
UDC: A Unified Neural Divide-and-Conquer
Framework for Large-Scale Combinatorial

Optimization Problems

Zhi Zheng1 Changliang Zhou1 Xialiang Tong2 Mingxuan Yuan2 Zhenkun Wang1∗
1 School of System Design and Intelligent Manufacturing,

Southern University of Science and Technology, Shenzhen, China
2 Huawei Noah’s Ark Lab, Shenzhen, China.

zhi.zheng@u.nus.edu, zhoucl2022@mail.sustech.edu.cn,
{tongxialiang, yuan.mingxuan}@huawei.com, wangzhenkun90@gmail.com

Abstract

Single-stage neural combinatorial optimization solvers have achieved near-optimal
results on various small-scale combinatorial optimization (CO) problems without
requiring expert knowledge. However, these solvers exhibit significant perfor-
mance degradation when applied to large-scale CO problems. Recently, two-stage
neural methods motivated by divide-and-conquer strategies have shown efficiency
in addressing large-scale CO problems. Nevertheless, the performance of these
methods highly relies on problem-specific heuristics in either the dividing or
the conquering procedure, which limits their applicability to general CO prob-
lems. Moreover, these methods employ separate training schemes and ignore
the interdependencies between the dividing and conquering strategies, often lead-
ing to sub-optimal solutions. To tackle these drawbacks, this article develops
a unified neural divide-and-conquer framework (i.e., UDC) for solving general
large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training
method to eliminate the negative impact of a sub-optimal dividing policy. Employ-
ing a high-efficiency Graph Neural Network (GNN) for global instance dividing
and a fixed-length sub-path solver for conquering divided sub-problems, the pro-
posed UDC framework demonstrates extensive applicability, achieving superior
performance in 10 representative large-scale CO problems. The code is avail-
able at https://github.com/CIAM-Group/NCO_code/tree/main/single_
objective/UDC-Large-scale-CO-master

1 Introduction

Combinatorial optimization (CO) [1] has numerous practical applications including route planning [2],
circuit design [3], biology [4], etc. Over the past few years, neural combinatorial optimization (NCO)
methods are developed to efficiently solve typical CO problems such as the Travelling Salesman
Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP). Among them, reinforcement
learning (RL)-based constructive NCO methods [5, 6] can generate near-optimal solutions for
small-scale instances (e.g., TSP instances with no more than 200 nodes) without the requirement
of expert knowledge [7]. These solvers usually adopt a single-stage solution generation process,
constructing the solution of CO problems node-by-node in an end-to-end manner. However, hindered
by the disability of training on larger-size instances directly [8, 9, 10], these methods exhibit limited
performance when generalizing to solve large-scale CO problems.

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master
https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master

Table 1: Comparison between our UDC and the other existing neural divide-and-conquer methods.
The proposed UDC utilizes learning-based policies in both the dividing and conquering stages.
Moreover, UDC is the first to achieve a superior unified training scheme by considering the negative
impact of sub-optimal dividing policies on solution generation.

Neural Divide-and-Conquers Dividing Policy Conquering Policy Impact of Divide Train the Two-policies
Methods Problem Neural✓/Heuristic× Consider✓/Ignore× Unified✓/Seperate×
LCP [24] TSP,CVRP ✓ ✓ × ×
L2D [22] CVRP ✓ × × ×
H-TSP [20] TSP ✓ ✓ × ×
RBG [23] CVRP & CVRP variants ✓ ✓ × ×
TAM [12] CVRP ✓ ✓ × ×
SO [21] TSP × ✓ × ×
GLOP [13] (A)TSP, CVRP, PCTSP ×1 ✓ × ×
UDC(Ours) General CO Problems ✓ ✓ ✓ ✓

To meet the demands of larger-scale CO applications, researchers have increasingly focused on
extending NCO methods to larger-scale instances (e.g., 1,000-node ones) [11]. Existing NCO
methods for large-scale problems primarily involve modified single-stage solvers [6] and neural
divide-and-conquer methods [12, 13]. BQ-NCO [14] and LEHD [8] develop a sub-path construction
process [15] and employ models with heavy-decoder to learn the process. Nevertheless, training
such a heavyweight model necessitates supervised learning (SL), which limits their applicability to
problems where high-quality solutions are not available as labels. ELG [6], ICAM [16], and DAR [17]
integrate auxiliary information to guide the learning of RL-based single-stage constructive solvers
[5]. However, the auxiliary information needs problem-specific designs, and the O(N2) complexity
caused by the self-attention mechanism also poses challenges for large-scale (N -node) problems. As
another category of large-scale NCO, neural divide-and-conquer methods have attracted increasing
attention. Inspired by the common divide-and-conquer idea in traditional heuristics [18, 19], these
methods execute a two-stage solving process, including a dividing stage for overall instance partition
and a conquering stage for sub-problem solving. By employing neural network for one or both stages,
TAM [12], H-TSP [20], and GLOP [13] have demonstrated superior efficiency in large-scale TSP
and CVRP.

Despite acknowledging the prospect, these neural divide-and-conquer approaches still suffer from
shortcomings in applicability and solution quality. Some neural divide-and-conquer methods rely on
problem-specific heuristics in either dividing (e.g., GLOP [13] and SO [21]) or conquering stages
(e.g., L2D [22] and RBG [23]), which limits their generalizability across various CO problems.
Moreover, all the existing neural divide-and-conquer methods adopt a separate training process,
training the dividing policy after a pre-trained conquering policy [13, 12, 20]. However, the separate
training scheme overlooks the interdependencies between the dividing and conquering policies and
may lead to unsolvable antagonisms. Once the pre-trained conquering policy is sub-optimal for
some sub-problems, such a training scheme might guide the dividing policy to adapt the pre-trained
sub-optimal conquering policy, thus converging to local optima.

As shown in Table 1, this paper finds that considering the negative impact of sub-optimal dividing
results is essential in generating high-quality divide-and-conquer-based solutions. To this aim, we
propose a novel RL-based training method termed Divide-Conquer-Reunion (DCR). Enabling the
DCR in a unified training scheme, we propose the unified neural divide-and-conquer framework
(UDC) for a wide range of large-scale CO problems. UDC employs a fast and lightweight GNN to
decompose a large-scale CO instance into several fixed-length sub-problems and utilizes constructive
solvers to solve these sub-problems. We conduct extensive experiments on 10 different CO problems.
Experimental results indicate that UDC can significantly outperform existing large-scale NCO solvers
in both efficiency and applicability without relying on any heuristic design.

The contributions of this paper are as follows: 1) We propose a novel method DCR to enhance training
by alleviating the negative impact of sub-optimal dividing policies. 2) Leveraging DCR in training,
the proposed UDC achieves a unified training scheme with significantly superior performance. 3)
UDC demonstrates extensive applicability and can be applied to general CO problems with similar
settings.

1GLOP [13] utilizes heuristic dividing policy for TSP and Asymmetric TSP (ATSP) and neural dividing
policy for CVRP and Prize Collecting TSP (PCTSP).

2

2 Preliminaries: Neural Divide-and-Conquer

2.1 Divide-and-Conquer

A CO problem with N decision variables is defined to minimize the objective function f of a solution
x = (x1, x2, . . . , xN) as follows:

minimize
x∈Ω

f(x,G) (1)

where G represents the CO instance and Ω is a set consisting of all feasible solutions.

Leveraging the divide-and-conquer idea in solving CO problems is promising in traditional
(meta)heuristic algorithms [25], especially large-neighborhood-search-based algorithms [26, 27].
These methods achieve gradual performance improvement from an initial solution through iterative
sub-problem selection (i.e., the dividing stage) and sub-problem repair (i.e., the conquering stage).
Recent neural divide-and-conquer methods conduct a similar solving process and employ efficient
deep-learning techniques to model the policies of both stages [13]. The dividing policy πd(G) decom-
poses the instance G to K mutually unaffected sub-problems {G1,G2, . . . ,GK} and the conquering
policy πc generates sub-solutions sk for k ∈ {1, . . . ,K} by sk ∼ πc(Gk) to minimize the objective
function f ′(sk,Gk) of corresponding sub-problems. Finally, a total solution x of G is merged as
x = Concat(s1, . . . , sK).

2.2 Constructive Neural Solver

The (single-stage) constructive NCO solvers are promising in solving general small-scale CO prob-
lems with time efficiency. These constructive solvers typically employ an attention-based encoder-
decoder network structure, where a multi-layer encoder processes CO instances into embeddings
in hidden spaces and a lightweight decoder handles dynamic constraints while constructing feasi-
ble solutions [5]. With the solving process modeled as Markov Decision Processes (MDPs) [28],
constructive solvers can be trained using deep reinforcement learning (DRL) techniques without
requiring expert experience. In the solution generation process, constructive solvers with parameter θ
process the policy π of a τ -length solution x = (x1, . . . , xτ) as follows:

π(x|G,Ω, θ) =
τ∏

t=1

pθ(xt|x1:t−1,G,Ω), (2)

where x1:t−1 represents the partial solution before the selection of xt. DRL-based constructive NCO
solvers demonstrate outstanding solution qualities in small-scale CO problems. So existing neural
divide-and-conquer methods [13, 21] also generally employ a pre-trained constructive neural solver
(e.g., Attention Model [28]) for their conquering policy πc.

2.3 Heatmap-based Neural Solver

Advanced constructive NCO solvers rely on the self-attention layers [29] for node representation,
whose quadratic time and space complexity related to problem scales [30] hinders the direct training
on large-scale instances. So, heatmap-based solvers [31, 32] are proposed to solve large-scale CO
problems efficiently by a lighter-weight GNN [33]. In heatmap-based solvers for vehicle routing
problems (VRPs), a GNN with parameter ϕ first generates a heatmapH ∈ RN×N within linear time
[34] and a feasible solution is then constructed based on this heatmap with the policy [35] as follows:

π(x|G,Ω, θ) = pθ(H|G,Ω)p(x1)

τ∏
t=2

exp(Hxt−1,xt
)∑N

i=t exp(Hxt−1,xi)
, (3)

However, the non-autoregressively generated heatmap [36] excludes the information about the order
of the constructed partial solution x1:t−1, so the greedy decoding policy in heatmap-based solvers
becomes low-quality and these solvers rely on search algorithms [37, 38] for higher-quality solutions.

3 Methodology: Unified Divide-and-Conquer

As shown in Figure 1, UDC follows the general framework of neural divide-and-conquer methods [13],
solving CO problems through two distinct stages: the dividing stage and the conquering stage. The

3

Large-scale VRP

 Large-scale KP

 Large-scale MIS

weight

value

...

...

Dividing Stage

Anisotropic
Graph

Neural Network

Initial VRP Soltion

weight

value

...

...

Initial KP Soltion

Initial MIS Soltion

General CO problems

Sub-MIS Problem
Instances

weight

value

weight

value

Sub-KP Instances

Sub-VRP Instances

VRP solver

Transformers

KP solver

MIS solver Sub-MIS Solution

weight

value

weight

value

Sub-KP Solution

Conquering Stage

Unselected
item in KP

Selected
item in KP

Unselected
nodes in MIS

Selected nodes
in MIS

Nodes restricted to
unselected in sub-MIS

Nodes restricted to be starting
or ending nodes in sub-VRP

Merged VRP Soltion

weight

value

...

...

Merged KP Soltion

Merged MIS Soltion

Sub-VRP
Preparation

Normalize

VRP Heatmap

KP Heatmap

MIS Heatmap

Sub-MIS
Preparation

Sub-KP
Preparation

Sub-VRP Solution

Figure 1: The solving process of the proposed UDC on large-scale VRP, 0-1 Knapsack Problem (KP),
and Maximum Independent Set (MIS).

dividing stage of UDC is expected to generate a feasible initial solution with a similar overall shape
compared to the optimal solution, so the subsequent conquering stage can obtain more high-quality
solutions by solving local sub-problems. For all the involved CO problems, UDC first constructs a
sparse graph to represent the instance and then employs a heatmap-based solver with Anisotropic
Graph Neural Network (AGNN) as the dividing policy [39, 40] to generate initial solutions. The
following conquering stage first decomposes the original CO instance into multiple sub-problems
based on the initial solution while integrating the necessary constraints for sub-problems. Then,
towards minimizing the decomposed objective function of the sub-problem, UDC uses constructive
neural solvers as the conquering policy to generate sub-solutions. There is no single universal
constructive neural solver that can handle all types of CO problems [41, 42], so we employ suitable
solvers for each sub-CO-problem (e.g., AGNN [39] for MIS, POMO [5] or ICAM [16] for VRPs).

3.1 Pipeline: Dividing Stage & Conquering Stage

Dividing Stage: Heatmap-based Neural Dividing: Heatmap-based solvers require less time
and space consumption compared to constructive solvers, so they are more suitable for learning
global dividing policies on large-scale instances. The dividing stage first constructs a sparse graph
GD = {V,E} (i.e., linking K-nearest neighbors (KNN) in TSP, or original edges in G for MIS) for
the original CO instance G. Then, we utilize Anisotropic Graph Neural Networks (AGNN) with
parameter ϕ to generate the heatmapH. For N -node VRPs, the heatmapH ∈ RN×N and a τ -length
initial solutions x0 = (x0,1, . . . , x0,τ) is generated based on the policy πd as follows:

πd(x0|GD,Ω, ϕ) =

p(H|GD,Ω, ϕ)p(x0,1)

τ∏
t=2

exp(Hx0,t−1,x0,t
)∑N

i=t exp(Hx0,t−1,x0,i)
, if x0 ∈ Ω

0, otherwise

. (4)

Conquering Stage: Sub-problem Preparation: The conquering stage first generates pending sub-
problems along with their specific constraints. For VRPs, the nodes in sub-VRPs and the constraints of
sub-VRPs are built based on continuous sub-sequences in the initial solution x0. In generating n-node
sub-problems, UDC divides the original N -node instance G into ⌊Nn ⌋ sub-problems {G1, . . . ,G⌊N

n ⌋}
according to x0, temporarily excluding sub-problems with fewer than n nodes. The constraints
{Ω1, . . . ,Ω⌊N

n ⌋} of sub-problems include not only the problem-specific constraints (e.g., no self-
loop in sub-TSPs) but also additional constraints to ensure the legality of the merged solution after

4

Solution: Local perspective

CO instance

AGNN

Dividing Policy
on Sparse Graph ℊD

Initial Solution �0

 Sub-problems

Solution �1

Divide Conquer Reunion

Divide

every n
nodes

Dividing Stage Conquering Stage 1

Solution �2

Conquering Stage 2

Starting node
From
Strating
node

Conquering
Policy

Roll the
original

Starting node
by �

2
 , to node

New starting
node

Conquer

Sub-problem ℊ1
0 Sub-problem ℊ2

0

Sub-solution �1
1 Sub-solution �2

1

A segment of initial solution

ConquerConquer
the connection

Sub-problem ℊ1
1

Sub-solution �1
2

Divide

every n
nodes

Conquering
Policy

 Sub-problems

Figure 2: The proposed DCR training method. The upper part shows the pipeline of a single DCR-
enabled training step, including a Divide step, a Conquer step, and a Reunion step. The lower part
provides a local view of a solution fragment to demonstrate our motivation, the additional Reunion
step can repair the wrong connections from sub-optimal sub-problem dividing results. DCR has the
potential to correct sub-optimal dividing results by repairing the connection part in the additional
Reunion step.

integrating the sub-problem solution to the original solution (e.g., maintaining the first and last node
in sub-VRPs). Similar to previous works [13, 43], we also normalize the coordinate of sub-problems
and some numerical constraints to enhance the homogeneity of pending sub-problem instances. Due
to the need to handle different constraints, the sub-problem preparation processes vary for different
CO problems, which is presented in detail in the Appendix B.

