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Abstract

The standard supervised learning paradigm works effectively when training data
shares the same distribution as the upcoming testing samples. However, this
stationary assumption is often violated in real-world applications, especially when
testing data appear in an online fashion. In this paper, we formulate and investigate
the problem of online label shift (OLaS): the learner trains an initial model from
the labeled offline data and then deploys it to an unlabeled online environment
where the underlying label distribution changes over time but the label-conditional
density does not. The non-stationarity nature and the lack of supervision make
the problem challenging to be tackled. To address the difficulty, we construct a
new unbiased risk estimator that utilizes the unlabeled data, which exhibits many
benign properties albeit with potential non-convexity. Building upon that, we
propose novel online ensemble algorithms to deal with the non-stationarity of the
environments. Our approach enjoys optimal dynamic regret, indicating that the
performance is competitive with a clairvoyant who knows the online environments
in hindsight and then chooses the best decision for each round. The obtained
dynamic regret bound scales with the intensity and pattern of label distribution
shift, hence exhibiting the adaptivity in the OLaS problem. Extensive experiments
are conducted to validate the effectiveness and support our theoretical findings.

1 Introduction

One of the fundamental challenges for modern machine learning is the distribution shift [1, 2, 3, 4].
The learned model’s testing performance would significantly drop when the distribution is different
from the initial training distribution. More severely, in many real-world applications, testing data
often come in an online fashion after deploying the trained model such that the underlying distribution
might continuously change over time. Hence, it is necessary to develop learning methods to handle
distribution shift in online and open environments [5]. Another practical concern is the label scarcity
issue in real tasks, particularly those tasks emerging in online scenarios. For example, in the species
monitoring task [6, 7], a learned model is deployed to detect species of wild animals. The data consist
of received signals from sensors and hence are naturally in the streaming form. The data distribution
of upcoming animals will change due to the variety of species across different geographic locations
and seasons, and moreover, it is hard to gather the labels of streaming data in time.

Motivated by the above real demand, this paper is concerned with the following problem: how to
design an algorithm that can adapt to non-stationary environments with a few labeled data or even
unlabeled data observed at every time? In addition to getting empirical performance gain, the overall
method is desired to have clear and strong theoretical guarantees. The problem is generally hard due
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to the non-stationarity of online environments and the lack of supervision. As such, we investigate a
simplified case with a focus on the specific change on the label distribution. We formalize the online
label shift (OLaS) problem,? which consists of two stages, including offline initialization and online
adaptation. Specifically, the learner collects labeled samples drawn independently from the initial
distribution Dy (x, y) where x and y denote the feature vector and its associated label, and trains
an initial model following standard supervised learning methods. Subsequently, she needs to adapt
it to an unknown non-stationary environment where the underlying label distributions change over
time. Specifically, at time ¢, she receives a few unlabeled samples drawn from the current distribution
D:(x) and uses them to update the model. In OLaS problems, the essential environment change
happens on the label distribution D;(y) with the conditional D(x | y) always remaining the same.

The label shift problem has been widely studied in the offline setting [8, 9, 10, 11, 12, 13, 14], but
this is less explored in the more challenging online setup. One natural impulse is to handle OLaS
by online learning techniques [15], but it is generally non-trivial due to the lack of supervision in
the adaptation stage and also the non-stationarity issue. Wu et al. [16] made the first such attempt
for OLaS, where they constructed an unbiased risk estimator with the unlabeled data for model
assessment and used online gradient descent for model updating. Let 7" denote the number of rounds.
They proved an O(v/T) regret bound, which measures the gap between the learner’s decision and
the best fixed decision in hindsight. However, in non-stationary environments, a single decision
can hardly perform well all the time, which makes the guarantee less attractive for OLaS problem:s.
Another technical caveat is that their theory relies on a vital assumption of the convexity of risk
functions, which was not verified strictly. In fact, this assumption can hardly be satisfied as an
operation to take the argument of the maximum is involved in its formulation of the risk estimator.

In this paper, we aim to develop an algorithm for adapting to online label shift with provable
guarantees. To this end, we first reframe the construction of the unbiased risk estimator via risk
rewriting techniques and prove that the estimator still enjoys benign theoretical properties, albeit
with a potential non-convex behavior. Second, to handle the non-stationarity of the online stream,
instead of using traditional regret as the performance measure, we employ dynamic regret to guide the
algorithm design, which ensures the online algorithm is competitive with a clairvoyant who knows
the online functions in hindsight and hence chooses the best decision of each round. To optimize
such a strengthened measure, we propose a novel online ensemble algorithm building upon the risk
estimator, consisting of a meta-algorithm running over a group of base-learners, each associated

with a customized configuration. Our algorithm enjoys an (’)(VTl/ 12/ 3) dynamic regret, where

Vr = Zthz |fty, — ty, .|| measures the variation of label distributions, with p,, denoting the
vector consisting of the class-prior probabilities at time ¢. Notably, the regret guarantee achieved by
our algorithm is minimax optimal in terms of both number of rounds and non-stationarity measure,
and importantly, our algorithm does not require the unknown class-prior variation Vr as the input.

