploration. Advances in neural information
processing systems, 33:1264–1274, 2020.

[48] Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267–18281, 2022.

[49] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[50] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. Advances in Neural Information Processing
Systems, 32, 2019.

[51] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[52] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

[53] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with state distribution correction. UAI, 2019.

[54] Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning
via distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112,
2020.

[55] Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pages 7780–7791. PMLR, 2021.

[56] Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–
identifiability challenges and effective data collection strategies. Advances in Neural Information
Processing Systems, 34:4607–4618, 2021.

[57] Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline
meta-reinforcement learning with online self-supervision. In International Conference on
Machine Learning, pages 17811–17829. PMLR, 2022.

[58] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial
on thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

[59] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[60] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

[61] Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba Szepes-
vari, and Dale Schuurmans. On the optimality of batch policy optimization algorithms. In
International Conference on Machine Learning, pages 11362–11371. PMLR, 2021.

[62] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[63] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320,
2011.

14

[64] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. Advances in Neural
Information Processing Systems, 34:11702–11716, 2021.

[65] Maxime Chevalier-Boisvert. Miniworld: Minimalistic 3d environment for rl and robotics
research, 2018.

[66] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[67] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

[68] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics
of Operations Research, 39(4):1221–1243, 2014.

[69] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[70] Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mord-
vintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. arXiv preprint arXiv:2212.07677, 2022.

[71] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

[72] Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-
context learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

[73] Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop
Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, et al. On the effect
of pretraining corpora on in-context learning by a large-scale language model. arXiv preprint
arXiv:2204.13509, 2022.

[74] Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as
algorithms: Generalization and implicit model selection in in-context learning. arXiv preprint
arXiv:2301.07067, 2023.

[75] Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. arXiv
preprint arXiv:2303.07895, 2023.

[76] Jacob Abernethy, Alekh Agarwal, Teodor V Marinov, and Manfred K Warmuth. A mech-
anism for sample-efficient in-context learning for sparse retrieval tasks. arXiv preprint
arXiv:2305.17040, 2023.

[77] Nan Rosemary Ke, Silvia Chiappa, Jane Wang, Anirudh Goyal, Jorg Bornschein, Melanie Rey,
Theophane Weber, Matthew Botvinic, Michael Mozer, and Danilo Jimenez Rezende. Learning
to induce causal structure. arXiv preprint arXiv:2204.04875, 2022.

[78] Anirudh Goyal, Abram Friesen, Andrea Banino, Theophane Weber, Nan Rosemary Ke,
Adria Puigdomenech Badia, Arthur Guez, Mehdi Mirza, Peter C Humphreys, Ksenia
Konyushova, et al. Retrieval-augmented reinforcement learning. In International Confer-
ence on Machine Learning, pages 7740–7765. PMLR, 2022.

[79] Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta
learning via sequence modeling. arXiv preprint arXiv:2207.04179, 2022.

[80] Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal
of the ACM (JACM), 64(5):1–24, 2017.

[81] Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning:
worst-case regret bounds. Advances in Neural Information Processing Systems, 30, 2017.

15

[82] Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. Advances in neural information
processing systems, 30, 2017.

[83] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

[84] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep rein-
forcement learning. Advances in Neural Information Processing Systems, 31, 2018.

[85] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural
networks. arXiv preprint arXiv:2302.09205, 2023.

[86] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[87] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[88] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. The Journal of
Machine Learning Research, 22(1):12348–12355, 2021.

[89] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural
complexity and representation learning of low rank mdps. Advances in neural information
processing systems, 33:20095–20107, 2020.

16

Additional Related Work

In-context learning. Beyond decision-making and reinforcement learning, our approach takes
inspiration from general in-context learning, a phenomenon observed most prominently in large
language models in which large-scale autoregressive modelling can surprisingly lead to a model
that exhibits meta-learning capabilities [1]. Recently, there has been great interest in understanding
the capabilities and properties of in-context learning in various settings [4, 70, 5, 71, 72, 73, 74,
75, 6, 76, 77, 78]. While a common hypothesis suggests that this phenomenon is due to properties
of the data used to train large language models [3], our work suggests that this phenomenon can
also be encouraged in general settings via adjustments to the pre-training objective. In fact, DPT
could be interpreted as explicitly encouraging the ability to perform Bayesian inference, which is a
popular explanation for the mechanism behind in-context learning for large language models [67]. For
meta-learning in-context, work by [79] proposed Transformer Neural Processes to address problems
traditionally addressed with neural processes. Their work focuses on supervised learning-style
input-output pairs for meta-learning, but they also applied this to contextual bandits to learn rewards.

For decision-making, in addition to the works discussed in the main paper, several works have applied
transformers for in-context RL. AdA [32] meta-learns a transformer online (like RL2). A base online
RL algorithm is used to optimize the transformer, which uses online access to the simulator. The
authors also use a curriculum learning method to improve the learning process. DPT is learned from
offline supervised pretraining and it is agnostic to how the pretraining data is acquired. We believe
many of the ideas in AdA are complementary and can be ported to DPT. Prompt-DT [8] is designed
for offline RL and conditions on expert demos and uses return-to-go in the context much like the
Decision Transformer [37]. This necessitates expert demos as input at test-time. DPT is meant for
both online and offline in-context RL and does not require test-time demos (but it can benefit from
them e.g. Fig. 4a). DPT does not use return-to-go, and instead predicts optimal actions from arbitrary
in-context interaction datasets.