Conquering Stage: Constructive Neural Conquering: After the preparation of sub-problems, the
conquering policy is utilized to generate solutions to these instances {G1, . . . ,G⌊N

n ⌋}. We utilize
constructive solvers with parameter θ for most involved sub-CO problems. Their sub-solution
sk = (sk,1, . . . , sk,n), k ∈ {1, . . . , ⌊Nn ⌋} are sampled from the conquering policy πc as follows:

πc(sk|Gk,Ωk, θ) =

n∏

t=1

p(sk,t|sk,1:t−1Gk,Ωk, θ), if sk ∈ Ωk

0, otherwise

, (5)

where sk,1:t−1 represents the partial solution before the selection of sk,t. Finally, as the last step in a
conquering stage, sub-solutions with improvements on the objective function will replace the original
solution fragment in x0 and the merged solution becomes x1. It’s worth noting that the conquering
stage can execute repeatedly on the new merged solution for a gradually better solution quality and
we note the solution after r conquering stages as xr.

3.2 Training Method: Divide-Conquer-Reunion (DCR)

Both the dividing and conquering stages in neural divide-and-conquer methods can be modeled as
MDPs [12] (shown in Appendix C.7). The reward for the conquering policy is derived from the
objective function of the sub-solutions, while the reward for the dividing policies is calculated based
on the objective function of the final merged solution. Existing neural divide-and-conquer methods
cannot train both policies simultaneously with RL [20]. Therefore, they generally employ a separate
training scheme, pre-training a conquering policy on specific datasets before training the dividing
policy [13]. However, this separate training process not only requires additional problem-specific
dataset designs [13] but also undermines the collaborative optimization of the dividing and conquering
policies (further discussed in Section 5.1).

In this paper, we imply that considering the negative impact of sub-optimal sub-problems decom-
position is essential to implement the unified training of both policies. Sub-problems generated
by sub-optimal dividing policies will probably not match any continuous segments in the optimal

5

solution so as shown in Figure 2, despite obtaining high-quality sub-solutions, there may be error
connections emerging at the linking regions of these sub-problems. The naive solving procedure
of neural divide-and-conquer methods ignores these inevitable errors in solution generation, thus
utilizing biased rewards to assess the dividing policy. To tackle this drawback, we propose the
Divide-Conquer-Reunion (DCR) process to eliminate the impact as much as possible. DCR designs
an additional Reunion step to treat the connection between the original two adjacent sub-problems as a
new sub-problem and conduct another conquering stage on x1 with new sub-problem decompositions.
The Reunion step can be formulated as rolling the original start point x1,0 along the solution x1,0 by
l times (i.e., to x1,l) and conquering again. To ensure equal focus on the adjacent two sub-problems,
we set l = n

2 in training all the DCR-enabled UDC models. DCR provides a better estimation for the
reward of dividing policies, thereby increasing the stability and convergence speed in unified training.

UDC adopts the REINFORCE algorithm [44] in training both the dividing policy (with Loss Ld)
and the conquering policy (with Loss Lc1 for the Conquer step and Lc2 for the Reunion step). The
baseline in training dividing policy is the average reward over α initial solutions xi

0, i ∈ {1, . . . , α}
and the baseline for conquering policy is calculated over β sampled sub-solutions. The gradients of
loss functions on a single instance G are calculated as follows:

∇Ld(G) =
1

α

α∑
i=1

[(
f(xi

2,G)−
1

α

α∑
j=1

f(xj
2,G)

)
∇ log πd(x

i
2|GD,Ω, ϕ)

]
,

∇Lc1(G) =
1

αβ⌊Nn ⌋

α⌊N
n ⌋∑

c=1

β∑
i=1

[(
f ′(s1,ic ,G0c)−

1

β

β∑
j=1

f ′(s1,jc ,G0c)
)
∇ log πc(s

1,j
c |G0c ,Ω0

c , θ)
]
,

∇Lc2(G) =
1

αβ⌊Nn ⌋

α⌊N
n ⌋∑

c=1

β∑
i=1

[(
f ′(s2,ic ,G1c)−

1

β

β∑
j=1

f ′(s2,jc ,G1c)
)
∇ log πc(s

2,j
c |G1c ,Ω1

c , θ)
]
,

(6)

where {x1
2, . . . ,x

α
2 } represents the α sampled solutios. There are α⌊Nn ⌋ sub-problems G0c , c ∈

{1, . . . , ⌊Nn ⌋, . . . , α⌊
N
n ⌋} generated based on {x1

0, . . . ,x
α
0 } in the first conquering stage with con-

straints Ω0
c . α⌊Nn ⌋ can be regarded as the batch size of sub-problems, and G1c ,Ω1

c , c ∈ {1, . . . , α⌊Nn ⌋}
is the sub-problems and constraints in the second conquering stage. The β sampled sub-solutions for
sub-problem G0c ,G1c , c ∈ {1, . . . , α⌊Nn ⌋} are noted as {s1,ic , . . . , s1,βc }, {s2,ic , . . . , s2,βc }.

3.3 Application: Applicability in General CO Problems

This subsection discusses the applicability of UDC to various CO problems. Most existing neural
divide-and-conquer methods rely on problem-specific designs, so they are only applicable to limited
CO problems. UDC uses no heuristics algorithms or problem-specific designs in the whole solving
process, thus can be applied to general offline CO problems that satisfy the following three conditions:

• The objective function contains only decomposable aggregate functions (i.e., no functions
like Rank or Top-k).

• The legality of initial solutions and sub-solutions can be ensured with feasibility masks.
• The solution of the divided sub-problem is not always unique.

For the second condition, the proposed UDC is disabled on complex CO problems whose solution
cannot be guaranteed to be legal through an autoregressive solution process (e.g., TSPTW). For the
third condition, on certain CO problems such as the MIS problem on dense graphs or job scheduling
problems, the solution of sub-problems has already been uniquely determined, so the conquering
stages become ineffective.

4 Experiment

To verify the applicability of UDC in the general CO problem, we evaluate the UDC on 10 combi-
natorial optimization problems that satisfy the conditions proposed in Section 3.3, including TSP,
CVRP, KP, MIS, ATSP, Orienteering Problem (OP), PCTSP, Stochastic PCTSP (SPCTSP), Open

6

Table 2: Objective function (Obj.), Gap to the best algorithm (Gap), and solving time (Time) on
500-node. 1,000-node, and 2,000-node TSP and CVRP. All TSP test sets and CVRP500 test sets
contain 128 instances. CVRP1,000 and CVRP2,000 contain 100 instances (following the generation
settings in [13]). The overall best performance is in bold and the best learning-based method is
marked by shade.

N =500 N =1,000 N =2,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time Obj.↓ Gap Time

T
SP

LKH3 16.52 - 5.5m 23.12 - 24m 32.45 - 1h
Attn-MCTS* 16.97 2.69% 6m 23.86 3.20% 12m 33.42 2.99% -
DIMES* 16.84 1.93% 2.2h 23.69 2.47% 4.6h - - -
DIFUSCO+Search* 17.48 5.80% 19m 25.11 8.61% 59.2m - - -
BQ 16.72 1.18% 46s 23.65 2.27% 1.9m 34.03 4.86% 3m
LEHD 16.78 1.56% 16s 23.85 3.17% 1.6m 34.71 6.98% 12m
POMO 20.19 22.19% 1m 32.50 40.57% 8m 50.89 56.85% 10m
ELG 17.18 4.00% 2.2m 24.78 7.18% 13.7m 36.14 11.37% 14.2m
ICAM 16.65 0.77% 38s 23.49 1.58% 1m 34.37 5.93% 3.8m
GLOP(more revisions) 16.88 2.19% 1.5m 23.84 3.12% 3.5m 33.71 3.89% 9m
SO-mixed* 16.94 2.55% 32m 23.77 2.79% 32m 33.35 2.76% 14m
H-TSP 17.55 6.22% 20s 24.72 6.91% 40s 34.88 7.49% 48s
UDC-x2(α=50, greedy) 16.94 2.53% 20s 23.79 2.92% 32s 34.14 5.19% 23s
UDC-x50(α=50) 16.78 1.58% 4m 23.53 1.78% 8m 33.26 2.49% 15m

C
V

R
P

LKH3 37.23 - 7.1h 46.40 7.90% 14m 64.90 8.14% 40m
BQ 38.44 3.25% 47s 44.17 2.72% 55s 62.59 4.29% 3m
LEHD 38.41 3.18% 17s 43.96 2.24% 1.3m 61.58 2.62% 9.5m
ELG 38.34 2.99% 2.6m 43.58 1.33% 15.6m - - -
ICAM 37.49 0.69% 42s 43.07 0.16% 26s 61.34 2.21% 3.7m
L2D* - - - 46.3 7.67% 3m 65.2 8.64% 1.4h
TAM(LKH3)* - - - 46.3 7.67% 4m 64.8 7.97% 9.6m
GLOP-G (LKH-3) 42.45 11.73% 2.4m 45.90 6.74% 2m 63.02 5.01% 2.5m
UDC-x2(α=50, greedy) 40.04 7.57% 1m 46.09 7.18% 2.1m 65.26 8.75% 5m
UDC-x50(α=50) 38.34 3.01% 7.7m 43.48 1.11% 14m 60.94 1.55% 23m
UDC-x250(α=50) 37.99 2.06% 35m 43.00 - 1.2h 60.01 - 2.15h

VRP (OVRP), and min-max multi-agent TSP (min-max mTSP). Detailed formulations of these
problems are provided in the Appendix B.

Implementation By employing lightweight networks for dividing policies, UDC can be directly
trained on large-scale CO instances (e.g., TSP500 and TSP1,000). To learn more scale-independent
features, we follow the varying-size training scheme [45, 46] in training and train only one UDC
model for each CO problem. The Adam optimizer [47] is used for all involved CO problems and the
detailed hyperparameters for each CO problem are provided in Appendix D.1. Most training tasks
can be completed within 10 days on a single NVIDIA Tesla V100S GPU.

Baselines This paper compares the proposed UDC to advanced heuristic algorithms and existing
neural solvers for large-scale CO problems, including classical solvers (LKH [48], EA4OP [49], OR-
Tools [50]), single-stage SL-based sub-path solvers (BQ [14], LEHD [8]), single-stage RL-based
constructive solvers (AM [51], POMO[5], ELG [6], ICAM [16], MDAM [52], et al.), heatmap-
based solvers (DIMES [35], DIFUSCO [39], et al.) and neural divide-and-conquer methods
(GLOP [13], TAM [12], H-TSP[20], et al.). The implementation details and settings of all the
baseline methods are described in Appendix G.

Results on 500-node to 2,000-node Instances. We first examine the performance of UDC models
on large-scale CO problems ranging from 500-node to 2,000-node. Both single-stage SL-based
constructive methods [16] and single-stage sub-path solvers [8] cannot be directly trained on this
scale, so we report the results of models trained on the maximum available scale for these baselines.
For UDC, we provide not only the greedy results (UDC-x2) but also the results after conducting
more conquering stages (i.e., 50 and 250 stages, labeled as UDC-x50, UDC-x250). In the following
conquering stages after a greedy solution, the starting point of sub-problem dividing is no longer
fixed at n

2 but is sampled from Uniform(0, n). For better performances, we sample α = 50 initial

7

Table 3: Experiment results on 500-node to 2,000-node OP and PCTSP and SPCTSP. The 500-
scale, 100-scale, and 2,000-scale problems contain 128, 128, and 16 instances, respectively. “bs-k“
represents k-width beam search [51]. The overall best performance is in bold and the best learning-
based method is marked by shade.

N =500 N =1,000 N =2,000
Methods Obj.↑2 Gap Time Obj.↓2 Gap Time Obj.↓2 Gap Time

O
P

(d
is

t)

EA4OP 81.70 - 7.4m 117.70 - 63.4m 167.74 - 38.4m
BQ-bs16* - 4.10% 10m - 10.68% 17m - - -
AM 64.45 21.11% 2s 79.28 32.64% 5s 99.37 40.76% 2s
AM-bs1024 68.59 16.04% 1.2m 79.65 32.32% 4m 95.48 43.08% 1.6m
MDAM-bs50 65.78 19.49% 2.6m 81.35 30.88% 12m 105.43 37.15% 7m
Sym-NCO 73.22 10.38% 27s 95.36 18.98% 1.5m 121.37 27.64% 20s
UDC-x2(α=1) 75.28 7.86% 17s 109.42 7.03% 25s 135.34 19.32% 5s
UDC-x50(α=1) 78.02 4.51% 23s 111.72 5.08% 33s 139.25 16.99% 8s
UDC-x250(α=1) 79.27 2.98% 48s 113.27 3.76% 1.1m 144.10 14.09% 21s

PC
T

SP

OR-Tools* 14.40 9.38% 16h 20.60 12.66% 16h - - -
AM-bs1024 19.37 47.13% 14m 34.82 90.42% 23m 87.53 249.60% 10m
MDAM-bs50 14.80 13.30% 6.5m 22.21 21.43% 53m 36.63 46.30% 43m
Sym-NCO 19.46 47.81% 1.3m 29.44 61.01% 7m 36.95 47.58% 2m
GLOP 14.30 9.03% 1.5m 19.80 8.08% 2.5m 27.25 8.84% 1m
UDC-x2(α=1) 13.95 5.99% 34s 19.50 6.65% 1m 27.22 8.73% 18s
UDC-x50(α=1) 13.25 0.64% 42s 18.46 0.97% 1.3m 25.46 1.68% 23s
UDC-x250(α=1) 13.17 - 80s 18.29 - 1.5m 25.04 - 53s

SP
C

T
SP

AM-bs1024 33.91 156.11% 1.2m 47.55 156.42% 4m 76.02 199.48% 14m
MDAM 14.80 11.80% 6.5m 21.96 18.42% 53m 35.15 38.48% 43m
UDC-x2(α=1) 14.21 7.32% 42s 20.01 7.92% 1.1m 28.15 10.91% 20s
UDC-x50(α=1) 13.40 1.12% 1m 18.93 2.06% 1.4m 26.24 3.38% 29s
UDC-x250(α=1) 13.24 - 2.3m 18.54 - 2.6m 25.38 - 1.1m

solutions x0 for TSP and CVRP. The comparison results of TSP and CVRP are shown in Table 2
and the results of OP, PCTSP, and SPCTSP are exhibited in Tabel 4, UDC demonstrates the general
applicability, exhibiting consistent competitive performances in all the five involved CO problems.
After multiple conquering stages, UDC can achieve significantly better results.

UDC variants demonstrate the best results in PCTSP, SPCTSP, CVRP1,000, and CVRP2,000, together
with the best learning-based method in most involved CO problems. The UDC-x250(α=1) showcases
extensive efficiency in OP, PCTSP, and PCTSP. Compared to sub-path solvers BQ [14] and LEHD [8],
UDC variants exhibit more competitive results on TSP1,000, TSP2,000, CVRP, and OP. RL-based
constructive solver ICAM [16] with 8 augmentation [5] is outstanding performance on TSP500,
TSP1,000, and CVRP500 (i.e., relatively smaller scale) but UDC variants demonstrates better effect
and efficiency in other test sets. Moreover, compared to existing neural divide-and-conquer methods
GLOP [13], H-TSP [20], and TAM(LKH3) [12], UDC achieves significant advantages in performance
with no heuristic design, which preliminarily implies the significance of a unified training scheme for
neural divide-and-conquer methods.