Furthermore, for many situations where online label shift contains some patterns such as periodicity
or gradual change behavior, we present an improved algorithm to exploit such structures and achieve
provably better guarantees. The key idea is to leverage historical information to serve as a hint for

online updates. We prove an O(VT{/ 3GIT/ S/ 3) dynamic regret, where G'r measures the reusability
of historical information that is at most O(7") while could be much smaller in benign environments.

As a benefit, the improved algorithm safeguards the O(V%/ 12/ 3) worst-case bound and meanwhile
achieves great improvement in easier environments. Extensive experiments are conducted to evaluate
our approach, which show the usefulness of meta-base structure in tackling non-stationarity and
validate the effectiveness of other adaptive components.

Technical Contribution. Our method is not a direct application of existing non-stationary online
learning methods [17, 18, 19], but rather requires in-depth technical innovations. First, the potentially
non-convex risk estimator makes it hard to apply existing techniques of online convex optimization
(OCO) [15], but fortunately, we prove the convexity of its expectation such that the OCO framework
can still be used (see Remark 2). Second, to optimize the dynamic regret, we employ a meta-base
structure to hedge the uncertainty of the unknown minimizer of the expected risk function at each
round and convert the variation of expected risk minimizers to the intensity of label distribution
drifts, a natural non-stationarity measure for the OLaS problem (see Remark 3). Third, earlier study
showed adaptive dynamic regret bounds for convex and smooth functions [19], while the smoothness

*We use OLaS instead of OLS, since OLS often refers to “ordinary least squares”.



assumption can hardly be satisfied in our case. We remove such a constraint by introducing an implicit
update, which could be of independent interest for general OCO purposes (see Remark 4).

2 Problem Formulation

We focus on OLaS of multi-class classification with feature space X' C R and label space Y =

[K] = {1,..., K}, where d is the dimension and K is the number of classes. Below we formulate
setups of two stages of OLaS (offline initialization and online adaptation).

Problem Setup. In the offline initialization stage, the learner collects a number of labeled samples
denoted by Sy = {(x,,yn)}2°, drawn from the distribution Dy(x,y) and then obtains a well-
performed initial model fy : X — Y. In the online adaptation stage, data come in the streaming form
without labels. The current model is deployed to predict the labels of online data and also to evolve
adaptively. Specifically, at each round ¢ € [T, the learner receives a small number of unlabeled data
Sy = {xn}fy;l drawn from the distribution D;(x). The non-stationary nature indicates D; # Dy in
general for different ¢,¢' € [T']. OLaS considers the simplified case that essential changes come from
label distributions and there are no new classes, formally described in the following condition.
Assumption 1 (Online Label Shift). In the online label shift problem, the label distribution Dy (y)
changes over time while the class-conditional distribution D, (x | y) is identical throughout the process
fort € {0,1,...,T}. Moreover, it holds that Dy (y) > 0 for any y € ).

Performance Measure. At round ¢t € [T], the learner uses the information observed so far
to make the prediction and also update the model w; € W, where W is a convex decision set
with diameter I' £ supy, v cyy|[Ww — W’||2. The goal is to ensure that the t-round model w,
generalizes well on the underlying distribution D,. Thus, the model’s quality is evaluated by its
risk defined as Ry(w) = E(x ,)p, [l(f(W,%),y)], where f : W x X — R¥ is the predictive

function and ¢ : R x )~ R is any convex surrogate loss for classification such that £( f(w, x), )
is convex in w. We introduce two constants, G = SUP(x,y) e x ¥, wew | Vwl(f (W, %), y)[2 and
B£ SUP (x,y)exX xY,weW |£(f(w7 X)a y)

We use regret to examine the performance of online algorithms. In particular, dynamic regret [20, 17]
is employed to compete the algorithm’s performance with the best response at each round, defined as

, as upper bounds of gradient norm and loss function value.

T T T T
d a .
Regf £ > Ry(w) _Zv%lv&(w) = Ri(wy) = Y Ri(wy), (1
t=1 t=1 t=1 t=1
where w; € arg min, ¢y R;(w) is the model (or one of the models) with the best generalization
ability on the distribution D;. Notably, it is known that a sublinear dynamic regret is impossible in the
worst case [17], so an upper bound of dynamic regret is desired to scale with a certain non-stationarity
measure. A natural measure for OLaS would be the variation intensity of label distributions.
Remark 1 (Static regret vs. dynamic regret). The classic measure for online learning is static regret,
defined as Reg} = .Zle Ry(wy) — Zthl Ry(w*), where w* € argmin,, cyy Zthl R.(w) is the
best fixed model in hindsight. The measure was adopted in the prior work of OLaS [16]. However, the
measure is not suitable for OLaS, because it is too optimistic to expect a single fixed model to behave
well over the whole process in changing environments. By contrast, minimizing dynamic regret
facilitates the online algorithm with more adaptivity and robustness to non-stationary environments.

3 Proposed Approach

This section presents our approach for the OLaS problem, including the algorithms and theoretical
guarantees. In the following, we respectively address the two central challenges of OLaS: the lack of
supervision and the non-stationarity of online environments.

