

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON-POLICY RL MEETS OFF-POLICY EXPERTS: HAR- MONIZING SUPERVISED FINE-TUNING AND REIN- FORCEMENT LEARNING VIA DYNAMIC WEIGHTING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established response patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose **CHORD**, a framework for **C**ontrollable **H**armonization of **O**n- and **O**ff-Policy **R**einforcement **L**earning via **D**ynamic **W**eighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from the expert, which promotes on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on mathematical reasoning problems and practical tool-use tasks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We will release the source code to inspire further research.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in a wide array of applications (Yang et al., 2024b; Zhang et al., 2025a; Mialon et al., 2023; Gao et al., 2024). Such significant progress can be largely attributed to two critical post-tuning paradigms that enhance the performance of LLMs in real-world scenarios, i.e., Supervised Fine-Tuning (SFT) (Taori et al., 2023; Zhou et al., 2023) and Reinforcement Learning (RL) (Ouyang et al., 2022; Shao et al., 2024).

These two paradigms present their pros and cons. SFT relies on high-quality expert trajectories to effectively mimic response patterns, which can be sensitive to the quality and quantity of expert data (Ye et al., 2025; Guha et al., 2025). Recent studies also point out that SFT may struggle to generalize beyond mere memorization (Chu et al., 2025) and is vulnerable to exposure bias (Zhang et al., 2019). In contrast, RL encourages LLMs to actively explore, which enables better generalization through learning from direct feedback on their on-policy generations (Chu et al., 2025; Chen et al., 2025b). However, such explorations can sometimes be inefficient, leading to policy degradation caused by entropy collapse (Yu et al., 2025) or over-exploitation of suboptimal strategies.

A prevalent and straightforward approach for integrating the strengths of SFT and RL while mitigating their weaknesses is the sequential *SFT-then-RL* paradigm (Liu et al., 2025b; Lambert et al., 2024). Intuitively, the expert's reasoning patterns learned in SFT guide the RL exploration beyond local optima, and then the on-policy learning in RL mitigates exposure bias inherent in SFT and prevents overfitting to a limited set of static examples. However, empirical observations show that the SFT-then-RL paradigm does not consistently outperform the pure RL approach, as illustrated in Figure 1, which is also noted in recent studies (Zhang et al., 2025a; Chen et al., 2025b).

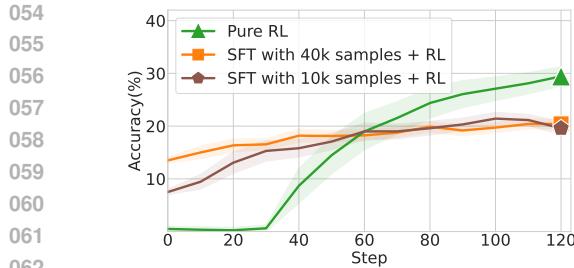


Figure 1: We train Qwen2.5-1.5B-Instruct on the Open-R1 dataset and evaluate the performance on a held-out validation set. These results show that the SFT-then-RL training paradigm can yield suboptimal performance compared to pure RL.

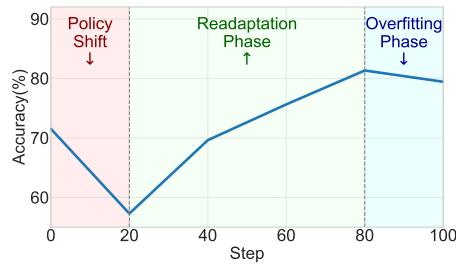


Figure 2: We perform SFT on Qwen2.5-7B-Instruct using expert data generated by Deepseek-R1. The observed learning curve (measured by accuracy on MATH-500) demonstrates a “shift-readapt-overfit” progression.

In this study, we make a further investigation and demonstrate that such suboptimal performance may arise from training on expert data that significantly diverges from the model’s established patterns. As illustrated in Figure 2, the learning curve reveals a “shift-readapt-overfit” progression consisting of three distinct phases. Firstly, there is an initial disruption in capability due to the sudden policy shift, which is followed by a readaptation phase during which the model adapts to the expert’s patterns and recovers performance. Finally, we observe that the model eventually overfits the expert data. These observations highlight that while expert data can bring new capabilities, it may also *disrupt established patterns and induce overfitting during the training process*.

Drawing upon these insights, we unify SFT and RL through the lens of off-policy versus on-policy learning. The SFT process is reframed not as a separate tuning stage, but as a dynamically weighted auxiliary objective within the on-policy RL process. We further design **CHORD**, a framework for **C**ontrollable **H**armonization of **O**n- and **O**ff-Policy **R**einforcement **L**earning via **D**ynamic **W**eighting. CHORD features a global coefficient μ for controlling the overall influence of expert data throughout the training process, and a fine-grained weighting function $\phi(\cdot)$ that helps maintain stability via down-weighting highly divergent tokens from off-policy data that could disrupt on-policy training. Extensive experiments demonstrate that CHORD significantly outperforms the baselines, achieving a higher performance through its balanced and flexible integration of learning from expert data and maintaining models’ own exploration capabilities.

Our contributions can be summarized as follows:

- We provide a systematic and in-depth analysis of the training dynamics when employing a separate SFT process to integrate off-policy expert knowledge into models with established policies. We identify the “shift-readapt-overfit” progression, revealing how off-policy data can disrupt the established response patterns of LLMs.
- We propose CHORD, a novel framework that unifies SFT and RL via a dynamically weighted auxiliary loss, which consists of a global coefficient μ and a token-wise weighting function $\phi(\cdot)$. CHORD provides a fine-grained and flexible control of the influence of off-policy expert data while ensuring training stability, promoting a harmonious integration of learning from both off-policy expert demonstrations and the model’s on-policy exploration.
- Extensive experiments on both mathematical reasoning problems and practical tool-use tasks demonstrate that CHORD outperforms the SFT-then-RL paradigm and existing approaches. We provide both quantitative and qualitative analyses to show that CHORD strategically navigates training dynamics to selectively absorb expert knowledge without stifling the model’s reasoning capabilities, highlighting its superiority and effectiveness.

2 PRELIMINARIES

The post-tuning of Large Language Models (LLMs) involves optimizing their policy, denoted by π_θ and parameterized by θ , to generate desirable responses. This typically follows two paradigms: Supervised Fine-Tuning (SFT), an *off-policy* paradigm driven by a static dataset of expert demonstrations; and Reinforcement Learning (RL), an *on-policy* paradigm guided by dynamic feedback.