Results on Benchmark Datasets. We also evaluate the proposed UDC on benchmark datasets
TSPLib [53] and CVRPLib [54, 55]. We adopt the instances with 500-node to 5,000-node in TSPLib,
CVRP Set-X [54], and very large-scale CVRP dataset Set-XXL as test sets. Instances in these
datasets often with special distributions and can better represent real-world applications. As shown
in Table 4, UDC variant UDC-x250 exhibits competitive benchmark results, demonstrating the best
learning-based result on CVRPLib. The proposed UDC can also demonstrate superiority in the other
5 involved CO problems, very large-scale instances. Results of these experiments are shown in
Appendix D.2 and Appendix D.5, respectively. And as to AppendixD.3 and AppendixD.4, UDC can
also exhibit outstanding out-of-domain generalization ability on TSP, CVRP, and MIS instances with
different distributions.

2OP aims to maximize the objective function, while PCTSP and SPCTSP aim to minimize the objective
function.

8

Table 4: TSPLib and CVRPLib results, the best learning-based result is marked by shade

TSPLib, Gap to Best Known Solution
Dataset, N ∈ LEHD ELG aug×8 GLOP-LKH3 TAM(LKH3) UDC-x2 UDC-x250

TSPLib,(500,1,000] 4.1% 8.7% 4.0% - 9.5% 6.0%
TSPLib,(1,000,5,000] 11.3% 15.5% 6.9% - 12.8% 7.6%

CVRPLib, Gap to Best Known Solution
Set-X,(500,1,000] 17.4% 7.8% 16.8% 9.9% 16.5% 7.1%
Set-XXL,(1,000,10,000] 22.2% 15.2% 19.1% 20.4% 31.3% 13.2%

5 Discussion

The experimental results have preliminarily proven that the proposed UDC method achieves excellent
results on a wide range of large-scale CO problems with outstanding efficiency. In this section,
we conduct ablation experiments to verify the necessity of components in training UDC models.
Appendix E includes the ablation experiments on the testing procedure of UDC, including the ablation
on the number of conquering stages r and the number of sampled solutions α.

5.1 Unified Training Scheme versus Separate Training Scheme

For neural divide-and-conquer methods, the unified training process does not require special designs
for pre-training conquering policies, thus being easier to implement compared to separate training
processes. Moreover, unified training can also avoid the antagonism between the dividing and
conquering policies. To validate this, we pre-train a conquering policy (i.e., ICAM) on uniform
TSP100 data and then train two ablation variants of the original UDC (separate training scheme): one
variant uses the pre-trained conquering policy in the subsequent joint training (i.e., Pre-train + Joint
Training, similar to H-TSP [20]), and the other variant only train the dividing policy afterward (i.e.,
Pre-train + Train Dividing, similar to TAM [12] & GLOP [13]). According to the training curves of
UDC and the two variants in Figure 3, the unified training scheme demonstrates superiority, while the
Pre-train step leads the training into local optima, which significantly harms the convergence of UDC.

0 50 100 150 200 250 300

Epochs

17.0

17.2

17.4

17.6

17.8

18.0

O
bj

.

TSP500-Training

Unified Training (UDC)
Pre-train + Joint Training
Pre-train + Train Dividing

(a) TSP500

0 50 100 150 200 250 300

Epochs

24.00

24.25

24.50

24.75

25.00

25.25

25.50

25.75

26.00

O
bj

.

TSP1000-Training

Unified Training (UDC)
Pre-train + Joint Training
Pre-train + Train Dividing

(b) TSP1,000

Figure 3: Training curves of UDC variants with different training schemes.

5.2 Ablation study: Conquering Policy

Table 5: Results of UDC variants with var-
ious conquering policies.

Optimality Gap TSP500 TSP1,000
UDC(ICAM)-x2 2.54% 2.92%
UDC(ICAM)-x50 1.58% 1.78%
UDC(POMO)-x2 2.64% 3.41%
UDC(POMO)-x50 1.64% 1.82%

UDC adopts the state-of-the-art constructive solver
ICAM [16] for conquering sub-TSP. However, the se-
lection of constructive solvers for the conquering policy
is not limited. We employ POMO [33] for the conquer-
ing policy, with experiment results of this version (i.e.,
UDC(POMO)) on TSP500 and TSP1,000 shown in Ta-
ble 5.1 (α = 50 for all variants). The UDC framework
demonstrates conquering-policy-agnosticism, as it does
not show significant performance degradation when the
conquering policy becomes POMO.

9

In Appendix E.4, we further validate the conquering-
policy-agnosticism of UDC on KP. We also conduct other ablation studies to demonstrate the
necessity of other components of the proposed UDC, including the Reunion step in the DCR training
method and the coordinate transformation in the conquering stage.

6 Conclusion, Limitation, and Future Work

This paper focuses on neural divide-and-conquer solvers and develops a novel training method DCR
for neural divide-and-conquer methods by alleviating the negative impact of sub-optimal dividing
results. By using DCR in training, this paper enables a superior unified training scheme and proposes
a novel unified neural divide-and-conquer framework UDC. UDC exhibits not only outstanding
performances but also extensive applicability, achieving significant performance advantages in 10
representative large-scale CO problems.

Limitation and Future Work. Although UDC has achieved outstanding performance improvements,
we believe that UDC can achieve better results through designing better loss functions. In the future,
we will focus on a more suitable loss for the UDC framework to further improve training efficiency.
Moreover, we will attempt to extend the applicability of UDC to CO problems mentioned in Section
3.3 that are not applicable in the current version.

Acknowledge

This work was supported by the National Natural Science Foundation of China (Grant No.
62106096 and Grant No. 62476118), the Natural Science Foundation of Guangdong Province
(Grant No. 2024A1515011759), the National Natural Science Foundation of Shenzhen (Grant No.
JCYJ20220530113013031).

References

[1] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

[2] Matthew Veres and Medhat Moussa. Deep learning for intelligent transportation systems: A survey of
emerging trends. IEEE Transactions on Intelligent transportation systems, 21(8):3152–3168, 2019.

[3] Stephan Held, Bernhard Korte, Dieter Rautenbach, and Jens Vygen. Combinatorial optimization in vlsi
design. Combinatorial Optimization, pages 33–96, 2011.

[4] Gita Naseri and Mattheos AG Koffas. Application of combinatorial optimization strategies in synthetic
biology. Nature communications, 11(1):2446, 2020.

[5] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo:
Policy optimization with multiple optima for reinforcement learning. Advances in Neural Information
Processing Systems, 33:21188–21198, 2020.

[6] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for
vehicle routing problems via ensemble with transferrable local policy, 2023.

[7] Shengcai Liu, Yu Zhang, Ke Tang, and Xin Yao. How good is neural combinatorial optimization? arXiv
preprint arXiv:2209.10913, 2022.

[8] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[9] Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian. Pointer-
former: Deep reinforced multi-pointer transformer for the traveling salesman problem. arXiv preprint
arXiv:2304.09407, 2023.

[10] Dongxiang Zhang, Ziyang Xiao, Yuan Wang, Mingli Song, and Gang Chen. Neural tsp solver with
progressive distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
12147–12154, 2023.

[11] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the travelling
salesperson problem requires rethinking generalization. Constraints, 27(1-2):70–98, 2022.

10

[12] Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2023.

[13] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning global
partition and local construction for solving large-scale routing problems in real-time. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024.

[14] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisimulation
quotienting for efficient neural combinatorial optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[15] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving routing
problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

[16] Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Instance-
conditioned adaptation for large-scale generalization of neural combinatorial optimization. arXiv preprint
arXiv:2405.01906, 2024.

[17] Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping: Enhance
generalization of neural solver for large-scale vehicle routing problems. arXiv preprint arXiv:2401.06979,
2024.

[18] Danial Yazdani, Mohammad Nabi Omidvar, Jürgen Branke, Trung Thanh Nguyen, and Xin Yao. Scaling
up dynamic optimization problems: A divide-and-conquer approach. IEEE Transactions on Evolutionary
Computation, 24(1):1–15, 2019.

[19] Oleg S Zaikin and SE Kochemazov. On black-box optimization in divide-and-conquer sat solving.
Optimization Methods and Software, 36(4):672–696, 2021.

[20] Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-tsp:
Hierarchically solving the large-scale traveling salesman problem. In AAAI 2023, February 2023.

[21] Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learning to
aolve large-scale tsp instances. In International Conference on Artificial Intelligence and Statistics, pages
1219–1231. PMLR, 2023.

[22] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances in
Neural Information Processing Systems, 34:26198–26211, 2021.

[23] Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4648–4658, 2022.

[24] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

[25] Yuzhou Zhang, Yi Mei, Shihua Huang, Xin Zheng, and Cuijuan Zhang. A route clustering and search
heuristic for large-scale multidepot-capacitated arc routing problem. IEEE Transactions on Cybernetics,
52(8):8286–8299, 2021.

[26] David Pisinger and Stefan Ropke. Large neighborhood search. Handbook of metaheuristics, pages 99–127,
2019.

[27] Setyo Tri Windras Mara, Rachmadi Norcahyo, Panca Jodiawan, Luluk Lusiantoro, and Achmad Pratama
Rifai. A survey of adaptive large neighborhood search algorithms and applications. Computers &
Operations Research, 146:105903, 2022.

[28] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[30] Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024.

[31] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[32] Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:6659–6672,
2020.

[33] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

11

[34] Iddo Drori, Anant Kharkar, William R Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev,
Brenda Dietrich, David P Williamson, and Madeleine Udell. Learning to solve combinatorial optimization
problems on real-world graphs in linear time. In 2020 19th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 19–24. IEEE, 2020.

[35] Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems 35, 2022.

[36] Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou. Distilling
autoregressive models to obtain high-performance non-autoregressive solvers for vehicle routing problems
with faster inference speed. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 20274–20283, 2024.

[37] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages
7474–7482, 2021.

[38] Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems. arXiv
preprint arXiv:2406.03503, 2024.

[39] Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial optimization.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[40] Xavier Bresson and Thomas Laurent. An experimental study of neural networks for variable graphs. 2018.

[41] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
encoding networks for neural combinatorial optimization. Advances in Neural Information Processing
Systems, 34:5138–5149, 2021.

[42] Zhi Zheng, Shunyu Yao, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Ke Tang. Dpn: Decou-
pling partition and navigation for neural solvers of min-max vehicle routing problems. arXiv preprint
arXiv:2405.17272, 2024.

[43] Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver with
invariant nested view transformer. arXiv preprint arXiv:2402.02317, 2024.

[44] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

[45] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

[46] Yuhong Cao, Zhanhong Sun, and Guillaume Sartoretti. Dan: Decentralized attention-based neural network
to solve the minmax multiple traveling salesman problem. arXiv preprint arXiv:2109.04205, 2021.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[48] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman
and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

[49] Gorka Kobeaga, María Merino, and Jose A Lozano. An efficient evolutionary algorithm for the orienteering
problem. Computers & Operations Research, 90:42–59, 2018.

[50] Laurent Perron and Vincent Furnon. Or-tools.

[51] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

[52] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12042–12049, 2021.

[53] Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):376–384,
1991.

[54] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational
Research, 257(3):845–858, 2017.

[55] Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale routing
problems. Computers & operations research, 107:32–42, 2019.

[56] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

[57] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

12

[58] Feng Wang, Qi He, and Shicheng Li. Solving combinatorial optimization problems with deep neural
network: A survey. Tsinghua Science and Technology, 29(5):1266–1282, 2024.

[59] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning
to iteratively solve routing problems with dual-aspect collaborative transformer. Advances in Neural
Information Processing Systems, 34:11096–11107, 2021.

[60] Zhi Zheng, Shunyu Yao, Genghui Li, Linxi Han, and Zhenkun Wang. Pareto improver: Learning
improvement heuristics for multi-objective route planning. IEEE Transactions on Intelligent Transportation
Systems, 2023.

[61] Rui Sun, Zhi Zheng, and Zhenkun Wang. Learning encodings for constructive neural combinatorial
optimization needs to regret. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 20803–20811, 2024.

[62] Jiwoo Son, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Solving np-hard min-max routing problems
as sequential generation with equity context. arXiv preprint arXiv:2306.02689, 2023.

[63] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural combinatorial
optimization. arXiv preprint arXiv:2205.13209, 2022.

[64] Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Heterogeneous attentions
for solving pickup and delivery problem via deep reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 23(3):2306–2315, 2021.

[65] Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling salesman
problem. Advances in Neural Information Processing Systems, 36, 2024.

[66] Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to gradient
search in testing for combinatorial optimization. Advances in Neural Information Processing Systems, 36,
2024.

[67] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[68] Carmen Gervet. Large scale combinatorial optimization: A methodological viewpoint. In DIMACS series:
Constraint Programming and Large Scale Discrete Optimization, 2001.

[69] Norman Biggs. The traveling salesman problem a guided tour of combinatorial optimization, 1986.

[70] Lahari Sengupta, Radu Mariescu-Istodor, and Pasi Fränti. Which local search operator works best for the
open-loop tsp? Applied Sciences, 9(19):3985, 2019.

[71] Cristina R Delgado Serna and Joaquín Pacheco Bonrostro. Minmax vehicle routing problems: application
to school transport in the province of burgos. In Computer-aided scheduling of public transport, pages
297–317. Springer, 2001.

[72] Jennifer David and Thorsteinn Rögnvaldsson. Multi-robot routing problem with min–max objective.
Robotics, 10(4):122, 2021.

[73] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

[74] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. pmlr, 2015.

[75] Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task learning
for routing problem with zero-shot generalization. 2023.

[76] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe: Multi-task
vehicle routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029, 2024.

[77] László Erdős, Antti Knowles, Horng-Tzer Yau, and Jun Yin. Spectral statistics of erdős–rényi graphs i:
Local semicircle law. 2013.

[78] Sasan Mahmoudinazlou and Changhyun Kwon. A hybrid genetic algorithm for the min–max multiple
traveling salesman problem. Computers & Operations Research, 162:106455, 2024.

[79] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural
methods for vehicle routing problems. In International Conference on Machine Learning, pages 42769–
42789. PMLR, 2023.

[80] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for
vehicle routing problems via ensemble with transferrable local policy, 2024.

13

Appendix

In the following Appendix, we will provide a literature review A, detailed definitions of CO problems
& sub-CO problems B, details of the proposed UDC method C, additional experimental results D,
additional ablation study E, and visualizations on a TSP1,000 instance, a CVRP1,000 instance (i.e.,
X-n1001-k43 in CVRPLib), and a OP1,000 instance F.

A Related Work

A.1 Neural Combinatorial Optimization

Over the past few years, extensive research on learning-based methods has been applied to various
CO problems. Pointer Network [56] first applies the deep learning technique to solve NP-hard CO
problems, after that, [28] designs an RL-based framework for training NCO solvers. In recent years,
more diverse and sophisticated NCO frameworks have been proposed [57, 58]. Among them, the
mainstream methods include (RL-based) constructive solvers [51], (RL-based) improvement-based
solvers [59, 60], (SL-based) sub-path solvers [8], the heatmap-based solvers [35], and the neural
divide-and-conquer methods [13]. These categories of methods demonstrate diverse advantages
across different scales and CO problems.

A.2 Constructive Neural Solvers

The basic idea of constructive neural solvers has been illustrated in Section 2.2. Up to now, con-
structive neural solvers are the most popular neural method for solving CO problems. By employing
the self-attention mechanism [29], the Attention Model [51] demonstrates the applicability among
various VRPs and the efficiency in solving small-scale VRP instances. AM achieves outstanding
results in six VRPs including TSP, CVRP, Split Delivery Vehicle Routing (SDVRP), PCTSP, SPCTSP,
and OP. Afterward, researchers mainly focus on the two most representative CO problems, TSP and
CVRP. Some studies propose more advanced problem-solving strategies [61, 62, 42], others present
more efficient network architectures [9, 52], and some focus on designing better loss functions [5, 63]
to better escape potential local optima.