3.1 Unbiased Risk Estimator for Online Convex Optimization

OCO is a powerful and versatile framework for online learning problems, which enjoys both practical
and theoretical appeals [21, 15]. Online Gradient Descent (OGD) [20] is one of the most fundamental



and powerful algorithms due to its light computational cost and sound regret guarantees. In the
OLaS problem, recall that the learner’s goal is to obtain a model sequence {w;}~ ; enjoying low
cumulative risk Zle R:(w¢). Thus, suppose the model’s risk R;(w;) is known at each round;
then OGD simply updates the model by w1 = Iy [w; — nV R, (w;)], where II)y[-] denotes the
projection onto W and 1 > 0 is the step size. It is well-known that OGD guarantees the regret bound
ZZ;I Ri(wy) — mingew 23:1 Ri(w) < O(V/T) when risk function R;(w) is convex and step
size is set as 7 = O(T~1/2) [15] (see Appendix B.1 for more details).

However, the expected risk function R;(w) is unknown in the current OLaS setup as it is defined
over the underlying joint distribution D;(x, y). More severely, the online environments in the OLaS
problem are fully unlabeled, which poses great challenges to apply the OCO framework. Indeed, the
lack of supervision makes it hard to empirically assess the expeg}ed risk, not to mention ensuring the
convexity. In the following, we establish an unbiased estimator R;(w) with unlabeled data S, which
exhibits nice properties such that the OCO framework is still applicable for our purpose.

Unbiased Estimator under Label Shift. Inspired by the progress in offline label shift [9, 12, 13],
we establish an unbiased risk estimator in OLaS for R;(w) with unlabeled data S; and offline data
Sp by the risk rewriting technique. To this end, let i1, € A denote the label distribution vector

with the k-th entry [p,,]x = D;(y = k), then we have the following decomposition for the true risk:

K K

Ri(w) £ Ex gy, [0(f(w,%),9)] = D [y Ji - RE(W) = Y[y i - B (w), @

k=1 k=1

where R} (W) £ Eyp, (x | y=k)[{(f(W,X), k)] is the risk of the model over the k-th label at round ¢.
The second equality holds due to the law of total probability, and the third equality is by the label shift
assumption that D;(x | y) = Do(x | y) for any ¢t € [T]. Since the labeled offline data S is always
available, one can approximate RX(w) by its empirical version fz’g (w) with offline data Sy, where
RE(w) & @ D oxnesy L(f(w,xy), k) and S§ is a subset of Sy containing all samples with label &.

Therefore, the task is now to estimate the label distribution vector p,,. To this end, we employ
the Black Box Shift Estimation (BBSE) method [12] to construct an estimator via only offline data
Sp and unlabeled data S;. Specifically, we first use the initial offline model f; to predict over the
unlabeled data S; and get predictive labels 7;, and next estimate the label distribution via solving the
crucial equation pt,, = C’f_olugt, where pg, € Ag is the distribution vector of the predictive labels
gy and Cy, € RE*K is the confusion matrix with [C,]i; = Expy(x | y=5) [1{fo(x) = i}] being
the classification rate that the initial model fj predicts samples from class ¢ as class j. We defer more
details to Appendix B.2. As a result, through risk rewriting and prior estimation, we can construct the
following estimator for the true risk R;(w):

K
= > [0} g e - RE(w), 3)
k=1

where C +, and fig, are empirical estimators of the confusion matrix and predictive label distribution
vector using offline data Sy and unlabeled data S; only. Our constructed risk estimator enjoys the
unbiasedness property, which plays a crucial role in the later algorithm design and theoretical analysis.

Lemma 1. The estimator Ry(w) in Eq. (3) is unbiased to Ry(w) = E(x,y)~p, [L(f(W,%),y)], i.e.,
Eg,~D, [ﬁt (w)] = Ry(w), for any w € W independent of the dataset Sy, provided Cj, is invertible
and the offline dataset Sy has sufficient samples such that Cy, = Cy, and RE(w) = R§(w), Vk € ).

The proof of Lemma 1 is in Appendix D.1. Note that the sufficient sample assumption is introduced on
offline data .Sy to simplify the presentation. Indeed, we can further show |Eg, p, [R:(W)]— Re(w)| <
O(+/1/]So|) with high probability (details in Appendix D.2). Such an additional dependence on S
also appears in the classical offline label shift [12, 13] and is negligible when a large number of offline
data is collected at the initial stage. The requirement is easy to realize and will not trivialize the
online adaptation. Another caveat is that storing all the offline data can be burdensome in resource-
constrained learning scenarios, then one may use data sketching techniques like corsets [22, 23] or
reduced kernel mean embedding [24, 25, 26] to further improve the storage complexity.



Remark 2 (Non-convexity issue). Our risk estimator R, (w) can be non-convex as the estimated label
distribution [af;lﬁ@]k might be negative in order to ensure the unbiasedness. Such a non-convex
behavior introduces a great challenge for applying the OCO framework. Fortunately, owing to
its unbiasedness and the fact that the expected risk R;(w) is indeed convex, we can continue the
following algorithm design and theoretical analysis building upon the constructed unbiased estimator.

