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ABSTRACT

Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two promi-
nent post-training paradigms for refining the capabilities and aligning the behavior
of Large Language Models (LLMs). Existing approaches that integrate SFT and
RL often face the risk of disrupting established response patterns and inducing
overfitting to expert data. To address this, we present a novel investigation into the
unified view of SFT and RL through an off-policy versus on-policy lens. We pro-
pose CHORD, a framework for Controllable Harmonization of On- and Off-Policy
Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a sep-
arate stage but as a dynamically weighted auxiliary objective within the on-policy
RL process. Based on an analysis of off-policy expert data’s influence at both
holistic and granular levels, we incorporate a dual-control mechanism in CHORD.
Specifically, the framework first employs a global coefficient to holistically guide
the transition from off-policy imitation to on-policy exploration, and then applies
a token-wise weighting function that enables granular learning from the expert,
which promotes on-policy exploration and mitigates disruption from off-policy
data. We conduct extensive experiments on mathematical reasoning problems and
practical tool-use tasks, providing empirical evidence that CHORD achieves a stable
and efficient learning process. By effectively harmonizing off-policy expert data
with on-policy exploration, CHORD demonstrates significant improvements over
baselines. We will release the source code to inspire further research.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in a wide array of
applications (Yang et al.} [2024b} |[Zhang et al.l 2025a; Mialon et al.l 2023}, |Gao et al.} [2024). Such
significant progress can be largely attributed to two critical post-tuning paradigms that enhance the
performance of LLMs in real-world scenarios, i.e., Supervised Fine-Tuning (SFT) (Taori et al., [2023]
Zhou et al.,[2023)) and Reinforcement Learning (RL) (Ouyang et al.| 2022; Shao et al.| 2024).

These two paradigms present their pros and cons. SFT relies on high-quality expert trajectories to
effectively mimic response patterns, which can be sensitive to the quality and quantity of expert
data (Ye et al., 2025 |Guha et al., 2025). Recent studies also point out that SFT may struggle to
generalize beyond mere memorization (Chu et al., 2025) and is vulnerable to exposure bias (Zhang
et al.l[2019). In contrast, RL encourages LLMs to actively explore, which enables better generalization
through learning from direct feedback on their on-policy generations (Chu et al.,[2025}; (Chen et al.,
2025b)). However, such explorations can sometimes be inefficient, leading to policy degradation
caused by entropy collapse (Yu et al., 2025) or over-exploitation of suboptimal strategies.

A prevalent and straightforward approach for integrating the strengths of SFT and RL while mitigating
their weaknesses is the sequential SFT-then-RL paradigm (Liu et al.| 2025bj [Lambert et al., 2024).
Intuitively, the expert’s reasoning patterns learned in SFT guide the RL exploration beyond local
optima, and then the on-policy learning in RL mitigates exposure bias inherent in SFT and prevents
overfitting to a limited set of static examples. However, empirical observations show that the SFT-
then-RL paradigm does not consistently outperform the pure RL approach, as illustrated in Figure[T}
which is also noted in recent studies (Zhang et al., 2025a}; |Chen et al., 2025b).
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Figure 1: We train Qwen2.5-1.5B-Instruct on the
Open-R1 dataset and evaluate the performance
on a held-out validation set. These results show
that the SFT-then-RL training paradigm can yield
suboptimal performance compared to pure RL.
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Figure 2: We perform SFT on Qwen2.5-

7B-Instruct using expert data generated by
Deepseek-R1. The observed learning curve
(measured by accuracy on MATH-500) demon-
strates a “shift-readapt-overfit” progression.

In this study, we make a further investigation and demonstrate that such suboptimal performance may
arise from training on expert data that significantly diverges from the model’s established patterns. As
illustrated in Figure[2] the learning curve reveals a “shift-readapt-overfit” progression consisting of
three distinct phases. Firstly, there is an initial disruption in capability due to the sudden policy shift,
which is followed by a readaptation phase during which the model adapts to the expert’s patterns
and recovers performance. Finally, we observe that the model eventually overfits the expert data.
These observations highlight that while expert data can bring new capabilities, it may also disrupt
established patterns and induce overfitting during the training process.

Drawing upon these insights, we unify SFT and RL through the lens of off-policy versus on-policy
learning. The SFT process is reframed not as a separate tuning stage, but as a dynamically weighted
auxiliary objective within the on-policy RL process. We further design CHORD, a framework for
Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting.
CHORD features a global coefficient u for controlling the overall influence of expert data throughout
the training process, and a fine-grained weighting function ¢(+) that helps maintain stability via
down-weighting highly divergent tokens from off-policy data that could disrupt on-policy training.
Extensive experiments demonstrate that CHORD significantly outperforms the baselines, achieving a
higher performance through its balanced and flexible integration of learning from expert data and
maintaining models’ own exploration capabilities.

Our contributions can be summarized as follows:

* We provide a systematic and in-depth analysis of the training dynamics when employing a
separate SFT process to integrate off-policy expert knowledge into models with established
policies. We identify the “shift-readapt-overfit” progression, revealing how off-policy data
can disrupt the established response patterns of LLMs.

* We propose CHORD, a novel framework that unifies SFT and RL via a dynamically weighted
auxiliary loss, which consists of a global coefficient i and a token-wise weighting function
¢(+). CHORD provides a fine-grained and flexible control of the influence of off-policy expert
data while ensuring training stability, promoting a harmonious integration of learning from
both off-policy expert demonstrations and the model’s on-policy exploration.

» Extensive experiments on both mathematical reasoning problems and practical tool-use tasks
demonstrate that CHORD outperforms the SFT-then-RL paradigm and existing approaches.
We provide both quantitative and qualitative analyses to show that CHORD strategically
navigates training dynamics to selectively absorb expert knowledge without stifling the
model’s reasoning capabilities, highlighting its superiority and effectiveness.

2 PRELIMINARIES

The post-tuning of Large Language Models (LLMs) involves optimizing their policy, denoted by g
and parameterized by 6, to generate desirable responses. This typically follows two paradigms: Super-
vised Fine-Tuning (SFT), an off-policy paradigm driven by a static dataset of expert demonstrations;
and Reinforcement Learning (RL), an on-policy paradigm guided by dynamic feedback.
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Specifically, SFT adjusts the policy 7y to mimic a high-quality, static dataset of /N expert demonstra-
tions, Dspr = { (2, ;) }/L,. Here, z; is a prompt and y; = (v}, ... ,y;‘yﬂ) is the corresponding
expert response with |y} | tokens. The SFT objective is to minimize the negative log-likelihood of
expert responses, typically optimized with an empirical estimate from a mini-batch of size B:
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In contrast, RL optimizes policy 7y by maximizing expected reward R(7) from a generated trajectory
7 = (z,y*). Group Relative Policy Optimization (GRPO) (Shao et al.|[2024)) suggests sampling K
responses {7y, ..., Tx } from a policy Tsmple When given a prompt . Each response 7, is evaluated
with the reward function R(7y), and 7y is updated to maximize a PPO-style clipped surrogate
objective. Consistent with recent studies (Hu et al., 20254} |Yu et al.| 2025} |Chen et al.| 2025a), our
formulation does not include the KL divergence term to avoid restricting performance of LLMs. The
objective function can be formulated as:

B [T, %
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where B is the number of prompts in the mini-batch and e is the clipping hyper-parameter. The

advantage Ay, for each response is computed by Ay = R;:%, where pr and o are the mean and

standard deviation of rewards { R(7;)}£_, within the group, and €, is a small constant for stability.

Here 7; 1.+(0) = Tr:r:p(l_T(i;"' :‘];@" ’:1),) denotes the token-wise Importance Sampling (IS) ratio, which
re-weights the probabilit}} of actions sampled under 7g,mple to simulate on-policy sampled distribution.
For a “strict on-policy setup” (Liu et al., 2025b) that 7gampe = 7, this ratio should always be 1, and

the gradient of 7; 1. +(6) should be equivalent to Vg log 7o (7/", ;|i, 7% <1)-

3 CHORD: HARMONIZING OFF-POLICY AND ON-POLICY LEARNING

3.1 THE SHIFT-READAPT-OVERFIT PROGRESSION WHEN UTILIZING OFF-POLICY DATA

Before introducing CHORD, we first take a close look at the training dynamics of the SFT process,
revealing how training on off-policy expert data can disrupt the established response patterns of
LLMs. Such disruption ultimately leads to the failure of the SFT-then-RL paradigm (Zhang et al.|
2025a; |Chen et al.,|2025b), as evidenced by the results in Figure E}

We train Qwen2.5-7B-Instruct (Yang et al.,[2024a) on expert data generated by Deepseek-R1 (Guo
et al.;,|2025) and monitor the changes in test accuracy on the MATH-500 dataset. From the experi-
mental results shown in Figure [2| we observe that model performance declines during the first few
epochs, followed by a continuous increase to a level higher than that before training, and then a slight
subsequent decrease. The performance curve reveals a “shift-readapt-overfit” progression:

e Policy Shift: The performance initially declines since the model is forced to follow off-
policy expert demonstrations whose response patterns are significantly different, disrupting
its established response patterns and causing a significant performance drop. Such
degradation is further exacerbated by exposure bias (Zhang et al.,[2019;|Schmidt, 2019), as the
model, trained exclusively on ground-truth expert data, struggles to navigate the self-generated
contexts it encounters during inference.

* Readapt: As SFT continues, the model policy my begins to integrate the expert’s response
patterns and generates responses similar to those of the expert. The exposure bias can be
mitigated by reducing the reliance on the model’s response patterns, thereby allowing its
performance to rise steadily as it adapts to the expert’s response patterns.

* Overfit: Extended training on the limited expert data ultimately leads to overfitting, resulting
in a decline in generalization and a significant loss of output diversity. Such overfitting can
also restrict the exploratory capacity that is crucial for the following RL optimization.
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Figure 3: An overview of the proposed CHORD framework that unifies SFT and RL, featuring a
global coefficient 1 and a token-wise weighting function ¢(-).

The observed progression makes it challenging to control the influence of off-policy expert data. The
SFT-then-RL paradigm demands careful timing for the SFT-to-RL transition, and even then, such a
two-stage paradigm may still yield suboptimal solutions due to the inherent separation of the training
phases. This highlights the limitations and fragility of the SFT-then-RL paradigm, especially when
expert data’s response patterns significantly diverge from the model’s established response patterns.

Drawing upon the above insights, we propose CHORD, a novel framework that effectively unifies
SFT and RL. The proposed framework consists of a dual-control mechanism. We first introduce a
dynamic loss coefficient to balance learning from on- and off-policy data (refer to Section3.2)), then
further design a token-wise weighting function that provides fine-grained stability control (refer to
Section[3.3)). The overall architecture of CHORD is shown in Figure 3]

3.2 CONTROLLING THE INFLUENCE OF OFF-POLICY EXPERT DATA VIA p

Firstly, in order to control the influence of off-policy expert data, we propose to reframe SFT as a
dynamically weighted auxiliary objective within the on-policy RL process, rather than a separate
tuning stage as in the SFT-then-RL paradigm. Specifically, we design a combined loss function that
minimizes a weighted sum of the RL and SFT losses:

Luyoria(0) = (1 — ) Loreo(0) + pLsrr(0), 3)

where Lgrpo(0) is the empirical GRPO loss defined in equation Lser(0) is the SFT loss defined
in equation and p € [0, 1] is a hyperparameter that governs the trade-off between SFT and RL.