Posterior Sampling. Posterior sampling originates from the seminal work of [59], and has been
popularized and thoroughly investigated in recent years by a number of authors [58, 80, 12, 13,
81, 68]. For bandits, it is often referred to as Thompson Sampling, but the framework is easily
generalizable to RL, as shown in [12, 13]. The principle is as follows: begin with a prior over possible
models (i.e. reward and transition functions), and maintain a posterior distribution over models
by updating as new interactions are made. At decision-time, sample a model from the posterior
and execute its optimal policy. The aforementioned prior works have developed strong theoretical
guarantees on Bayesian and frequentist regret for posterior sampling. Despite its desirable theoretical
characteristics, a major limitation is that computing the posterior is often computationally intractable.
Recently, the community has made efforts towards scalable posterior sampling often by leveraging
approximations [82, 83, 84, 85]. In Section 6, we show that a version of the DPT model learned from
pretraining can be viewed as implementing posterior sampling without specifying complicated priors
or posterior updates. Instead, the posterior update is implicitly learned through pretraining to predict
the optimal action. This suggests that in-context learning via supervised pretraining (or meta-learning
more generally) could be a promising alternative approach towards scalable posterior sampling.

On the theoretical side, [19] show it is possible to meta-learn prior distribution parameters for
Thompson Sampling (TS) using a meta-exploration policy. The resulting TS algorithm can then
be deployed on new problems. This is potentially consistent with the observation that DPT can
approximate the right prior from offline data.

A Implementation and Experiment Details

A.1 DPT Architecture: Formal Description

In this section, we provide a detailed description of the architecture alluded to in Section 3 and Figure 1.
See hyperparameter details for models in their respective sections. The model is implemented in
Python with PyTorch [86]. The backbone of the transformer architecture we use is an autoregressive
GPT-2 model from the HuggingFace transformers library.

For the sake of exposition, we suppose that S and A are subsets of RdS and RdA respectively. We
handle discrete state and action spaces with one-hot encoding. Consider a single training datapoint

17

Algorithm 2 Decision-Pretrained Transformer (detailed)
1: // Collecting pretraining dataset
2: Initialize empty dataset B
3: for i in [N] do
4: Sample task τ ∼ Tpre
5: Sample interaction dataset D ∼ Dpre(·; τ) of length n
6: Sample squery ∼ Dquery and a⋆ ∼ π⋆

τ (·|squery)
7: Add (squery, D, a⋆) to B
8: end for
9: // Training model on dataset

10: Initialize model Mθ with parameters θ
11: while not converged do
12: Sample (squery, D, a⋆) from B
13: Predict p̂j(·) = Mθ(·|squery, Dj) for all j ∈ [n].
14: Compute loss in (5) with respect to a⋆ and backpropagate to update θ.
15: end while

Algorithm 3 Offline test-time deployment (detailed)
1: // Task and offline dataset are generated without learner’s control
2: Sample unknown task τ ∼ Ttest
3: Sample dataset D ∼ Dtest(·; τ)
4: // Deploying offline policy Mθ(·|·, D)
5: s1 = reset(τ)
6: for h in [H] do
7: ah = argmaxa∈A Mθ(·|sh, D) // Most likely action
8: sh+1, rh = step(τ, ah)
9: end for

Algorithm 4 Online test-time deployment (detailed)
1: // Online, dataset is empty as learning is from scratch
2: Initialize D = {}
3: Sample unknown task τ ∼ Ttest
4: for ep in max_eps do
5: s1 = reset(τ)
6: for h in [H] do
7: ah ∼ Mθ(·|sh, D) // Sample action from predicted distribution
8: sh+1, rh = step(τ, ah)
9: end for

10: // Experience from previous episode added to dataset
11: Add (s1, a1, r1, . . .) to D
12: end for

18

derived from an (potentially unknown) task τ : we have a dataset D of interactions within τ , a query
state squery, and its corresponding optimal action a⋆ = π⋆

τ (squery). We construct the embeddings to be
passed to the GPT-2 backbone in the following way. From the dataset D = {(sj , aj , s′j , rj)}j∈[n], we
construct vectors ξj = (sj , aj , s

′
j , rj) by stacking the elements of the transition tuple into dimension

dξ := 2dS + dA + 1 for each j in the sequence. This sequence of n elements is concatenated with
another vector v := (squery,0) where the 0 vector is a vector of zeros of sufficient length to make the
entire element dimension dξ . The (n+1)-length sequence is given by X = (v, ξ1, . . . , ξn). As order
does not often matter for the dataset D7, we do not use positional encoding in order to take advantage
of this invariance. We first apply a linear layer Linear(X) and pass the result to the transformer,
which outputs the sequence Y = (ŷ0, ŷ1, . . . , ŷn). In the continuous action case, these can be used
as is for predictions of a⋆. For the discrete action case, we use them as logits to be converted to
either a distribution over actions in A or one-hot vector predictions of a⋆. Here, we compute action
probabilities

p̂j = softmax(ŷj) ∈ ∆(A) (3)