OGD with Unbiased Estimator. Building upon the risk estimator in Eq. (3), we then deploy OGD
and obtain our UOGD algorithm (abbreviated for “OGD with unbiased risk estimator’), namely,

w1 = Hyy[wy — ﬁvgt(wtﬂ- 4

Despite the potential non-convexity of the risk estimator itself, we can still establish solid regret
guarantees via the OCO framework due to the benign property that the risk estimator is unbiased and
the expected risk is indeed convex. For example, UOGD provably enjoys an (’)(\/T) static regret. See
the formal statement in Appendix D.3. We remark that our attained static regret already achieves the
state-of-the-art theoretical understanding of OLaS, in the sense that previously the same bound can be
only achieved with an additional unrealistic convexity assumption imposed over the algorithm [16],
which UOGD does not require. Concretely, Wu et al. [16] assumed that the risk estimator is convex (in
expectation), which is hard to theoretically verify since the estimator approximates the 0/1-loss and
involves an indicator function and an argmax operation due to the employed reweighting mechanism.
By contrast, our estimator directly approximates the surrogate loss without reweighting and thus
does not suffer from such limitations. Even if modifying their estimator to optimize a surrogate
loss, the reweighting mechanism makes their method still hardly suitable for the OCO framework.
More details are in Appendix C.3. In a nutshell, our constructed risk estimator enjoys nice properties,
which are indispensable for the algorithm design and theoretical analysis.

3.2 Adapting to Non-stationarity of Online Label Shift

So far, an O(\/T ) static regret has been established for OLaS; however, the guarantee is not appealing
because static regret is not suitable for non-stationary online problems as discussed in Remark 1. We
now introduce our method adapting to the non-stationarity with provable dynamic regret guarantees.

First, benefiting from the unbiasedness and expected convexity of our risk estimator, we prove that
UOGD achieves a dynamic regret scaling with the label distribution drift V7.

Theorem 1. Under the same assumptions as Lemma 1, UOGD in Eq. (4) with step size 1 satisfies

E[Reng] < 2KG? o2 4 BYYT + 1%y +4(T +1)y/BVrT/y = O<71T+1/77+ VA (VTT)/n), 5)

where the constant o > 0 denotes the minimum singular value of the invertible confusion matrix C'y,.
Moreover, Vi = ZtT:2 | tty, — by, . |1 measures the intensity of the label distribution shift.

The proof of Theorem 1 can be found in Appendix E.1. The dynamic regret guarantee is obtained in
a non-trivial way, and below we expand the technical innovations.

Remark 3 (Non-stationarity measure for OLaS). For readers who are familiar with the literature,
our result is reminiscent of the existing dynamic regret bound in the OCO studies [17, 27] on the
surface; however, our result exhibits fundamental differences. The key caveat is that in our case the
comparator w; at each round is not the minimizer of the online function. Specifically, as the expected
risk Ry is inaccessible, one has to work on the unbiased risk estimator }A%t and requires optimizing the
empirical dynamic regret Zle Ri(wy) — Zle Ry(w}). Importantly, w; € arg ming, cyy Ry (W)
but w; ¢ argmingcyy }Ait(w) in general. Although the empirical dynamic regret can be trivially

bounded by 23:1 Ri(wy) — Zthl mingeyw R¢(w), the bound will then be loose and related to
temporal variation of risk estimators [17, 27], making it hard to establish relationship to the natural
non-stationarity measure of OLaS: V7.* On the other hand, there exist studies benchmarking dynamic
regret with other choices of comparators [20, 18], but the bounds scale with the consecutive variation

“Besbes et al. [17] also considered a more general setting with noisy function value feedback. In such cases,
the comparator is not the exact minimizer of the online function at each round, and their algorithm will require a
periodical restart to deal with the non-stationarity. By contrast, ours does not require the restart in the algorithm.



Algorithm 1 ATLAS: base-algorithm Algorithm 2 ATLAS: meta-algorithm

Input: stepsizen; € H Input: step size pool H; learning rate ¢

1: let wy ; be any point in W 1: initialization: Vi € [N],p;; = 1/N

2: fort =2to T do N 2: fort =2to T do

3:  construct the risk estimator R, as (3)  3:  receive {wy;};*, from base-learners

4:  update the model of base-learner by 4:  update weight p; € Ay according to
wyi = Ihy[wi_1; — ﬂiVﬁtq(WFu)] Pt,i o exp(—¢ Zf;:ll Rs(ws,i)), i € [N]

5:  send wy ; to the meta-algorithm 5. predict final output w;, = Zf\/: L PiWe

6: end for 6: end for

of comparators ZtT:2 |lwy — wi_;||2, whose relation to V7 is also unclear. To address the difficulty,
drawing inspiration from [28], we decompose the expected dynamic regret into two parts: (i) the
analysis of the first part relies on an in-depth analysis of the empirical dynamic regret of UOGD
to track a specific sequence of piecewise-stationary comparators to avoid undesired variation of
comparators; and (ii) the analysis of the second part is directly conducted on the original risk
functions to attain a non-stationarity measure only related to the underlying label distribution shift.

From the upper bound in Eq. (5), we can observe that a proper step size tuning is crucial. Specifically,
it can be verified that when the environment is near-stationary (more precisely, Vpr < ©(T *%)),

simply choosing 7 = ©(1/+/T) ensures an O(+/T') dynamic regret, which is known to be minimax
optimal even for the weaker measure of static regret [29]. Thus, in the following, we focus on the

non-degenerated OLaS situation where Vp > @(T*% ), and then the dynamic regret upper bound can
1
be further simplified as O(nT + 1/n+ /(VrT)/n). As a result, UOGD can attain an O(V? T%)

1
dynamic regret by setting the step size optimally as n = ©(T ’%VTB ). According to the lower bound
results of Besbes et al. [17], we know that UOGD with an optimal step size tuning ensures a minimax
optimal dynamic regret guarantee, see more discussions on the minimax optimality in Appendix E.3.