By employing a corresponding feasibility mask in each autoregressive construction step, constructive
solvers can be effectively applied to most CO problems. Therefore, although many new model
structures have been proposed for different CO problems (such as [64] for the Pickup and Delivery
Problem (PDP)), ordinary frameworks are usually still feasible. This article adopts the model
architectures proposed in POMO [5] and ICAM [16] for most CO problems for convenience. However,
for some special CO problems, e.g., MIS, ATSP, and min-max mTSP, conventional constructive
solvers are unable to process the problem-specific constraints in their encoders. Therefore, we
specifically use one-shot AGNN (consistent with the dividing policy) in sub-MIS, MatNet [41] for
sub-ATSP, and DPN [42] to solve sub-min-max mTSP.

A.3 Heatmap-based Solvers

Recent heatmap-based solvers propose methods to improve the performance of GNN-based frame-
works [31, 32]. Attn-MCTS [37] proposes a heuristic method to merge the smaller heatmap obtained
from different regions of a TSP instance into a larger heatmap of TSP. More importantly, Attn-MCTS
also integrates an effective Monte-Carlo tree search algorithm (MCTS) based on large-scale heatmaps.
Therefore, the following heatmap-based works turn to pay more attention to providing better initial
heatmaps for the following Monte Carlo tree search [65, 38]. DIMES [35] proposes a meta-learning
method based on reinforcement learning for stability in training, while DIFUSCO [39] and T2T [66]
use supervised learning to learn a diffusion process [67] of heatmap generation.

A.4 Neural Divide-and-Conquer Methods

The Table 1 in the main part offers a brief overview of all the existing neural divide-and-conquer
methods. These methods and the proposed UDC follow the same two-stage solution generation
framework. Instead of being a fully neural method as UDC, some neural divide-and-conquer methods
strategically incorporate problem-specific heuristics in either the dividing or conquering stages to

14

enhance performance or efficiency [22, 23, 21, 13]. Such a setting undermines the possibility to
generalize to other CO problems.

LCP [24], H-TSP [20], RBG [23], TAM [12], and GLOP [13] (for CVRP and PCTSP) can use only
neural networks in both stages, which enhances the applicability of methods to handle general CO
problems without expert experience. However, these methods face challenges in terms of solution
qualities. To tackle the instability in unified training [20], all these methods adopt a separate training
scheme and we believe there are inherent shortcomings in the separate training schemes. Among
them, LCP [24] employs a constructive neural solver (seeder) to generate diversified initial solutions
(seeds) and another constructive neural solver (reviser) for sub-path solving. The seeders and revisers
are trained separately and the objective functions of its seeders and revisers are not directly related to
the objective function of the original CO problem (i.e., belonging to a separate training scheme), so
its effectiveness largely depends on randomness.

TAM [12], GLOP [13] (for CVRP and PCTSP), and RBG [23] adopt a similar training scheme, with
only using different solvers for the dividing policy (i.e., TAM uses a constructive neural solver, and
GLOP chooses a heatmap-based solver). These methods pre-train a conquering policy on a preempted
dataset and directly use them as local solvers (i.e., operators) for their initial solution. Such a training
scheme fits the Pre-train + Train Dividing variant in Section 5.1 which can hardly converge to a good
performance. The pre-trained conquering policy will usually generate sub-optimal sub-solutions
so such a training scheme will probably lead to local optima. Moreover, as another drawback of
TAM and GLOP, they decompose CVRP and PCTSP into sub-TSP for the pre-trained conquering
policy, but such solving framework cannot convert sub-optimal initial partitions into optimal ones,
thus affecting the accessibility of optimal solutions.

H-TSP [20] focuses on the TSP problem and designs a lightweight convolutional neural network
and clustering mechanism for initial solution generation. Unlike other works, it implements a joint
training scheme after pre-trained conquering policies. However, Section 5.1 also demonstrates that
the pre-training before a joint (i.e., unified) training scheme will also lead to local optima. Moreover,
similar to LCP, it does not align the optimization objectives of the dividing policy with the overall
objective function of TSP as well, which further limits its effectiveness.

15

B Detailed Definition

B.1 Definition of Large-scale CO problems

We refer to the definition in [68] for large-scale CO problems. Large-scale CO problems have more
data, decision variables, or constraints. In this article, we have considered more decision variables
and data volumes in CO problems like TSP and more constraints in CO problems like MIS (i.e.,
dense graphs have relatively more constraints). Most large-scale NCO works solve TSPs on scales
such as 500, 1000, 2000, etc. [39, 8, 16, 13], so UDC follows this setting in testing TSP and applies
it to general CO problems.

B.2 Definition of Problem & Sub-problem

TSP Traveling salesman problem (TSP) is one of the most representative COPs [69]. Let {D =
dj,k, j = 1, . . . , N, k = 1 . . . , N} be the N×N cost metrics of a N -nodes TSP problem (in practice,
transformed from the input node-wise coordinates), where dj,k denotes the cost between nodes k and
j, the goal is to minimize the following objective function:

minimize f(x) =
N−1∑
t=1

dxt,xt+1
+ dxN ,x1

, (7)

where the solution x = (x1, x2, . . . , xN) (τ = N) is a permutation of all nodes. All the feasible
solutions (i.e., in Ω of Eq. (1)) satisfy the constraint of node degree being two and containing no loop
with lengths less than N.

The sub-TSP in UDC is usually considered as an open-loop TSP problem [70] (i.e., SHPP in GLOP
[13]). To make the optimization target of both stages correspond (with objective function f(·) and
f ′(·), respectively), with the sub-cost metrics {D′ = d′j,k, j = 1, . . . , n, k = 1 . . . , n}, the objective
function of sub-TSP solution s = (s1, s2, . . . , sn) is as follow:

minimize f ′(s) =

n−1∑
t=1

d′st,st+1
(8)

The feasibility set of sub-TSP adds additional selection constraints for the starting and ending points
(i.e., the first and last node in the original solution segments). UDC trains the TSP on various scales
for every n nodes, from N=500 to N=1,000 (i.e., for easier implement, we set n=100, and sampling
N from {500, 600, 700, 800, 900, 1, 000}). Since the nodes in each sub-problem always come from
a compact region of the original instance, so we follow the normalization approach in GLOP and
conduct a coordinate transformation to coordinates of sub-problems. The specific formula is detailed
in Eq. (20).

CVRP CVRP incorporates the vehicle capacity as a restriction while considering the total distance
as its objective function. Each CVRP contains a depot and several customers, on a cost matrix
{D = dj,k, j = 0, . . . , N, k = 0 . . . , N}, the CVRP can be expressed as follows:

minimize f(x) =

q∑
j=1

C(ρj),

C(ρj) =

|ρj |−1∑
t=0

dρj
t ,ρ

j
t+1

+ dρj
nj

,ρj
0

subject to 0 ≤ δi ≤ C, i = 1, . . . , n,∑
i∈ρj

δi ≤ C, j = 1, . . . , q,

(9)

where x is a solution representing the complete route of vehicles and consists of q sub-routes
x = {ρ1,ρ2, . . . ,ρq}. Each sub-route ρj = (ρj1, . . . , ρ

j
nj
), j ∈ {1, . . . , q} starts from the depot

x0 and backs to x0, nj represents the number of customer nodes in it. n =
∑q

j=1 nj is the total

16

CVRP Initial Solution
Sub-CVRP2Sub-CVRP1

Solution & Solution Flag
A

B C

D
E

F

A ... B C ... D E ... F

0...... 1 0 ... 1 E ... 10...... 0......

Solution

Solution Flag

Sub-CVRP2Sub-CVRP1

B C

D
E

F

Sub-CVRP

capacity of last sub-route:
1- demand �(+ + +)

capacity of first sub-route:
1- demand �(+)

Sub-CVRP 1or 2: Nodes in original first or last sub-route

Sub-CVRP 1or 2: Nodes not in original first or last sub-route

Figure 4: The process of preparing sub-CVRPs.

number of customer nodes; δi denotes the demand of node i; C denotes the capacity of the vehicle.
In generating CVRP instances in test sets, we follow the common setting in [13, 14], setting C = 100
for 500-node CVRP (i.e., CVRP500), C = 200 for CVRP1,000, C = 300 for CVRP2,000 and larger
scale. In training, the capacity C is uniformly sampled from 100 to 200 [6, 16].

Similar to sub-TSP, Sub-CVRP is an open-loop CVRP (not forcing both starting and ending at depot
x0 for sub-route ρ1 and ρq) and also restricts the selection of starting and ending nodes. Moreover,
each sub-CVRP instance has a special constraint on the capacity of the first and last sub-routes to
ensure the legality of the merged solution. As shown in the right half of Figure 4, the capacity of
the first and last sub-route is restricted to be lower than the rest capacity of their connected partial
sub-routes. Afterward, each pair of adjunct capacity constraints (shown in Figure 4) is normed
to make the sum of 1. We follow the setting of BQ-NCO [14] in representing CVRP solutions,
converting the route into a solution and an aligned solution flag which is set to 1 for nodes before a
depot.

OP OP assigns each node a prize ρi and the goal is to maximize the total prize of all collected
nodes, while keeping the total length of the route (a loop through all collected nodes) not surpassing
a maximum length T . OP contains a depot node serving as the route’s starting node. We evaluate
the UDC on OP500, OP1,000, and OP2,000 and set the T on all scales to 4. Assume solution
route of OP is an τ -length ordered sequence x = (x0, . . . , xτ) (x0 represents be depot, ρ0 = 0) and
{D = dj,k, j = 0, . . . , N, k = 0 . . . , N} is the N ×N cost metrics of a N -nodes TSP problem, the
objective function can be formulated as:

maximize f(x) =
∑
i∈x

ρi,

subject to l(x) =

τ−1∑
t=1

dxt,xt+1
+ dxτ ,x1

≤ T.

(10)

We follow the general OP (distance) (i.e., OP(dist)) setting to generate OP instances [51, 52, 63, 14],
whose prize of each node is calculated ρi based on its distance to the depot. In practice, we follow the
setting in AM [51], ρ̂i = 1+⌊99 d0,i

maxNj=1d0j
⌋, ρi = ρ̂i

100 . The sub-OP in UDC contains a segment of the
original solution while also randomly introducing some unselected nodes. By solving these sub-OPs,
the conquering stage gains the potential to improve a low-quality initial solution to optimal. For
sub-solution s, the objective function of sub-OP is f ′(s) =

∑
i∈s ρi. There is no normalization step

in the conquering stage when solving OP. Sub-OP restricts the lengths of the generated sub-solution
not surpassing the total length of the original sub-OP solution. One of the ⌊Nn ⌋ sub-OPs contains the
depot and the depot is restricted to be included in the sub-solution of this sub-OP.

In testing, solving sub-OP limits the path length not to exceed the original sub-solution length, so
continuously executing the conquering stage will result in a gradually shorter total route length
l(xr). So, we count the margin (i.e., T − l(xr)) of the constraint T in the current solution. In each
conquering stage, we add the margin T − l(xr) to the length constraint of a random sub-OP.

PCTSP With a similar optimization requirement compared to OP, PCTSP is also a typical CO
problem [51]. PCTSP gives each node a prize ρi and a penalty βi. The goal is to minimize the total

17

length of the solution route (a loop through all collected nodes as well) plus the sum of penalties of
unvisited nodes. Moreover, as a constraint, PCTSP solutions should collect enough total prizes. The
objective function is defined as follows:

minimize f(x) =

τ−1∑
t=1

dxt,xt+1 + dxτ ,x1 +
∑
i/∈x

βi,

subject to
∑
i∈x

ρi ≥ 1.

(11)

We follow the settings in AM [51] and GLOP [13] to generate PCTSP instances, ρi ∼ Uniform(0, 4
N),

βi ∼ Uniform(0, 3 · KN

N). We follow the setting in [13], define KN = 9, 12, 15 for N =
500, 1, 000, 2, 000.

Compared to OP, UDC uses a similar way to process sub-PCTSP, introducing random unselected
nodes in generated sub-problems and restricting the appearance of the depot. As a similar constraint
of sub-OP, sub-PCTSP also restricts the total prize collected in the generated sub-solution to be larger
than the total prize in the original sub-solution. Specifically, sub-PCTSP normalizes prizes of each
node to ρ′i by dividing this constraint for better alignment, and the necessity of this procedure is
demonstrated in Appendix E with ablation studies. The objective function of sub-PCTSP solution s
is as follows:

minimize f ′(s) =

τ−1∑
t=1

dst,st+1 +
∑
i/∈s

βi,

subject to
∑
i∈s

ρ′i ≥ 1.

(12)

The existing method GLOP [13] divides the PCTSP into sub-TSP, this problem-specific design
not only harms the accessibility to optimal solutions but also impairs the generation ability of the
framework to general CO problems.

SPCTSP SPCTSP evaluates the capability of the proposed UDC in dealing with uncertainty. As
a notable difference to PCTSP, in SPCTSP, the real collected prize of each node only becomes
known upon visitation but an expected node prize ρ∗i ∈ Uniform(0, 2ρi) is known upfront. In solving
SPCTSP with UDC, the expected node prize ρ∗i is used to process sparse graph GD, heatmapH, and
the encodings of conquering policy, while the real prize ρi is only used to process the current states
and constraints when constructing solutions of SPCTSP and sub-SPCTSP.

KP Besides VRPs, KP is also a typical CO problem which can be formulated as follows:

minimize f(X) = −
∑
i∈X

vi,

subject to
∑
i∈X

wi ≤W,
(13)

where X ⊆ {1, 2, ..., N} represents the selection item indexes (i.e., KP solution) in a knapsack and
vi ∼ Uniform(0, 1) and wi ∼ Uniform(0, 1) is the value and weight of candidate objects. In each
conquering step, sub-KPs are randomly sampled. Sub-KP and KP are identical in form and objective
function, with only distinction on the number of decision variables and total capacity W . In training,
UDC disables the Reunion stage in the DCR training method for KP, and the capacity W is sampled
from 50 to 100. In testing, UDC adopts a similar approach to OP in introducing the margin of
maximum capacity (i.e., W −

∑
i∈X wi) to sub-KPs, adding the current margin (i.e., capacity minus

current load) to a random sub-KP.

18

OVRP As a variant on CVRP, OVRP calculates the objective function of each sub-route as open-
loops. The objective function of OVRP is calculated as follows:

minimize f(x) =

q∑
j=1

|ρj |−1∑
t=0

dxt,xt+1

subject to 0 ≤ δi ≤ C, i = 1, . . . , n,∑
i∈ρj

δi ≤ C, j = 1, . . . , q.

(14)

ATSP ATSP is a variant version of TSP with asymmetric cost metrics {D = dj,k, j =
0, . . . , N, k = 0 . . . , N} (i.e., ATSP and sub-ATSP have the same objective function as TSP and
sub-TSP, respectively). Different from TSP, ATSP instances are inputted as cost metrics directly so
this specificity makes it impossible to use conquering models such as POMO [5], ICAM [16], etc.
[41] When dealing with sub-ATSP, we employ a matrix-based sub-problem normalization method
to normalize the longest item (i.e., edge) in cost metrics of sub-ATSPs to 1. For testing scale, the
1000-node ATSP is already huge in terms of the data size, while the 2000-node data is unable to
generate and store in memory, so we refer to the testing scales of GLOP [13], conducting experiments
on the 250-node (i.e., ATSP250), the ATSP500, and the ATSP1000.