If using a fixed value of u, the influence of the off-policy expert data remains unchanged throughout
the entire post-tuning process. An advanced strategy, however, is to change p for achieving a dynamic
balance between off-policy and on-policy learning. For example, the SFT-then-RL pipeline can be
regarded as a special case with a binary schedule (initially setting 4 = 1 and then transitioning to
= 0). Moreover, previous studies (Ma et al., 2025} |Gao et al., [2025) that utilize interleaved SFT
and RL can be interpreted as employing a periodic  schedule.

Moving a step forward, applying a decay schedule of ;4 provides a more graceful and flexible transition
from off-policy imitation to on-policy optimization compared to the rigid and binary switch. As
shown in Figure[d] the training begins with a large 1 value, encouraging the model to learn more from
off-policy expert data. As training progresses, i gradually decays to a smaller value, shifting the
training focus towards on-policy exploration and annealing the influence of the off-policy expert data
before overfitting on them. Such a decay schedule has also proven successful in mitigating exposure
bias (Zhang et al., 2019). Inspired by scheduled sampling (Bengio et al., [2015)), our approach
generalizes the principle of mixing expert and model-generated data from the token level to the loss
landscape, effectively bridging the distributional gap between training on off-policy samples and
performing on-policy rollouts.

Beyond the Loss Coefficient ;1 Empirical comparisons (refer to Section @ for more details) demon-
strate that applying a decay schedule to y yields notable performance gains over the SFT-then-RL
paradigm. At the same time, two key observations motivate us to extend beyond .
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Figure 4: Decaying the value of ; enables a Figure 5: Comparisons of entropy loss be-

smooth transition from off-policy imitation to tween pure RL and mixed RL that integrates
on-policy optimization. expert data (with or without the IS strategy).

Firstly, as shown in Figure [d] the learning curve still reveals a “shift-readapt” progress, where the
reward initially declines before subsequently increasing. These observations indicate that, despite
improvements in performance, learning from off-policy expert data might still disrupt established
patterns and stifle the model’s capacity for genuine exploration during on-policy training.

Secondly, the response patterns of the model trained with CHORD-x (as shown in Appendix [E) appear
to converge to those of the expert model. Case studies reveal that CHORD-x compels the model to
adopt the expert’s verbose response pattern wholesale, hence overwriting its own inherent conciseness.
This indicates that while y controls the overall influence of expert data, it lacks fine-grained precision.
As aresult, it forces the model to indiscriminately adopt expert patterns, which can create conflicts
with its own established style.

Towards the goal of utilizing off-policy data as an incentive and guidance for the model to explore
novel and effective reasoning paths, rather than merely as a target to imitate, we further integrate
CHORD with a token-wise, fine-grained weighting function ¢(-), forming a dual-control mechanism
together with the global coefficient u for controlling the influence of the off-policy expert data.

3.3 ENHANCING THE STABILITY OF OFF-POLICY LEARNING VIA ¢(+)

A feasible solution for controlling the influence of off-policy expert data from a fine-grained perspec-
tive is to differentiate the tokens based on their generation probabilities 7(y; |z, y%,). For example,
Importance Sampling (IS) (Schulman et al., 2017) has been widely used for stably integrating off-
policy data in RL, which suggests re-weighting the objective by the probability ratio between the
target policy g and the behavior policy mgample that generated the expert data. Formally, the objective
function can be given as:

ly| . .
7T9(yt ‘.73, y<t) * *

Lspris(0) = By )~Dger | — ) 5 (* ” log mo(yy |2, yZ0) | “4)

(z,y*) S| ; Wsample(yt |.13, y<t) t <t

where sg(-) denotes the stop-gradient operator. Note that the probabilities Tgmpie(y; | - - . ) for the
expert data Dgpr are often unknown. Following the common practice (Yan et al., 2025; [Wu et al.|
2025)), we assume that the denominator is 1, treating the expert data as the ground-truth distribution.

From a token-wise perspective, IS enhances training stability by down-weighting low-probability
tokens that could disrupt the established policy. As empirical observations shown in Figure[5] mixing
off-policy data without IS leads to a sharp rise in entropy, which implies that the model’s established
patterns are quickly disrupted by the unweighted off-policy data. However, we notice that IS can
lead to a sharp collapse in policy entropy compared to pure RL, which implies that it can limit the
exploration essential for the RL phase and trap the model in a stable but suboptimal solution. The
underlying reason is that IS prevents disruptive shifts in the policy distribution by down-weighting
low-probability tokens, but it also aggressively reinforces existing high-probability tokens while
ignoring novel but low-probability ones, thus causing the policy to become overconfident.

Stabilize Off-policy Data Training with ¢(-) To tackle this, we propose a fine-grained, per-token
weighting function ¢(y;; mg) that down-weights the learning signal for tokens at both ends of
the probability spectrum, i.e., down-weighting those tokens that are highly probable (to prevent
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entropy collapse) or extremely improbable (to avoid disruption). More specifically, the weight for
a given expert token is defined based on the policy’s probability p; = 7y (y; |z, y%,), as follows:

d(y;3m0) = pe(1 — pr), 5)
which naturally forms a parabolic curve that peaks at p; = 0.5 and decays to zero as p; approaches
0 or 1. The SFT objective function can be updated as:

ly*|

Lsrrp(0) = oy )nar | D S5 m) - logma(yy |2, y2y) | (6)
t=1

where ¢(y;; mg) modulates the gradient contribution of each token in the expert trajectory.

From an information-theoretic perspective, the term p;(1 — p;) can be viewed as a measure of the
policy’s uncertainty (Wang et al.,[2025) for the binary event of generating token y; . Therefore, this
approach biases learning towards tokens where the policy is most uncertain, and creates a “learning
sweet spot” that focuses the off-policy learning on tokens that are novel enough to be informative but
not so divergent as to disrupt the established policy.

By replacing the static Lsgr in the proposed hybrid loss function (defined in equation with Lsprg,
we obtain the final objective function of CHORD, which applies a global coefficient x for adjusting
the overall influence of expert data and a fine-grained weighting function ¢(-) that helps enhance the
stability when learning from off-policy data.

4 EXPERIMENTS

4.1 SETUP

Datasets, Models, and Evaluations We conduct experiments on mathematical reasoning problems
and practical tool-use tasks. (i) For mathematical reasoning problems, we utilize the OpenR1-
Math-220k dataset (Hugging Face, |2025)), from which we sample 5k instances for SFT and 20k for
RL, ensuring no overlap. Our policy model is Qwen2.5-7B-Instruct, whose response patterns differ
significantly from the expert (Deepseek-R1). We evaluate in-domain generalization performance on
the AIME24, AIME25, and AMC benchmarks (L1 et al., 2024)), and use MMLU-Pro (Wang et al.,
2024) to monitor the changes in general reasoning. (ii) For tool-use tasks, we conduct experiments
on the single-turn instances of the ToolAce (Liu et al.,[2024) dataset. We sample 5k instances for
RL and 500 for SFT, for which the expert trajectories are generated by querying the Deepseek-R1
with the same system prompt. We use LLaMA3.2-3B-Instruct (Grattafiori et al.,2024)) as our policy
model, which also differs in response patterns from the expert (Deepseek-R1). We evaluate the model
performance on BFCL (Patil et al., [2024)).

Baselines We compare the proposed CHORD with a comprehensive set of baselines, including: (i)
Original Model: The original Qwen2.5-7B-Instruct/LLaMA3.2-3B-Instruct model. (ii) SFT-only:
The model fine-tuned on the SFT dataset. We focus on two specific configurations: SFT-light, trained
for a single epoch, and SFT-best, the peak-performing checkpoint on the test set found by searching
over different learning rates and training epochs. (iii) RL-only: The model fine-tuned directly on the
RL dataset using the GRPO algorithm. (iv) SFT+RL: The sequential SFT-then-RL paradigm. (v)
LUFFYE] (Yan et al.,[2025)): A method that integrates expert demonstrations within GRPO rollout
groups and reshapes the importance sampling ratio. (vi) SASR (Chen et al., 2025c): A method
that probabilistically interleaves SFT and RL steps. It prioritizes SFT when the model’s outputs are
dissimilar to expert demonstrations, adapting the training focus dynamically.

For more details of the experimental setups, please refer to Appendix
4.2 COMPARISONS

The proposed approaches implemented based on CHORD include (i) CHORD-u: We employ a decay
schedule for the loss coefficient y to gradually transition from off-policy to on-policy learning, as

"For math reasoning problems, we utilize 20k samples for training, whereas the original paper utilizes 45k
samples and achieves scores of 50.9 on AMC, 17.7 on AIME24, and 14.8 on AIME25. For tool-use tasks,
LUFFY utilizes 5k SFT samples instead of 500.
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Table 1: Performance comparisons on reasoning problems and tool-use tasks.

Math & General Reasoning Problems Tool-use Tasks

MMLU BFCL BFCL BFCL

AMC  AIME24  AIME25 -Pro Live  Non-live Overall
Original Model 43.8 11.7 6.66 24.7 50.9 39.9 46.2
SFT-light 42.5 8.54 7.80 28.0 30.8 384 34.0
SFT-best 55.9 15.8 15.2 384 59.2 84.2 69.8
SFT-light + RL 52.5 11.9 11.6 44.6 68.2 89.4 77.2
SFT-best + RL 58.4 17.1 16.3 513 67.4 87.9 76.1
SASR 54.0 12.7 11.1 45.1 66.0 86.5 74.7
CHORD- 60.8 18.1 17.9 433 69.4 88.6 77.6
GRPO (Pure RL)  52.1 13.2 8.54 45.8 68.5 88.8 77.1
LUFFY 52.8 16.6 14.3 44.0 67.2 88.0 76.1
CHORD-¢ 62.5 18.2 17.2 56.2 69.9 90.2 78.5

detailed in Section[3.2} and (ii) CHORD-¢: We fix the value of x and further integrate the token-wise
weighting function ¢(-) to achieve a dual-control mechanism on the influence of off-policy expert
data, as introduced in Section

Model Performance Overall, the comparisons summarized in TableE]demonstrate the effectiveness
and superiority of CHORD on both reasoning problems and tool-use tasks.

Specifically, the experimental results reveal a challenge within the SFT-then-RL paradigm. We notice
that minimal tuning on off-policy data (SFT-light) degrades performance, and a more thorough SFT
phase (SFT-best) achieves better results. However, the optimal timing for transitioning from SFT to
RL can vary across different scenarios. For example, initiating RL from SFT-best yields superior
performance on math reasoning problems, while SFT-light+RL performs better on tool-use tasks.
This divergence confirms that the SFT-RL balance is highly task-dependent and needs extensive
efforts for careful adjustment.

These SFT-then-RL approaches are surpassed by CHORD-p, which enables a smooth transition from
off-policy to on-policy learning rather than a rigid switch. Specifically, CHORD-y outperforms the
strong SFT-best+RL baseline across all math reasoning benchmarks, achieving improvements of +2.4
on AMC, +1.0 on AIME24, and +1.6 on AIME25, respectively. Besides, CHORD-y also achieves
better overall results compared to these SFT-then-RL baselines on tool-use tasks. These results
demonstrate the superiority of its unified learning design.