However, the optimal step size n* = G(T*%VTE) crucially depends on the label distribution drift

Vr = Zthz |ty — tty, . ||1, Which measures the non-stationarity and is unfortunately unknown to
the learner. It is worth emphasizing that the problem cannot be addressed by standard adaptive step
size tuning mechanisms in online learning literature, such as the doubling trick [30] or self-confident
tuning [31], in that the variation quantity V cannot be empirically evaluated as it is defined over
the underlying label distribution D; (y) inaccessible to the learner. Even diving into the analysis of
Theorem 1, the adaptive tuning requires the knowledge of original risk functions { R;}._,, which are
also unavailable. Intuitively, the hardness of such optimal step size tuning essentially comes from the
uncertainty of the non-stationary label shifts.

To overcome the difficulty, inspired by recent advances in non-stationary online learning [18, 19],
we propose an online ensemble algorithm for the OLaS problem called ATLAS (Adapting To LAbel
Shift). Specifically, to cope with the uncertainty in the optimal step size tuning, we first design a pool
of candidate step sizes denoted by H = {n,...,nn} such that n, can be well approximated by at
least one of those candidates, which will be configured later and here N is the number of candidate
step sizes. Then, ATLAS deploys a two-layer structure by maintaining a group of base-learners,
each associated with a candidate step size from the pool H and then employs a meta-algorithm to
track the best base-learner. The main procedures are presented in Algorithm 1 (base-algorithm) and
Algorithm 2 (meta-algorithm), and we describe the details below.

Base-algorithm. We parallelly run a group of instances of UOGD, each one is associated with a
candidate step size in the step size pool H. Formally, the i-th base-learner yields a sequence of base

models {w, ;}Z_;, which is updated by w; ; = Ilyy[w;_1,; — mVﬁt_l(wt_lﬂ;)} with n; € H.

Meta-algorithm. The meta-algorithm aims to combine all the base-learners’ decisions such that
the final output is competitive with the decisions returned by the (unknown) base-learner associated
with the best step size. To achieve this, we employ a weighted combination mechanism with the
final model as w; = Zf\; Dt iWy i, where p; € Ay is the weight vector with p, ; denoting the
weight of the ¢-th base-learner. We use the classic Hedge algorithm [32] to update the weight vector,
namely, p; ; X exp ( —€ 22;11 fis (wsﬂ;)), where € > 0 is the learning rate of the meta-algorithm



that can be simply set as O(1/(In N)/T') without dependence on label shift quantity. Intuitively, the
meta-algorithm puts larger weights on base-learners with a smaller cumulative estimated risk so that
the overall models {w;}7_, can be competitive to the base-learner with the best performance.

ATLAS enjoys the following dynamic regret guarantee with the proof in Appendix E.2.

Theorem 2. Set the step size pool as H = {n; = QGI:/'K—T 271 | i € [N}, where

N = 1+ [Llogy(1 + 2T)] is the number of base-learners. ATLAS ensures that E[Regd] <
O(maX{VT%T%, VT}), or simplified as O(VT%T% ) for non-degenerated cases of Vip > @(Tfé ).

Theorem 2 shows that ATLAS enjoys the same dynamic regret as UOGD with the (unknown) optimal
step size, but unknown non-stationarity Vr is no more required in advance. Algorithmically, our
online method maintains N = ©(log T') base-learners to achieve an optimal dynamic regret, which
would be computationally acceptable given a logarithmic dependence on 7'

3.3 More Adaptive Algorithm by Exploiting Label Shift Structures

ATLAS is equipped with a minimax optimal dynamic regret, which indicates that it can safeguard the
optimal theoretical property in the worst case. Worst-case optimality serves as the “stress-testing” for
the robustness to non-stationarity environments [33]. At the same time, more adaptive results beyond
the worst-case analysis are also urgently desired, as improved performance is naturally expected in
many easier situations when the shift admits specific patterns such as periodicity or gradual evolution.

To this end, we propose an improved algorithm called ATLAS-ADA with provably more adaptive
guarantees. The key idea is to exploit the label shift patterns and reuse historical information to help
the current online update [34]. We build on the framework of optimistic online learning [35, 36] by
introducing a hint function H; : YW — R to encode shift patterns from historical data, which serves
as an estimation of the expected risk R;(w;). Below, we start with a given hint function and describe
the usage, and finally elaborate on how to design H;(-) guided by the theory.

Similar to ATLAS, the improved ATLAS-ADA also deploys a two-layer meta-base structure. The key
difference lies in the usage of the hint function at both the base-level and meta-level.

Base-algorithm. Besides the gradient descent step as did in ATLAS, another update step related to
the hint function H,(-) is performed. Concretely, the i-th base-learner updates the parameters by

3 (6)
where VAVM is an intermediate output and wy ; is the final returned model. When H;(w) = 0 (i.e.,
without a hint function), the above two-step update simply degenerates to the same UOGD update in
the base-learner of ATLAS by noting that now w; ; = vAvt,i. In the general H(-) case, the second step
in (6) is crucial and can be regarded as another descent towards the direction specified by the hint
function. As a result, this will reduce the regret whenever the hint function is set appropriately to
approximate well the next-round risk function, which will be clear in the regret bound presented later.