MIS MIS is originally defined on a graph G = {V,E} where N = |V| so in the dividing step we
have GD = G directly (without additional operations to construct the sparse graph GD). For solution
set X ⊆ {1, 2, ..., N}, the objective function of MIS is to maximize the number of visited nodes
in solution (i.e., f(X) = |X|) while ensuring no edge connections e ∈ E between any two visited
nodes. In training, follow the MIS instance generation process of ER[700-800] with p=0.15 [35]. The
nodes in sub-MIS are randomly selected and nodes connecting to visited nodes are constrained as
unaccessible. The objective function of a sub-MIS solution S is f(S) = |S|. The conquering policy
for sub-MIS uses a Heatmap-based solver as well (i.e., AGNN in UDC) with non-autoregressive
construction methods.

Min-max mTSP As a variant of VRP, the min-max vehicle routing problem (min-max VRP),
instead of minimizing the total length of all sub-routes (i.e., min-sum), seeks to reduce the length of
the longest one among all the sub-routes (i.e., min-max). Min-max VRP has important application
value in real life as well [71, 72] and researchers have also paid attention to solving them with
deep learning techniques [62, 42]. The solution of min-max mTSP is defined similarly to CVRP
solutions, consisting of exactly M sub-routes (as a constraint on the number of total sub-routes)
x = {ρ1,ρ2, . . . ,ρM}. The objective function of min-max mTSP is to minimize the length of the
longest sub-route, which is as follows:

minimize f(x) =
M

max
i=1

C(ρj),

C(ρj) =

|ρj |−1∑
t=0

dρj
t ,ρ

j
t+1

+ dρj
nj

,ρj
0

(15)

Similar to the normal min-sum objective function, the min-max objective function can also be
decomposed to independent objective functions of sub-problems so UDC can be evaluated on it.
However, as the difference, the optimization of sub-min-max mTSP should encounter the lengths
of sub-routes in adjunct sub-problems. For a sub-min-max mTSP with lengths of sub-routes in
adjunct sub-problems being lb and le, the objective function of sub-min-max mTSP solution with m
sub-routes s = {ρ′,1,ρ′,2, . . . ,ρ′,m} is calculated after adding lb to the first sub-route length C(ρ1)
and le to C(ρm) as follows:

minimize f(s) =
m

max
i=1
{C(ρ′,1) + lb, C(ρ′,2), . . . , C(ρ′,m) + le}, (16)

Note that only holding two adjunct sub-problems unchanged can make the optimization of the sub-
min-max mTSP consistent with the original min-max mTSP. So, to maintain optimality, the testing
stage will not update adjacent sub-min-max-mTSP simultaneously.

19

C Method Details

C.1 Dividng Stgae: Graph Construction

Light-weight GNNs require constructing a graph as input (the sparse graph GD). Some CO problems
involved in this paper naturally have graph-like input (e.g., the MIS problem) so their sparse graph
GD = G. However, the inputs of most other CO problems are coordinates or matrics. So, for
the VRPs, we adopt the graph construction method in heatmap-based solvers [31] and GLOP [13],
generally using the KNN method to connect edges in the edge set E ∈ Gd. For CVRP, OVRP,
ATSP, OP, PCTSP, SPCTSP, and min-max mTSP (min-max mTSP specifically uses dummy depots
for constraints [62]), we directly use a similar method to link edges based on KNN. In addition,
for the KP without neighborhood properties, we use 1− d′

i,j

maxq∈1,...,N d′
i,q

as the weight of (i, j) for

neighborhood selection where d′i,j =
vi+vj
wi+wj

and use the KNN for edge connection as well. In the
construction of all the involved CO problems (excluding MIS), we set neighborhood size K = 100,
so the number of edges in the graph is limited to |E| = O(KN).

C.2 Dividing Policy: Anisotropic Graph Neural Networks

In modeling the dividing policy, we follow previous heatmap-based methods [39] on the choice
of neural architectures. The graph neural network of UDC is an anisotropic GNN with an edge
gating mechanism [40]. Let hℓ

i and eℓi,j denote the d-dimensional node and edge features at layer
ℓ associated with node i and edge (i, j), respectively. The features at the next layer are propagated
with an anisotropic message-passing scheme:

hℓ+1
i = hℓ

i + α(BN(U ℓhℓ
i +Aj∈Ni

(σ(eℓi,j)⊙ V ℓhℓ
j))), (17)

eℓ+1
i,j = eℓi,j + α(BN(P ℓeℓi,j +Qℓhℓ

i +Rℓhℓ
j)). (18)

where U ℓ,V ℓ,P ℓ,Qℓ,Rℓ ∈ Rd×d are the learnable parameters of layer ℓ, α denotes the activation
function (we use SiLU [73] in this paper), BN denotes the Batch Normalization operator [74], A
denotes the aggregation function (we use mean pooling in this paper), σ is the sigmoid function, ⊙
is the Hadamard product, and Ni denotes the outlines (neighborhood) of node i. We use a 12-layer
(L=12) AGNN with a width of d = 64. The total space and time complexity of AGNN is O(KNd).
In training all involved CO problems, the learning rate of the dividing policy is set to lr = 1e− 4.

T -revisit initial solution decoding. Next, based on the Eq. (4), the final layer edge representation
eLi,j of AGNN is used to generate the heatmap. Heatmap-based solvers generally use an MLP
to process the ei,j . To integrate partial solution-related representations in the heatmap, UDC has
designed an additional T -revisit method, which will re-generate the heatmap by an additional T − 1
times using MLPs based on the existing partial solutions after multiple heatmap decoding steps. This
operation increases the time and space complexity to O(TKNd), but significantly improves the
solution quality. Enabling the T -revisit method, the total initial solution generation strategy is shown
below.

πd(x0|G,Ω, ϕ) =

p(x0,1)

T−1∏
c=0

[
p(H|G,Ω, ϕ, x0,1:⌊N

T ⌋c+1)

τ∏
t=2

exp(Hx0,t−1,x0,t)∑N
i=t exp(Hx0,t−1,x0,i

)

]
, if x0 ∈ Ω

0, otherwise

.

(19)

It represents decoding solutions from the heatmapH ∼ p(H|G,Ω, ϕ, x0,1:⌊N
T ⌋c+1) and a new heatmap

will generates every ⌊NT ⌋ steps. For CO problems without a depot (i.e., TSP, KP, MIS, ATSP),
p(x0,1) = 1

N and for other CO problems, x0,1 = depot and p(x0,1) = 1. In training UDC, we
set T = ⌊Nn ⌋. In testing, we generally set T = ⌊Nn ⌋ as well for 500-node to 4,999-node random
instances. For efficiency, we set T = 10 for very large-scale CO instances and CVRPLib-XXL
datasets.

20

C.3 Conquering Stage: Sub-problem Preparation

The detail of decomposing CO problems to their corresponding sub-CO problems is shown in B.
Generally, to generate the constraints of different sub-CO problems at this step, we need to 1) Keep
the already determined solutions and likes unchanged (e.g., starting point in VRP, points connected
to visited nodes in MIS) 2) Dispatch the original constraints to the current sub-problems (capacity of
CVRP, capacity of KP, maximum length of OP, etc.). Usually, this kind of constraint is calculated
from nodes in the original sub-solution. 3) In testing, consider the margin of constraints in the original
CO problems (i.e., KP, OP, PCTSP, SPCTSP) to ensure the accessibility of optimal solutions.

C.4 Conquering Stage: Normalization

As presented in B, TSP, ATSP, CVRP, OVRP, and min-max mTSP conduct normalization on the
inputs of their sub-problems. ATSP normalizes the distance matrix by dividing by the maximum
in each sub-ATSP cost matrix (i.e., d′i,j =

di,j

maxo,q∈{1,...,N}do,q
) and other sub-CO problems are

normalized following the method in GLOP [13]. Let (x′
i, y

′
i) denotes the coordinates of the i-th

node after normalization, xmax, xmin, ymax, and ymin denote the bounds of an sub-VRP instance
{(x1, y1), . . . , (xn, yn)} (i.e., xmax = maxi≤n xi, et al.). Then, the coordinate transformation of
coordinate (xi, yi) is formulated as follows:

x′
i =

{
sc(xi − xmin) if xmax − xmin > ymax − ymin,
sc(yi − ymin) otherwise,

y′i =

{
sc(yi − ymin) if xmax − xmin > ymax − ymin,
sc(xi − xmin) otherwise,

(20)

where the scale coefficient sc = 1
max(xmax−xmin,ymax−ymin)

. Besides normalizing the coordinates,
sub-SPCTSP and sub-PCTSP normalize prizes of nodes by dividing the total collected prize of the
current sub-solution.

C.5 Conquering Stage: Conquering Policy

UDC adopts 5 solvers as the conquering policy, including AGNN [35] for MIS, ICAM [16] for TSP,
CVRP, OVRP, and KP, POMO [5] for PCTSP, SPCTSP, OP, MatNet [41] for ATSP, and DPN [42] for
min-max mTSP. We employ 12-layer and 256-dimensional AGNN, 6-layer ICAM without AAFT,
6-layer POMO, and 5-layer MatNet, for these experiments respectively. In training, the learning rate
of all these solvers is set to lr = 1e− 4 as well.

The baseline calculation method in training conquering policies generally follows POMO [5] (sam-
pling β sub-solutions for each sub-CO instance), but the generation process of the β sub-solutions
is different for each CO problem. Some sub-CO problems (e.g., sub-TSP, sub-CVRP, sub-OVRP,
sub-OP) have symmetry (i.e., flipping sub-solutions will not change their objective values) so we
enable a two sides conquering baseline, sampling β

2 solutions on both the starting and ending
nodes. For other CO problems, we sample β solutions from the starting point (e.g., the first randomly
selected vertex in sub-MIS and the starting node of sub-ATSP). Please refer to the second to last line
in Table 7 for whether the conquering policy enables the two sides conquering baseline in solving
each CO problem. In testing, the conquering policy in the UDC samples only one sub-solution (i.e.,
β = 1) for asymmetric sub-CO problems and sampling only two sub-solutions (i.e., β = 2) for
symmetric ones.

Reason for using different solvers for different CO problems Using the same model for con-
quering policy is an ideal choice. However, the experiment of UDC involves 10 CO problems, and
some CO problems, like min-max mTSP [42] and ATSP [41], require specific model structures to
process their inputs and constraints. Consequently, there is no constructive solver that can be used for
all 10 involved CO problems. For each CO problem, UDC adopts the best-performance constructive
solver for the conquering policy (i.e., summarized in Table 7).

UDC exhibits flexibility in choosing a constructive solver for conquering policy. For well-
developed CO problems like TSP and KP, there are multiple constructive solvers available. Section
5.2 and Appendix E.6 present an ablation study on the selection of these constructive solvers for TSP

21

and KP, respectively. Both sets of results indicate that the final performance of UDC is not sensitive
to the model selection for the conquering policy. Therefore, when generalizing UDC to new CO
problems, it may not be necessary to specifically choose which available constructive solver to model
the conquering policy.

C.6 Total Algorithm

The total algorithm of training UDC is presented in Algorithm 1. The total algorithm of testing UDC
on instances is presented in Algorithm 2.

Algorithm 1 UDC: Training dividing and conquering policy on general large-scale CO problems.
1: Input: A CO instance G, number of node N ; scale of sub-problems n; the number of sampled

initial solution α; the number of sampled sub-solution β; dividing policy ϕ, conquering policy θ
2: Output: parameter ϕ, θ
3: Generate sparse graph GD
4: Generate initial HeatmapH based on p(H|GD,Ω, ϕ)
5: Sample α initial tours: {x1

0, . . . ,x
α
0 } based on πc in Eq. (4). (Eq. (19) for T -revisit enabled.)

6: for i ∈ {1, 2} do
7: Initialize the decomposition point: p← n

2 ∗ i
8: Calculate the number of sub-tours decomposed from a tour: C = ⌊Nn ⌋
9: {Gi−1

1 , . . . ,Gi−1
C , . . . ,Gi−1

αC } ←
10: {{x1

0,p:p+n, . . . ,π
1
0,p+n(C−1):p+nC}, . . . , {x

α
0,p:p+n, . . . ,x

α
0,p+n(C−1):p+nC}}

11: Apply coordinate transformation and constraint normalization to {Gi−1
1 , . . . ,Gi−1

αC }
12: for k ∈ {1, . . . , αC}, j ∈ {1, . . . , β} do
13: Sample si,jk ∼ πc(·|Gi−1

k ,Ωi−1
k , θ)

14: if i = 1 then
15: Update conquering policy θ ← θ +∇θLc1(G)
16: end if
17: if i = 2 then
18: Update conquering policy θ ← θ +∇θLc2(G)
19: end if
20: end for
21: for k ∈ {1, . . . , αC} do
22: Select best sub-solution among β samples: ŝik = argmaxs′∈{si,1

k ,...,si,β
k }f(s

′)

23: Substitute the si,jk with no improvement on f(ŝik) in sub-CO problems to the original
solution.

24: Merge solutions: {x1
i , . . .x

α
i } = {Concat(ŝi1, . . . , ŝ

i
C), . . . ,Concat(ŝi(α−1)C+1, . . . , ŝ

i
αC)}

25: end for
26: end for
27: Update dividing policy ϕ← ϕ+∇ϕLd(G)

C.7 MDP of the dividing and conquering stages

In addition to the algorithms in Appendix C.6, this section will provide necessary descriptions of the
training objective of both policies and the implicit MDP for the two stages.

It should be noted that the training objectives and MDP are not designed originally from UDC, they
are also adopted in a series of neural divide-and-conquer methods [13, 20].

Objective functions of optimizing the two networks . For a CO problem (or a sub-CO problem)
with the objective function f(·), the goal of training both networks is to maximize the reward functions
of their corresponding MDP. The reward is −f(x2) for the dividing policy (AGNN in UDC), −f(s1)
for the constructive solver (conquering policy) in the Conquer step (i.e., the first conquering stages),
and −f(s2) in the Reunion step.

22

Algorithm 2 UDC: Solving general large-scale CO problems.
1: Input: A CO instance G, number of node N ; scale of sub-problems n; the number of sampled

solution α; number of conquering stage r
2: Output: The best solution x̂
3: Generate sparse graph GD
4: Generate initial HeatmapH based on p(H|GD,Ω, ϕ)
5: Sample α initial tours: {x1

0, . . . ,x
α
0 } based on πc in Eq. (4). (Eq. (19) for T -revisit enabled.)

β ← 2 for TSP, ATSP, OP, PCTSP, SPCTSP.
6: for i ∈ {1, . . . , r} do
7: if i ≤2 then
8: Initialize the decomposition point: p← n

2 ∗ i
9: end if

10: if i ≥3 then
11: Initialize the decomposition point: p ∼ Uniform(1, n)
12: end if
13: Calculate the number of sub-tours decomposed from a tour: C = ⌊Nn ⌋
14: {Gi−1

1 , . . . ,Gi−1
C , . . . ,Gi−1

αC } ←
15: {{x1

i−1,p:p+n, . . . ,x
1
i−1,p+n(C−1):p+nC}, . . . , {x

α
i−1,p:p+n, . . . ,x

α
i−1,p+n(C−1):p+nC}}

16: Apply coordinate transformation and constraint normalization to {Gi−1
1 , . . . ,Gi−1

αC }
17: for k ∈ {1, . . . , αC}, j ∈ {1, . . . , β} (β=1 or 2, see Appendix C.5) do
18: Sample si,jk ∼ πc(·|Gi−1

k ,Ωi−1
k , θ)

19: end for
20: for k ∈ {1, . . . , αC} do
21: ŝik = argmaxs′∈{si,1

k ,...,si,β
k }f(s

′)

22: Substitute the si,jk with no improvement on f(ŝik) in sub-CO problems to the original
solution.