108 Specifically, SFT adjusts the policy π_θ to mimic a high-quality, static dataset of N expert demonstrations, $\mathcal{D}_{\text{SFT}} = \{(x_i, y_i^*)\}_{i=1}^N$. Here, x_i is a prompt and $y_i^* = (y_{i,1}^*, \dots, y_{i,|y_i^*|}^*)$ is the corresponding expert response with $|y_i^*|$ tokens. The SFT objective is to minimize the negative log-likelihood of expert responses, typically optimized with an empirical estimate from a mini-batch of size B :

$$\mathcal{L}_{\text{SFT}}(\theta) = -\frac{1}{\sum_{i=1}^B |y_i^*|} \sum_{i=1}^B \sum_{t=1}^{|y_i^*|} \log \pi_\theta(y_{i,t}^* | x_i, y_{i,<t}^*). \quad (1)$$

116 In contrast, RL optimizes policy π_θ by maximizing expected reward $R(\tau)$ from a generated trajectory
117 $\tau = (x, y^*)$. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) suggests sampling K
118 responses $\{\tau_1, \dots, \tau_K\}$ from a policy π_{sample} when given a prompt x . Each response τ_k is evaluated
119 with the reward function $R(\tau_k)$, and π_θ is updated to maximize a PPO-style clipped surrogate
120 objective. Consistent with recent studies (Hu et al., 2025a; Yu et al., 2025; Chen et al., 2025a), our
121 formulation does not include the KL divergence term to avoid restricting performance of LLMs. The
122 objective function can be formulated as:

$$\mathcal{L}_{\text{GRPO}}(\theta) = -\frac{1}{\sum_{i=1}^{\hat{B}} \sum_{k=1}^K |\tau_{i,k}|} \sum_{i=1}^{\hat{B}} \sum_{k=1}^K \sum_{t=1}^{|\tau_{i,k}|} \min(r_{i,k,t}(\theta) A_{i,k}, \text{clip}(r_{i,k,t}(\theta), 1 - \epsilon, 1 + \epsilon) A_{i,k}), \quad (2)$$

123 where \hat{B} is the number of prompts in the mini-batch and ϵ is the clipping hyper-parameter. The
124 advantage A_k for each response is computed by $A_k = \frac{R(\tau_k) - \mu_{\mathcal{R}}}{\sigma_{\mathcal{R}} + \epsilon_z}$, where $\mu_{\mathcal{R}}$ and $\sigma_{\mathcal{R}}$ are the mean and
125 standard deviation of rewards $\{R(\tau_k)\}_{k=1}^K$ within the group, and ϵ_z is a small constant for stability.
126 Here $r_{i,k,t}(\theta) \triangleq \frac{\pi_\theta(\tau_{i,k,t} | x, \tau_{i,k,<t})}{\pi_{\text{sample}}(\tau_{i,k,t} | x, \tau_{i,k,<t})}$ denotes the token-wise Importance Sampling (IS) ratio, which
127 re-weights the probability of actions sampled under π_{sample} to simulate on-policy sampled distribution.
128 For a “strict on-policy setup” (Liu et al., 2025b) that $\pi_{\text{sample}} = \pi_\theta$, this ratio should always be 1, and
129 the gradient of $r_{i,k,t}(\theta)$ should be equivalent to $\nabla_\theta \log \pi_\theta(\tau_{i,k,t}^* | x_i, \tau_{i,k,<t}^*)$.

3 CHORD: HARMONIZING OFF-POLICY AND ON-POLICY LEARNING

3.1 THE SHIFT-READAPT-OVERFIT PROGRESSION WHEN UTILIZING OFF-POLICY DATA

140 Before introducing CHORD, we first take a close look at the training dynamics of the SFT process,
141 revealing how training on off-policy expert data can disrupt the established response patterns of
142 LLMs. Such disruption ultimately leads to the failure of the SFT-then-RL paradigm (Zhang et al.,
143 2025a; Chen et al., 2025b), as evidenced by the results in Figure 1.

144 We train Qwen2.5-7B-Instruct (Yang et al., 2024a) on expert data generated by Deepseek-R1 (Guo
145 et al., 2025) and monitor the changes in test accuracy on the MATH-500 dataset. From the experi-
146 mental results shown in Figure 2, we observe that model performance declines during the first few
147 epochs, followed by a continuous increase to a level higher than that before training, and then a slight
148 subsequent decrease. The performance curve reveals a “shift-readapt-overfit” progression:

- 150 • *Policy Shift*: The performance initially declines since the model is forced to follow off-
151 policy expert demonstrations whose response patterns are significantly different, **disrupting**
152 **its established response patterns and causing a significant performance drop**. Such
153 degradation is further exacerbated by exposure bias (Zhang et al., 2019; Schmidt, 2019), as the
154 model, trained exclusively on ground-truth expert data, struggles to navigate the self-generated
155 contexts it encounters during inference.
- 156 • *Readapt*: As SFT continues, the model policy π_θ begins to integrate the expert’s response
157 patterns and generates responses similar to those of the expert. The exposure bias can be
158 mitigated by reducing the reliance on the model’s response patterns, thereby allowing its
159 performance to rise steadily as it adapts to the expert’s response patterns.
- 160 • *Overfit*: Extended training on the limited expert data ultimately leads to overfitting, resulting
161 in a decline in generalization and a significant loss of output diversity. Such overfitting can
162 also restrict the exploratory capacity that is crucial for the following RL optimization.

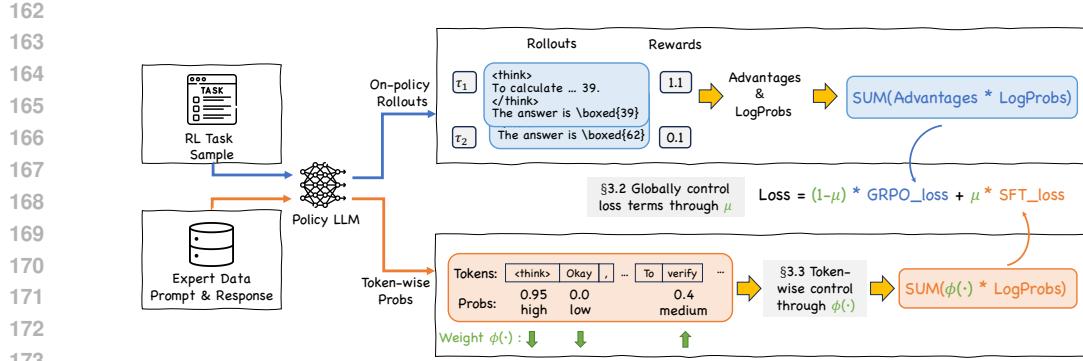


Figure 3: An overview of the proposed CHORD framework that unifies SFT and RL, featuring a global coefficient μ and a token-wise weighting function $\phi(\cdot)$.