Because of the GPT-2 causal architecture (we defer details to the original papers [87, 1]), we note
that p̂j depends only on squery and the partial dataset Dj = {(sk, ak, s′k, rk)}k∈[j], which is why we
write the model notation,

Mθ(·|squery, Dj) = p̂j(·), (4)

to denote that the predicted probabilities of the jth element only depend on Dj and not the entire
D for the model M with parameters θ ∈ Θ. For example, with j = 0, the prediction of a⋆ is made
without any contextual information about the task τ except for squery, which can be interpreted as the
prior over a⋆. We measure loss of this training example via the cross entropy for each j ∈ [n]:

−
∑
j∈[n]

log p̂j(a
⋆) (5)

Intuition. Elements of the inputs sequence X represent transitions in the environment. When
passed through the GPT-2 transformer, the model learns to associate elements of the sequence via the
standard query-key-value mechanism of the attention model. The query state squery is demarcated
by its zeros vector (which also acts as padding). Unlike other examples of transformers used for
decision-making such as the Decision Transformer [37] and Algorithm Distillation [7], DPT does
not separate the individual (s, a, s′, r) into their own embeddings to be made into one long sequence.
This is because we view the transition tuples in the dataset as their own singletons, to be related with
other singletons in the dataset through the attention mechanism. We note that there are various other
implementation variations one could take, but we found success and robustness with this one.

A.2 Implementation Details

A.2.1 Bandit algorithms

First, we describe the comparisons from the bandit experiments with hyperparameters.

Empirical Mean (Emp). Emp has no hyperparameters, but we give it some mechanism to avoid
degenerate scenarios. In the offline setting, Emp will only choose from actions that have at least one
example in the dataset. This gives Emp and LCB-style effect when actions are missing. Similarly,
online, Emp will sample each action at least once before defaulting to its real strategy. These changes
only improve Emp.

Upper Confidence Bound (UCB). According to the Hoeffding bound, we choose actions as
â ∈ argmaxa∈A

{
µ̂a +

√
1/na

}
where µ̂a is the empirical mean so far for action a and na is the

number of times a has been chosen so far. To arrive at this constant for the bonus, we coarsely tried a
set of plausible values given the noise and found this to perform the best.

Lower Confidence Bound (LCB). We choose actions as â ∈ argmaxa∈A

{
µ̂a −

√
1/na

}
where

µ̂a is the empirical mean so far for action a and na is the number of times a has been chosen so far.

7This is not always true such as when data comes from an algorithm such as PPO or Thompson Sampling.

19

Thompson Sampling (TS). Since the means are sampled uniformly from [0, 1], Gaussian TS is
partially misspecified; however, we set prior mean and variance to 1

2 and 1
12 to match the true ones.

The noise model was well-specified with the correct variance. In the linear experiments of Figure 3a
and Figure 3b, we set the prior mean and variance to 0 and 1 to fit the true ones better.

LinUCB. We choose ât ∈ argmaxa∈A⟨θ̂t, ϕ(a)⟩ + β∥ϕ(a)∥Σ̂−1
t

where β = 1 and Σ̂t = I +∑
s∈[t−1] ϕ(as)ϕ(as)

⊤ and θ̂t = Σ̂−1
t

∑
s∈[t−1] rsϕ(as). Here, rs and as are the reward and action

observed at time s.

LinReg. LinReg (offline) is the same as LinUCB except we set β = 0 to greedily choose actions.

DPT. The transformer for DPT has an embedding size of 32, context length of 500 for basic bandits
and 200 for linear bandits, 4 hidden layers, and 4 attention heads per attention layer for all bandits.
We use the AdamW optimizer with weight decay 1e-4, learning rate 1e-4, and batch-size 64. For
all experiments, we shuffle the in-context dataset D since order does not matter except in the linear
bandit.

A.2.2 RL Algorithms

Below, we describe the comparisons from the MDP experiments and their hyperparameters.

Proximal Policy Optimization (PPO). The reported results for PPO use the Stable Baselines3
implementation [88] with the default hyperparameters, which successfully learns each task given
100K environment steps in Dark Room and 125K environment steps in Miniworld. In Dark Room,
the policy is implemented as a multi-layer perceptron with two hidden layers of 64 units each. In
Miniworld, the policy is a convolutional neural network with two convolutional layers with 16 3× 3
kernels each, followed by a linear layer with output dimension of 8.

Algorithm Distillation (AD). We first collect learning histories with PPO for each of the training
tasks. Then, given a cross-episodic context of length H , where H is the task horizon, the model
is trained to predict the actions taken K episodes later (given the states visited in that episode).
This was shown to lead to faster algorithms in [7]. We evaluated AD across different values of K.
Between K = 10, 50, 100, we found K = 100 to be most performant in the Dark Room environment.
In Miniworld, we also subsampled with K = 100. In Dark Room, the transformer has similar
hyperparameters as DPT: an embedding size of 32, context length of 100 steps, 4 hidden layers, and
4 attention heads per attention layer. In Miniworld, as with DPT, we first encode the image with a
convolutional network with two convolutional layers with 16 3× 3 kernels each, followed by a linear
layer with output dimension of 8.