Further, CHORD-¢ achieves consistent outperformance over the baselines. These results demonstrate
the effectiveness of our dual-control mechanism in flexibly controlling the influence of off-policy
expert data. CHORD-¢ selectively applies the SFT loss to non-disruptive tokens, integrating expert
knowledge without compromising foundational abilities. This enables robust learning from both
off-policy expert data and on-policy exploration, leading to the best performance on both reasoning
problems and tool-use tasks.

Response Patterns We further compare the influence of expert data (generated by DeepSeek-
R1) on response patterns across different approaches. As shown in Table [/| expert responses are
substantially longer than the original model’s on both math (6,132 vs. 659 tokens) and tool-use tasks
(315 vs. 147 tokens). SFT models (SFT-light and SFT-best) initially mimic this verbosity. However,
a subsequent RL can help mitigate the issues of overly lengthy responses by training the models to
conduct on-policy exploration. The response length produced by SFT-light+RL is much shorter than
that of SFT-best+RL (1,322/119 vs. 4,830/489 tokens), as fewer epochs of SFT allow the model to
retain its original response patterns. Besides, from Figure[6] we can observe that CHORD-4 exhibits a
similar trend, where the average response length initially increases to align with expert patterns and
then gradually converges to a lower length as on-policy training progresses.

On the other hand, Pure RL on instruct-tuned models lengthens math responses (from 659 to 1,423
tokens) while shortening them for tool-use (from 147 to 118 tokens). This suggests that the response
pattern changes can be task-dependent: math problems benefit from detailed step-by-step reasoning,
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whereas tool-use tasks favor shorter, concise action sequences. This task-dependent property also
affects the SFT/RL synergy dynamics, as MATH tasks benefit from imitating an expert’s long
and verbose reasoning via SFT, while such patterns can be detrimental to tool-use performance, a
distinction further detailed in Appendix The result shows that the proposed CHORD-¢ strikes a
more nuanced balance: while it also learns to produce more comprehensive mathematical reasoning
(2,444 tokens), it generates concise and efficient responses for tool-use tasks (120 tokens). This
suggests that the token-wise weighting in CHORD-¢ enables the model to selectively integrate patterns
from those of expert data in a task-specific manner. Qualitative analysis shown in Appendix [E]also
confirms the effectiveness of such a flexible design, suggesting that the proposed CHORD-¢ can go
beyond simply mimicking the expert, and learn to selectively absorb reasoning patterns from
the expert, while exploring its own response strategies.

4.3 ANALYSIS ON THE EFFECTS OF i AND ¢(+)

We provide analysis on the effects of the coefficient i and the token-wise weighting function ¢(-).

Dynamic 1. Versus Fixed ;. In Figure[7] we compare the model performance when applying a
dynamic schedule for  (decreasing from 0.9 to 0.05 over the first 200 training steps and keeping
unchanged in the following steps) against several fixed schedules in CHORD. We observe that
applying a fixed p consistently results in poorer performance compared to dynamic w. This indicates
that naively incorporating off-policy SFT data with a static weight does not effectively serve as a
solution for simultaneously learning from off-policy data and on-policy exploration. In fact, it might
fail to match Pure RL, which directly encourages an instruction model to follow its own reasoning
patterns, highlighting the importance and necessity of controlling the influence of off-policy data.

Besides, while using a smaller value of ;1 (e.g., 0.02) can mitigate the performance degradation
compared to larger values (e.g., 0.1 and 0.5), it does not provide a significant improvement over pure
on-policy RL. With a fixed p, the model is consistently required to accommodate two potentially
divergent reasoning patterns, which might pull it in different directions and prevent it from converging
to a stable and high-performance state. The decay schedule for p effectively resolves this conflict by
creating a smooth transition from off-policy supervision to on-policy exploration.

As a natural extension, we explore an adaptive strategy for dynamically adjusting the loss weight
1 based on the rewards of on-policy responses. Specifically, the weight is computed as p =
max (0, 7 — reward_mean) where reward_mean is the average value of the adopted responses. This
strategy ensures that as the model’s average reward surpasses the threshold 7, the SFT loss on the
expert data is gradually phased out. The experiment results in Appendix [B-T]imply that an automated,
reward-aware schedule for ;4 can work effectively but requires heavy hyper-parameter tuning, which
further motivates the need for fine-grained control.

Training Curve of CHORD-¢ In Figures[8|and[9] we compare the entropy loss and rewards of Pure
RL with those of CHORD-¢ (with fixed p = 0.1), to illustrate their training dynamics.
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From the changes in entropy loss, we can observe that by applying ¢(-), the model maintains a great
balance between exploration and exploitation while performing off-policy and on-policy learning
simultaneously. On one hand, CHORD-¢ prevents the entropy from collapsing prematurely, which
may occur when the SFT loss forces the model to become over-confident on high-probability tokens
from the expert data. On the other hand, it avoids large entropy spikes and training instability that
may occur if the off-policy expert data drastically conflict with the current policy’s predictions, as
the performance curve remains stable throughout the training process. The rewards curve indicates
that CHORD-¢ achieves a stable and continuous increase in rewards, resulting in significantly better
performance than Pure RL. These results demonstrate that the proposed token-wise weighting function
is crucial for effectively unifying the SFT and RL phases.

Tuning ;- When Applying CHORD-¢  Empirical observations show that, when ¢(-) is used for
fine-grained control over the influence of expert data, a complex and decaying schedule for p is no
longer essential. CHORD-¢ is effective to work with a fixed value for u (e.g., 0.1 in this study) since
it inherently prevents both token-level overfitting and the disruption of established response patterns.
The design of ¢(-) simplifies the practical usage of CHORD by making it robust to the specific choice
of u. In Appendix we provide experiments on tuning the schedule of y in conjunction with ¢(-).

Principle for Instantiating ¢(-) It is worth noting that the proposed weight ¢(-) = py x (1 — p;)
serves as a concrete and interpretable instantiation following a general principle: stabilizing off-policy
integration requires down-weighting the learning signal for tokens at both ends of the probability
spectrum. This instantiation is also computationally lightweight, as it only requires a simple element-
wise multiplication of probabilities already computed during the standard forward pass. As grounded
in our empirical observations, by assigning negligible weight to tokens that the policy is already
certain about (where p; is close to 0 or 1), the proposed method prevents off-policy data from
disrupting the model’s established reasoning patterns and focuses updates on tokens where the model
is still uncertain. Beyond the specific formulation of ¢(-), this general principle that enables stable
and selective learning from off-policy data can potentially inspire more advanced weighting schemes
that are suitable for different scenarios.

To verify the robustness of the token-weighting function, we experiment with several variants (entropy-
based variants, clipping variants, and focal loss), with detailed experiment results and discussions
presented in Appendix The results confirm that the proposed ¢(-) is an effective and robust
instantiation of the principle of down-weighting tokens at both probability extremes, achieving better
performance across various tasks.

4.4 FURTHER ANALYSIS

Varying Expert Data Source = We investigate the effect of using different expert data sources:
the powerful DeepSeek-R1 and the weaker but stylistically similar Qwen2.5-72B-Instruct. As
shown by examples in Appendix [B.3] Qwen2.5-72B-Instruct exhibits a response pattern closer to the
policy model, LLaMA3.2-3B-Instruct. Experimental results demonstrate that our proposed methods,
CHORD-p and CHORD-, consistently outperform Pure RL and SFT+RL baselines regardless of the
expert. We also observe that methods which rely more heavily on expert imitation (e.g., SFT+RL and
CHORD-p) yield greater gains when the expert has a similar response pattern to the policy model.
This aligns with our insight: the effectiveness of unifying SFT and RL depends not only on expert
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data quality but also on the degree of pattern shift it introduces. For detailed results and discussion,
please see Appendix [B3]

Extending to Non-verifiable Domains To test the generalizability of CHORD beyond verifiable
tasks, we conduct experiments on RaR-Medicine, a medical question-answering dataset that lacks de-
terministic verification. The results show that both CHORD-z and CHORD-¢ significantly outperform
pure RL. CHORD-¢ achieves faster convergence and higher final rewards, while CHORD- exhibits
a similar “shift-readapt” pattern as observed in the main experiments (Figure[I0]in Appendix [B-4).
These findings validate that our approach successfully generalizes to more diverse, non-verifiable
domains. Refer to Appendix [B.4]for more details.

Training Weaker Policy Models While the effectiveness of on-policy exploration (RL) is often
limited for weaker models, our experiments reveal that they can also struggle to effectively absorb
knowledge from expert data. Our experiment on Qwen2.5-3B-Instruct shows that a weaker model
tends more to suffer from a performance collapse when training on the same off-policy expert data.
In such a setting, the naive imitation fails and a simple SFT+RL combination proves unstable, where
our CHORD-¢ consistently achieves good performance. This demonstrates our method’s ability to
create a robust synergy between SFT and RL. We defer detailed experiment results and analysis to

Appendix [B.3]
5 RELATED WORKS

Recent advancements in RL show significant success in complex reasoning tasks (Guo et al., 2025
Shao et al.| [2024} Lambert et al.| [2024)). However, RL-based exploration is often constrained by
the model’s initial knowledge, making it difficult for the model to discover superior reasoning path-
ways (Yue et al.l[2025). Incorporating off-policy expert data into the on-policy RL loop is a promising
strategy to address such exploration challenge. Some studies directly mix expert data with self-rollout
generations, either through simple dataset mixing (Li & Khashabi, [2025)), or mixing expert trajectories
into on-policy rollout groups (Yan et al.l | 2025; [Fu et al.,|2025)), while others use expert data to guide
generation (Liu et al.|, 2025a;|Zhang et al.| 2025b; [Huang et al., 2025)). A third category interleaves
RL updates with SFT steps on expert data, either on a predefined or adaptive schedule (Chen et al.,
2025c¢), or for challenging examples (Ma et al.,|2025). More recently, SRFT (Fu et al.,[2025)) proposed
a unified framework that combines data mixing with a sample-level SFT loss. In this study, we focus
on tuning an instruct model that already establishes its own response pattern, which can be a more
challenging yet practical scenario compared to existing works that finetune a base model (Yan et al.,
2025} |[Fu et al.,|2025)). For a more comprehensive literature review, please refer to Appendix |g

6 CONCLUSIONS

In this study, we identify that SFT-then-RL paradigm can often lead to suboptimal performance
due to the disruption of established patterns when utilizing off-policy expert data. This finding
motivates us to unify SFT and RL through the lens of on-policy versus off-policy learning, framing
them as integrated components. To realize this unified vision, we propose CHORD. By analyzing
the influence of expert data at both the holistic and granular levels, CHORD first integrates a global
coefficient p to manage the overall influence of off-policy expert data, enabling a smoother transition
from imitation to exploration. CHORD then introduces a token-wise weighting function, ¢(-), which
strategically navigates the selective absorption of expert knowledge, with a general principle of
down-weighting tokens that are either already highly probable or extremely improbable. We conduct
a series of experiments providing both quantitative and qualitative analyses, demonstrating that
CHORD selectively learns beneficial patterns from off-policy expert data while exploring its own
behaviors throughout the tuning process, achieving significant outperformance compared to the
existing SFT-then-RL paradigm. We envision our work inspiring further exploration into unified
post-training paradigms, facilitating their application across a broader spectrum of scenarios.