The observed progression makes it challenging to control the influence of off-policy expert data. The SFT-then-RL paradigm demands careful timing for the SFT-to-RL transition, and even then, such a two-stage paradigm may still yield suboptimal solutions due to the inherent separation of the training phases. This highlights the limitations and fragility of the SFT-then-RL paradigm, especially when expert data's response patterns significantly diverge from the model's established response patterns.

Drawing upon the above insights, we propose CHORD, a novel framework that effectively unifies SFT and RL. The proposed framework consists of a dual-control mechanism. We first introduce a dynamic loss coefficient to balance learning from on- and off-policy data (refer to Section 3.2), then further design a token-wise weighting function that provides fine-grained stability control (refer to Section 3.3). The overall architecture of CHORD is shown in Figure 3.

3.2 CONTROLLING THE INFLUENCE OF OFF-POLICY EXPERT DATA VIA μ

Firstly, in order to control the influence of off-policy expert data, we propose to reframe SFT as a dynamically weighted auxiliary objective within the on-policy RL process, rather than a separate tuning stage as in the SFT-then-RL paradigm. Specifically, we design a combined loss function that minimizes a weighted sum of the RL and SFT losses:

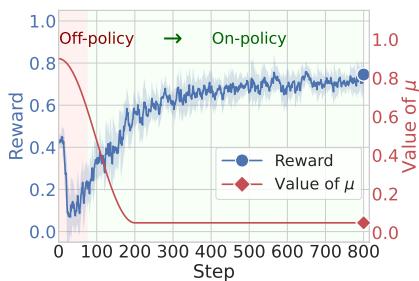
$$\mathcal{L}_{\text{Hybrid}}(\theta) = (1 - \mu)\mathcal{L}_{\text{GRPO}}(\theta) + \mu\mathcal{L}_{\text{SFT}}(\theta), \quad (3)$$

where $\mathcal{L}_{\text{GRPO}}(\theta)$ is the empirical GRPO loss defined in equation 2, $\mathcal{L}_{\text{SFT}}(\theta)$ is the SFT loss defined in equation 1, and $\mu \in [0, 1]$ is a hyperparameter that governs the trade-off between SFT and RL.

If using a fixed value of μ , the influence of the off-policy expert data remains unchanged throughout the entire post-tuning process. An advanced strategy, however, is to change μ for achieving a dynamic balance between off-policy and on-policy learning. For example, the SFT-then-RL pipeline can be regarded as a special case with a binary schedule (initially setting $\mu = 1$ and then transitioning to $\mu = 0$). Moreover, previous studies (Ma et al., 2025; Gao et al., 2025) that utilize interleaved SFT and RL can be interpreted as employing a periodic μ schedule.

Moving a step forward, applying a decay schedule of μ provides a more graceful and flexible transition from off-policy imitation to on-policy optimization compared to the rigid and binary switch. As shown in Figure 4, the training begins with a large μ value, encouraging the model to learn more from off-policy expert data. As training progresses, μ gradually decays to a smaller value, shifting the training focus towards on-policy exploration and annealing the influence of the off-policy expert data before overfitting on them. Such a decay schedule has also proven successful in mitigating exposure bias (Zhang et al., 2019). **Inspired by scheduled sampling (Bengio et al., 2015), our approach generalizes the principle of mixing expert and model-generated data from the token level to the loss landscape**, effectively bridging the distributional gap between training on off-policy samples and performing on-policy rollouts.

Beyond the Loss Coefficient μ Empirical comparisons (refer to Section 4 for more details) demonstrate that applying a decay schedule to μ yields notable performance gains over the SFT-then-RL paradigm. At the same time, two key observations motivate us to extend beyond μ .



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
Figure 4: Decaying the value of μ enables a smooth transition from off-policy imitation to on-policy optimization.

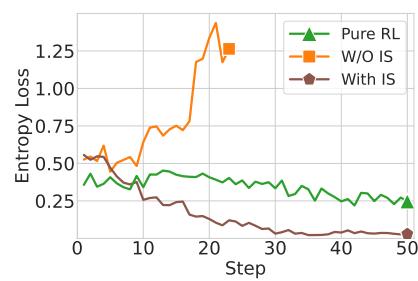


Figure 5: Comparisons of entropy loss between pure RL and mixed RL that integrates expert data (with or without the IS strategy).

Firstly, as shown in Figure 4, the learning curve still reveals a “shift-readapt” progress, where the reward initially declines before subsequently increasing. These observations indicate that, despite improvements in performance, learning from off-policy expert data might still disrupt established patterns and stifle the model’s capacity for genuine exploration during on-policy training.

Secondly, the response patterns of the model trained with CHORD- μ (as shown in Appendix E) appear to converge to those of the expert model. Case studies reveal that CHORD- μ compels the model to adopt the expert’s verbose response pattern wholesale, hence overwriting its own inherent conciseness. This indicates that while μ controls the overall influence of expert data, it lacks fine-grained precision. As a result, it forces the model to indiscriminately adopt expert patterns, which can create conflicts with its own established style.

Towards the goal of utilizing off-policy data as an incentive and guidance for the model to explore novel and effective reasoning paths, rather than merely as a target to imitate, we further integrate CHORD with a token-wise, fine-grained weighting function $\phi(\cdot)$, forming a dual-control mechanism together with the global coefficient μ for controlling the influence of the off-policy expert data.

3.3 ENHANCING THE STABILITY OF OFF-POLICY LEARNING VIA $\phi(\cdot)$

A feasible solution for controlling the influence of off-policy expert data from a fine-grained perspective is to differentiate the tokens based on their generation probabilities $\pi(y_t^*|x, y_{<t}^*)$. For example, Importance Sampling (IS) (Schulman et al., 2017) has been widely used for stably integrating off-policy data in RL, which suggests re-weighting the objective by the probability ratio between the target policy π_θ and the behavior policy π_{sample} that generated the expert data. Formally, the objective function can be given as:

$$\mathcal{L}_{\text{SFT-IS}}(\theta) = \mathbb{E}_{(x, y^*) \sim \mathcal{D}_{\text{SFT}}} \left[- \sum_{t=1}^{|y^*|} \text{sg} \left(\frac{\pi_\theta(y_t^*|x, y_{<t}^*)}{\pi_{\text{sample}}(y_t^*|x, y_{<t}^*)} \right) \cdot \log \pi_\theta(y_t^*|x, y_{<t}^*) \right], \quad (4)$$

where $\text{sg}(\cdot)$ denotes the stop-gradient operator. Note that the probabilities $\pi_{\text{sample}}(y_t^*| \dots)$ for the expert data \mathcal{D}_{SFT} are often unknown. Following the common practice (Yan et al., 2025; Wu et al., 2025), we assume that the denominator is 1, treating the expert data as the ground-truth distribution.