23: Merge solutions: {x1
i , . . .x

α
i } ← {Concat(ŝi1, . . . , ŝ

i
C ,x

1
i−1,p+nC+1,p)

24: , . . . ,Concat(ŝi(α−1)C+1, . . . , ŝ
i
αC ,x

α
i−1,p+nC+1,p)}

25: end for
26: x̂ = argmaxx∈{x1

i ,...,x
α
i }f(x)

27: end for

MDP for the dividing stage: The MDP Md = {Sd,Ad, rd,Pd} of the dividing stage can be
represented as follows:

State. State std ∈ Sd represents the current partial solution. The state in the t-th time step is the
current partial solution with t nodes std,t = x0,t = (x1, x2, ..., xt). std,0 is empty and std,T = x0.

Action & Transaction. The action is to select a node at time step t, i.e., ad,t = xt+1. The chosen node
needs to ensure that the partial solution std,t+1 = (x1, x2, ..., xt, xt+1) is valid (i.e., std,T ∈ Ω).

Reward. Every single time step has the same reward rd,t = −f(x2) which is the objective function
value of the final solution x2 after the whole DCR process.

Policy. The policy πd is shown in Eq. (4) (Eq. (19) for T -revisit enable).

MDP for the conquering stage: The MDPMc = {Sc,Ac, rc,Pc} of any single conquering stage
is represented similarly as follows:

State. Each state stc ∈ Sc represents the current partial solution. The state in the t-th time step is the
current partial solution with t nodes stc,t = st = (s1, s2, ..., st). stc,0 is empty and stc,T = s.

Action & Transaction. The action is to select a node at time step t as well, i.e., ac,t = st+1.

Reward. The reward in each time step becomes the objective value of sub-CO solution s, i.e.,
rc,t = −f(s).
Policy. The policy πc is shown in Eq. (5).

23

C.8 Time & Space Complexity

Table 6: Comparison on time and space complexity.

LEHD ICAM-single-start ICAM-N-start UDC-x2 UDC-xr

Time O(N3) O(N2) O(N3) O(αTKN + n2) O(αTKN + rn2)
Space O(N2) O(N2) O(N2) O(αKN + α⌊Nn ⌋n

2) O(αKN + α⌊Nn ⌋n
2)

With a lightweight GNN for global partition and constructive solvers for parallel small-scale sub-
problems, both the time and space complexities of UDC are reduced compared to single-stage
SL-based sub-path solvers and single-stage RL-based constructive-based solvers. When sampling α
T -revisit enabled initial solutions (T=1 for disabling the T -revisit), the dividing stage of UDC has a
time complexity of O(αTKN) and a space complexity of O(αKN).

Both the time and space complexity of a single conquering stage on a single sub-problem is O(n2).
There are α⌊Nn ⌋ parallel sub-problems for each instance so the complexity should be α⌊Nn ⌋O(n

2).
However, the α⌊Nn ⌋ sub-problems can be processed in parallel (as batch size = α⌊Nn ⌋) in GPUs, so
the total time complexity of UDC with r conquering stages can be considered as O(αTKN + rn2)
and the space complexity is O(αKN + α⌊Nn ⌋n

2).

Sub-path-based constructive solver adopts a decoder-only model structure so for a τ -length solution,
the time complexity isO(τN2d) = O(N3) (d is the dimension of embeddings, we regard τ = O(n))
and the space complexity isO(N2). ICAM is a representative RL-based constructive solver, adopting
an encoder-decoder-based model structure. The space complexity is O(N2) and the time complexity
is O(τNd) = O(N2) for single-start ICAM and O(τN2d) = O(N3) for N -start (multi-start)
ICAM. The comparison of time and space complexity is listed in Table 6, UDC generally adopts
the parameter of T = 10, α = 1, K = 100 in testing. So on CO problems with N ≥ 1, 000, the
proposed UDC-x2 demonstrates less inference complexity compared to O(N2) and exhibits superior
efficiency. Empirical results especially very-large-scale experiments (N ≥ 5, 000) in Table 11 and
Appendix D.5 prove the above statements.

24

D Experiment Details

D.1 Hyperparameter

Hyperparameters of all 10 involved CO problems are listed in Table 7. Training UDC on most CO
problems adopts the varying-size [45] and varying-constraint [6] setting. ICAM and POMO used
for conquering policy are 6-layers. DPN is 3-layers, and MatNet is 5-layer. AGNN for conquering
sub-MIS is 12-layer with d = 256. In training UDC for TSP, we don’t conduct the varying scale
training in the first 50 epochs with α = 80.

Table 7: Hyper parameter of training CO problems.

Hyperparameter
TSP PCTSP,SPCTSP CVRP,OVRP OP

Varying training size N 500-1,000 500-1,000 500-1,000 500-1,000
Varying training constraint - 9-12 50-100 -

Sub-path scale n 100 100 100 100
α in training 40 30 40 40
β in training 50 50 40 50
Epoch size 1,000 1,000 1,000 1,000
Epoch-time 28m 29m 42m 22m
Total epochs 500 500 200 500
DCR enable TRUE TRUE TRUE TRUE

Two sides conquering baseline TRUE TRUE FALSE TRUE
Conquering Policy ICAM POMO ICAM POMO

Hyperparameter
KP MIS(ER[700-800]) min-max mTSP ATSP

Varying training size N 500-1,000 700-800 500-1,000 250-500
Varying training constraint 50-100 - 30-50 -

Sub-path scale n 100 200 100 50
α in training 50 35 25 30
β in training 100 35 30 50
Epoch size 1,000 1,000 1,000 1,000
Epoch-time 25m 7m 42m 29m
Total epochs 120 1,000 200 300
DCR enable FALSE TRUE TRUE TRUE

Two sides conquering baseline FALSE FALSE FALSE FALSE
Conquering Policy ICAM AGNN DPN MatNet

It can be seen that UDC adopts similar setups to solve different problems. The third to last and
the second to last rows of Table 7 are related to the environment and the last row is unable to use
a consistent setup and some flexibility in choices. Ablation studies in Section 5.2 and Appendix E
discuss the setting of some listed hyperparameters, such as α in testing, DCR enable=False for KP,
and the selection of conquering Policy in KP and TSP.

25

D.2 Experiment on OVRP, MIS, ATSP, KP, and min-max mTSP

The main part of this paper has evaluated the proposed UDC on large-scale instances of 5 repre-
sentative CO problems. In this section. We will further evaluate the proposed UDC on more CO
problems. OVRP is a variant of CVRP that has been widely involved in recent multi-task NCO
work [75, 76]. We introduce this problem to test UDC’s ability to handle open loops and distant
point-to-point relationships based on CVRP. MIS is a classic CO problem widely used to evaluate
heatmap-based solvers [35], which can test the capability of UDC to handle CO problems on graphs.
The experiment on ATSP can evaluate the flexibility of the UDC framework and its ability to process
matrix-based data. We also employ KP to test the ability of UDC to handle CO problems without
neighborhood properties. Most importantly, min-max mTSP is introduced to test the ability of UDC
to handle problems with different aggregation functions (i.e., the max aggregation function) except
for min-sum (i.e., objective functions of all the else 9 CO problems). For OVRP, KP, ATSP, and
min-max mTSP in this section, UDC works to minimize rather than maximize (like OP and MIS)
their objective functions.

Experiment on OVRP: The experiment result is shown in Table 8. Compared to the current best
NCO method [75] POMO (Trained on OVRP100 with settings in [75]), UDC demonstrates significant
superiority in large-scale OVRP problems.

Table 8: Objective function (Obj.), Gap to the best algorithm (Gap), and solving time (Time) on
500-node (128 instances), 1,000-node (128 instances), and 2,000-node OVRP (16 instances).

OVRP500 OVRP1,000 OVRP2,000
Method Obj.↓ Gap Time Obj.↓ Gap Time Obj.↓ Gap Time

LKH3 23.51 - 16m 28.96 - 32m 39.88 - 27m
POMO 28.73 22.21% 1.5m 59.26 104.61% 16m 108.82 172.90% 16m
UDC-x2(α=50) 25.82 9.86% 1.4m 33.01 13.97% 3m 51.11 28.17% 42s
UDC-x50(α=50) 24.39 3.77% 7.9m 29.95 3.41% 15.5m 44.19 10.82% 4.5m
UDC-x250(α=50) 24.18 2.85% 34.5m 29.66 2.39% 1.1h 43.35 8.71% 20m

Experiment on MIS: The MIS problem is a widely adopted CO problem for heatmap-based solvers.
UDC can also solve the MIS problem by employing AGNN as the conquering policy. Following
DIFUSCO, we evaluate the proposed UDC on the Erdős-Rényi (ER) [77] dataset. We evaluate the
MIS on ER[700-800] with p=0.15. We use the test set provided in [35], and the results on it are shown
in Table9. UDC can also achieve good results on MIS after several conquering stages. Compared to
the heatmap-based solver that originally relied on search algorithms, UDC shows better efficiency.

Table 9: Performance on 128-instance ER[700-800] test set (provided in DIMES [35]). All the results
are reported in DIMES [35] DIFUSCO [39] and T2T [66]. For MIS, the larger objective value (Obj.)
is better.

ER-[700-800]
Method Obj.↑ Gap. Time
KaMIS* 44.87 - 52.13m
Gurobi* 41.38 7.78% 50.00m
hline Intel* 38.8 13.53% 20.00m
DGL* 37.26 16.96% 22.71m
LwD* 41.17 8.25% 6.33m
DIFUSCO-greedy* 38.83 13.46% 8.80m
DIMES-greedy* 38.24 14.78% 6.12m
T2T-greedy* 39.56 11.83% 8.53m
UDC-x2(α=50) 41.00 8.62% 40s
DIMES-MCTS* 42.06 6.26% 12.01m
DIFUSCO-MCTS* 41.12 8.36% 26.67m
T2T-MCTS* 41.37 7.80% 29.73m
UDC-x50(α=50) 42.88 4.44% 21.05m

26

Experiment on ATSP: On ATSP, we compare the proposed UDC to traditional solver OR-Tools,
constructive solver MatNet, and neural divide-and-conquer method GLOP. Results on ATSP250 to
ATSP1,000 are shown in Table 10 and results of MatNet and GLOP are reported from GLOP [13]. We
follow the data generation method in MatNet [41] and such a data generation method is unavailable
on larger scales (i.e., ATSP2,000). Results demonstrate the capability of UDC on large-scale ATSP
and the superiority of UDC compared to GLOP. The advantage of performance contributes to the
unified training scheme (ATSP of GLOP can be regarded as the separate training UDC.).

Table 10: Objective function (Obj.), Gap to the best algorithm (Gap), and solving time (Time) on
250-node (128 instances), 500-node (128 instances), and 1,000-node ATSP (16 instances). α = 20
for ATSP250 and ATSP500 and α = 10 for ATSP1,000.

ATSP250 ATSP500 ATSP1,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time Obj.↓ Gap Time
OR-Tools 1.94 5.32% 1m 2.00 1.57% 2m 2.08 0.14% 2m
MatNet* 4.49 143.89% - - - - - - -
GLOP* 2.10 14.07% - - - - 2.79 34.39% -
UDC-x2 1.96 6.63% 21s 2.05 3.92% 39s 2.16 3.85% 6s
UDC-x50 1.84 - 7m 1.97 - 13m 2.08 - 1.5m

Experiment on KP: On KP, we involve OR-Tools (generally optimal on KP), POMO, and BQ
as baselines. As shown in Table 11, compared to BQ and POMO, both the UDC-x50(α=1) and
UDC-x250(α=1) exhibit the best learning-based performance on KP500 and KP1,000. Moreover,
UDC demonstrates outstanding time efficiency on KP1,000 and larger-scale KPs.

Table 11: Objective function (Obj.), Gap to the best algorithm (Gap) on 500-node, 1,000-node (128
instances), and 2,000-node, 5,000-node KP (16 instances). OR-Tools can generate solutions in real
time. The best learning-based method is marked by shade.

KP500,W=50 KP1,000,W=100
Method Obj.↓ Gap Time Obj.↓ Gap Time
OR-Tools 128.3690 - - 258.2510 - -
BQ 128.2786 0.07% 37s 258.0553 0.08% 4.4m
POMO 128.3156 0.04% 5s 254.5366 1.44% 27s
UDC-x50(α=1) 128.3373 0.02% 14s 258.1838 0.03% 24s
UDC-x250(α=1) 128.3583 0.01% 24s 258.2236 0.01% 56s

KP2,000,W=200 KP5,000,W=500
Method Obj.↓ Gap Time Obj.↓ Gap Time
OR-Tools 518.2880 - - 1294.2263 - -
UDC-x50(α=1) 518.1653 0.02% 8s 1293.9041 0.02% 16.2s
UDC-x250(α=1) 518.2337 0.01% 24s 1294.0966 0.01% 40s

27

Experiment on min-max mTSP: For min-max mTSP, we involve heuristic method hybrid ge-
netic algorithm (HGA) [78] and LKH3, constructive method (parallel planning) DAN [46], Equity-
Transformer [62] and DPN [42]. We use the dataset provided in DPN and the model of Equity-
Transformer and DPN are finetuned on N=500, M ∈ {30, . . . , 50}. The results in Table 12 demon-
strate that the UDC can get outstanding results on CO problems with min-max objective functions as
well.

Table 12: Objective function (Obj.), Gap to the best algorithm (Gap) on 500-node, 1,000-node
min-max mTSP instances (100 instances). The best result is in bold.

min-max mTSP N=500,M=30 N=500,M=50 N=1,000,M=50
Methods Obj.↓ Gap Obj.↓ Gap Obj.↓ Gap
HGA 2.0061 - 2.0061 0.00% 2.0448 -
LKH 2.0061 0.00% 2.0061 0.00% 2.0448 0.00%
DAN 2.2345 11.39% 2.1465 7.00% 2.3390 14.39%
Equity-Transformer-Finetune 2.0165 0.52% 2.0068 0.04% 2.0634 0.91%
DPN-Finetune 2.0065 0.02% 2.0061 0.00% 2.0452 0.02%
UDC-x50(α=1) 2.0840 3.89% 2.1060 4.99% 2.1762 6.43%
UDC-x50(α=50) 2.0087 0.13% 2.0060 - 2.0495 0.23%

D.3 Experiments on TSP & CVRP Instances with Various Distributions

The cross-distribution generalization ability of NCO solvers is also necessary. So we evaluate the
UDC on the Rotation distribution, and the Explosion distribution provided in Omni_VRP [79] on TSP
and CVRP. The result is shown in Table 13, UDC demonstrates outstanding robustness on large-scale
CO problems with different distributions.

Table 13: Experimental results on cross-distribution generalization. All four test sets are obtained
from Omni_VRP [79] and contain 128 instances. The runtime marked with an asterisk (*) is
proportionally adjusted (128/1,000) to match the size of our test datasets. The best learning-based
method is marked by shade.