V?/'tﬂ‘ = HW [‘/)\Vt_l,i _niv;\{t—l(wt—l,i)]; Wt,i = arg minwew ’Ith(W) +1/2' HW_‘/"\/t,i

Meta-algorithm. The meta-algorithm is used to track the best base-learner, and the hint function
H,(-) is also necessary to be considered in the update to achieve the adaptivity. To this end, we inject
the hint function as the loss evaluation of the meta-algorithm, and then the weight is updated by
Dt,i X €XP (75( Zi;ll ﬁs (ws,) + Hy (w“))) for all ¢ € [IN], where ¢ is the learning rate that can
be set properly without dependence on V. The key distinction to the meta-algorithm of ATLAS is
the additional loss H,(wy ;) evaluated over the current local models {w, ;}¥ ; by the hint function.

The main procedures are presented in Algorithm 4 (base-algorithm) and Algorithm 5 (meta-algorithm).
We have the following dynamic regret bound for ATLAS-ADA (proof in Appendix F.2).

Theorem 3. Suppose the hint function H; : W — R is convex, satisfies maxwew||VHi(w)|l2 <
maXwew ||V§t (W)||2, and is independent of current data Sy. Set the step size pool as H = {n; =
ﬁ 2071 i € [N]} with N = 2+ [41og,(3T(1 + 4G*KT/0))]. ATLAS-ADA ensures
E[Regd] < O(V%/?’GIT/?’TUB), where Gp = Zle E[supweWHVﬁt(w) — VH(w)||3] measures
the reusability of historical information, depending on label shift patterns and hint function designs.

In the worst case, G is at most O(T) given a bounded gradient norm ||V H;(w)||2, and thus
the bound presented in Theorem 3 safeguards the same O(V%/ 2/ 3) bound as ATLAS. More



importantly, when the hint function H,(-) encodes beneficial information and is close to the risk
function, the obtained bound can be substantially better than the minimax rate.

Remark 4 (Implicit update). Problem-dependent dynamic regret was first presented in [19] for
convex and smooth functions. However, their result critically relied on the smoothness condition,
which is not satisfied in our OLaS case. Our key technical innovation is the implicit update in
the second step of (6). The previous method required the gradient-descent type update w; ; =
Mwew Wy — 17, VH(w¢_1,)], which can be deemed as an approximated optimization over the
linearized loss (V H;(w;_1;), w). By contrast, we directly updates over the original function Hy(w),
hence called the “implicit” update [37, 38]. Albeit with slightly larger computational complexity
(which will not be a barrier given a proper design of hint functions), our method enjoys the same
dynamic regret without smoothness, which could be of independent interest for general OCO purposes.

Design of Hint Functions. The hint functions should minimize the reusability measure G to
sharpen the dynamic regret as suggested by Theorem 3. Recall that R;(w) = Zszl [By.],, - RE(w).
Thus, a natural construction is Hy(w) = 31, [hy, |- RE (w) parametrized by hint priors h,, € RE,

which is used to estimate the class prior based on the past observed data {S }t . Then, Gt satisfies
the bias-variance decomposition (with bias term E[||h,, — py, ||3] and variance term E[|| ey, — By, |13]):

Gr < KG?Y | By, ~ iy 8] <26G* 32 (E [lhy, — oy, B + B [l1ay, — 0, 18] ).

Setting h,, = p,, will make the upper bound tightest possible, though the underlying class prior fs,,
is not accessible in practice. So the design of the hint function is actually a task of approximating
it with different parts of previous data guided by prior patterns. In the experiments, we design four
hint functions by encoding different knowledge, including Forward Hint (Fwd), Window Hint (Win),
Periodic Hint (Peri), and Online KMeans Hint (OKM). More details are in Appendix F.1.

4 [Experiments

In this section, we conduct extensive experiments to validate the effectiveness of the proposed
methods (ATLAS and ATLAS-ADA) and justify the theoretical findings. We begin this section with
a brief introduction to the experimental setups (more details are deferred to Appendix A) and then
present empirical results on the synthetic and real-world data, respectively.

Experiments Setup. We compare seven algorithms in various experimental configurations. The
contenders include a baseline that predicts with the initial model directly (FIX), three OLaS algorithms
proposed by the previous work [16] (ROGD, FTH, and FTFWH), and our proposals (UOGD, ATLAS,
and ATLAS-ADA) with the logistic regression model. Besides, we simulate four types of label
shift on synthetic and benchmark data to capture different distribution change patterns. Two of
them, including Sine Shift (/1) and Square Shift ([/ll) change in a periodic pattern. The
other two have no periodic structure but are introduced to capture different shift intensities. The
underlying distribution changes slowly in the Linear Shift (™) while changes fast in Bernoulli
Shift (1 H) We repeat all experiments for five times and evaluate the contenders by the average

error Zt 1 \St letl 1[f (wW,%xp) # yn] over T = 10, 000 rounds.

4.1 TIllustrations on Synthetic Data

This subsection first compares all contenders on the synthetic data. Then, we further illustrate the
effectiveness of our proposal by a closer look at the two key components, including a meta-base
structure for step size search and a hint function for historical information reuse.

