
Solving Singular Liouville Equations Using Deep
Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep learning has been applied to solving high-dimensional PDEs and successfully1

breaks the curse of dimensionality. However, it has barely been applied to finding2

singular solutions to certain PDEs, whose boundary conditions are absent and3

singular behavior is not a priori known. In this paper, we treat one example of such4

equations, the singular Liouville equations, which naturally arise when studying5

the celebrated Einstein equation in general relativity by using deep learning. We6

introduce a method of jointly training multiple deep neural networks to dynamically7

learn the singular behaviors of the solution and successfully capture both the smooth8

and singular parts of such equations.9

1 Introduction10

Most of the mathematical models arising from real world problems, if not all, are governed by11

Partial Differential Equations (PDEs). In most cases, closed form solutions to such equations do12

not exist. Recently, deep learning has been applied to finding numerical solutions to PDEs and13

showed the ability to handle high-dimensional PDEs [5, 4, 13, 11, 7, 2, 1]. However, apart from the14

high dimensional problem, the complex nature of PDEs also lies in the fact that their solutions may15

admit singularities. For example, the geometric shape of an American football can be described by a16

singular solution to Liouville equations. The singularities occur at the two "tips" on the American17

football, compared to European footballs where no such tips exist.18

Deep learning has been barely applied to solving such singular PDEs due to the following reasons.19

First, the exact singular behavior of solutions is a priori unknown, such that one deep network model20

is not adequate to capture all the information. Moreover, there exists no efficient and satisfactory21

way for a neural network to approximate singular functions near singular points, to the best of our22

knowledge, despite the fact that smooth function can be approximated by neural networks [3, 6].23

In this paper, we addressed the above challenges by encoding the different smooth and singular24

information of the PDEs into several loss functions and train multiple neural networks to dynamically25

learn the behavior of singular solutions near each singularity. More precisely, we treat the singular26

Liouville equations which govern metrics of "singular" spheres such as the mentioned American27

football. Our neural networks are designed to encode both the smooth and singular parts of the28

solutions, while at the same time each neural network is trained to only learn a smooth function. Our29

method is inspired by the success of physics-informed neural networks (PINNs) [12, 10, 9], which30

have been applied in a wide range of applications. PINNs are appropriate for solving nonlinear PDEs31

in the small data setting, which bears similarities to our objective Liouville equations.32

Main contributions of our work are as follows. To the best of our knowledge, our work is the33

first to solve these types of singular PDEs numerically and our method provides a way of solving34

Submitted to the DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS
2022). Do not distribute.

PDEs whose boundary or initial conditions are present yet not a priori known. Our proposed method35

achieves good accuracy in terms of approximating singular solutions. Moreover, in this work we solve36

the singular Liouville equations on a closed manifold, i.e., a compact manifold without boundary.37

We address the issue that boundary conditions are absent for the PDEs by choosing appropriate38

coordinate charts for the objective manifold. Our work shows the potential of applying deep learning39

method to solving equations numerically on curved manifolds, not only the flat Euclidean space.40

The motivation to numerically solve singular Liouville equations originated from authors’ study on41

deformation of geometric shapes governed by such equations under change of parameters. Thus,42

the numerical results presented in the paper help understand the asymptotic behavior of singular43

manifolds from a differential geometric point of view. Moreover, we expect to extend our method to44

the situation where one deals with singularity of PDEs that exists continuously on divisors, not only45

discretely at points.46

2 Methodology47

2.1 Mathematical Standpoint of the Problem and a Baseline Method48

We aim to solve the following singular Liouville equation numerically:49

∆u+ e2u = 0, in R2 \ {z1, . . . , zm},
u(z) = vi(z) + log |z − zi|βi−1, for z near zi, i = 1, . . . ,m,

(1)

where βi ∈ (0, 1) are known constants, each vi is continuous, and most importantly, vi is a priori50

unknown. In other words, solving (1) requires to find both a function u that satisfies (1) and a family51

of continuous functions vi such that the difference of u and vi is a log norm function. The solution u52

can be regarded as having singular asymptotic behavior at marked points zi.53

Remark 2.1. Singular Liouville equation (1) naturally arises as we study the existence of constant54

curvature metric on S2 that has conical singularities. With the help of differential geometry, one55

knows that solution to (1) does exist. However, it is extremely difficult to find the analytical form of56

the solution, especially when m > 2.57

We ignore the easiest m = 1 case in (1) since then there does not exist solution to (1) [14]. From now58

on, fix m = 2. In such case there exists a unique solution to (1). Moreover, in this case the two cone59

angles β1 and β2 must be equal and z1, z2 must be the origin and the infinity point in R2 respectively.60