10
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A EXPERIMENTAL SETUPS

A.1 HYPERPARAMETERS

Across all experiments, we adopt the Adam optimizer with 51 = 0.9, 82 = 0.999. The learning rate
is tuned within {1 x 107%,5x 1075, 1 x 1075}, and the temperature for both rollout and evaluation is
1.0. The max response length is set to 16k tokens. For SFT, we train for a maximum of 3 epochs. For
RL, we employ “strict on-policy training” similar to (Liu et al.,[2025b)), where we generate K = 8
rollouts per prompt before each policy update.

For mathematical reasoning problems, the batch size for SFR/RL is 64/32, and the maximum number
of RL steps is 1,500. For tool-use tasks, the batch size is 96 for both RL and SFT, and the maximum
number of RL steps is 100. The p decay schedule is to decrease from 0.9 to 0.05 over the first 30
training steps.

A.2 IMPLEMENTATION DETAILS

In our experiments, the reward function is tailored to the task-specific requirements. For mathematical
reasoning problems, we use a hierarchical reward scheme to encourage both correctness and format
adherence. To guarantee the precision of our correctness evaluation, we exclusively sample problems
that have integer answers when preparing our dataset. A response receives a reward of +1.0 for a
correct final answer. If the format is correct (e.g., step-by-step reasoning ending with a boxed answer)
but the answer is wrong, it receives a neutral reward of 0.0. A small penalty of —0.1 is applied for
responses that are both factually incorrect and improperly formatted. Finally, we penalize overly long
and inconclusive responses (Yu et al., [2025)), and apply a strong penalty of —1.0 for exceeding the
predefined token limit without a final answer. For tool-use tasks, we employ a simpler binary reward.
A response is given a reward of +1.0 if it is completely correct, and 0.0 otherwise.

We implement SFT algorithms based on LLaMA-Factory (Zheng et al., 2024}, and implement RL
algorithms based on Trinity-RFT (Pan et al.| [2025). Experiments are conducted on 8 NVIDIA A100
GPUs and 8 NVIDIA H20 GPUs.

For evaluation, we adopt accuracy as the metric. To avoid high variance in results and ensure fair
comparisons, we report avg@32 on AIME24 and AIME 25, and avg@8 on AMC, respectively.
Reported results are on the best checkpoint determined by the validation set.

A.3 PROMPTS

Prompt for Math Problems The adopted prompt for math problems is shown below.

Example: Prompt for Math Problems

<|im_start | >system
You are a helpful assistant that solves MATH problems. You should first think about
the reasoning process in mind and then provide the user with the answer. You should
present your reasoning process using the format: <think>\n...your reasoning process
here... </think>\n first. You should always include your final answer in \boxed{ } as
closed-form results.< | im_end | >
<|im_start | >user
1. A bus leaves the station at exactly 7:43 a.m. and arrives at its destination at exactly 8:22
a.m. on the same day. How long, in minutes, was the bus trip?< | im_end | >
<|im_start | >assistant

\ J

For the performance of the base model, we report the higher score achieved using either the above
prompts for math problems or the default prompt provided by Qwen (Yang et al.,|2024b)): “Please
reason step by step, and put your final answer within \boxed{}”.

Prompt for the MMLU-Pro Dataset The adopted prompt for the MMLU-Pro dataset is shown
below. We use the same system prompt as for the math problems, except that for multiple-choice
questions, we modify the answer format to require the corresponding integer as the response.
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Example: Prompt for MMLU-Pro Question

<|im_start | >system

You are a helpful assistant that solves MATH problems. You should first think about
the reasoning process in mind and then provide the user with the answer. You should
present your reasoning process using the format: <think>\n...your reasoning process
here... </think>\n first. You should always include your final answer in \boxed{ } as
closed-form results.< | im_end | >

<|im_start | >user

Let V be the set of all real polynomials p(x). Let transformations 7', S be defined on V
by T : p(x)— > zp(x) and S : p(x)— > p'(x) = d/dxp(x), and interpret (ST)(p(x)) as
S(T(p(z))). Which of the following is true? Below are multiple choice options. You should
answer your choice by selecting the index of the option as a number:

0. ST + T'S is the identity map of V" onto itself.

1.TS=0
2.8T =1
3.8T-TS =0

4. 8T =T

5.8T=0

6.5T =TS

7. ST — T'S is the identity map of V' onto itself.
8.TS=T

9.ST =5<|im_end|>

<|im_start | >assistant

N J

Prompt for the Tool-use Tasks For the tool-use tasks, we follow (Zhang et al.}[2025a)) to adopt their
experimental setup and use the prompt provided in their Figure 8. This prompt is consistently applied
to train the LLaMA3.2-3B-Instruct policy model and to generate SFT data with the DeepSeek-R1
expert model.

B EXPERIMENTAL RESULTS AND ANALYSIS

B.1 ADAPTIVE TUNING u

In addition to the fixed decay schedule for i, we explored an adaptive strategy to dynamically adjust
the SFT loss weight based on the model’s ongoing performance, as measured by the average reward.
We conducted experiments to validate this idea.

On the Tool-use task, we implemented a strategy where p is adjusted based on the mean reward
of the rollouts. Specifically, for a given reward threshold 7, the new p is calculated as ' =
max(0, 7 — reward_mean). This mechanism ensures that as the model’s average reward surpasses
the threshold, the SFT component is gradually phased out (' — 0), allowing the training to focus
purely on RL. We tested this with thresholds 7 = 0.5 and 7 = 0.7.

Table 3: Performance comparison of Adaptive y strategies on ToolACE.

Method Live Non-live Overall
Original Model 50.9 39.9 46.2
SFT-best 59.2 84.2 69.8
SFT-best + RL 67.6 87.9 76.1
GRPO (Pure RL) 68.5 88.8 77.1
CHORD-¢ (Ours) 69.9 90.2 78.5
CHORD-y (Fixed Schedule)  69.4 88.6 77.6
Adaptive p (7 = 0.5) 69.7 89.4 78.1
Adaptive p (7 = 0.7) 65.9 88.6 75.6
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The results, presented in Table 3] show that setting the reward threshold to 0.5 yields a strong overall
score of 78.1, which is highly competitive with our main approach using a fixed decay schedule.
This indicates that dynamically reducing the SFT contribution as the model improves is a viable and
effective strategy.

However, we also found that this configuration is still dependent on task-specific hyperparameter
tuning. When we set a higher threshold of 0.7, performance degraded significantly. This is likely
because the policy was subjected to excessive SFT even when achieving moderately high rewards,
disrupting the optimization process.

These experiments serve as a proof of concept, demonstrating that an automated, reward-aware
schedule for ;4 can work effectively and represents a logical extension of our core ideas. However,
since this method still requires tuning another hyperparameter(the reward threshold), its practical
implementation is not necessarily simpler to tune. Therefore, we present this as a preliminary
exploration into adaptive mixing coefficients, leaving a more thorough investigation of robust and
generalizable adaptive schemes as a promising direction for future work.

B.2 VARYING THE ¢ FUNCTION

To validate the robustness of our approach and explore alternative weighting strategies, we conduct
ablation studies comparing different variants of the token-wise weighting function ¢(-) against our
proposed method. We evaluate these variants on both the tool-use and mathematical reasoning tasks.

Evaluated ¢ Variants. We compare the following token-wise weighting strategies:

e CHORD-¢ (Ours): Our proposed method, with ¢(p) = p x (1 — p).

 Entropy Top: Only trains on the top 5% of tokens with the highest entropy, setting ¢(-) = 1
for these tokens and ¢(-) = 0 for others.

* Entropy Norm: Normalizes the SFT loss weights based on entropy magnitude, with
d(pe) o< H(t).

* IS Clip: Applies importance sampling correction but clips tokens with p; > 0.4.

* Focal Loss: Adapts focal loss (Lin et al., 2017)) to the SFT context, giving higher weight to
tokens with lower probability: ¢(p) = (1 — p)”.

Experimental Setup. For the mathematical reasoning experiments here, we relax the strict on-
policy training protocol: we synchronize the policy model every 2 training steps (instead of after each
update) and increase the number of rollouts per prompt to 16. Training is conducted for 400 steps.
For tool-use tasks, we maintain the same setup as described in Appendix [A]

Results and Analysis. Table [ presents the results on the ToolACE benchmark, while Table [3]
shows the performance on mathematical reasoning tasks.

Table 4: Performance comparison of different ¢ function variants on ToolACE (BFCL benchmark).

Method Live Non-live Overall
GRPO (Pure RL) 68.5 88.8 77.1
CHORD-¢ (Ours) 69.9 90.2 78.5
Entropy Top 69.1 89.4 77.8
Entropy Norm 69.6 89.4 78.0
IS Clip 66.2 89.1 75.9
Focal Loss 65.6 84.0 73.4

The experimental results reveal several interesting patterns across the different weighting strategies:
* CHORD-¢ (Ours): Our proposed method achieves consistently strong performance across

both tool-use and mathematical reasoning benchmarks, demonstrating its effectiveness and
robustness.
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Table 5: Performance comparison of different ¢ function variants on mathematical reasoning tasks.

Method AMC23 AIME2024 AIME2025
GRPO (Pure RL) 55.0 12.6 7.3
CHORD-¢ (Ours) 59.7 14.0 14.2
Entropy Top 58.8 17.2 13.8
Entropy Norm 52.5 15.0 9.2
IS Clip 55.0 13.9 12.0
Focal Loss 344 3.8 4.2

* Entropy-based Variants (Entropy Top & Norm): These methods validate the intuition
of focusing on uncertain tokens. Entropy Top shows particularly strong performance on
AIME2024 (17.2), proving that selectively emphasizing high-entropy tokens can effectively
integrate expert knowledge. However, their performance gains are not as consistent as our
method across all benchmarks.

* IS Clip: This variant, which clips high-probability tokens, shows limited effectiveness and
even underperforms the pure RL baseline on the tool-use task. This suggests that simply
clipping tokens is not a sufficiently nuanced strategy.

* Focal Loss: This strategy, which aggressively up-weights low-probability (high-surprise)
tokens, leads to severe training instability and a significant performance collapse on both
task types. This confirms our hypothesis that giving excessive weight to tokens the model
deems unlikely can disrupt its learned reasoning abilities and lead to overfitting on expert
patterns.

These results highlight the importance of fine-grained control in token-wise weighting. While various
strategies can provide improvements over pure RL in specific scenarios, the choice of weighting
function significantly impacts both training stability and final performance across different task
domains. We note that our proposed ¢(+) instantiation represents one effective realization of the
general principle of down-weighting tokens at both probability extremes. The varied performance of
different variants suggests that there remains room for exploring alternative weighting schemes that
may be better suited to specific task characteristics or training scenarios, and we hope these empirical
observations can inspire future research in this direction.