From a token-wise perspective, IS enhances training stability by down-weighting low-probability tokens that could disrupt the established policy. As empirical observations shown in Figure 5, mixing off-policy data without IS leads to a sharp rise in entropy, which implies that the model’s established patterns are quickly disrupted by the unweighted off-policy data. However, we notice that IS can lead to a sharp collapse in policy entropy compared to pure RL, which implies that it can limit the exploration essential for the RL phase and trap the model in a stable but suboptimal solution. The underlying reason is that IS prevents disruptive shifts in the policy distribution by down-weighting low-probability tokens, but it also aggressively reinforces existing high-probability tokens while ignoring novel but low-probability ones, thus causing the policy to become overconfident.

Stabilize Off-policy Data Training with $\phi(\cdot)$ To tackle this, we propose a fine-grained, per-token weighting function $\phi(y_t^*; \pi_\theta)$ that **down-weights the learning signal for tokens at both ends of the probability spectrum**, i.e., down-weighting those tokens that are highly probable (to prevent

270 entropy collapse) or extremely improbable (to avoid disruption). More specifically, the weight for
 271 a given expert token is defined based on the policy’s probability $p_t = \pi_\theta(y_t^*|x, y_{<t}^*)$, as follows:
 272

$$\phi(y_t^*; \pi_\theta) = p_t(1 - p_t), \quad (5)$$

274 which naturally forms a parabolic curve that peaks at $p_t = 0.5$ and decays to zero as p_t approaches
 275 0 or 1. The SFT objective function can be updated as:

$$\mathcal{L}_{\text{SFT-}\phi}(\theta) = -\mathbb{E}_{(x, y^*) \sim \mathcal{D}_{\text{SFT}}} \left[\sum_{t=1}^{|y^*|} \phi(y_t^*; \pi_\theta) \cdot \log \pi_\theta(y_t^*|x, y_{<t}^*) \right], \quad (6)$$

279 where $\phi(y_t^*; \pi_\theta)$ modulates the gradient contribution of each token in the expert trajectory.
 280

281 From an information-theoretic perspective, the term $p_t(1 - p_t)$ can be viewed as a measure of the
 282 policy’s uncertainty (Wang et al., 2025) for the binary event of generating token y_t^* . Therefore, this
 283 approach biases learning towards tokens where the policy is most uncertain, and creates a “learning
 284 sweet spot” that focuses the off-policy learning on tokens that are novel enough to be informative but
 285 not so divergent as to disrupt the established policy.

286 By replacing the static \mathcal{L}_{SFT} in the proposed hybrid loss function (defined in equation 3) with $\mathcal{L}_{\text{SFT-}\phi}$,
 287 we obtain the final objective function of CHORD, which applies a global coefficient μ for adjusting
 288 the overall influence of expert data and a fine-grained weighting function $\phi(\cdot)$ that helps enhance the
 289 stability when learning from off-policy data.

290 4 EXPERIMENTS

293 4.1 SETUP

295 **Datasets, Models, and Evaluations** We conduct experiments on mathematical reasoning problems
 296 and practical tool-use tasks. (i) For **mathematical reasoning problems**, we utilize the OpenR1-
 297 Math-220k dataset (Hugging Face, 2025), from which we sample 5k instances for SFT and 20k for
 298 RL, ensuring no overlap. Our policy model is Qwen2.5-7B-Instruct, whose response patterns differ
 299 significantly from the expert (Deepseek-R1). We evaluate in-domain generalization performance on
 300 the AIME24, AIME25, and AMC benchmarks (Li et al., 2024), and use MMLU-Pro (Wang et al.,
 301 2024) to monitor the changes in general reasoning. (ii) For **tool-use tasks**, we conduct experiments
 302 on the single-turn instances of the ToolAce (Liu et al., 2024) dataset. We sample 5k instances for
 303 RL and 500 for SFT, for which the expert trajectories are generated by querying the Deepseek-R1
 304 with the same system prompt. We use LLaMA3.2-3B-Instruct (Grattafiori et al., 2024) as our policy
 305 model, which also differs in response patterns from the expert (Deepseek-R1). We evaluate the model
 306 performance on BFCL (Patil et al., 2024).

307 **Baselines** We compare the proposed CHORD with a comprehensive set of baselines, including: (i)
 308 **Original Model**: The original Qwen2.5-7B-Instruct/LLaMA3.2-3B-Instruct model. (ii) **SFT-only**:
 309 The model fine-tuned on the SFT dataset. We focus on two specific configurations: *SFT-light*, trained
 310 for a single epoch, and *SFT-best*, the peak-performing checkpoint on the test set found by searching
 311 over different learning rates and training epochs. (iii) **RL-only**: The model fine-tuned directly on the
 312 RL dataset using the GRPO algorithm. (iv) **SFT+RL**: The sequential SFT-then-RL paradigm. (v)
 313 **LUFFY**¹ (Yan et al., 2025): A method that integrates expert demonstrations within GRPO rollout
 314 groups and reshapes the importance sampling ratio. (vi) **SASR** (Chen et al., 2025c): A method
 315 that probabilistically interleaves SFT and RL steps. It prioritizes SFT when the model’s outputs are
 316 dissimilar to expert demonstrations, adapting the training focus dynamically.

317 For more details of the experimental setups, please refer to Appendix A.

318 4.2 COMPARISONS

319 The proposed approaches implemented based on CHORD include (i) **CHORD- μ** : We employ a decay
 320 schedule for the loss coefficient μ to gradually transition from off-policy to on-policy learning, as

322 ¹For math reasoning problems, we utilize 20k samples for training, whereas the original paper utilizes 45k
 323 samples and achieves scores of 50.9 on AMC, 17.7 on AIME24, and 14.8 on AIME25. For tool-use tasks,
 LUFFY utilizes 5k SFT samples instead of 500.