RL2. The reported results for RL2 use an open-sourced implementation from [22]. The implemen-
tation uses PPO as the RL algorithm and defines a single trial as four consecutive episodes. The
policy is implemented with one hidden layer of 32 units in Dark Room. In Miniworld, the policy
is parameterized with a convolutional neural network with two convolutional layers with 16 3× 3
kernels each, followed by a linear layer with output dimension of 8.

DPT. The transformer for DPT has an embedding size of 32, context length of 100 steps, 4 hidden
layers, and 4 attention heads per attention layer in Dark Room. In Miniworld, the image is first
passed through a convolutional network with two convolutional layers 16 3×3 kernels each, followed
by a linear layer with output dimension of 8. The transformer model that processes these image
embeddings otherwise has the same hyperparameters as in Dark Room. We use the AdamW optimizer
with weight decay 1e-4, learning rate 1e-3, and batch-size 128.

A.3 Bandit Pretraining and Testing

Basic Bandit. Offline, to generate the in-context datasets for pretraining, we used a Dirichlet
distribution to sample action frequencies in order to generate datasets with diverse compositions
(i.e. some more uniform, some that only choose a few actions, etc.): p1 ∼ Dir(1) where p1 ∈ ∆(A)
and 1 ∈ R|A|. We also mixed this with a distribution that has all mass on one action: â ∼ Unif(A)
and p2(â) = 1 and p2(a) = 0 for all a ̸= â. The final action distribution is p = (1 − ω)p1 + ωp2
where ω ∼ Unif(0.1[10]). We train on 100,000 pretraining samples for 300 epochs with an 80/20
train/validation split. In Figure 2a, Dtest is generated in the same way.

20

Expert-Biased Bandit. To generate expert-biased datasets for pretraining, we compute the action
frequencies to bias the dataset towards the optimal action. Let a⋆ be the optimal one. As before,
we take p1 ∼ Dir(1). Then, p2(a⋆) = 1 and p2(a) = 0 for all a ̸= a⋆. For of bias of ω, we take
p = (1− ω)p1 + ωp2 with ω ∼ Unif(0.1[10]). We use the same pretraining sample size and epochs
as before. For testing, Dtest is generated the same way except we fix a particular ω ∈ {0, 0.5, 1} to
test on.

Linear Bandit. We consider the case where |A| = 10 and d = 2. To generate environments from
Tpre, we first sampled a fixed set of actions from N (0, Id/d) in Rd to represent the features. Then,
for each τ , we sampled θτ ∼ N (0, Id/d) to produce the means µa = ⟨θτ , ϕ(a)⟩ for a ∈ A. To
generate the in-context dataset, we ran Gaussian TS (which does not leverage ϕ) over n = 200
steps (see hyperparameters in previous section). Because order matters, we did not shuffle and used
1, 000, 000 pretraining samples over 200 epochs with an 80/20 train/validation split. At test time, we
set Ttest = Tpre and Dtest = Dpre. Note that ϕ is fixed over all τ , as is standard for a linear bandit.

A.4 MDP Environment Details

Dark Room. The agent must navigate a 10× 10 grid to find the goal within H = 100 steps. The
agent’s observation is its xy-position, the allowed actions are left, right, up, down, and stay, and the
reward is only r = 1 when the agent is at the goal, and r = 0 otherwise. At test time, the agent
begins at the (0, 0) position. We randomly designate 80 of the 100 grid squares to be goals for the
training tasks, and hold out the remaining 20 for evaluation.

Miniworld. The agent must navigate to the correct box, which is initially unknown, from 25× 25
RGB image observations. The agent is additionally conditioned on its own direction vector. In each
episode, the environment is initialized with four boxes of different colors, one in each corner of the
square room. The agent can turn left, turn right, or move forward. The reward is only r = 1 when the
agent is near the correct box and r = 0 otherwise, and each episode is 50 time-steps long. At test
time, the agent begins in the middle of the room.

A.5 MDP Pretraining Datasets

Dark Room. In Dark Room, we collect 100K in-context datasets, each of length H = 100 steps,
with a uniform-random policy. The 100K datasets are evenly collected across the 100 goals. The
query states are uniformly sampled from the state space, and the optimal actions are computed as
follows: move up/down until the agent is on the same y-position as the goal, then move left/right
until the agent is on the x-position as the goal. Of the 100K collections of datasets, query states,
and optimal actions, we use the first 80K (corresponding to the first 80 goals) for training and the
remaining 20K for validation.

Miniworld. While this task is solved from image-based observations, we also note that there are
only four distinct tasks (one for each colored box), and the agent does not need to handle new tasks at
test time. Hence, the number of in-context datasets required in pretraining is fewer – we use 60K
datasets each of length H = 50 steps. So as to reduce computation, the in-context datasets only have
only (s, a, r) tuples. The query states, which consist of image and direction are sampled uniformly
from the entire state space, i.e., the agent is place uniformly at random in the environment, pointing
in a random direction. The optimal actions are computed as follows: turn towards the correct box if
the agent is not yet facing it (within ±15 degrees), otherwise move forward. Of the 60K collections
of datasets, query states, and optimal actions, we use 80% for training and the remaining 20% for
validation.

B Additional Experimental Results

B.1 Bandits

This section reports additional experimental results in bandit environments.