B.3 VARYING EXPERT DATA SOURCE

To further validate the robustness and generalizability of our approach, we conduct additional
experiments using expert demonstrations generated by Qwen2.5-72B-Instruct instead of DeepSeek-
R1. This setup is particularly interesting because Qwen2.5-72B-Instruct, while being a weaker expert
model compared to DeepSeek-R1, produces responses with reasoning patterns that are more aligned
with the base LLaMA3.2-3B-Instruct model. This allows us to investigate how the choice of expert
data source—and specifically, the degree of pattern shift introduced—affects the effectiveness of
different training methods.

Table[6] presents the performance comparison on the BFCL benchmark using expert data from both
DeepSeek-R1 and Qwen2.5-72B-Instruct. The results lead to several key insights.

When using expert data from Qwen2.5-72B-Instruct, which exhibits reasoning patterns closer to those
of LLaMA3.2-3B-Instruct, CHORD-p achieves improved performance (78.1 vs. 77.6) compared
to using DeepSeek-R1 data. This validates our hypothesis that the distributional shift introduced
by expert data is a critical factor. When the expert’s reasoning pattern is more compatible with the
base model’s existing policy, the progressive integration strategy of CHORD-x can more effectively
leverage this alignment, leading to better final performance.

Despite the weaker quality of Qwen2.5-72B-Instruct compared to DeepSeek-R1, CHORD-¢ maintains
strong and consistent performance (78.3 vs. 78.5) across both expert data sources. This demonstrates
the robustness of the token-wise weighting mechanism, which allows the model to selectively absorb
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Table 6: Performance comparison on BFCL benchmark using different expert data sources.

Method Live Non-live Overall
GRPO (Pure RL) 68.5 88.8 77.1
Original Model 50.9 39.9 46.2
CHORD-t (DeepSeek-R1) 69.4 88.6 77.6
CHORD-1 (Qwen2.5-72B) 68.8 90.6 78.1
CHORD-¢ (DeepSeek-R1) 69.9 90.2 78.5
CHORD-¢ (Qwen2.5-72B) 68.9 90.9 78.3
SFT-best + RL (DeepSeek-R1) 67.4 87.9 76.1
SFT-best + RL (Qwen2.5-72B)  68.1 90.6 77.7

useful patterns while mitigating the negative effects of distributional mismatch, regardless of the
expert’s absolute strength or stylistic differences.

Interestingly, the baseline SFT-best + RL method also shows notable improvement when using
Qwen2.5-72B-Instruct data (77.7 vs. 76.1). This further corroborates our core motivation: the
effectiveness of SFT is not solely determined by the quality of expert demonstrations in isolation, but
is also heavily influenced by the degree of pattern shift they introduce relative to the base model. A
smaller pattern shift, even from a weaker expert, can be more beneficial than a larger shift from a
stronger but stylistically divergent expert.

Pattern Examples To provide qualitative insight into these pattern differences, we present example
responses from DeepSeek-R1, Qwen2.5-72B-Instruct, and the LLaMA3.2-3B-Instruct model after
pure RL training below.

<think>

Okay, let me figure out how to respond to the user. The user mentioned they have an important
fact about the Mars climate that they want to store. The assistant asked for the specific fact,
and the user provided it: “Mars has the largest dust storms in the solar system which can last
for months and can cover the entire planet.”

Now, the assistant’s role is to help store this information. Looking at the available functions,
there’s a storeMemory function that takes a “knowledge” parameter. The user’s fact is the
knowledge to be stored. So, the correct action is to call storeMemory with the provided fact
as the argument. There’s no other function needed here since the user just wants to store the
information. I need to make sure the parameters are correctly formatted as a JSON object
with the “knowledge” key. No other parameters are missing here. So, the tool call should be
straightforward.

</think>

<tool_call> [{*“name”: “storeMemory”, “arguments’: {*“knowledge”: “Mars has the largest
dust storms in the solar system which can last for months and can cover the entire planet.”} }]
</tool_call> <|im_end|>

<think>

The inquirer wants to know the recent disclosed securities report for Apple Inc. with the
company code *AAPL’. I can use the ’getDisclosedToday’ function to fetch this information.
However, since the inquirer did not specify ate range, I will use the current date as both the
start and end strings.

</think>

<tool_call> [{“name”: “getDisclosedToday”, “arguments”: {“company_code”: “AAPL”,
“start_string”: “2023-04-01”, “end_string”: “2023-04-30"} }] </tool_call> < | im_end|>
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<think>

To answer the question, I need to use a method to retrieve a list of available phone brands
from the available database.

</think>

<tool_call> [{“name”: “Get All Phone Brands”, “arguments”: {}}] </tool_call>
<|im_end]|>

As illustrated in these examples, DeepSeek-R1 produces much more verbose and elaborate reasoning
with extensive meta-commentary, while Qwen2.5-72B-Instruct adopts a more concise style that is
closer to the direct, structured approach learned by LLaMA3.2-3B-Instruct through pure RL training.
This qualitative analysis confirms that Qwen2.5-72B-Instruct introduces a smaller pattern shift, which
aligns with the quantitative improvements observed in Table[G]

B.4 NON-VERIFIABLE TASKS

To further test the generalizability of CHORD beyond verifiable tasks, we conduct additional exper-
iments on the RaR-Medicine dataset (Gunjal et al., 2023)), a medical question-answering task that
requires reasoning and explanation without deterministic verification.

We perform training on the Qwen2.5-7B-Instruct model for 200 steps, with both SFT and RL batch
sizes of 96, 8 rollouts per prompt, a learning rate of 1 x 10~%, and the p decay step is set to 50. We
use Qwen3-30B-3A-Instruct as the judge model. The expert demonstrations are sourced from the
English subset of the medical-ol-reasoning dataset (Chen et al.} 2025d), which contains high-quality
reasoning traces for medical questions.

Table[7]and Figure[10] present the experimental results. Both CHORD-y and CHORD-¢ significantly
outperform pure RL, achieving testset scores of 80.6 and 81.3 compared to 76.8 for pure RL.
Figure[I0] further show that CHORD-¢ achieves faster convergence and higher final rewards compared
to pure RL, indicating more efficient exploration guided by expert demonstrations, where CHORD-/1
possesses a similar “shift-readapt” pattern similar to the main experiment. These results validate that
our approach can further generalize to more diverse post-training domains.

0.85

. 0.80

Table 7: Comparison of test score and response 0.75
length on RaR-Medicine task. 50.70

© 0.65
Score  Length 3 0.60

Expert Data - 550 0.55 —@— CHORD-y

Original Model ~ 675 402 0% DI i
Pure RL 76.8 685 0 20 40 60 80 100120140160180200
CHORD-. 80.6 1395 Step

CHORD-¢ 81.3 1128

Figure 10: Reward curves for training on the
RaR-Medicine dataset.

B.5 SFT/RL SYNERGY FOR WEAKER POLICY MODELS

An important consideration is how the SFT/RL synergy works when the initial policy model is less
capable. Intuitively, one might assume that for a weaker model, supervised fine-tuning (SFT) on
expert data would become more critical, as the model’s own on-policy exploration is likely to be less
effective.

However, our experiments reveal a more nuanced reality: a weaker model can also struggle to
effectively absorb knowledge from expert data. As shown in Table[8] naively fine-tuning the weaker
Qwen2.5-3B-Instruct model with SFT leads to a performance collapse(RL settings are similar to
Appendix[B.2). This is in stark contrast to the result observed when training the Qwen2.5-7B-Instruct
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model, whose performance significantly improves with the same 5k SFT samples (e.g., AIME2024
accuracy rising from 11.7% to 15.8%). For the weaker model, while Pure RL still provides a
consistent performance lift, a naive SFT+RL combination could yield unstable results. The results
show that the CHORD-¢ method achieves good performance, demonstrating its ability to create a
potent and robust synergy between SFT and RL even when naive imitation fails.

Table 8: Performance on MATH tasks with a weaker policy model (Qwen2.5-3B-Instruct).

Method \ AMC23 AIME2024 AIME2025
Original Model (3B) 33.1 4.8 1.6
SFT 22.5 1.9 1.0
Pure RL 39.1 7.0 2.4
SFT+RL 36.2 6.2 3.7
CHORD-¢ (Ours) 41.9 7.9 4.0

B.6 DIVERSE MODEL ARCHITECTURES

To assess the broader applicability of our method, we extended our evaluation to a model with a
distinct architecture and origin: the Phi-mini-MoE-instruct model (Li et al.| [2025) (a light-weight
Mixture of Experts (MoE) model with 3.8B total, 1.1B active params). This experiment also tests our
method’s effectiveness beyond the dense Qwen and LLaMA models.

As shown in Table EL the MoE model exhibits a similar vulnerability to naive SFT in tool-use tasks,
with performance collapsing significantly. In stark contrast, our CHORD-¢ effectively achieves the
highest performance and boosts the overall accuracy from 49.5 to 61.6.

These results show that our method is not only architecture-agnostic, and further demonstrates its
effectiveness across diverse model families and architectures.

Table 9: Performance on the Tool-Use task with Phi-mini-MoE-instruct model on tool-use tasks.

Method | Live Non-live Overall
Original Model 423 59.2 49.5
SFT 18.2 45.0 29.6
Pure RL 51.2 69.3 58.9
SFT+RL 44.1 63.0 52.1
CHORD-¢ (Ours) | 52.1 74.5 61.6

B.7 TUNING p IN CONJUNCTION WITH ¢

The proposed CHORD employs a dual-control mechanism: a global coefficient iz and a token-wise
weighting function ¢(-). While this raises the question of their joint scheduling, we find that the
fine-grained control from ¢(-) makes the framework more robust to the specific schedule of x. This
innovation alleviates the need for meticulous tuning of the global coefficient, simplifying the practical
application of CHORD.

The aggressive decay schedule for p (starting from a high value) was designed to manage the “shift-
readapt” progression. However, since the weight function ¢(-) also aims to stabilize learning and
prevent pattern disruption, such an aggressive start may be unnecessary. A more theoretically aligned
approach would be to gently introduce the expert data via a warmup-then-decay (Hu et al.; [2024)
schedule for p (e.g., warming up from O to 0.3 before decaying). This would align with the stabilizing
nature of ¢(+).

We compare these two schedules in Figure[IT] Although CHORD-tune-both that leverages a more
refined warmup-then-decay p schedule yields a slightly better reward progression during training, the
final performance gap between the two approaches is not that significant.
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Figure 11: Reward curve comparison for Figure 12: Reward curves for training on the
CHORD variants. ToolAce dataset.

This observation is consistent with our insight: the primary purpose of introducing ¢(-) is to enable
expert data to continuously and stably guide exploration. By inherently preventing both the
disruption of existing patterns and overfitting at a token level, ¢(-) makes the aggressive expert-first
approach (a large initial 1) less critical. The token-wise control provides stability, making the overall
system less sensitive to the global trade-off hyperparameter. We argue that adopting ¢(-) not only
improves stability but also simplifies the practical application of our framework by making it robust
to the specific choice of the p schedule.

B.8 EXPERIMENTAL RESULTS ON TOOL-USE TRAINING

We provide the training curves on tool-use tasks in Figure[T2)and a more detailed experimental result
on the BFCL benchmark in Table[I0] The average performance reported in the BECL benchmark is
averaged by instance, meaning that categories with more instances have a greater contribution to the
final average score. All methods are evaluated using the same system prompt format.