TSP1,000, Rotation TSP1,000, Explosion
Method Obj.↓ Gap Time Obj.↓ Gap Time

Optimal 17.2 0.00% - 15.63 0.00% -
POMO 24.58 42.84% 8.5m 22.7 45.24% 8.5m
Omni_VRP+FS* 19.53 14.30% 49.9m 17.75 13.38% 49.9m
ELG 19.09 10.97% 15.6m 17.37 11.16% 13.7m
UDC-x250(α=1) 18.19 5.73% 61s 16.76 7.21% 61s

CVRP1,000, Rotation CVRP1,000, Explosion
Method Obj.↓ Gap Time Obj.↓ Gap Time

Optimal 32.49 0.00% - 32.31 0.00% -
POMO 64.22 97.64% 10.2m 59.52 84.24% 11.0m
Omni_VRP+FS* 35.6 10.26% 56.8m 35.25 10.45% 56.8m
ELG 37.04 14.00% 16.3m 36.48 12.92% 16.6m
UDC-x250(α=1) 34.91 7.45% 3.3m 34.75 7.55% 3.3m

28

D.4 Experiments on MIS Instances with Various Distributions

In addition to the TSP and CVRP, we conduct generalization experiments on the MIS problems. We
conduct zero-shot generalization on the model trained by ER graphs with N ∼ U(700, 800) and
p=0.15 to five other datasets, including:

• A random ER graph dataset with N=720 and p=0.05. (average 12,960 undirected edges)
• A random ER graph dataset with N=720 and p=0.25. (average 64,800 undirected edges)
• A random ER graph dataset with N=2,000 and p=0.05. (average 100,000 undirected edges)
• The ego-Facebook data in Stanford Large Network Dataset Collection (SNAP) (https:
//snap.stanford.edu/data/). (4,039 nodes, 88,234 undirected edges)

• The feather-lastfm-social data in SNAP. (7,624 nodes, 27,806 undirected edges)

All the first three ER random datasets contain 128 graph instances, and we consider the last two
data as a single graph. The table below exhibits the comparison results between UDC and the SOTA
heuristics KaMIS (implemented on https://github.com/KarlsruheMIS/KaMIS) on the original
in-domain dataset (ER-[700-800], p=0.15) and the five out-of-domain datasets mentioned above. Obj.
represents the objective function value, Gap represents the performance gap compared to the best
algorithm and Time is the time consumption for solving the whole dataset.

Table 14: Objective function (Obj.), Gap to the best algorithm (Gap) on 500-node, 1,000-node
min-max mTSP instances (100 instances). For MIS, the larger objective value (Obj.) is better.

Dataset ER, N=720, p=0.05 ER-[700-800], p=0.15(in-domain)
Method Obj.↑ Gap Time Obj.↑ Gap Time

KaMIS 99.5 - 40.6m 44.9 - 52.13m
UDC-x0(α = 50) 79.5 20.10% 8s 41.0 8.62% 40s
UDC-x50(α = 50) 89.5 10.07% 9.03m 42.9 4.44% 21.05m
UDC-x250(α = 50) 94.5 5.03% 44.84m 43.8 2.41% 1.73h

Dataset ER, N=720, p=0.25 ER, N=2,000, p=0.05
Method Obj.↑ Gap Time Obj.↑ Gap Time

KaMIS 28.2 - 1.4h 133.9 - 3h
UDC-x0(α = 20) 21.6 23.46% 58s 116.9 12.72% 2m
UDC-x50(α = 20) 25.3 10.54% 21m 119.1 11.05% 21m
UDC-x250(α = 20) 26.4 6.59% 63m 122.9 8.25% 90m

Dataset SNAP-ego-Facebook SNAP-feather-lastfm-social
Method Obj.↑ Gap Time Obj.↑ Gap Time

KaMIS 1052.0 - 155s 4177.0 - 0.1s
UDC-x0(α = 1) 767.0 27.09% 6s 3622.0 13.29% 2s
UDC-x250(α = 1) 901.0 14.35% 11s 3751.0 10.20% 13s
UDC-x2500(α = 1) 1009.0 4.09% 60s 4067.0 2.63% 80s

Compared to KaMIS, UDC variants exhibit relatively stable performance gaps across datasets with
various node sizes (n), sparsity (p), and generation methods, demonstrating good generalization
ability. Moreover, except for the extremely sparse graph SNAP-feather-lastfm-social, UDC variants
have significant advantages over KaMIS in terms of time.

Unfortunately, we are unable to re-implement any learning-based methods for MIS (e.g. Difusco
[39] and T2T [66]), so we are unable to compare the generalization ability with other learning based
algorithms. However, the stable performance gaps on different datasets partially demonstrate certain
out-of-domain generalization performance of UDC on MIS.

29

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://github.com/KarlsruheMIS/KaMIS

D.5 Experiments on Very Large-scale

This section evaluates the proposed UDC on very large-scale instances (i.e., 5,000-node, 7,000-node,
and 10,000-node ones). On 5,000-node and 7,000-node CVRP, the proposed UDC-x250(α=1) variant
still demonstrate better performance.

However, on very large-scale TSP (results shown in Table 16), the UDC fails to converge to an
outstanding performance in testing. We find that this is mainly due to a significant decrease in
effectiveness when generalizing the dividing policy to 10,000-node TSP instances. So, we substitute
the dividing policy to the random insertion used in [13], as shown in Table 17, The UDC with random-
insertion-based initial solution achieved outstanding results. The experimental results preliminarily
verify that in some problems such as TSP, UDC may generate unreliable dividing policies when
processing large-scale generalization. In this case, using other initial solutions with a similar shape to
the optimal solution can also obtain high-quality solutions.

Table 15: Objective function (Obj.), Gap to the best algorithm (Gap) on 5,000-node, 7,000-node
CVRP (100 instances) [12, 13]. The best result is in bold and the best learning-based method is
marked in shade.

CVRP5,000 CVRP7,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time
LKH3 175.7 28.53% 4.2h 245.0 30.17% 14h
BQ 139.8 2.32% 45m - - -
LEHD 138.2 1.09% 3h - - -
ICAM 136.9 0.19% 50m - - -
TAM(LKH3)* 144.6 5.80% 35m 196.9 4.61% 1h
TAM(HGS)* 142.8 4.48% 1h 193.6 2.86% 1.5h
GLOP-G (LKH-3) 140.4 2.69% 8m 191.2 1.59% 10m
UDC-x2(α=1) 167.1 22.27% 8m 248.9 32.22% 8m
UDC-x50(α=1) 140.8 2.99% 9m 195.8 4.03% 13m
UDC-x250(α=1) 136.7 - 16m 188.2 - 21.4m

Table 16: Objective function (Obj.), Gap to the best algorithm (Gap) on 5,000-node (128 instances),
10,000-node TSP instances (16 instances). The best result is in bold and the best learning-based
method is marked in shade.

TSP5,000 TSP10,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time
LKH3 50.9 - 12m 71.8 - 1h
BQ 58.1 14.10% 8m - - -
LEHD 59.2 16.23% 20m - - -
ICAM 60.3 18.34% 8m - - -
GLOP-more revision 53.3 4.54% 21m 75.3 4.90% 1.8m
SO-mixed* 52.6 3.25% 55m 74.3 3.52% 2h
H-TSP 55.0 7.99% 26s 77.8 8.33% 50s
UDC-x2(α=1) 56.2 10.28% 1.6m 82.1 14.35% 7m
UDC-x50(α=1) 54.5 7.06% 2.6m 79.2 10.41% 7m

Table 17: Objective function (Obj.), Gap to the best algorithm (Gap) on 10,000-node, 100,000-node
TSP instances (16 instances). The best result is in bold and the best learning-based method is marked
in shade. We use the TSP100,000 result reported in GLOP [13] on probably a different test set.

TSP10,000 TSP100,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time
LKH3 71.8 - 1h 226.4* - 8.1h
DIMES+S 86.3 20.18% 3.1m 286.1* 26.37%* 2.0m
GLOP-more revision 75.3 4.90% 1.8m 238.0* 5.12%* 2.8m
UDC-x50(α=1) 74.7 4.11% 18s 235.8 4.15% 3.5m
UDC-x250(α=1) 74.7 4.03% 1m 235.6 4.05% 11.5m

30

E Ablation Study

E.1 Ablation Study on r (Convergence Speed In Testing)

The proposed UDC adopts the multi-conquering stage (r stages) in common variants. Therefore, as
an iterative method, the effectiveness of our testing phase is closely related to the testing time. We
record the iterative convergence curves of the objective function value (Obj.) during testing TSP1,000,
CVRP1,000, and PCTSP1,000 with UDC(α=1), UDC(α=50), GLOP [13], LEHD (RRC) [8], and
DIFUSCO [39]. The results are shown in Figure 5, and curves (except for DIFUSCO, which uses
reported results) are generated under the same test set and computation resources. We can obtain the
following conclusions:

1. For the two variants of UDC, UDC(α=1) can generate better solutions compared to UDC(α=50) in
a limited period but will trap into local optima quickly. For PCTSP, there is no significant difference
in the final convergence result between the two versions.

2. Compared to the advanced neural divide-and-conquer method GLOP, the objective functions of
both the two UDC variants always significantly lead when going through the same testing time.

3. Compared with the search-enabled heatmap-based method DIFUSCO, although the heatmap-based
method can ultimately obtain a superior value of the objective function through a sufficient search on
TSP, the two variants of UDC lead in the value of the objective function in a finite period.

4. Compared to the SL-based sub-path solver LEHD with RRC [8], the RL-based UDC(α=50) variant
demonstrates competitive objective function values on CVRP, while both the two variants of UDC
show higher efficiency on TSP and CVRP.

0 5 10 15 20 25 30 35 40

Time(m)

23.4

23.6

23.8

24.0

24.2

24.4

O
bj

.

Test on 128-instnce TSP1000

UDC-(=1)
UDC-(=50)
GLOP
DIFUSCO
LEHD(RRC)

(a) TSP1,000

0 20 40 60 80

Time(m)

43

44

45

46

47

O
bj

.

Test on 128-instnce CVRP1000

UDC-(=1)
UDC-(=50)
GLOP
GLOP(LKH3)
LEHD(RRC)

(b) CVRP1,000

0 10 20 30 40 50 60

Time(m)

18.0

18.5

19.0

19.5

20.0

20.5

21.0

O
bj

.

Test on 128-instnce PCTSP1000

UDC-(=1)
UDC-(=50)
GLOP

(c) PCTSP1,000

Figure 5: Testing curves for ablation study.

E.2 Ablation Study on α (Sampled Initial Solutions)

In this subsection, we demonstrate the change in effectiveness of UDC relating to the numbers of
initial solutions (i.e., α) for each CO problem. We use different α values to test the TSP, CVRP,

31

OP, PCTSP, and SPCTSP (CO problems evaluated in the main paper) on their original test set. As
exhibited in Table 18, results with α = 50 always demonstrate significantly better performance but
much more time consumption.

However, the sensitivity of α on performance varies among different CO problems. In TSP, CVRP,
and OP, the differences between results with α = 50 and results with α = 1 appear to be quite
significant, while in PCTSP and SPCTSP, employing more initial solutions demonstrates no significant
effect. Moreover, On 2,000-node problems TSP, CVRP, and OP, the effect of α = 50 is particularly
pronounced. Since the difference in initial solutions is entirely from sampling the dividing policy,
a more significant distinction between α = 50 and α = 1 variants might mean that the initial
solution prediction is more difficult in these instances. Meanwhile, the more significant difference in
2,000-node instances indicates that compared to (S)PCTSP, the dividing policy has worse scaling
ability on TSP, CVRP, and OP.

Table 18: Ablation on the number of initial solution r. Objective function values (Obj.), Gap to the
best algorithm (Gap) on 500-node, 1,000-node, and 2,000-node instances are listed.

TSP500 TSP1,000 TSP2,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time Obj.↓ Gap Time
LKH3 16.52 - 5.5m 23.12 - 24m 32.45 - 1h
UDC-x2(α=1) 17.12 3.62% 10s 24.06 4.05% 18s 34.44 6.13% 48s
UDC-x50(α=1) 16.92 2.41% 14s 23.68 2.42% 26s 33.60 3.54% 1.1m
UDC-x2(α=50) 16.94 2.54% 20s 23.79 2.92% 32s 34.14 5.19% 23s
UDC-x50(α=50) 16.78 1.58% 4m 23.53 1.78% 8m 33.26 2.49% 15m

CVRP500 CVRP1,000 CVRP2,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time Obj.↓ Gap Time
LKH3 37.23 - 7.1h 46.40 8.18% 14m 64.90 8.14% 20min
UDC-x2(α=1) 40.64 9.15% 1m 46.91 9.09% 2m 68.86 14.74% 3.1m
UDC-x50(α=1) 38.68 3.89% 1.2m 43.98 2.28% 2.2m 62.10 3.48% 3.5m
UDC-x250(α=1) 38.32 2.93% 2.1m 43.46 1.06% 3.4m 61.03 1.70% 5.5m
UDC-x2(α=50) 40.05 7.57% 1m 46.09 7.18% 2.1m 65.26 8.75% 5m
UDC-x50(α=50) 38.35 3.01% 9.6m 43.48 1.11% 14m 60.94 1.55% 23m
UDC-x250(α=50) 38.00 2.06% 1.1h 43.00 - 1.1h 60.01 - 2.15h

OP500 OP1,000 OP2,000
Methods Obj.↑ Gap Time Obj.↑ Gap Time Obj.↑ Gap Time
EA4OP 81.70 - 7.4m 117.70 - 63.4m 167.74 - 38.4m
UDC-x2(α=1) 75.28 7.86% 17s 109.42 7.03% 25s 135.34 19.32% 5s
UDC-x50(α=1) 78.02 4.51% 23s 111.72 5.08% 23s 139.25 16.99% 8s
UDC-x250(α=1) 79.27 2.98% 48s 113.27 3.76% 1.1m 144.10 14.09% 21s
UDC-x2(α=50) 75.61 7.46% 25s 110.25 6.33% 40s 147.48 12.08% 10s
UDC-x50(α=50) 78.55 3.86% 5m 112.59 4.34% 9.5m 151.89 9.45% 2m
UDC-x250(α=50) 79.81 2.32% 24m 114.16 3.01% 47m 159.10 5.15% 11m

PCTSP500 PCTSP1,000 PCTSP2,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time Obj.↓ Gap Time
OR-Tools* 14.40 10.19% 16h 20.60 13.34% 16h - - -
UDC-x2(α=1) 13.95 6.78% 34s 19.50 7.30% 1m 27.22 8.87% 18s
UDC-x50(α=1) 13.25 1.39% 42s 18.46 1.59% 1.3m 25.46 1.81% 23s
UDC-x250(α=1) 13.17 0.74% 80s 18.29 0.61% 25.04 0.12% 53s
UDC-x2(α=50) 13.80 5.61% 40s 19.32 6.32% 1.6m 26.76 7.02% 24s
UDC-x50(α=50) 13.15 0.63% 7m 18.33 0.86% 15m 25.22 0.85% 3.4m
UDC-x250(α=50) 13.07 - 40m 18.18 - 70m 25.01 - 17.6m

SPCTSP500 SPCTSP1,000 SPCTSP2,000
Methods Obj.↓ Gap Time Obj.↓ Gap Time Obj.↓ Gap Time
UDC-x2(α=1) 14.21 8.20% 42s 20.01 9.04% 1.1m 28.15 11.15% 20s
UDC-x50(α=1) 13.40 2.04% 1m 18.93 3.11% 1.4m 26.24 3.60% 29s
UDC-x250(α=1) 13.24 0.82% 2.3m 18.54 1.03% 2.6m 25.38 0.22% 1.1m
UDC-x2(α=50) 14.05 6.98% 40s 19.74 7.52% 1.6m 27.98 10.48% 24s
UDC-x50(α=50) 13.27 1.01% 7m 18.71 1.91% 15m 26.17 3.34% 3.4m
UDC-x250(α=50) 13.13 - 40m 18.35 - 70m 25.33 - 17.6m

32

E.3 Ablation Study on the Generation Method of Initial Solutions

To check the ability of the dividing policy, we further conduct experiments on TSP with different
generation methods of initial solutions, and the results shown in Table 19 demonstrate the significance
of a good initial solution to the final performance. The UDC variants with a random initial solution
or a nearest greedy initial solution cannot converge to good objective values even with 50 conquering
stages. Moreover, from TSP500 to TSP2,000, the dividing policy of UDC produces similar results
to the heuristic algorithm random insertion (used in GLOP [13]), which verifies the quality of the
dividing policy.