Out-of-distribution reward variances. In Figures 2c and 6a, we demonstrate the robustness of the
basic pretrained model under shifts in the reward distribution at test time by varying the amount of
noise observed in the rewards. DPT maintains robustness to these shifts similar to TS.

21

0.0 0.3 0.5
Noise standard deviation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fin
al

 S
ub

op
tim

al
ity

Offline Robustness to Reward Shift
Emp LCB TS DPT (ours)

(a)

0 100 200 300 400 500
Data

0.1

0.3

0.02

Su
bo

pt
im

al
ity

Offline Bandit (Bernoulli)
Emp
LCB
TS
DPT (ours)

(b)

0 100 200 300 400 500
Data

0

5

10

15

20

25

Cu
m

ul
at

iv
e

Re
gr

et

Online Bandit (Bernoulli)
Emp
UCB
TS
DPT (ours)

(c)

Figure 6: (a) Final (after 500 steps) offline suboptimality on out-of-distribution bandits with different Gaussian
noise standard deviations. (b) Offline performance on out-of-distribution Bernoulli bandits, given random in-
context datasets. (c) Online cumulative regret on Bernoulli bandits. The mean and standard error are computed
over 200 test tasks.

Random Expert
Dataset Composition

0

20

40

60

80

Re
tu

rn

Offline Dark Room (Train Tasks)
Dataset
AD
DPT (ours)

(a)

Random Expert
Dataset Composition

0

20

40

60

80

Re
tu

rn

Offline Dark Room (Test Tasks)
Dataset
AD
DPT (ours)

(b)

0 5 10 15 20 25 30 35 40
Episodes

0

20

40

60

80

Re
tu

rn

Online Dark Room (Train Tasks)

DPT (ours)
AD
PPO
RL2

(c)

0 5 10 15 20 25 30 35 40
Episodes

0

20

40

60

80

Re
tu

rn

Online Dark Room (Test Tasks)

DPT (ours)
AD
PPO
RL2

(d)

Figure 7: All comparisons in Dark Room evaluated on the tasks that were seen during pretraining, displayed
next to their evaluations on test task counterparts from the main text.

Bernoulli rewards. We test the out-of-distribution ability of DPT further by completely changing
the reward distribution from Gaussian to Bernoulli bandits. Despite being trained only on Gaussian
tasks during pretraining, DPT maintains strong performance both offline and online in Figures 6b
and 6c.

B.2 Markov Decision Processes

This section reports additional experimental results in the Dark Room and Miniworld environments.

Performance on training tasks. In Fig. 7, we show the performance of each method on the training
tasks in Dark Room. Offline, DPT and AD demonstrate comparable performance as on the training
tasks, indicating a minimal generalization gap to new goals. Online, DPT, AD, and RL2 also achieve
performance on the training tasks similar to that on the test tasks.

0 5 10 15 20 25 30 35 40
Episodes

0
10
20
30
40
50
60
70
80

Re
tu

rn

Online Dark Room Permuted

Figure 8: Online evaluation of
DPT on Dark Room when tested
on novel actions set permutations.

Generalization to new dynamics. In this experiment, we study
generalization to variations in a different aspect of the MDP, namely
the dynamics. We design Dark Room (Permuted), a variant of Dark
Room in which the goal is fixed to a corner but the action space is
randomly permuted. Hence, the agent must leverage its historical
context to infer the effect of each action. On a held-out set of 20
permutations, DPT infers the optimal policy correctly every time
offline, given only 100 offline samples, matching the optimal policy
at 83 return. Similarly, the online performance immediately snaps
to a near optimal policy in one episode once it identifies the novel
permutation in Figure 8.

B.3 Sensitivity Analysis

We next seek to understand the sensitivity of DPT to different hy-
perparameters, including the model size and size of the pretraining
dataset. These experiments are performed in the Dark Room environment. As shown in Fig. 9, the
performance of DPT is robust to the model size; it is the same across different embedding sizes,

22

2 layers 4 layers 6 layers 8 layers
Layers

0

10

20

30

40

50

60

Re
tu

rn

Layers (Offline)

(a)

1 heads 2 heads 4 heads 8 heads
Heads

0

10

20

30

40

50

60

Re
tu

rn

Attention Heads (Offline)

(b)

16 dim 32 dim 64 dim 128 dim
Dimensions

0

10

20

30

40

50

60

Re
tu

rn

Embedding Dimension (Offline)

(c)

10k 50k 100k 200k
Samples

0

10

20

30

40

50

60

Re
tu

rn

Pretraining Samples (Offline)

(d)

Figure 9: Sensitivity analysis of the offline Dark Rook task over the GPT-2 transformer’s hyperparameters: (a)
layers (b) attention heads (c) embedding dimensions (d) pretraining samples.

number of layers, and number of attention heads. Notably, the performance is slightly worse with 8
attention heads, which may be attributed to slight overfitting. We do see that when the pretraining
dataset is reduced to 10% of its original size (10000 samples) the performance degrades, but otherwise
has similar performance with larger pretraining datasets.