Table 10: Detailed performance comparisons on BFCL bench.

Live Non-live Overall
Simple Multiple Parallel 12" giinle Multiple  Paraliel P2l pivc Ave Nondlive Avg  Overall

mple ultiple arallel Multiple mple ultiple aralle; Multiple 1ve Avg on-live Avg 'veral
LLaMA32-3B-Instruct ~ 52.3 51.8 25.0 125 385 455 25 25 50.9 39.9 46.2
SFT-light 33.7 30.8 18.8 8.3 50.5 46.0 16.0 29.0 30.8 384 34.0
SFT-best 69.8 57.0 68.8 375 77.0 89.0 77.0 76.0 59.2 84.2 69.8
SFT-light + RL 729 67.5 68.8 50.0 90.3 95.5 86.0 85.0 68.2 89.4 7712
SFT-best + RL 729 66.1 75.0 58.3 91.5 91.5 84,5 79.0 67.4 87.9 76.1
SASR 69.4 65.3 62.5 583 92.0 92.0 74.0 825 66.0 86.5 74.7
CHORD-t 74.0 68.8 68.8 50.0 83.0 925 83.0 84.0 69.4 88.6 716
GRPO (Pure RL) 702 68.3 62.5 62.5 83.5 94.5 83.5 85.5 68.5 88.8 77.1
CHORD-6 71.3 69.8 62.5 62.5 85.0 945 85.0 86.0 69.9 90.2 785

B.9 EXPERIMENTAL RESULTS ON THE MMLU-PRO DATASET

We provide a more detailed experimental result on the MMLU-pro dataset in Table [TT] The adopted
prompts for generating these results can be found in Appendix[A.3]

Table 11: Detailed performance comparisons on the MMLU-Pro dataset.

TAG (by category) Average
Business Law  Psych. Biology Chemistry History Other Health FEcon. Math Physics Comp. Sci. Philosophy —Engineering ~Overall Acc.
Qwen2.5-7B-Instruct 3118 1172 2381 2622 26.15 2073 2240 2274 2595 3575 2648 25.12 21.84 20.02 24.71
SFT-light 4056 817 2105 2552 36.22 1444 2338 2457 2701 4463 3734 28.29 1743 2147 28.01
SFT-best 5450 1390 3170  41.98 49.12 2078 3084 2751 4076 5929  47.96 42.93 22.85 28.79 3842
SFT-light + RL 4880 2652 5150  61.09 45.41 4121 4372 4682 5273 4580 4719 46.10 37.68 33.95 44.61
SFT-best + RL 60.84 2634 5175  64.02 56.18 4016 49.57 4927 5794 6210 5735 51.46 43.09 39.22 51.29
ASR 5257 2317 4789 59.16 46.66 3638 4477 4236 5598 5231 5149 46.10 36.40 30.99 45.09
CHORD-p 5564 1871 3195 4338 56.18 3071 3420 3460 4514 6403 5481 47.80 28.66 35.81 4328
GRPO (Pure RL) 5691 1835 4474  58.58 5230 3438 4123 4022 5486 57.88 5219 46.10 37.07 36.02 4577
LUFFY 5222 2425 4511 5439 49.29 3491 4113 4340 4976 5477  49.42 43.90 32.46 30.13 43.97
CHORD-G 6679 3088 6078  69.87 58.30 4593 5119 5513 6635 6847  61.66 53.41 45.89 43.14 56.22
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C DETAILED DISCUSSIONS OF RELATED WORKS

C.1 FINETUNING FOR LLMs

SFT for LLMs. SFT has established itself as a cornerstone for aligning LLMs, primarily due to its
conceptual simplicity and cost-effectiveness, making it a favored approach within the open-source
community for creating capable instruction-following models (Taori et al.| [2023; [ Kopf et al.| [2023).
Early work emphasized the power of high-quality datasets (Zhou et al.| 2023} [Young et al., [2024]),
while the required expert curation is labor-intensive and costly. Moreover, to cover the diverse use
cases of modern LLMs, the paradigm has shifted towards massive-scale SFT (Grattafiori et al., [2024;
Lambert et al.,[2024). This trend makes it computationally prohibitive for many to fine-tune from a
base model, promoting continued tuning on pre-aligned instruction models instead. Furthermore, the
interplay between SFT and RL has grown more complex, from recent methods like DFT (Wu et al.,
2025)) or iw-SFT (Qin & Springenberg, 2025)) that incorporate RL-inspired importance sampling
into SFT, to reasoning models like DeepSeek-R1 (Guo et al.,|[2025) that strategically integrate both
paradigms, highlighting that the optimal, principled integration of these methods remains a critical
and open area of research.

RL for LLMs. Recent applications of Reinforcement Learning (RL) for Large Language Models
(LLMs) have expanded beyond traditional human preference alignment (Bai et al.| 2022} |Ouyang
et al.,2022), demonstrating significant progress in complex reasoning domains such as mathematics
and code generation (Shao et al.l 2024; [Yang et al., 2024b; |Guo et al.,|2025)). In particular, a surge of
recent work has focused on Reinforcement Learning from Verifiable Rewards (RLVR) (Lambert et al.
2024 |Guo et al.,[2025)), where rewards are derived from definitive outcomes like correct answers or
passing unit tests. This paradigm has achieved remarkable results on various benchmarks. However,
a fundamental challenge persists in how RL can facilitate effective exploration to surpass the inherent
capabilities of its base model (Yue et al., 2025)). The search for novel solutions is often constrained by
the model’s pre-existing knowledge, limiting its discovery of superior reasoning pathways. To address
this, introducing external expert data — either for distillation (Hu et al.,|2025b; [Liu et al.,|2025b;
Guha et al.| [2025)), cold start (Guo et al.,2025)), or to guide exploration towards diverse, high-quality
patterns (Yan et al.,|[2025; |[Ma et al.| 2025)) — emerges as a promising approach to transcend these
limitations and unlock new problem-solving frontiers.

C.2 ON- AND OFF-POLICY REINFORCEMENT LEARNING

Combining On-policy and Off-policy Data in Traditional RL In traditional RL domains like
robotics (Kober et al., 2013) or games (Mnih et al.,[2015), combining on-policy and off-policy data
is a potent strategy. Methods ranging from alternating training phases (Gao et al.,|2025)), to mixing
data from separate buffers (Ball et al., 2023)), or directly augmenting on-policy replay buffers with
expert trajectories (Nachum et al.}[2017) have been proven useful. While such methods yield good
results in the traditional RL fields, the discrepancy arises from two fundamental distinctions of LLMs:
their strong initial priors, where aggressive off-policy updates risk disrupting established reasoning
patterns, and their vast, autoregressive action space that radically increases the off-policy degree
of expert data, especially for long reasoning chains, and invalidates the assumptions underpinning
conventional off-policy algorithms.

Combining On-policy and Off-policy Data in RL for LLM Leveraging off-policy data to
improve the sample efficiency is a well-established strategy in RL. Several studies have focused on
leveraging stale, self-generated data by employing techniques such as refining importance sampling
corrections (Tang et al.l|2025), mixing on- and off-policy gradients (Li & Khashabil [2025), modifying
the optimization loss objective (Roux et al.| 2025} |Arnal et al.,2025), or adjusting the synchronization
frequency between online and target policies (Lanchantin et al., 2025).

More closely related to our work are methods that leverage external expert data to guide the reinforce-
ment learning process for LLMs. These methods can be broadly categorized. One strategy is direct
data mixing (Yan et al.l 2025} |Dong et al., 2025} |L1 & Khashabil 2025)). For example, SimpleMix (L1
& Khashabil, 2025)), operates within a DPO framework and combines off-policy and on-policy data via
simple dataset-level sampling. LUFFY (Yan et al.| 2025) on the other hand, incorporates off-policy
expert trajectories directly into the on-policy rollout groups within a GRPO framework. While such
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approaches expose the model to expert data, they also introduce significant constraints: they usually
require strict prompt alignment between datasets or lack the dynamic, token-level weighting needed
to manage severe distribution shifts. Another strategy involves using expert data as guidance for
generation. For instance, UFT (Liu et al.;2025a) and BREAD (Zhang et al., 2025b) utilize supervised
fine-tuning (SFT) trajectories as prefixes for on-policy rollouts; UFT progressively masks the suffix
of the expert demonstration, while BREAD initiates new rollouts by branching from intermediate
steps. A third category interleaves RL updates with SFT steps on expert data, either selectively for
challenging examples (Ma et al., [2025) or based on a probabilistic schedule (Chen et al.| 2025c).
Most recently, SRFT (Fu et al.,|2025) unifies these approaches into a single-stage framework by not
only mixing SFT samples into the on-policy rollout groups but also applying a dedicated SFT loss
whose influence is adjusted at the sample level.

Our work diverges from these methods in a crucial aspect. The aforementioned approaches, including
state-of-the-art methods like SRFT (Fu et al.| 2025), LUFFY (Yan et al.,|2025)), and Reift (Ma et al.,
2025), primarily operate under a “zero-RL” paradigm, initiating training from a base model with a
nascent policy. In stark contrast, our work addresses the challenge of fine-tuning a model that already
possesses a well-developed, instruction-following policy. This advanced starting point inherently
creates a more significant distributional shift between the model’s existing policy and the external
expert data, thereby exacerbating the off-policy correction problem that our method aims to solve.
For further empirical analysis and results, please refer to Appendix [D.1]

D FURTHER DISCUSSIONS

D.1 THE INFLUENCE OF OFF-POLICY DATA ON BASE VS. INSTRUCTION MODELS

The challenges of controlling the influence of off-policy data and maintaining training stability are
significantly amplified when fine-tuning instruction models. This is mainly due to the established
policy inherent in these instruction models.

Starting from Base Model vs. Instruct Model A base model, having been pre-trained solely with
a language modeling objective, lacks a coherent, task-specific policy for instruction following. It
often has not yet converged on a particular response pattern. When learning from off-policy expert
data, the training process is akin to initial policy formation. The model learns a new skill without the
risk of conflicting with an existing pattern, thus avoiding significant instability during training.

In contrast, an instruction model has already developed a sharply-peaked policy. Training these
models on off-policy expert data that may reflect different reasoning patterns introduces a substantial
distributional mismatch. The RL algorithm’s efforts to reconcile this mismatch can result in large,
disruptive policy updates, destabilizing the established policy and potentially leading to a collapse in
performance.

Figure [T3] provides empirical observation to support the above discussions. When learning from
a mixture of on-policy and off-policy data, the reward of a base model improves monotonically,
displaying none of the instability issues that can affect instruction models under similar conditions.

Different from most existing studies (Zeng et al.l 2025} |Yan et al.|[2025; [Fu et al.| 2025)), which focus
on the “Zero-RL” setting that trains from a base model, this paper addresses a more challenging
yet practical problem: how to effectively integrate knowledge from off-policy experts into a model
that already possesses an established policy. Training from a base model is not always feasible in
practical applications. For instance, such methods are ineffective for tool-use tasks, as the base model
typically lacks the basic capability to follow the necessary instructions.