Overall Performance Comparison. Table | compares ATLAS with other methods when N, = 100
samples are received at every iteration. Basically, FIX is inferior to the online methods, which shows
the necessity of designing online algorithms for the OLaS problem. Besides, UOGD outperforms
ROGD, the OGD algorithm running with the risk estimator proposed by [16]. The comparison
demonstrates the empirical superiority of our estimator besides its benign theoretical properties.
Moreover, the ATLAS surpasses almost all other methods in the four shift patterns. In particular, it
achieves a significant advantage over UOGD (with step size 7 = ©(T~'/?)) when the environments
change relatively fast (Squ, Sin, and Ber). The results justify our theoretical finding that the small



Table 1: Average error (%) for different algorithms Step Size (7): M0.1 M0.2 W0.4 W0.8 W1.6 M3.2 6.4 12.8
under various simulated shifts for the synthetic data. 10 10
The best algorithms are emphasized in bold (paired
t-test at a 5% confidence level).

Weight Assignment
°

2 20.2-
Lin Squ Sin Ber 0.0%0 1o Tor 1o 00750 1ot 102 108
Iterations Iterations
FIX  7.87+0.03 7.874£0.02 7.34+0.03 7.79+0.02 ] ] ' ]
FTH  4.7040.02 6.50+0.01 6.364+0.03 6.60+£0.01 (a) Linear shift (b) Bernoulli shift

FTFWH 527+0.02 6.5240.01 6.3640.02 6.60+0.01 . . ) .
ROGD  6.08£0.01 7.1140.01 6.87+0.02 6.40+001 Figure 1: Weight assigned of the ATLAS algorithm

UOGD  5.3540.02 6.17£0.01  6.37+0.01 5.46+£0.05  for each step size along the learning process. Different
ATLAS 544002 4274002 5752001 4044007 (1605 are used to indicate different step sizes.

Table 2: Average error (%) for ATLAS-ADA with four hint functions under different sample sizes. The best one
is emphasized in bold. Besides, e indicates a better result than ATLAS without hint (None).

Shift Sample Size: 1 Sample Size: 10 Sample Size: 100
Type None Win Peri Fwd  OKM None Win Peri Fwd  OKM None Win Peri Fwd  OKM

628 589 599 601 535 561 547 543 553 542 5.44 544 538 540 5.45
+021 +£026 +029 +£031 +£031 +004 £004 +£003 +005 £005 +£002 +003 £002 +002 =+0.03
6.03 583 527 588 5.07 4.59 469 385 372 391 4.27 468 339 333 346
+023 +£024 +020 £023 +£035 +002 £0.02 +£004 +002 =£003 +£002 +002 =£0.03 +003 +0.04
in 690 658 €659 643 525 6.12 599 583 578 586 5.75 578 553 548 558
+022 +£022 £025 £026 £022 +£007 +006 +005 +005 +£004 £001 =£001 =£0.00 =+0.01 =+0.00

555 542 543 563 4.69 4.39 4.45 443 366 373 4.04 429 426 319 345
+£0.09 +£0.11 +£009 £0.16 +£0.17 +£0.10 £0.08 +£0.10 +0.10 £0.06 +£007 +006 =£0.06 +007 =£0.11

Lin

step size @(T*I/ 2) suggested by the static regret analysis is unsuitable for the dynamic environments.
Our method can better adapt to the changing environments by enjoying the dynamic regret guarantees.

Effectiveness of Meta-Base Structure. One key component of our method is the meta-base
structure to address the non-stationarity. To better illustrate its effectiveness, we visualize the weights
pr,; assigned for each base-learner of ATLAS. As shown in Figure 5, the meta-algorithm can quickly
assign larger weights to appropriate base-learners along the learning process. Specifically, Figure 1(a)
illustrates the case of slowly changing environments, where more weights are assigned to the base-
learners with small step sizes. In the fast-changing case, see Figure 1(b), larger step sizes are preferred.
The results show that our algorithm can adaptively track the suitable step sizes according to the shift
intensity of environments. Additional results for other shifts can be found in Figure 5.

Effectiveness of Using Hint Functions. Table 2 reports the performance of ATLAS-ADA with four
different hint functions under sample sizes are N; = 1, 10, and 100. All hint functions improve over
vanilla ATLAS in most cases. When N, is reasonably large, the Fwd hint, performing transductive
learning with current unlabeled data, achieves the best performance. While, the OKM hint, which
learns previous patterns by online k-means, is the best choice for a small sample size case (N, = 1).

To illustrate how the hint function works, we further vary the buffer size of the Periodic Hint (Peri)
on the Squ environment (llllll), which shifts in a periodic length L = 40. As shown in Figure 2, when
the buffer size matches the multiples of length L, Peri can significantly improve the vanilla ATLAS.
Besides the improvement, our method is shown to achieve comparable performance with ATLAS
even if the buffer size is misspecified. The result validates our theoretical guarantee of the safety of
using hint functions (the readers can refer to the paragraph above Remark 4).