More precisely, we can write down the explicit form of the solution to (1) when m = 2, for some61

β1 = β2 = β and z1 = (0, 0), z2 = ∞:62

uβ :=
1

2
log

4β2|z|2β−2

(1 + |z|2β)2
. (2)

Question 2.2. Can we solve (1) numerically using deep learning? More precisely, can we recover63

the solution (2) by training neural networks to approximately solve (1) when m = 2? Due to the64

existence of singularities, this is challenging and has not yet been solved numerically.65

A potential solution as the baseline. The challenge to numerically solve (1) comes from the fact66

that exact singular behavior of solutions is not a priori known and a boundary condition is absent.67

However, when m = 2, due to the existence of a closed form solution (2), we may use this as a68

priori knowledge and pose a boundary condition for (1). Then we propose two approaches based on69

DeepXDE [8], a library for scientific machine learning and physics-informed learning which requires70

boundary conditions to solve the equation. Treating this method as a baseline, we leave the details of71

theoretical setup and empirical results of these methods to the Appendix. Note that, these methods72

can not be either applied to the general m > 2 case nor used to find unknown singular solutions.73

Besides, empirical evidence implies that our method of training multiple neural networks, which will74

be introduced below outperforms DeepXDE even in this regime.75

2.2 Proposed Method76

To capture both the smooth and singular information of the solutions to (1), we design and jointly77

train multiple neural networks to numerically solve the singular Liouville equation. More precisely,78

2

we aim to approximate both the solution u to (1) and the a priori unknown continuous functions vi79

for each i. The advantage is then all the neural networks are used to approximate smooth functions.80

In more detail, denote by w the parameters in NNs, we train NNs81

Nu(x, y, w), Ni(x, y, w), i = 1, . . . ,m

so that Nu satisfies the first equation in (1), Ni approximates each vi in (1) and the difference82

Nu(x, y, w)−Ni(x, y, w) ≈ log |x+
√
−1y − zi|βi−1

prescribes the conical singularities.83

To encode smooth and singular information into loss functions and construct the corresponding84

physics-informed models, we define different loss functions to update the parameters. The loss85

function of Nu is defined as follows:86

ℓu(w) :=
1

N
·
∑N

i=1
[∆Nu(xi, yi, w) + e2Nu(xi,yi,w)]2.

Denote by Nv and Nv′ the NNs to capture conical singularities. The loss function of Nv is defined as87

ℓv(w) :=
1

M

∑M

j=1
[Nu(x̂j , ŷj , w)−Nv(x̂j , ŷj , w)−

β − 1

2
log(x̂2

j + ŷ2j)]
2.

To approximate the singularity at ∞, we indeed train Nv′ so that88

Nu ≈ Nv′ − (1 + β) log |z|
for z restricted to {z ∈ R2 : δ1 < |z| < δ2}, where δ1 and δ2 are large. Thus, we sample points89

in this region and denote them by {(x̃s, ỹs)}1≤s≤M . Then the loss function of Nv′ are defined as90

follows:91

ℓv′(w) :=
1

M

∑M

s=1
[Nu(x̃s, ỹs, w)−Nv′(x̃s, ỹs, w) +

β + 1

2
log(x̃2

s + ỹ2s)]
2.

In our experiments, we jointly optimize the NNs with the above losses ℓu(w), ℓv(w) and ℓv′(w). The92

next section introduces our experiment settings and results in detail.93

3 Experiments94

3.1 Experiment Settings95

Data sampling: We first sample N points from C3 := {(x, y) ∈ R2 :
√
x2 + y2 < 3}. As under96

stereographic projection, the area corresponding to C3 on S2 covers 90% of the surface S2. We use97

(xi, yi), i = 1, . . . , N to denote such data points. Next, we sample M points close to each prescribed98

singular point zi, i = 1, . . . ,m, by taking points from Cϵ,i := {(x, y) ∈ R2 : |(x, y) − zi| < ϵ}.99

Usually ϵ is set to 0.001. Denote by (x̂j , ŷj), j = 1, . . . ,M these data. In experiments, we set100

N = 1000 and M = 1000. For the sake of data precision, we avoid having points in Cϵ,i that are101

too close to zi. In our experiments, we avoid points whose distance to the singular point is less than102

0.01ϵ. In practice, since we assume m = 2, we indeed sample points that are close to (0, 0) ∈ R2 or103

close to the infinity point, i.e., restricted to {z ∈ R2 : δ1 < |z| < δ2} where δ1 and δ2 are large.104