Applying “Zero-RL” Methods to Our Setting To demonstrate the unique advantages of CHORD
for aligning already instruction-tuned models, we conduct additional experiments comparing our
proposed CHORD with LUFFY (Yan et al.| 2025)) and SRFT (Fu et al.| 2025) on the tool-use task.
Note that both LUFFY and SRFT require strict alignment between expert demonstrations and RL
prompts, as they directly mix expert trajectories into on-policy rollouts. Hence, we generate expert
demonstrations for all 5,000 training prompts using DeepSeek-R1. In contrast, CHORD only uses
500 expert demonstrations without requiring prompt-level alignment.
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07 Table 12: Performance comparison with other
“Zero-RL” methods on BFCL benchmark. CHORD
'\ significantly outperforms ‘“Zero-RL” methods.

0.5
£ 0.4
s 05 Method Live Non-live Overall
0.2 GRPO (Pure RL) 68.5 88.8 77.1
' —V— From Base Model, 1=0.1 CHORD-4. 69.4 886 77.6
0.1 —— From Instruct Model, y=0.1 CHORD-¢ 69.9 90.2 78.5
0 50 100 150 S2?0 250 300 350 400 SFT-best 500 842 698
ep SFT-best+RL 674  87.9 76.1
. . LUFFY 67.2 88.0 76.1
Figure 13: Reward curves for training the SRFT 64.6 85.8 73.6

base or instruct model with fixed ;o = 0.1.

The results in Table[I2] show that CHORD significantly outperforms both methods. As discussed in
Appendix [C] when applied to instruction-tuned models with established policies, directly mixing
expert trajectories causes significant distributional mismatch, leading to training instability. Specifi-
cally, LUFFY’s upweighting of low-probability tokens on top of importance sampling can still cause
policy shifts when the distribution gap between expert and policy gap is large. SRFT’s uniform
sample-level weighting cannot distinguish valuable tokens from irrelevant ones within a trajectory,
leading to inefficient and misguided updates. In contrast, our ¢(-) function provides token-wise
adaptive weighting, enabling selective absorption of expert patterns while maintaining policy stability.
These results validate that our method achieves superior performance with better expert data efficiency
and maintains training stability on instruction-tuned models, making it more practical for many more
real-world applications.

D.2 TASK-RELATED PERFORMANCE

The differing performance gains on the MATH and tool-use tasks stem from the fundamental
distinctions between these two domains. We deliberately chose these tasks to represent two distinct
paradigms, thereby demonstrating the robustness and flexibility of our proposed method.

The math domain benefits from complex, structured, and long-form reasoning. For such tasks,
acquiring the necessary problem-solving patterns through pure on-policy exploration (i.e., Pure RL)
can be inefficient in comparison. Supervised Fine-Tuning (SFT) on expert data is highly beneficial in
this context, as it directly exposes the model to well-structured, step-by-step reasoning chains. This
allows the model to efficiently learn complex reasoning frameworks that are difficult to discover from
scratch. As we discussed in Section[d.2] the model’s performance on math problems often correlates
with its ability to produce more comprehensive and detailed reasoning steps, a pattern effectively
taught by expert data. Therefore, a method that can successfully integrate these expert reasoning
patterns, like ours, is expected to yield substantial improvements.

The tool-use domain, in contrast, relies more on the exact tool call result rather than the reasoning
process. In this setting, naive imitation of expert trajectories through SFT can even be detrimental,
as an expert’s solution may contain stylistic artifacts (e.g., verbosity) that are not conducive to
performance. As shown in Table[7]and discussed in Section .2} tool-use tasks favor concise and
efficient responses, a pattern that Pure RL naturally learns by shortening response lengths. The
primary challenge here is not just to imitate the expert, but to leverage expert guidance to accelerate
exploration without being overly constrained or picking up suboptimal habits. The consistent
performance gain of our method over the strong Pure RL baseline demonstrates its ability to achieve
this delicate balance: successfully extracting useful signals from expert data while avoiding the
pitfalls of naive imitation.

These two domains present different challenges for unifying offline SFT and online RL, and our
proposed method proves its effectiveness by excelling in both scenarios. It learns to produce
comprehensive reasoning for MATH while generating concise, efficient tool calls for tool-use tasks,
demonstrating its capability to selectively absorb expert knowledge in a task-specific manner. This
validates our approach as a robust and versatile framework for diverse applications.
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D.3 ScCALING SFT Is NOT ENOUGH: THE NECESSITY OF ON-POLICY LEARNING

A crucial question is whether extensive SFT on high-quality expert data could eliminate the need
for combining SFT and RL. Indeed, as the quantity and diversity of data increase, the problem
of exposure bias (Zhang et all [2019) can be alleviated, leading to better generalization. And for
knowledge-intensive tasks like MATH, model performance can be highly correlated with the volume
and quality of SFT data. To investigate this, we expanded the MATH SFT dataset from 5k to
20k examples, which substantially boosted the pure SFT model’s AIME accuracy from 15% to
approximately 24%.

However, even with larger volumes of SFT data, a principled transition to on-policy learning remains
critical for reaching the performance frontier. Recent literature [2025b) also shows that
extensive SFT followed by RL fine-tuning is an effective strategy for maximizing model capabilities.
By applying our SFT/RL combined approach, we can further elevate the accuracy from 24% to 33%.
This demonstrates that RL is not redundant but complementary, enabling the model to refine its policy
beyond the static distribution of expert data.

D.4 THEORETICAL INSPIRATION BEHIND CHORD-4 AND CHORD-¢

The proposed CHORD is a principled, problem-driven method designed to address the empirical
instabilities observed when integrating off-policy expert data with an already proficient instruction-
tuned model—a phenomenon we term the “shift-readapt-overfit” pattern (illustrated in Figure2). The
theoretical inspirations for our core components, the global coefficient 1 and the token-wise weight
@(+), are discussed below.

Inspiration for the global coefficient 1 The design of the global coefficient i and its decay
schedule is theoretically connected to the mitigation of exposure bias (Zhang et al., 2019; [Schmidt,
[2019). Models trained solely via teacher forcing (i.e., off-policy SFT) often fail to generalize to their
own generated distributions during inference. Scheduled sampling (Bengio et al.[2015)) addresses this
by dynamically mixing ground-truth tokens with model-generated tokens during training. CHORD
generalizes this principle to the loss landscape by conceptualizing the SFT loss as the teacher-forcing
component (correction via the expert distribution) and the on-policy RL loss as the autoregressive
component (optimization of the model’s own distribution). The coefficient x acts as a continuous
relaxation of the mixing probability in scheduled sampling. By annealing 11, CHORD enforces a
smooth, curriculum-based transition from off-policy correction to on-policy exploration, bridging the
gap between the training and inference distributions to enable superior performance.

Inspiration for the token-wise weight ¢(p) The token-wise weight ¢(p) is introduced as a
regularizer in response to the observed limitations of standard importance sampling (IS) in this
context. We find that directly applying standard IS (Equation[d) tends to disproportionately amplify
updates for high-probability tokens. This leads to overfitting on those specific tokens and causes
premature entropy collapse, thereby hindering exploration (as evidenced in Figure[8). Consequently,
rather than pursuing a strictly unbiased estimation, we design our correction term to prioritize training
stability.

Our proposed weighting function ¢(p) = p(1 — p) offers an effective alternative with a clear
information-theoretic interpretation: it quantifies the model’s uncertainty for a given token (as
discussed in Section[f.3). By incorporating this measure, the learning process adaptively focuses on
tokens where the model is most uncertain, creating a favorable region for effective learning. This
design serves two crucial stabilizing roles:

* It down-weights low-probability tokens (p — 0), preventing large, disruptive updates from
highly surprising expert actions. This effect is similar to that of clipped importance sampling.

e It also down-weights high-probability tokens (p — 1), averting overconfidence and the
entropy collapse observed with standard IS, thus preserving the model’s capacity for explo-
ration.

While establishing formal theoretical guarantees is a challenging but promising direction for future
research—especially when lacking direct access to the expert policy distribution—CHORD is both
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theoretically inspired and empirically validated. The consistent improvements in performance and
training stability across diverse tasks provide strong evidence for the effectiveness of our design.

E CASE STUDIES

For a better understanding, we compare the generation patterns of RL-only (i.e., pure RL), SFT-only,
and the proposed CHORD.

* RL-only: The model trained solely with RL exhibits a concise and structured, yet ultimately
rigid, reasoning pattern. It tends to follow a fixed template, such as beginning with “To...”
and using connectors like “First” and “Next”, and proceeds linearly without engaging in
self-correction or exploring alternative solution paths. While this approach leads to efficient
responses, it may result in less robust solutions.

* SFT-only and CHORD-y:: In contrast, the model trained solely on expert demonstrations can
be verbose and exploratory. It exhibits a “think-aloud” style with frequent meta-commentary
(e.g., “Let me think...”), backtracking, and verification of intermediate steps. The generated
responses are comprehensive, but often lack a concise structure. Note that the proposed
CHORD- has a similar reasoning pattern to SFT-only.

* CHORD-¢: It exhibits a hybrid reasoning style that retains a clean and logical structure
while selectively incorporating the expert’s sophisticated verification strategies. As shown
in the example below, it develops patterns such as “Alternatively...” and “Both methods
confirm...” to produce responses that are both well-structured and robust. We select the
checkpoints at 800 steps as the models to generate the examples here.

<think>
To calculate the duration of the bus trip, we need to subtract the departure time from the
arrival time.

The departure time is 7:43 a.m.

The arrival time is 8:22 a.m.

Subtracting the two times:

- From the hours: 8 - 7 =1 hour

- From the minutes: 22 - 43 = -21 minutes

Since we can’t have negative minutes directly, we borrow 1 hour (60 minutes) from the hour
part, making it 0 hours and adding 60 minutes to the 22 minutes. Then, 60 + 22 = 82 minutes.
So, we subtract 21 minutes from 82 minutes:

82 - 21 = 61 minutes

Therefore, the bus trip duration is 1 hour and 61 minutes, which is simply expressed as 61
minutes.

</think>

\boxed{61} <|im_end]|>

<think>

To determine the duration of the bus trip, we need to calculate the difference in time between
the departure time and the arrival time. The departure time is 7:43 a.m. and the arrival time is
8:22 a.m. on the same day.

First, let’s identify the departure and arrival times:

- Departure time: 7:43 a.m.
- Arrival time: 8:22 a.m.
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Next, we need to find the difference between these two times. We can do this by subtracting
the departure time from the arrival time.

From 7:43 a.m. to 8:00 a.m. is the time from 7:43 to 8:00. This is 17 minutes because 8:00 -
7:43 = 17 minutes (since 8:00 is 17 minutes after 7:43).

Now we need to add the time from 8:00 a.m. to 8:22 a.m., which is 22 minutes.

So, the total trip time is 17 minutes (from 7:43 to 8:00) + 22 minutes (from 8:00 to 8:22) = 39
minutes.

Therefore, the duration of the bus trip is \boxed {39} minutes. </think>
The duration of the bus trip is \boxed {39} minutes. < | im_end|>

<think>
Okay, let me try to solve this problem step by step. Let me think aloud so I can explain my
reasoning.

So, the problem is: A bus leaves the station at exactly 7:43 a.m. and arrives at its destination
at exactly 8:22 a.m. on the same day. How long, in minutes, was the bus trip?