Table 19: Ablation on different algorithms as initial solutions x0. The conquering stages of all the
variants are the constructive of UDC. Random-UDC directly represents a random solution as the
initial solution. Nearest Greedy-UDC uses the nearest greedy algorithm (starting from the first node)
and Random Insertion-UDC employs the random insertion heuristic as the initial solution. α = 1 in
all UDC variants. UDC-x2 and UDC-x50 is the original version. Obj. is the objective value and Gap
represents the gap to the best method.

Method TSP500 TSP1,000 TSP2,000
Method Obj. Gap Obj. Gap Obj. Gap
Concorde 16.52 - 23.12 - 32.45 -
Random-UDC-x2 33.98 105.68% 67.82 193.34% 134.98 315.98%
Random-UDC-x50 26.11 58.01% 52.48 126.98% 104.48 221.96%
Nearest Greedy-UDC-x2 18.48 11.87% 26.42 14.27% 37.48 15.50%
Nearest Greedy-UDC-x50 17.88 8.23% 25.75 11.38% 36.80 13.40%
Random Insertion-UDC-x2 17.09 3.45% 24.08 4.17% 34.00 4.78%
Random Insertion-UDC-x50 16.84 1.93% 23.75 2.73% 33.55 3.38%
UDC-x2(α = 1) 17.12 3.62% 24.06 4.05% 34.44 6.13%
UDC-x50(α = 1) 16.92 2.41% 23.68 2.42% 33.60 3.54%

E.4 Ablation Study on Components

In the main part, we have shown the result of the ablation study on the unified training scheme and
the conquering policy, demonstrating the superiority of the unified training scheme and the flexibility
in selecting a model for the conquering policy.

In this sub-section, we conduct experiments to demonstrate the necessity of three other components
of UDC, including the Reunion step in the DCR training method, and the coordinate transformation&
constraint normalization in the conquering stage.

Figure 6(a)(b) compares the training efficiency of the Original UDC to the UDC variant without the
Reunion step in DCR (i.e., the w/o Reunion in the DCR variant) and the UDC variant without the
coordinate transformation (i.e., normalization) in the conquering stage (i.e., the w/o Norm in the
Conquering Stage). The training curve on both TSP500 and TSP 1,000 demonstrates the significance
of both two components and the Reunion step seems more significant for a better training convergency.

Moreover, we also evaluate the significance of constraint normalization on PCTSP. As shown in
Figure 6(c), The final performance after 250 epochs and training efficiency of UDC is strongly nerfed
without the normalization on the total prize lower-bound in sub-(S)PCTSPs.

0 25 50 75 100 125 150 175 200

Epochs

17.0

17.2

17.4

17.6

17.8

O
bj

.

TSP500-Ablation on Components

UDC
w/o Reunion in DCR
w/o Norm in Conquering Stage

(a) TSP500

0 25 50 75 100 125 150 175 200

Epochs

24.00

24.25

24.50

24.75

25.00

25.25

25.50

25.75

26.00

O
bj

.

TSP1000-Ablation on Components

UDC
w/o Reunion in DCR
w/o Norm in Conquering Stage

(b) TSP1,000

0 25 50 75 100 125 150 175 200

Epochs

20

21

22

23

24

25

26

27

O
bj

.

PCTSP1000-Ablation on Components

UDC
w/o Norm in Conquering Stage

(c) PCTSP1,000

Figure 6: Training curves for ablation study.

33

E.5 Ablation Study on Disable DCR in KP

For KP, there will be no sub-optimal connection as shown in Figure 2, so there is no logical difference
in whether DCR is enabled or not. We provide the KP results of Enable DCR in Table 20 and the
results support the above conclusion.

Table 20: Ablation on whether to enable the DCR in training UDC for KP. The version with disabling
DCR (i.e., Disable DCR) is the same as Table 11 in the original paper and the datasets are also the
same. The value shown in the table is the gap to optimal (OR-Tools).

Method KP500 KP1,000 KP2,000 KP5,000
UDC-x50(Disable DCR) 0.0247% 0.0260% 0.0237% 0.0249%
UDC-x250(Disable DCR) 0.0083% 0.0106% 0.0105% 0.0100%
UDC-x50(Enable DCR) 0.0105% 0.0258% 0.0254% 0.0273%
UDC-x250(Enable DCR) 0.0080% 0.0117% 0.0128% 0.0095%

E.6 Supplementary Ablation Study on Conquering Policies of KP

UDC exhibits flexibility in choosing a constructive solver for conquering policy. For well-developed
CO problems like TSP and KP, there are multiple constructive solvers available. Section 5.2 presents
an ablation study on the selection of these constructive solvers for TSP. In this subsection, we
conducted a similar ablation study on KP, and the results are displayed in Table 21. Both sets of
results indicate that the final performance of UDC is not sensitive to the model selection for the
conquering policy.

Therefore, when generalizing UDC to new CO problems, it may not be necessary to specifically
choose which available constructive solver to model the conquering policy.

Table 21: Ablation on the choice of constructive model as the conquering policy in KP. ICAM and
POMO are two available constructive solvers for KP. The datasets are the same as Table 11 in the
original paper. The value shown in the table is the gap to optimal (OR-Tools).

Method KP500 KP1,000 KP2,000 KP5,000
UDC-x50(ICAM) 0.0247% 0.0260% 0.0237% 0.0249%
UDC-x250(ICAM) 0.0083% 0.0106% 0.0105% 0.0100%
UDC-x50(POMO) 0.0255% 0.0252% 0.0253% 0.0242%
UDC-x250(POMO) 0.0098% 0.0107% 0.0119% 0.0113%

34

F Visualization

In this section, we provide visualization to explain our procedure and show our effectiveness directly.
As shown in 7, 8, and 9, respectively. Figures exhibit the initial solution, optimal solution, and
reported solutions (i.e., UDC-x2(α=50), UDC-x50(α=50), and UDC-x250(α=50)). The singular
shape of initial solutions verifies that the dividing policy is mainly not to obtain a shorter predicted
path, but to predict an initial solution that is easier to improve to the optimal solution by the following
two conquering stages. In addition, these examples also preliminarily verify that our trained UDC can
handle large-scale TSP, large-scale CVRP, and large-scale OP well after several rounds of conquering.

(a) Initial solution x0 and sub-TSPs G1
k, k ∈

{1, . . . , 10}
(b) UDC-x1 and sub-TSPs G1

k, k ∈ {1, . . . , 10}
(for Reunion)

(c) Optimal, Obj.= 23.4522 (d) UDC-x2, Obj. = 24.1011

(e) UDC-x50, Obj. = 23.7346 (f) UDC-x250, Obj. = 23.7338

Figure 7: Visualization of TSP solutions on a random TSP instance, Obj. represents the objective
function. The colors in subfigure (a)(b) represent sub-problems.

35

(a) Initial solution x0 and sub-CVRPs G1
k, k ∈

{1, . . . , 10}
(b) UDC-x1 and sub-CVRPs G1

k, k ∈ {1, . . . , 10}
(for Reunion)

(c) Optimal, Gap = 0% (d) UDC-x2, Gap = 27.1%

(e) UDC-x50, Gap = 7.3% (f) UDC-x250, Gap = 5.4812%

Figure 8: Visualization of CVRP solutions on a SetX CVRPLib instance X-n1001-k43, Gap represents
the gap of objective function compared to optimal. The colors in subfigure (a)(b) represent sub-
problems.

36

(a) Initial solution x0 and sub-OPs G1
k, k ∈

{1, . . . , 10}
(b) UDC-x1 and sub-OPs G1

k, k ∈ {1, . . . , 10}
(for Reunion)

(c) Optimal, Obj. = 119.480, l(·) = 3.9981
,

(d) UDC-x2, Obj. = 113.320, l(·) = 3.9832

(e) UDC-x50, Obj. = 114.380, l(·) = 3.9619 (f) UDC-x250, Obj. = 116.940, l(·) = 3.9735

Figure 9: Visualization of OP solutions on a random OP instance, the size of nodes from sub-figure
(c) to (f) represents their values ρi. Obj. represents the objective function and l(·) is the length of the
solution defined in Eq. (10). The colors in subfigure (a)(b) represent sub-problems.

37

G Baselines & License

Classical solvers. For LKH3, We adopt the commonly used setting in NCO methods [51]
and implement the LKH3 in TSP, CVRP, OVRP, and min-max mTSP based on the code from
https://github.com/wouterkool/attention-learn-to-route. For min-max mTSP, the pa-
rameter MAX_CANDIDATES is set to 6, and for OVRP VEHICLE is set to 100. In mim-max
mTSP, the implemented HGA algorithm is given in https://github.com/Sasanm88/m-TSP. For
OR-Tools, we implement the code in https://developers.google.com/optimization/pack/
knapsack?hl=zh-cn for KP. EA4OP https://github.com/gkobeaga/op-solver is also im-
plemented as an OP baseline and KaMIS https://github.com/KarlsruheMIS/KaMIS is imple-
mented for MIS.

SL-based sub-path solvers SL-based sub-path solvers contain the LEHD [8] and BQ [14]. In
addressing OP by BQ, we fail to get legal solutions so we use the reported gap to EA4OP.

RL-based constructive solvers This paper involves AM [51], POMO [5], ELG [12], ICAM [16],
MDAM [52], MatNet [41], Omni_VRP [79], and Sym-NCO [63] as baselines. Constructive solver
DAN [46], DPN [42] and Equity-Transformer [62] are employed for min-max mTSP, and MatNet is
specially employed for ATSP. For POMO, ELG, Omni_VRP, and ICAM, We use the multi-start
with x8 augmentation setting for CO instances with size N ≤ 1, 000 and multi-start with no
augmentation for instances with N > 1, 000 [16]. Specifically, the ELG aug×8 in Table 4 adopts a
special setting given in its paper [80]. We adopt 200-augmentation for Sym-NCO on CO problems
with size N ≤ 1, 000 and 100-augmentation on 2,000-node CO problems.

Heatmap-based We fail to implement all involved heatmap-based solvers (i.e., Attn-MCTS [37],
DIMES [35], DIFUSCO [39], and T2T [66]), so we adopt the report results for comparison.

Neural divide-and-conquer methods We implement H-TSP [20] and GLOP [13] as baselines. For
L2D, TAM, and SO, we list their reported results in comparisons. The random insertion in 17 is
generated based on code in GLOP https://github.com/henry-yeh/GLOP

Considering datasets, we use the benchmark TSPLib, CVRPLib, two SNAP graphs, and two provided
test sets in DIMES https://github.com/DIMESTeam/DIMES?utm_source=catalyzex.com
(MIS) and Omni_VRP https://github.com/RoyalSkye/Omni-VRP (TSP & CVRP).

Table 22: A summary of licenses.

Resources Type License
LKH3 Code Available for academic research use
HGA Code Available online
KaMIS Code MIT License
OR-Tools Code Apache License, Version 2.0
LEHD Code Available for any non-commercial use
BQ Code CC BY-NC-SA 4.0 license
AM Code MIT License
POMO Code MIT License
ELG Code MIT License
MDAM Code MIT License
Sym-NCO Code Available online
MatNet Code MIT License
Omni_VRP Code MIT License
DAN Code MIT License
Equity-Transformer Code Available online
H-TSP Code Available for academic research use
GLOP Code MIT License
TSPLib Dataset Available for any non-commercial use
CVRPLib [54, 55] Dataset Available for any non-commercial use
Omni_VRP Dataset MIT License
DIMES Dataset MIT License
SNAP (ego-Facebook & feather-lastfm-social) Dataset Available online

The licenses for codes and datasets used in this work are listed in Table 22.

38

https://github.com/wouterkool/attention-learn-to-route
https://github.com/Sasanm88/m-TSP
https://developers.google.com/optimization/pack/knapsack?hl=zh-cn
https://developers.google.com/optimization/pack/knapsack?hl=zh-cn
https://github.com/gkobeaga/op-solver
https://github.com/KarlsruheMIS/KaMIS
https://github.com/henry-yeh/GLOP
https://github.com/DIMESTeam/DIMES?utm_source=catalyzex.com
https://github.com/RoyalSkye/Omni-VRP

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper discusses the limitations of the work in the last section (i.e.,
Section 6 Conclusion and Future Work).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

39

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation and experiment details are presented in both the main
paper (Section 4) and Appendix D and we have published the code, datasets, and
pre-trained models via https://github.com/CIAM-Group/NCO_code/tree/main/
single_objective/UDC-Large-scale-CO-master.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

40

https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master
https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provided the code of TSP and CVRP in the supplementary file for the first
submission and now the final code can be found online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Settings of both the testing and training are detailed in Section Experiment 4,
Appendix B, and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The neural combinatorial optimization (NCO) methods typically only report
the mean value or the gap to optimal (or best-known solution) in statistics. Our method does
not include randomness with all seeds set to 1234.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

41

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have presented in the text the details of the time required for each experi-
ment (see Section 4, Appendix D), the GPU required for the experiment (Tesla V100S, see
Section 4), and other compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper is conducted fully in the paper conform, especially NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This work is about solving and optimizing CO problems, which has the
opportunity to assist with real-world applications. It seems to have no negative social
impact.

42

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We list the licenses in Appendix G.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

43

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented and the documen-
tation is provided alongside the assets (See Appendix G).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

44

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

45

	Introduction
	Preliminaries: Neural Divide-and-Conquer
	Divide-and-Conquer
	Constructive Neural Solver
	Heatmap-based Neural Solver

	Methodology: Unified Divide-and-Conquer
	Pipeline: Dividing Stage & Conquering Stage
	Training Method: Divide-Conquer-Reunion (DCR)
	Application: Applicability in General CO Problems

	Experiment
	Discussion
	Unified Training Scheme versus Separate Training Scheme
	Ablation study: Conquering Policy

	Conclusion, Limitation, and Future Work
	Related Work
	Neural Combinatorial Optimization
	Constructive Neural Solvers
	Heatmap-based Solvers
	Neural Divide-and-Conquer Methods

	Detailed Definition
	Definition of Large-scale CO problems
	Definition of Problem & Sub-problem

	Method Details
	Dividng Stgae: Graph Construction
	Dividing Policy: Anisotropic Graph Neural Networks
	Conquering Stage: Sub-problem Preparation
	Conquering Stage: Normalization
	Conquering Stage: Conquering Policy
	Total Algorithm
	MDP of the dividing and conquering stages
	Time & Space Complexity

	Experiment Details
	Hyperparameter
	Experiment on OVRP, MIS, ATSP, KP, and min-max mTSP
	Experiments on TSP & CVRP Instances with Various Distributions
	Experiments on MIS Instances with Various Distributions
	Experiments on Very Large-scale

	Ablation Study
	Ablation Study on r (Convergence Speed In Testing)
	Ablation Study on (Sampled Initial Solutions)
	Ablation Study on the Generation Method of Initial Solutions
	Ablation Study on Components
	Ablation Study on Disable DCR in KP
	Supplementary Ablation Study on Conquering Policies of KP

	Visualization
	Baselines & License