Implementation details: We train several multilayer perceptrons (MLPs) and denote by d = 4105

the number of layers and k = 50 the number of units in each layer. We use the hyperbolic tangent106

function tanh(x) := e2x−1
e2x+1 . Note that the ReLU function is not appropriate for the problem since the107

second order derivatives of ReLU are trivial and thus it can not be used to approximate the solution to108

any second (or higher) order differential equations. In our experiments we find that a combined use109

of both first and second order methods gives the best result. In practice we first employ Adam and110

then L-BFGS to achieve smallest loss.111

Evaluation metrics: We introduce two different metrics to evaluate the trained model N (w, x, y).112

Denote by {(xi, yi)}i=1,...,N the test data points. The first metric is defined to measure if the model113

solves the PDE:114

ℓ1(w) :=
∑N

i=1

1

N
(∆N (w, xi, yi) + e2N (w,xi,yi))2. (3)

Another metric is defined to measure if the model coincides with the expected solution uβ as in (2):115

ℓ2(w) :=
∑N

i=1

1

N
(N (w, xi, yi)− uβ(xi, yi))

2. (4)

3

3.2 Experiment Results116

Figure 1: heat map of difference between
numerical solution and real solution

Comparison to the ground-truth. In the training pro-117

cess, we define the total loss to be 0.4(ℓv + ℓv′) + 0.2ℓu.118

After training the weighted loss is 0.0114 while ℓu =119

0.0133, ℓv = 2.7209e− 5, ℓv′ = 0.0218. The test loss ℓ1120

is 0.0134 and ℓ2 = 0.4973. The heat map of the differ-121

ence between the numerical solution and the real solution122

(2) is shown in Figure 1. We find that close to the origin123

there admits higher error due to the data precision issue124

and singular nature of (2), which are inevitable.125

Comparison to the baseline method. A comparison126

between our proposed method and the baseline method,127

which is introduced in the Appendix is shown in Table128

1. By "using prior knowledge" we mean using a priori129

known solution (2) to add boundary conditions to (1). Existence of boundary condition is essential130

for using DeepXDE in the baseline method. The loss functions ℓ1 as in (3) measures if the model131

solves the PDE and ℓ2 as in (4) measures how close the model is to the real solution (2).132

Method Using prior knowledge or not ℓ1 ℓ2
Baseline method (version 1) Yes 2e-6 20.7779
Baseline method (version 2) Yes 109.9671 0.2035

Proposed method Yes 4e-7 6.6847
Proposed method No 0.0134 0.4973

Table 1: Comparison between different methods in solving singular Liouville equation

Table 1 indicates that the baseline method can only capture either the smooth part or the singular part133

of the solution. Indeed, the baseline method tends to learn an almost constant function as the solution134

which is trivial for practical use.135

In contrast, the proposed method is able to recover singular solutions, even without using a priori136

knowledge. Note that ℓ2 in the last row of Table 1 is an average loss and the main contribution comes137

from test points close to the origin, which reflect the singular nature of (2) and is inevitable to some138

extent considering data precision limit.139

Ablation study. In our proposed method, we could also use a priori knowledge. More precisely,140

one still trains Nu to solve (1), and to capture the singularity we only need to train Nv such that it141

approximates142

Nv ≈ uβ − (β − 1) log |z|
given the information from the solution (2).143

The empirical results are shown in the third row in Table 1. We found that adding a priori knowledge144

does not help learn the singular behaviors of solutions. In other words, our proposed method without145

need of any a priori knowledge is flexible to capture the singularities in the solutions by dynamically146

learning their behaviors near singular points.147

4 Conclusion148

In this paper we proposed a deep learning method where we design multiple different neural networks149

to solve the singular Liouville equations, which are fully nonlinear, boundary conditions free but150

low-dimensional. Our method, to the best of our knowledge, is the first to treat PDEs that have151

continuous (not a jump) singularities. The proposed model outperforms existing readily available152

PDE solvers that employ deep neural networks when solving singular Liouville equations. The153

numerical solutions to the singular equation are precise enough to reflect the singular nature of the154

objective solution and can be further applied to the study of deformation of specific geometric shapes155

from the theoretical point of view.156

4

References157

[1] Christian Beck, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf Jentzen. Solving the158

kolmogorov pde by means of deep learning. Journal of Scientific Computing, 88(3):1–28, 2021.159

[2] Julius Berner, Markus Dablander, and Philipp Grohs. Numerically solving parametric families160

of high-dimensional kolmogorov partial differential equations via deep learning. Advances in161