4.2 Comparisons on Real-world Data

We conduct experiments on real-world data, including six benchmark datasets (ArXiv, EuroSAT,
MNIST, Fashion, CIFAR10, and CINIC10) and the SHL dataset [39] for the real-life locomotion
detection task. Table 3 reports the averaged error of different algorithms, which shows a similar
tendency as the results in the synthetic experiments. When the distribution changes rapidly (Ber),
ATLAS and ATLAS-ADA outperform other contenders. Similar results are also observed in the Sine
and Square shift, see Appendix A.1 for details. Even in a relatively stationary environment (Lin),
our algorithms are comparable with the best algorithm (UOGD), which is specifically designed for
stationary cases. The above results validate the adaptivity of the proposed algorithms.

Further, we highlight the results on the locomotion detection task. The task aims to distinguish six
types of locomotion with sensor data from mobile phones. Figure 3(a) reports the averaged error of
all contenders, which shows the superiority of our proposals ATLAS and ATLAS-ADA (with the OKM
hint) over the entire time horizons. In addition, to further validate the adaptivity of our algorithm



Table 3: Average error (%) of different algorithms on various real-world datasets (Lin and Ber). We report
the mean and standard deviation over five runs. The best algorithms are emphasized in bold. “e” indicates the
algorithms that are significantly inferior to ATLAS-ADA by the paired ¢-test at a 5% significance level. Here

AT-ADA represents ATLAS-ADA (with OKM). The online sample size is set as Ny = 10.

Lin Ber

FIX FTH FTFWH ROGD UOGD ATLAS AT-ADA FIX FTH FTFWH ROGD UOGD ATLAS AT-ADA

ArXiy ©3028 2818 ©2574 «23.09 21.04 2210 21.28 30.63 27.69 02850 2482 2153 e2l.11 20.58
+0.07  +0.28 +0.21 +020  £0.11 +0.09 +0.09 +£020 +0.13 +0.19  +0.11 +0.68 +0.70 +0.69

EuroSAT * 14.06 e11.16 e 9078 1256 7.04 o 7.19 713 e14.12 1048 ©10.50 e 9.06 e 728 e 699 6.91
+0.09  £0.11 +0.12  £3.16  £0.11 +0.10 +0.11 +0.13  +0.09 +0.08  £0.05  +0.04 +0.03 +0.05

MNIST °* 1.79 e 138 e 120 e 125 1.06 1.06 1.06 o 181 e 129 o 134 e 133 e 112 1.03 1.03
+0.02  +0.03 +0.02  £0.02  +0.02 +0.02 +0.02  £0.05 +0.03 +0.03  +£0.03  +0.02 +0.02 +0.02

Fashion * 11.86 e 847 7.84 8.18 795 o 836 8.04 e11.85 e 848 e 869 e 872 e 823 e 791 7.69
+0.04  £0.07 +0.06  £0.07  £0.08 +0.07 +0.08  +£0.09  +0.11 +0.10  +0.08  +0.12 +0.12 +0.12

CIFAR10 °* 20.77 1736 15.77 1845 1554 1577 1562 2082 17.06 01696 1766 1593 1498 14.80
+0.12  +0.14 +0.12  £047  £0.15 +0.11 +0.14  £0.12  +0.14 +0.15  £0.13  +0.29 +0.30 +0.29

CINICI0  ® 3398 28385 ©26.87 3254 26.21 ©26.66 2638 3411 2848 ©2844 2890 20663 2585 25.63

+0.22  £0.10 +£0.13  £2.59  £0.15 +0.19 +0.16  £035  +0.17 +0.19  £0.19  £0.55 +0.58 +0.60
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Figure 2: Average error of Peri hint (a) overall performance (b) weight heatmap

with different buffer sizes. ATLAS-

ADA enjoys a significant improvement ~ Figure 3: (a) Overall performance comparison on the locomotion
with proper buffer sizes while still ~ detection task. (b) The heatmap of the final round weights for each
safeguarding similar performance as  step size. A larger Vr implies a larger intensity of distribution shift.
ATLAS even the size is misspecified. The darker color in the heatmap indicates the larger weight.

to the underlying environment regardless of the fast or slow changes, we simulate various shift
intensities by sampling the original data with different frequencies. Figure 3(b) shows the weight
assignment of ATLAS-ADA for each step size in the final round. Our method automatically selects a
larger step size for larger Vr while tracking a small step size in a relatively static scenario.

5 Conclusion

This paper proposed algorithms for online label shift with provable guarantees. We constructed
an unbiased risk estimator without using any supervision at test time. Then, we designed novel
online ensemble algorithms that automatically adapt to the non-stationary online label shift and enjoy
problem-dependent dynamic regret. Our proposed ATLAS algorithm employed a meta-base structure

to handle the non-stationarity and obtained an (D(VT1 /372 3) guarantee, and ATLAS-ADA further

introduced hint functions to exploit the shift structure and obtained an improved (’)(V%/ 3G¢1F/ S/ 3)
guarantee. Extensive experiments validated the effectiveness of the proposed algorithms.

Our study serves as a preliminary attempt to bridge the distribution change problem and online
learning techniques by focusing on the label shift case. Considering a more general distribution
change setting is an important future direction. Besides, our current algorithm is designed for the most
challenging unlabeled scenario, and it is interesting to consider relaxed real-world demand where a
few labels could be available in the learning process. Moreover, our obtained regret guarantees hold
in expectation, and we will take high-probability bounds as the future work.
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