324
325
326 Table 1: Performance comparisons on reasoning problems and tool-use tasks.
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

	Math & General Reasoning Problems				Tool-use Tasks		
	AMC	AIME24	AIME25	MMLU -Pro	BFCL Live	BFCL Non-live	BFCL Overall
Original Model	43.8	11.7	6.66	24.7	50.9	39.9	46.2
SFT-light	42.5	8.54	7.80	28.0	30.8	38.4	34.0
SFT-best	55.9	15.8	15.2	38.4	59.2	84.2	69.8
SFT-light + RL	52.5	11.9	11.6	44.6	68.2	89.4	77.2
SFT-best + RL	58.4	17.1	16.3	51.3	67.4	87.9	76.1
SASR	54.0	12.7	11.1	45.1	66.0	86.5	74.7
CHORD- μ	60.8	18.1	17.9	43.3	69.4	88.6	77.6
GRPO (Pure RL)	52.1	13.2	8.54	45.8	68.5	88.8	77.1
LUFFY	52.8	16.6	14.3	44.0	67.2	88.0	76.1
CHORD- ϕ	62.5	18.2	17.2	56.2	69.9	90.2	78.5

detailed in Section 3.2; and (ii) **CHORD- ϕ** : We fix the value of μ and further integrate the token-wise weighting function $\phi(\cdot)$ to achieve a dual-control mechanism on the influence of off-policy expert data, as introduced in Section 3.3.

Model Performance Overall, the comparisons summarized in Table 1 demonstrate the effectiveness and superiority of CHORD on both reasoning problems and tool-use tasks.

Specifically, the experimental results reveal a challenge within the SFT-then-RL paradigm. We notice that minimal tuning on off-policy data (SFT-light) degrades performance, and a more thorough SFT phase (SFT-best) achieves better results. However, the optimal timing for transitioning from SFT to RL can vary across different scenarios. For example, initiating RL from SFT-best yields superior performance on math reasoning problems, while SFT-light+RL performs better on tool-use tasks. This divergence confirms that the SFT-RL balance is highly task-dependent and needs extensive efforts for careful adjustment.

These SFT-then-RL approaches are surpassed by CHORD- μ , which enables a smooth transition from off-policy to on-policy learning rather than a rigid switch. Specifically, CHORD- μ outperforms the strong SFT-best+RL baseline across all math reasoning benchmarks, achieving improvements of +2.4 on AMC, +1.0 on AIME24, and +1.6 on AIME25, respectively. Besides, CHORD- μ also achieves better overall results compared to these SFT-then-RL baselines on tool-use tasks. These results demonstrate the superiority of its unified learning design.

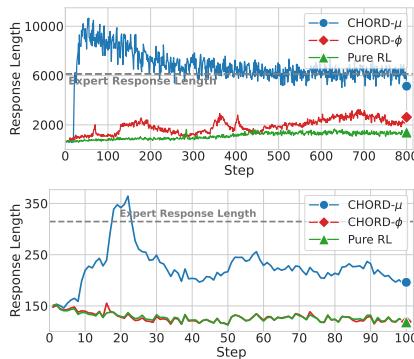
Further, CHORD- ϕ achieves consistent outperformance over the baselines. These results demonstrate the effectiveness of our dual-control mechanism in flexibly controlling the influence of off-policy expert data. CHORD- ϕ selectively applies the SFT loss to non-disruptive tokens, integrating expert knowledge without compromising foundational abilities. This enables robust learning from both off-policy expert data and on-policy exploration, leading to the best performance on both reasoning problems and tool-use tasks.

Response Patterns We further compare the influence of expert data (generated by DeepSeek-R1) on response patterns across different approaches. As shown in Table 7, expert responses are substantially longer than the original model’s on both math (6,132 vs. 659 tokens) and tool-use tasks (315 vs. 147 tokens). SFT models (SFT-light and SFT-best) initially mimic this verbosity. However, a subsequent RL can help mitigate the issues of overly lengthy responses by training the models to conduct on-policy exploration. The response length produced by SFT-light+RL is much shorter than that of SFT-best+RL (1,322/119 vs. 4,830/489 tokens), as fewer epochs of SFT allow the model to retain its original response patterns. Besides, from Figure 6, we can observe that CHORD- μ exhibits a similar trend, where the average response length initially increases to align with expert patterns and then gradually converges to a lower length as on-policy training progresses.

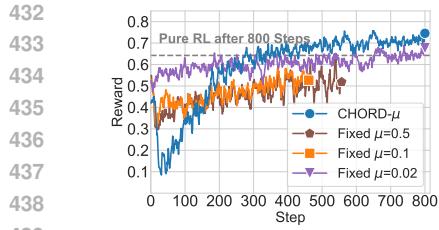
On the other hand, Pure RL on instruct-tuned models lengthens math responses (from 659 to 1,423 tokens) while shortening them for tool-use (from 147 to 118 tokens). This suggests that the response pattern changes can be task-dependent: math problems benefit from detailed step-by-step reasoning,

378
 379 Table 2: Average response length on math
 380 problems and tool-use tasks.

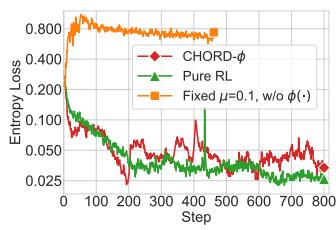
	Average Length	
	Math	Tool-use
Expert Data	6,132	315
Original Model	659	147
SFT-light	9,966	259
SFT-best	8,442	527
SFT-light + RL	1,322	119
SFT-best + RL	4,830	489
CHORD- μ	6,081	197
Pure RL	1,423	118
CHORD- ϕ	2,444	120



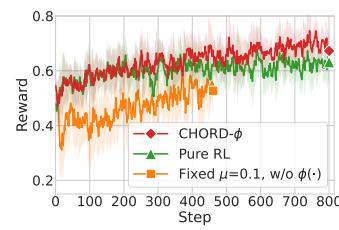
381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741



432
433
434
435
436
437
438
439
440 Figure 7: Reward versus train-
441 ing step for CHORD- μ and vari-
442 ous fixed- μ strategies.
443
444



440 Figure 8: Entropy loss versus
441 training step for CHORD- ϕ and
442 baseline methods.
443
444



440 Figure 9: Reward versus train-
441 ing step for CHORD- ϕ and base-
442 line methods.
443
444

445 From the changes in entropy loss, we can observe that by applying $\phi(\cdot)$, the model maintains a great
446 balance between exploration and exploitation while performing off-policy and on-policy learning
447 simultaneously. On one hand, CHORD- ϕ prevents the entropy from collapsing prematurely, which
448 may occur when the SFT loss forces the model to become over-confident on high-probability tokens
449 from the expert data. On the other hand, it avoids large entropy spikes and training instability that
450 may occur if the off-policy expert data drastically conflict with the current policy’s predictions, as
451 the performance curve remains stable throughout the training process. The rewards curve indicates
452 that CHORD- ϕ achieves a stable and continuous increase in rewards, resulting in significantly better
453 performance than Pure RL. These results demonstrate that the proposed token-wise weighting function
454 is crucial for effectively unifying the SFT and RL phases.