Neural Information Processing Systems, 33:16615–16627, 2020.162

[3] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of163

control, signals and systems, 2(4):303–314, 1989.164

[4] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for165

high-dimensional parabolic partial differential equations and backward stochastic differential166

equations. Communications in mathematics and statistics, 5(4):349–380, 2017.167

[5] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential168

equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–169

8510, 2018.170

[6] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,171

4(2):251–257, 1991.172

[7] Arnulf Jentzen, Diyora Salimova, and Timo Welti. A proof that deep artificial neural networks173

overcome the curse of dimensionality in the numerical approximation of kolmogorov partial174

differential equations with constant diffusion and nonlinear drift coefficients. arXiv preprint175

arXiv:1809.07321, 2018.176

[8] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning177

library for solving differential equations. SIAM Review, 63(1):208–228, 2021.178

[9] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep179

learning framework for solving forward and inverse problems involving nonlinear partial180

differential equations. Journal of Computational Physics, 378:686–707, 2019.181

[10] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential182

equations. The Journal of Machine Learning Research, 19(1):932–955, 2018.183

[11] Maziar Raissi. Forward-backward stochastic neural networks: Deep learning of high-184

dimensional partial differential equations. arXiv preprint arXiv:1804.07010, 2018.185

[12] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-186

ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint187

arXiv:1711.10561, 2017.188

[13] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving189

partial differential equations. Journal of Computational Physics, 375:1339–1364, 2018.190

[14] Marc Troyanov. Metrics of constant curvature on a sphere with two conical singularities.191

Differential geometry, pages 296–306, 1989.192

Appendix193

In order to use existing package to solve (1), we "cheat" by using a priori known solution (2) to add194

boundary condition so that the original PDE is converted to a Dirichlet problem. Then we propose195

two approaches based on DeepXDE [8] to solve the new problems.196

5

The first approach: We solve the following Dirichlet problem:197

∆u+ e2u = 0, in {z ∈ R2 : ϵ < |z| < δ},

u =
1

2
log

4β2|z|2β−2

(1 + |z|2β)2
, on {z ∈ R2 : |z| = ϵ or δ}

(5)

using the package DeepXDE [8].198

We expect to recover the solution uβ in (2) by solving (5) as we impose small/large enough ϵ and δ.199

We use ℓ1 in (3) and ℓ2 in (4) to test the accuracy of the model after training process.200

The second approach: Instead of solving (1) for u, under the assumption of m = 2, we may201

reformulate the problem of solving (1) to another PDE for the function vi. Indeed, in this case,202

globally there holds203

u = v + log |z|β−1, in R2,

where β is the cone angle (note that in this case the two cone angles at 0 and ∞ must be the same).204

The key point is that v is a smooth function. To solve u in (1) it is then enough to solve v.205

Lemma .1. When m = 2, the function v in (1) satisfies the following PDE:206

∆v + e2v|z|2β−2 = 0, in R2. (6)

Proof. From (1), we obtain207

v = u− (β − 1) log |z|.
Then taking Laplacian of v, we get208

∆v = ∆u−∆(β − 1) log |z|
= ∆u

= −e2u, using (1)

= −e2v|z|2β−2.

209

Note that the PDE (6) has singularity since 2β − 2 < 0. In other words, although v as a smooth210

function has better regularity compared to u, the PDE for v has a singular term, which does not211

happen for u.212

To solve (6) using DeepXDE, we need to modify it to a Dirichlet problem. To achieve this, we solve213

v in the unit disk with the needed boundary condition:214

∆v + e2v|z|2β−2 = 0, in the unit disk,
v = log β, on the boundary.

(7)

We only need to solve v in the unit disk due to the fact that it is enough to solve v for the two215

hemispheres, while each hemisphere corresponds to the unit disk under stereographic projection. The216

boundary condition in (7) comes from the prior knowledge of uβ in (2), which serves as the solution217

to (1) when m = 2.218

We also use ℓ1 in (3) as the test loss. Besides, for this approach we modify ℓ2 to the average L2219

difference between the model Nv and the real solution vβ :220

ℓ2 = ℓ(Nv, vβ) :=
1

N

N∑
i=1

|Nv(xi, yi)− vβ(xi, yi)|2,

for test data set {(xi, yi)}1≤i≤N .221

6

	Introduction
	Methodology
	Mathematical Standpoint of the Problem and a Baseline Method
	Proposed Method

	Experiments
	Experiment Settings
	Experiment Results

	Conclusion