Let me visualize this. Let me think about the time elapsed from 7:43 a.m. to 8:22 a.m.

Let me break this down. Let me think of it as two parts: from 7:43 a.m. to 8:00 a.m., and then
from 8:00 a.m. to 8:22 a.m.

Let me check that. Let me see if that makes sense.
So, from 7:43 a.m. to 8:00 a.m., how many minutes is that?

Let me calculate that. Let me think, from 7:43 to 8:00 is 17 minutes. Let me think, let me
count:

7:43 to 8:00 is 17 minutes. Because 8:00 minus 7:43 is 17 minutes.

Let me confirm that. Let me think, 7:43 to 7:50 is 7 minutes, and then 7:50 to 8:00 is 10
minutes. So, 7 + 10 = 17 minutes. Okay, that seems right.

So, that’s the first part: 17 minutes from 7:43 a.m. to 8:00 a.m.

Then, the second part is from 8:00 a.m. to 8:22 a.m., which is 22 minutes.
So, adding those two parts together: 17 minutes + 22 minutes = 39 minutes.
Let me check that. Let me think, 17 + 22. Let me do the addition:

17 +22 =39.

So, that seems correct.

Let me think if there is another way to calculate this.

Let me think, maybe using a different approach.
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Let me think, the total time from 7:43 a.m. to 8:22 a.m.

Let me think, let me calculate the difference between 8:22 and 7:43.

Let me break it down hour by hour.

From 7:43 a.m. to 8:00 a.m. is 17 minutes, as we already knew.

Then, from 8:00 a.m. to 8:22 a.m. is 22 minutes.

So, adding those together gives 17 + 22 = 39 minutes.

Let me think if there is a formula or a quicker way.

Let me think, maybe using the formula:

Total time = (End time hour - Start time hour) * 60 + (End time minute - Start time minute)
Let me try that.

So, let me denote the start time as 7:43 a.m.

End time as 8:22 a.m.

So, End time hour = 8

Start time hour =7

End time minute = 22

Start time minute = 43

So, Total time = (8 - 7) * 60 + (22 - 43)

Let me calculate that.

First, (8 - 7) * 60 = 1 * 60 = 60 minutes

Then, (22 - 43) = -21 minutes

So, Total time = 60 + (-21) = 39 minutes

Oh, that’s interesting! So, using this formula, we get 39 minutes as well.
Let me think, let me check if this makes sense.

So, when we subtract the start time from the end time, we get:

8:22 -7:43

Let me think of this as 8 hours and 22 minutes minus 7 hours and 43 minutes.
But since we are subtracting times, let me think of it as:

8:22 - 7:43 = (8 - 7) hours + (22 - 43) minutes
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But since 22 minutes is less than 43 minutes, we need to borrow an hour.
So, 8 hours is 7 hours and 60 minutes.

So, 7 hours and 60 minutes minus 7 hours and 43 minutes is 0 hours and (60 - 43) minutes =
17 minutes.

Then, the remaining hour is 1 hour.
So, total time is 1 hour + 17 minutes = 60 minutes + 17 minutes = 77 minutes.
Wait, but that doesn’t match. Let me think if this is correct.

Let me think, maybe this method is complicating it. Let me think, maybe the first method is
simpler and more accurate.

Let me think, let me think of it as total time = end time - start time.

So, end time is 8:22 a.m.

Start time is 7:43 a.m.

So, let me calculate the difference.

From 7:43 to 8:00 is 17 minutes.

From 8:00 to 8:22 is 22 minutes.

So, 17 + 22 = 39 minutes.

So, that seems correct.

Let me think, let me think of it another way.

Let me think, let me convert both times to minutes since midnight and subtract them.
Let me think, that might be complicated, but let me try.

Let me think, 7:43 a.m. is 7 hours and 43 minutes.

So, in minutes, that is 7 * 60 + 43 = 420 + 43 = 463 minutes since midnight.

Similarly, 8:22 a.m. is 8 hours and 22 minutes, which is 8 * 60 + 22 = 480 + 22 = 502 minutes
since midnight.

So, the difference is 502 - 463 = 39 minutes.
Oh, so that also gives 39 minutes.
So, this method also confirms that the answer is 39 minutes.

Therefore, I think all methods lead to the same answer, so I can be confident that the bus trip
lasted 39 minutes.

**Final Answer**
The bus trip lasted \boxed {39} minutes.
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</think>

To determine the duration of the bus trip, we need to calculate the time difference between the
departure time (7:43 a.m.) and the arrival time (8:22 a.m.).

1. Calculate the time from 7:43 a.m. to 8:00 a.m.:
- From 7:43 a.m. to 8:00 a.m. is 17 minutes.

2. Calculate the time from 8:00 a.m. to 8:22 a.m.:
- From 8:00 a.m. to 8:22 a.m. is 22 minutes.

3. Add the two intervals together:
- Total time = 17 minutes + 22 minutes = 39 minutes.

Thus, the bus trip lasted (\boxed{39}) minutes.<|im_end|>

<think>
Okay, let me try to solve this problem step by step. Let me think aloud so I can explain my
reasoning.

So, the problem is: A bus leaves the station at exactly 7:43 a.m. and arrives at its destination
at exactly 8:22 a.m. on the same day. How long, in minutes, was the bus trip?

Let me visualize this. I need to find the time elapsed between 7:43 a.m. and 8:22 a.m.

Let me break this down. A good way to handle time calculations that cross an hour is
to use the top of the hour as a stepping stone. In this case, that’s 8:00 a.m. So, I can
think of the trip in two parts: from 7:43 a.m. to 8:00 a.m., and then from 8:00 a.m. to 8:22 a.m.

Let me check that. Let me see if that makes sense. Yes, that splits the problem into two easier
calculations.

So, first part: from 7:43 a.m. to 8:00 a.m. How many minutes is that?

Let me calculate that. An hour has 60 minutes. So, the time from 7:43 to 8:00is 60 — 43
minutes.

Let me think... 60 — 401is20,s0 60 — 431is17. Yes, 17 minutes.

So, the first part is 17 minutes.

Then, the second part is from 8:00 a.m. to 8:22 a.m. That’s straightforward, it’s just 22
minutes.

So, to get the total time, I just need to add those two parts together: 17 minutes + 22
minutes.

Let me do the addition: 17 + 22.

10 + 20is30,and 7 + 2is9.So30 + 9 = 39.

The total is 39 minutes. So, that seems correct.

Let me think if there is another way to calculate this to be sure.
Let me try converting both times to minutes past midnight and then subtracting.

Let me think, start time is 7:43 a.m.

In minutes, thatis (7 hours * 60 minutes/hour) + 43 minutes.
7 = 60 = 420.

420 + 43 = 463 minutes since midnight.
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Now the end time: 8:22 a.m.

In minutes, thatis (8 hours * 60 minutes/hour) + 22 minutes.
8 » 60 = 480.

480 + 22 = 502 minutes since midnight.

So, the difference is 502 - 463.
Let me calculate that. 502 - 4001is102. 102 - 601is42. 42 - 31is39.
So, 502 - 463 = 39 minutes.

Oh, so that also gives 39 minutes. This method confirms my previous answer.

Let me think about one more method, direct subtraction with borrowing.

I want to calculate 8:22 - 7:43.

Let me write it as hours and minutes.

8 hours 22 minutes
— 7 hours 43 minutes

I can’t subtract 43 from 22. So I need to borrow 1 hour (which is 60 minutes) from the 8
hours.

So, 8 hours and 22 minutes becomes 7 hours and (60 + 22) minutes, which is 7 hours and
82 minutes.

Now let me subtract:

7 hours 82 minutes

— 7 hours 43 minutes

0 hours 39 minutes

So, the result is 39 minutes.

All three methods lead to the same answer, so I can be confident that the bus trip lasted 39
minutes.

Final Answer

The bus trip lasted (\boxed{39}) minutes.

</think>

To determine the duration of the bus trip, we need to calculate the time difference between the
departure time (7:43 a.m.) and the arrival time (8:22 a.m.).

We can solve this by breaking the duration into two parts using 8:00 a.m. as a reference point.

1. Calculate the time from 7:43 a.m. to 8:00 a.m.:
- From 7:43 a.m. to 8:00 a.m. is 60 — 43 = 17 minutes.

2. Calculate the time from 8:00 a.m. to 8:22 a.m.:
- From 8:00 a.m. to 8:22 a.m. is 22 minutes.

3. Add the two intervals together:
- Total time = 17 minutes + 22 minutes = 39 minutes.

Thus, the bus trip lasted (\boxed{39}) minutes.<|im_end|>

<think>
To determine the duration of the bus trip, I need to calculate the time difference between the
departure and arrival times. The departure time is 7:43 a.m. and the arrival time is 8:22 a.m.
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on the same day. The key is to find the difference between these two times.

First, I’ll visualize the time on a clock face. Starting at 7:43 a.m., the bus arrives at 8:22 a.m.
The difference between these two times is 39 minutes (from 7:43 to 8:22).

Alternatively, I can break down the calculation step by step:

1. From 7:43 a.m. to 8:00 a.m. is 17 minutes (since 8:00 - 7:43 = 0:17).
2. From 8:00 a.m. to 8:22 a.m. is 22 minutes.
3. Adding these two intervals together: 17 minutes + 22 minutes = 39 minutes.

Therefore, the total duration of the bus trip is 39 minutes. Let me confirm this with a different
approach to ensure accuracy.

Another way to think about it is to calculate the total minutes between 7:43 a.m. and 8:22 a.m.:

1. Convert 7:43 a.m. to minutes since midnight: 7 hours * 60 minutes/hour + 43 minutes =
420 minutes + 43 minutes = 463 minutes.
2. Convert 8:22 a.m. to minutes since midnight: 8 hours * 60 minutes/hour + 22 minutes =
480 minutes + 22 minutes = 502 minutes.
3. The difference in minutes between 502 minutes and 463 minutes is 502 - 463 = 39 minutes.

Both methods confirm that the bus trip lasted 39 minutes. Therefore, the answer is
\boxed{39}.

</think>

To determine the duration of the bus trip from departure at 7:43 a.m. to arrival at 8:22 a.m.,
we need to calculate the time difference between these two times.

1. First, let’s break down the time from 7:43 a.m. to 8:00 a.m.:
- From 7:43 a.m. to 8:00 a.m. is 17 minutes (since 8:00 - 7:43 = 0:17).

2. Next, calculate the time from 8:00 a.m. to 8:22 a.m.:
- From 8:00 a.m. to 8:22 a.m. is 22 minutes.

3. Add these two intervals together:
- 17 minutes + 22 minutes = 39 minutes.

Alternatively, we can convert the times to minutes since midnight:
-7:43 a.m. is 7 hours * 60 minutes/hour + 43 minutes = 463 minutes.
- 8:22 a.m. is 8 hours * 60 minutes/hour + 22 minutes = 502 minutes.
- The difference is 502 minutes - 463 minutes = 39 minutes.

Both methods confirm that the bus trip lasted 39 minutes. Therefore, the answer is
\boxed{39}.<|im_end|>

USE OF LARGE LANGUAGE MODELS

We used large language models only as general-purpose writing assistants, to proofread and correct
grammatical errors in this manuscript.
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