455 **Tuning μ When Applying CHORD- ϕ** Empirical observations show that, when $\phi(\cdot)$ is used for
456 fine-grained control over the influence of expert data, a complex and decaying schedule for μ is no
457 longer essential. CHORD- ϕ is effective to work with a fixed value for μ (e.g., 0.1 in this study) since
458 it inherently prevents both token-level overfitting and the disruption of established response patterns.
459 The design of $\phi(\cdot)$ simplifies the practical usage of CHORD by making it robust to the specific choice
460 of μ . In Appendix B.7, we provide experiments on tuning the schedule of μ in conjunction with $\phi(\cdot)$.

461 **Principle for Instantiating $\phi(\cdot)$** It is worth noting that the proposed weight $\phi(\cdot) = p_t * (1 - p_t)$
462 serves as a concrete and interpretable instantiation following a general principle: stabilizing off-policy
463 integration requires down-weighting the learning signal for tokens at both ends of the probability
464 spectrum. **This instantiation is also computationally lightweight, as it only requires a simple element-
465 wise multiplication of probabilities already computed during the standard forward pass.** As grounded
466 in our empirical observations, by assigning negligible weight to tokens that the policy is already
467 certain about (where p_t is close to 0 or 1), the proposed method prevents off-policy data from
468 disrupting the model’s established reasoning patterns and focuses updates on tokens where the model
469 is still uncertain. Beyond the specific formulation of $\phi(\cdot)$, this general principle that enables stable
470 and selective learning from off-policy data can potentially inspire more advanced weighting schemes
471 that are suitable for different scenarios.

472 To verify the robustness of the token-weighting function, we experiment with several variants (entropy-
473 based variants, clipping variants, and focal loss), with detailed experiment results and discussions
474 presented in Appendix B.2. The results confirm that the proposed $\phi(\cdot)$ is an effective and robust
475 instantiation of the principle of down-weighting tokens at both probability extremes, achieving better
476 performance across various tasks.

4.4 FURTHER ANALYSIS

479 **Varying Expert Data Source** We investigate the effect of using different expert data sources:
480 the powerful DeepSeek-R1 and the weaker but stylistically similar Qwen2.5-72B-Instruct. As
481 shown by examples in Appendix B.3, Qwen2.5-72B-Instruct exhibits a response pattern closer to the
482 policy model, LLaMA3.2-3B-Instruct. Experimental results demonstrate that our proposed methods,
483 CHORD- μ and CHORD- ϕ , consistently outperform Pure RL and SFT+RL baselines regardless of the
484 expert. We also observe that methods which rely more heavily on expert imitation (e.g., SFT+RL and
485 CHORD- μ) yield greater gains when the expert has a similar response pattern to the policy model.
486 This aligns with our insight: the effectiveness of unifying SFT and RL depends not only on expert

486 data quality but also on the degree of pattern shift it introduces. For detailed results and discussion,
 487 please see Appendix B.3.

488 **Extending to Non-verifiable Domains** To test the generalizability of CHORD beyond verifiable
 489 tasks, we conduct experiments on Rar-Medicine, a medical question-answering dataset that lacks de-
 490 terministic verification. The results show that both CHORD- μ and CHORD- ϕ significantly outperform
 491 pure RL. CHORD- ϕ achieves faster convergence and higher final rewards, while CHORD- μ exhibits
 492 a similar “shift-readapt” pattern as observed in the main experiments (Figure 10 in Appendix B.4).
 493 These findings validate that our approach successfully generalizes to more diverse, non-verifiable
 494 domains. Refer to Appendix B.4 for more details.

495 **Training Weaker Policy Models** While the effectiveness of on-policy exploration (RL) is often
 496 limited for weaker models, our experiments reveal that they can also struggle to effectively absorb
 497 knowledge from expert data. Our experiment on Qwen2.5-3B-Instruct shows that a weaker model
 498 tends more to suffer from a performance collapse when training on the same off-policy expert data.
 499 In such a setting, the naive imitation fails and a simple SFT+RL combination proves unstable, where
 500 our CHORD- ϕ consistently achieves good performance. This demonstrates our method’s ability to
 501 create a robust synergy between SFT and RL. We defer detailed experiment results and analysis to
 502 Appendix B.5.

504 5 RELATED WORKS

505 Recent advancements in RL show significant success in complex reasoning tasks (Guo et al., 2025;
 506 Shao et al., 2024; Lambert et al., 2024). However, RL-based exploration is often constrained by
 507 the model’s initial knowledge, making it difficult for the model to discover superior reasoning path-
 508 ways (Yue et al., 2025). Incorporating off-policy expert data into the on-policy RL loop is a promising
 509 strategy to address such exploration challenge. Some studies directly mix expert data with self-rollout
 510 generations, either through simple dataset mixing (Li & Khashabi, 2025), or mixing expert trajectories
 511 into on-policy rollout groups (Yan et al., 2025; Fu et al., 2025), while others use expert data to guide
 512 generation (Liu et al., 2025a; Zhang et al., 2025b; Huang et al., 2025). A third category interleaves
 513 RL updates with SFT steps on expert data, either on a predefined or adaptive schedule (Chen et al.,
 514 2025c), or for challenging examples (Ma et al., 2025). More recently, SRFT (Fu et al., 2025) proposed
 515 a unified framework that combines data mixing with a sample-level SFT loss. In this study, we focus
 516 on tuning an instruct model that already establishes its own response pattern, which can be a more
 517 challenging yet practical scenario compared to existing works that finetune a base model (Yan et al.,
 518 2025; Fu et al., 2025). For a more comprehensive literature review, please refer to Appendix C.