C Additional Theory and Omitted Proofs

We start with a well-known concentration inequality for the maximum-likelihood estimate (MLE) to
provide some more justification for the approximation made in Assumption 1. We state a version
from [89]. Let F be a finite function class used to model a conditional distribution pY |X(y|x)
for x ∈ X and y ∈ Y . Assume there is f⋆ ∈ F such that p(y|x) = f⋆(y|x) (realizable), and
f(·|x) ∈ ∆(Y) for all x ∈ X and f ∈ F (proper). Let D = {xi, yi}i∈[N] denote a dataset of i.i.d
samples where xi ∼ pX and yi ∼ pY |X(·|xi). Let

f̂ = argmax
f∈F

∑
i∈[N]

log f(yi|xi) (6)

Proposition C.1 (Theorem 21 of [89]). Let D and f̂ be given as above under the aforementioned
conditions. Then, with probability at least 1− δ,

Ex∼pX
∥f̂(·|x)− pY |X(·|x)∥21 ≤ 8 log (|F|/δ)

N
(7)

The finiteness of F is done for simplicity, but we can see that this yields dependence on the
log-cardinality, a common measure of complexity. Extensions to infinite F of bounded statis-
tical complexity can be readily made to replace this. For our setting, the bound suggests that
EPpre∥Ppre(·|squery, D, ξh)−Mθ(·|squery, D, ξh)∥21 → 0 as N → ∞ with high probability, provided
the function class of Mθ has bounded statistical complexity.

C.1 Posterior Sampling

Posterior sampling is most generally described with the following procedure [13]. Initialize a prior
distribution T1 = Tpre and dataset D = {}. For k ∈ [K]

1. Sample τk ∼ Tk and compute π̂τk

2. Execute π⋆
τk

and add interactions to D

3. Update posterior distribution Tk+1(τ) = P (τ |D).

The prior and posteriors are typically over models such as reward functions in bandits or transition
dynamics in MDPs.

C.2 Proof of Theorem 1

Theorem 1 (DPT ⇐⇒ PS). Let the above assumptions hold. Then, Pps(ξH | D, τc) =
PMθ

(ξH | D, τc) for all trajectories ξH .

23

Proof. Without loss of generality, for a task τ , we take π⋆
τ (·|s) to be deterministic and denote the

optimal action in state s as π⋆
τ (s). Recall that we consider a fixed current task τc and a fixed in-context

dataset D. Define ξh = (s1, a1, . . . , sh, ah).

We now formally state the variant of the full joint distribution from which we sample during pretrain-
ing. Let τ and D′ be an arbitrary task and dataset and let a⋆ ∈ A, squery ∈ S , ξH−1 ∈ (S ×A)H−1,
and h ∈ [0, H − 1] be arbitrary.

Ppre(τ, a
⋆, squery, D

′, ξH−1, h) = Tpre(τ)Dpre(D
′; τ)Dquery(squery)SH(s1:H)π⋆

τ (a
⋆|squery) (8)

× Unif[0, H − 1]
∏

i∈[H]

π⋆
τ (ai|si) (9)

The Unif[0, H − 1] is due to the fact that we sample h ∼ Unif[0, H − 1] and then truncate ξh
from ξH−1 (or, equivalently, sample ξh ∼ Sh directly), marginalizing out the other variables. For
h′ ≤ h− 1, recall that we also use the notation Sh′(s1:h′) to denote the marginalization of the full
joint SH . We will eventually work with the posterior of this distribution given the data D and history
ξh:

Ppre(τ |D, ξh) ∝ Tpre(τ)Dpre(D; τ)
∏
i∈[h]

π⋆
τ (ai|si) (10)

∝ Ppre(τ |D)
∏
i∈[h]

π⋆
τ (ai|si) (11)

We define the following random sequences and subsequences:

Ξps(h;D) = (Sps
1 , Aps

1 , . . . , Sps
h , Aps

h) (12)

where the variables are generated according to the following conditional process: τps ∼ P (·|D),
Sps
1 ∼ ρτc , Aps

h ∼ π⋆
τps(·|S

ps
h), and Sps

h+1 ∼ Tτc(·|S
ps
h , Aps

h). We also define Ξps(h
′ : h;D) to be

the last h− h′ elements of Ξps(h;D). Analogously, we define

Ξpre(h;D) = (Spre
1 , Apre

1 , . . . , Spre
h , Apre

h) (13)

where the variables are from the process: Spre
1 ∼ ρτc , Apre

h ∼ Ppre(·|Spre
h , D,Ξpre(h− 1;D)), and

Spre
h+1 ∼ Tτc(·|S

pre
h , Apre

h). Note that Apre
h is sampled conditioned on the sequence Ξpre(h;D) so

far.

We will show that Ξps(h;D) and Ξpre(h;D) follow the same distribution for all h ∈ [H]. For
convenience, we will drop notational dependence on D, except where it resolves ambiguity. Also,
because of Assumption 1, we have that Ppre(·|Spre

h , D,Ξpre(h−1)) = Mθ(·|Spre
h , D,Ξpre(h−1)),

so we will just work with Ppre for the remainder of the proof. We will also make use of the following
lemma.

Lemma C.2. If Dpre is complaint, then Ppre(τ |D) = P (τps = τ |D).