520 6 CONCLUSIONS

521 In this study, we identify that SFT-then-RL paradigm can often lead to suboptimal performance
 522 due to the disruption of established patterns when utilizing off-policy expert data. This finding
 523 motivates us to unify SFT and RL through the lens of on-policy versus off-policy learning, framing
 524 them as integrated components. To realize this unified vision, we propose CHORD. By analyzing
 525 the influence of expert data at both the holistic and granular levels, CHORD first integrates a global
 526 coefficient μ to manage the overall influence of off-policy expert data, enabling a smoother transition
 527 from imitation to exploration. CHORD then introduces a token-wise weighting function, $\phi(\cdot)$, which
 528 strategically navigates the selective absorption of expert knowledge, with a general principle of
 529 down-weighting tokens that are either already highly probable or extremely improbable. We conduct
 530 a series of experiments providing both quantitative and qualitative analyses, demonstrating that
 531 CHORD selectively learns beneficial patterns from off-policy expert data while exploring its own
 532 behaviors throughout the tuning process, achieving significant outperformance compared to the
 533 existing SFT-then-RL paradigm. We envision our work inspiring further exploration into unified
 534 post-training paradigms, facilitating their application across a broader spectrum of scenarios.

540 REPRODUCIBILITY STATEMENT
541

542 We are committed to ensuring the reproducibility of our work. The source code for our methods will be
543 made publicly available, along with scripts for data preprocessing and result evaluation. All datasets
544 and models used in this paper are publicly available. Implementation details, hyperparameters, and
545 evaluation methods are provided in our Experiments Section (Section 4) and Appendix A.

546
547 ETHICS STATEMENT
548

549 This research adheres to established ethical guidelines. The datasets and benchmarks utilized are
550 publicly available and contain no personally identifiable or sensitive information. The models
551 employed in this study, such as Qwen2.5 (Yang et al., 2024a) and LLaMA3 (Grattafiori et al., 2024),
552 were accessed under open-source licenses. The authors declare no conflicts of interest.
553

554 REFERENCES
555

556 Charles Arnal, GaĂłtan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, and Remi Munos.
557 Asymmetric reinforce for off-policy reinforcement learning: Balancing positive and negative
558 rewards. *arXiv preprint arXiv:2506.20520*, 2025.

559 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
560 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
561 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

562 Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
563 with offline data. In *International Conference on Machine Learning*, pp. 1577–1594. PMLR, 2023.

564 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
565 prediction with recurrent neural networks. *Advances in neural information processing systems*, 28,
566 2015.

567 Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
568 Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning
569 attention. *arXiv preprint arXiv:2506.13585*, 2025a.

570 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
571 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models.
572 *arXiv preprint arXiv:2504.11468*, 2025b.

573 Jack Chen, Fazhong Liu, Naruto Liu, Yuhang Luo, Erqu Qin, Harry Zheng, Tian Dong, Haojin
574 Zhu, Yan Meng, and Xiao Wang. Step-wise adaptive integration of supervised fine-tuning and
575 reinforcement learning for task-specific llms. *arXiv preprint arXiv:2505.13026*, 2025c.

576 Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, and Benyou
577 Wang. Towards medical complex reasoning with LLMs through medical verifiable problems. In
578 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings
579 of the Association for Computational Linguistics: ACL 2025*, Vienna, Austria, 2025d. Association
580 for Computational Linguistics.

581 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
582 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
583 model post-training. In *Forty-second International Conference on Machine Learning*, 2025.

584 Yihong Dong, Xue Jiang, Yongding Tao, Huanyu Liu, Kechi Zhang, Lili Mou, Rongyu Cao, Yingwei
585 Ma, Jue Chen, Binhua Li, et al. Rl-plus: Countering capability boundary collapse of llms in
586 reinforcement learning with hybrid-policy optimization. *arXiv preprint arXiv:2508.00222*, 2025.

587 Yuqian Fu, Tinghong Chen, Jiajun Chai, Xihuai Wang, Songjun Tu, Guojun Yin, Wei Lin, Qichao
588 Zhang, Yuanheng Zhu, and Dongbin Zhao. Srft: A single-stage method with supervised and
589 reinforcement fine-tuning for reasoning. *arXiv preprint arXiv:2506.19767*, 2025.

594 Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
 595 Zhang, Yuexiang Xie, Daoyuan Chen, et al. Agentscope: A flexible yet robust multi-agent platform.
 596 *arXiv preprint arXiv:2402.14034*, 2024.

597 Dechen Gao, Hang Wang, Hanchu Zhou, Nejib Ammar, Shatadal Mishra, Ahmadreza Moradipari,
 598 Iman Soltani, and Junshan Zhang. In-rl: Interleaved reinforcement and imitation learning for
 600 policy fine-tuning. *arXiv preprint arXiv:2505.10442*, 2025.

601 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 602 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 603 models. *arXiv preprint arXiv:2407.21783*, 2024.

604 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
 605 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reasoning
 606 models. *arXiv preprint arXiv:2506.04178*, 2025.

607 Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Yunzhong He, Bing Liu, and Sean
 608 Hendryx. Rubrics as rewards: Reinforcement learning beyond verifiable domains. *arXiv preprint
 609 arXiv:2507.17746*, 2025.

610 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 611 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: incentivizes reasoning in llms through
 612 reinforcement learning. *nature*, 645:633–638, 2025.

613 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 614 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 615 model. *arXiv preprint arXiv:2503.24290*, 2025a.

616 Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi Zheng,
 617 Yewei Fang, Yuxiang Huang, et al. Minicpm: Unveiling the potential of small language models
 618 with scalable training strategies. In *First Conference on Language Modeling*, 2024.

619 Xiao Hu, Xingyu Lu, Liyuan Mao, YiFan Zhang, Tianke Zhang, Bin Wen, Fan Yang, Tingting Gao,
 620 and Guorui Zhou. Why distillation can outperform zero-rl: The role of flexible reasoning. *arXiv
 621 preprint arXiv:2505.21067*, 2025b.

622 Zeyu Huang, Tianhao Cheng, Zihan Qiu, Zili Wang, Yinghui Xu, Edoardo M Ponti, and Ivan
 623 Titov. Blending supervised and reinforcement fine-tuning with prefix sampling. *arXiv preprint
 624 arXiv:2507.01679*, 2025.

625 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

626 Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. *The
 627 International Journal of Robotics Research*, 32(11):1238–1274, 2013.

628 Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
 629 Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
 630 conversations-democratizing large language model alignment. *Advances in Neural Information
 631 Processing Systems*, 36:47669–47681, 2023.

632 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 633 Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
 634 open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

635 Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu, Ping
 636 Yu, Weizhe Yuan, Jason E Weston, et al. Bridging offline and online reinforcement learning for
 637 llms. *arXiv preprint arXiv:2506.21495*, 2025.

638 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 639 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 640 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 641 13:9, 2024.

648 Tianjian Li and Daniel Khashabi. Simplemix: Frustratingly simple mixing of off-and on-policy data
 649 in language model preference learning. In *Forty-second International Conference on Machine*
 650 *Learning*, 2025.