Proof. From the definition of posterior sampling (using the same prior, Tpre), we have that

P (τps = τ |D) ∝ P (D|τ)Tpre(τ) (14)

∝ Tpre(τ)
∏
j∈[n]

Tτ (s
′
j |sj , aj)Rτ (rj |sj , aj) (15)

∝ Tpre(τ)
∏
j∈[n]

Tτ (s
′
j |sj , aj)Rτ (rj |sj , aj)Dpre(aj |sj , Dj−1) (16)

= Tpre(τ)Dpre(D; τ) (17)
= Ppre(τ |D) (18)

where the second line crucially uses the fact that posterior sampling chooses actions based only on
the prior and history so far. Similarly, the third line uses the fact that Dpre is compliant. Since the two
sides are proportional in τ , they are equivalent.

24

We will prove Theorem 1 via induction for each h ∈ [H]. First, consider the base case for a sequence
of length h = 1. Recall that ρτc denotes the initial state distribution of τc. We have that the densities
can be written as

P (Ξps(1) = ξ1) = P (Sps
1 = s1, A

ps
1 = a1) (19)

= ρτc(s1)P (Aps
1 = a1|Sps

1 = s1) (20)

= ρτc(s1)

∫
τ

P (Aps
1 = a1, τps = τ |Sps

1 = s1)dτ (21)

= ρτc(s1)

∫
τ

π⋆
τ (a1|s1)Pps(τps = τ |D,Sps

1 = s1)dτ (22)

= ρτc(s1)

∫
τ

π⋆
τ (a1|s1)Pps(τps = τ |D)dτ (23)

= ρτc(s1)Ppre(A
pre
1 = a1|s1, D) (24)

= P (Ξpre(1) = ξ1) (25)

where the second line uses the sampling process of Spre
1 ; the third marginalizes over τps, which is

the task that posterior sampling samples to find the optimal policy; the fourth decomposes this into
the optimal policy and the posterior over τps given D and Sps

1 . Since Sps
1 is independent of sampling

of τps this dependence goes away in the next line. The sixth line applies Lemma C.2 and then, for
h = 1, there is no history to condition on.

Now, we leverage the inductive hypothesis to prove the full statement. Suppose that the hypothesis
holds for h− 1. Then,

P (Ξps(h) = ξh) = P (Ξps(h− 1) = ξh−1)P (Sps
h = sh, A

ps
h = ah|Ξps(h− 1) = ξh−1) (26)

(27)

By the hypothesis, we have that P (Ξps(h− 1) = ξh−1) = P (Ξpre(h− 1) = ξh−1). For the second
factor,

P (Sps
h = sh, A

ps
h = ah|Ξps(h− 1) = ξh−1) (28)

= Tτc(sh|sh−1, ah−1) · P (Aps
h = ah|Sps

h = sh,Ξps(h− 1) = ξh−1) (29)

= Tτc(sh|sh−1, ah−1) ·
∫
τ

P (Aps
h = ah, τps = τ |Sps

h = sh,Ξps(h− 1) = ξh−1)dτ (30)

As before, we can further rewrite the last factor as

P (Aps
h = ah, τps = τ |Sps

h = sh,Ξps(h− 1) = ξh−1) (31)

= π⋆
τ (ah|sh) · P (τps = τ |Sps

h = sh,Ξps(h− 1) = ξh−1) (32)

where

P (τps = τ |Sps
h = sh,Ξps(h− 1) = ξh−1) =

P (Sps
h = sh,Ξps(h− 1) = ξh−1|τps = τ)P (τps = τ |D)

P (Sps
h = sh,Ξps(h− 1) = ξh−1)

(33)

∝ Ppre(τ |D)
∏

i∈[h−1]

Tτc(si+1|si, ai)π⋆
τ (ai|si) (34)

∝ Ppre(τ |D)
∏

i∈[h−1]

π⋆
τ (ai|si) (35)

∝ Ppre(τ |D)Dquery(sh)Sh−1(s1:h−1)
∏

i∈[h−1]

π⋆
τ (ai|si)

(36)
∝ Ppre(τ |sh, D, ξh−1) (37)

(38)

where ∝ denotes that the two sides are equal up to multiplicative factors independent of τ . In the first
line, we used Bayes rule. In the second line, given that τps = τ (i.e. posterior sampling selected τ to

25

deploy), we decompose the probability of observing that sequence of states of actions. We also used
Lemma C.2. The denominator does not depend on τ . Similarly, for the third and fourth lines, Tτc and
S do not depend on τ . The final line follows from the definition of the joint pretraining distribution
in this regime.

Therefore, we conclude that the posterior over the value of τps is the same as the posterior over the
task in the pretraining distribution, given sh, D, ξh−1. Substituting back through all the previous
equations, we have

P (Ξps(h) = ξh) (39)

= P (Ξpre(h− 1) = ξh−1) · Tτc(sh|sh−1, ah−1)

∫
τ

π⋆
τ (ah|sh)Ppre(τ |sh, D, ξh−1)dτ (40)

= P (Ξpre(h− 1) = ξh−1) · Tτc(sh|sh−1, ah−1)Ppre(ah|sh, D, ξh−1) (41)
= P (Ξpre(h) = ξh) (42)

This concludes the proof.

C.3 Proof of Corollary 6.2

Corollary C.3 (Finite MDPs). Suppose that supτ Ttest(τ)/Tpre(τ) ≤ C for some C > 0. For the
above MDP setting, the pretrained model Mθ satisfies ETtest [Regτ (Mθ)] ≤ Õ(CH3/2S

√
AK).

Proof. Note that Dpre is clearly compliant since it is generated by random sampling. We use the
equivalence between Mθ and posterior sampling established in Theorem 1. The proof then follows
immediately from Theorem 1 of [13] to guarantee that

ETpre [Regτ (Mθ)] ≤ Õ
(
H3/2S

√
AK

)
(43)

where the notation Õ omits polylogarithmic dependence. The bound on the test task distribution
follows from the assumed bound on the likelihood ratio under the priors:∫

Ttest(τ)Regτ (Mθ)dτ ≤ C
∫

Tpre(τ)Regτ (Mθ)dτ. (44)

C.4 Proof of Corollary 6.3

Corollary C.4 (Latent representation learning in linear bandits). For Ttest = Tpre in the above linear
bandit setting, Mθ satisfies ETtest [Regτ (Mθ)] ≤ Õ(d

√
K).

Proof. The distribution Dpre satisfies compliance by definition because it is generated by an adaptive
algorithm TS. The proof once again follows by immediately deferring to the established result of [68]
(Proposition 3) for linear bandits by the posterior sampling equivalence of Theorem 1. This ensures
that posterior sampling achieves regret Õ(d

√
K). It remains, however, to justify that Ppre(·|Dk) will

be covered by Gaussian Thompson Sampling for all Dk with k ∈ [K]. This is verified by noting that
Pps(a|Dk) > 0 for non-degenerate Gaussian Thompson Sampling (positive variances of the prior
and likelihood functions) and finite K. This guarantees that any Dk will have support.

C.5 Proof of Proposition 6.4

Proposition C.5. Let P 1
pre and P 2

pre be pretraining distributions that differ only by their in-context
dataset distributions, denoted by D1

pre and D2
pre. If D1

pre and D2
pre are compliant with the same support,

then P 1
pre(a

⋆|squery, D, ξh) = P 2
pre(a

⋆|squery, D, ξh) for all a⋆, squery, D, ξh.

26

Proof. The proof follows by direct inspection of the pretraining distributions. For P 1
pre, we have

P 1
pre(a

⋆|squery, D, ξ) =

∫
τ

π⋆
τ (a

⋆|squery)P
1
pre(τ |squery, D, ξ)dτ (45)

The posterior distribution over tasks is simply

P 1
pre(τ |squery, D, ξ) =

P 1
pre(τ, squery, D, ξ)

P 1
pre(squery, D, ξ)

(46)

∝ P 1
pre(τ)P

1
pre(ξ|τ)Dquery(squery)D1

pre(D; τ) (47)

= P 2
pre(τ)P

2
pre(ξ|τ)Dquery(squery)D1

pre(D; τ) (48)

Then, the distribution over the in-context dataset can be decomposed as

D1
pre(D; τ) =

∏
i∈[n]

Rτ (ri|si, ai)Tτ (s
′
i|si, ai)D1

pre(ai|si, Di−1; τ) (49)

=
∏
i∈[n]

Rτ (ri|si, ai)Tτ (s
′
i|si, ai)D1

pre(ai|si, Di−1) (50)

∝
∏
i∈[n]

Rτ (ri|si, ai)Tτ (s
′
i|si, ai)D2

pre(ai|si, Di−1) (51)

= D2
pre(D; τ), (52)

where the second equality holds because D1
pre(aj |sj , Dj ; τ) is assumed to be invariant to τ by

compliance, and the fifth equality holds because D2
pre(aj |sj , Dj ; τ) is assumed to be invariant to τ .

Therefore, we conclude that, for any s,D, ξ,

P 1
pre(τ |s,D, ξ) ∝ P 2

pre(τ)P
2
pre(ξ|τ)Dquery(s)D2

pre(D; τ) (53)

∝ P 2
pre(τ |s,D, ξ). (54)

Since also
∫
τ
P 1
pre(τ |s,D, ξ) = 1 =

∫
τ
P 2
pre(τ |s,D, ξ), then

P 1
pre(τ |s,D, ξ) = P 2

pre(τ |s,D, ξ). (55)

Substituting this back into Equation45 yields P 1
pre(a

⋆|s,D, ξ) = P 1
pre(a

⋆|s,D, ξ).

27

	Introduction
	Related Work
	In-Context Learning Model
	Learning in Bandits
	Learning in Markov Decision Processes
	Experimental Setup
	Main Results
	Learning from Algorithm-Generated Policies and Rollouts

	Theory
	History-Dependent Pretraining and Assumptions
	Main Results

	Discussion
	Implementation and Experiment Details
	DPT Architecture: Formal Description
	Implementation Details
	Bandit algorithms
	RL Algorithms

	Bandit Pretraining and Testing
	MDP Environment Details
	MDP Pretraining Datasets

	Additional Experimental Results
	Bandits
	Markov Decision Processes
	Sensitivity Analysis

	Additional Theory and Omitted Proofs
	Posterior Sampling
	Proof of Theorem 1
	Proof of Corollary 6.2
	Proof of Corollary 6.3
	Proof of Proposition 6.4