651

652 Zichong Li, Chen Liang, Zixuan Zhang, Ilgee Hong, Young Jin Kim, Weizhu Chen, and Tuo Zhao.
 653 Slimmoe: Structured compression of large moe models via expert slimming and distillation. *arXiv*
 654 *preprint arXiv:2506.18349*, 2025.

655

656 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 657 detection. In *Proceedings of the IEEE international conference on computer vision*, pp. 2980–2988,
 658 2017.

659

660 Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. Uft: Unifying supervised and reinforcement
 661 fine-tuning. *arXiv preprint arXiv:2505.16984*, 2025a.

662

663 Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, Zhengying
 664 Liu, Yuanqing Yu, Zezhong WANG, et al. Toolace: Winning the points of llm function calling. In
 665 *The Thirteenth International Conference on Learning Representations*, 2024.

666

667 Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and Wei
 668 Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl synergy.
 669 *arXiv preprint arXiv:2506.13284*, 2025b.

670

671 Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu, Chengyu
 672 Shen, Runming He, Bin Cui, et al. Learning what reinforcement learning can't: Interleaved online
 673 fine-tuning for hardest questions. *arXiv preprint arXiv:2506.07527*, 2025.

674

675 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 676 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning*
 677 *Representations*, 2023.

678

679 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 680 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 681 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

682

683 Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
 684 value and policy based reinforcement learning. *Advances in neural information processing systems*,
 685 30, 2017.

686

687 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 688 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 689 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 690 27744, 2022.

691

692 Xuchen Pan, Yanxi Chen, Yushuo Chen, Yuchang Sun, Daoyuan Chen, Wenhao Zhang, Yuexiang Xie,
 693 Yilun Huang, Yilei Zhang, Dawei Gao, et al. Trinity-rft: A general-purpose and unified framework
 694 for reinforcement fine-tuning of large language models. *arXiv preprint arXiv:2505.17826*, 2025.

695

696 Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
 697 model connected with massive apis. *Advances in Neural Information Processing Systems*, 37:
 698 126544–126565, 2024.

699

700 Chongli Qin and Jost Tobias Springenberg. Supervised fine tuning on curated data is reinforcement
 701 learning (and can be improved). *arXiv preprint arXiv:2507.12856*, 2025.

702

703 Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves,
 704 Alex Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Ta-
 705 pered off-policy reinforce: Stable and efficient reinforcement learning for llms. *arXiv preprint*
 706 *arXiv:2503.14286*, 2025.

707

708 Florian Schmidt. Generalization in generation: A closer look at exposure bias. In *Proceedings of the*
 709 *3rd Workshop on Neural Generation and Translation*, pp. 157–167, 2019.

702 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 703 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

704

705 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 706 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 707 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

708

709 Yunhao Tang, Taco Cohen, David W Zhang, Michal Valko, and Rémi Munos. Rl-finetuning llms
 710 from on-and off-policy data with a single algorithm. *arXiv preprint arXiv:2503.19612*, 2025.

711

712 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 713 Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
 714 *Stanford Center for Research on Foundation Models. https://cfrm. stanford. edu/2023/03/13/alpaca.*
 715 *html*, 3(6):7, 2023.

716

717 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 718 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 719 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025.

720

721 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 722 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 723 task language understanding benchmark. In *The Thirty-eight Conference on Neural Information
 724 Processing Systems Datasets and Benchmarks Track*, 2024.

725

726 Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
 727 Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
 728 perspective with reward rectification. *arXiv preprint arXiv:2508.05629*, 2025.

729

730 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 731 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

732

733 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 734 Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
 735 Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, et al. Qwen2.5 technical
 736 report. *arXiv preprint arXiv:2412.15115*, 2024a.

737

738 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 739 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 740 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

741

742 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 743 reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

744

745 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
 746 Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*
 747 *arXiv:2403.04652*, 2024.

748

749 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 750 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 751 scale. *arXiv preprint arXiv:2503.14476*, 2025.

752

753 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 754 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv
 755 preprint arXiv:2504.13837*, 2025.

756

757 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 758 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv
 759 preprint arXiv:2503.18892*, 2025.

760

761 Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
 762 Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Exploring tool-using language models
 763 with reinforced reasoning. *arXiv preprint arXiv:2505.00024*, 2025a.

756 Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging the gap between training and
757 inference for neural machine translation. In *Proceedings of the 57th Conference of the Association*
758 *for Computational Linguistics*, pp. 4334–4343, 2019.

759
760 Xuechen Zhang, Zijian Huang, Yingcong Li, Chenshun Ni, Jiasi Chen, and Samet Oymak.
761 Bread: Branched rollouts from expert anchors bridge sft & rl for reasoning. *arXiv preprint*
762 *arXiv:2506.17211*, 2025b.

763 Yaowei Zheng, Richong Zhang, Junhao Zhang, Ye Yanhan Ye Yanhan, and Zheyuan Luo. Llamafactory:
764 Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting*
765 *of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, pp. 400–410,
766 2024.

767 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
768 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information*
769 *Processing Systems*, 36:55006–55021, 2023.

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A EXPERIMENTAL SETUPS
811812 A.1 HYPERPARAMETERS
813814 Across all experiments, we adopt the Adam optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$. The learning rate
815 is tuned within $\{1 \times 10^{-6}, 5 \times 10^{-6}, 1 \times 10^{-5}\}$, and the temperature for both rollout and evaluation is
816 1.0. The max response length is set to 16k tokens. For SFT, we train for a maximum of 3 epochs. For
817 RL, we employ “strict on-policy training” similar to (Liu et al., 2025b), where we generate $K = 8$
818 rollouts per prompt before each policy update.819 For mathematical reasoning problems, the batch size for SFR/RL is 64/32, and the maximum number
820 of RL steps is 1,500. For tool-use tasks, the batch size is 96 for both RL and SFT, and the maximum
821 number of RL steps is 100. The μ decay schedule is to decrease from 0.9 to 0.05 over the first 30
822 training steps.823
824 A.2 IMPLEMENTATION DETAILS
825826 In our experiments, the reward function is tailored to the task-specific requirements. For mathematical
827 reasoning problems, we use a hierarchical reward scheme to encourage both correctness and format
828 adherence. To guarantee the precision of our correctness evaluation, we exclusively sample problems
829 that have integer answers when preparing our dataset. A response receives a reward of +1.0 for a
830 correct final answer. If the format is correct (e.g., step-by-step reasoning ending with a boxed answer)
831 but the answer is wrong, it receives a neutral reward of 0.0. A small penalty of -0.1 is applied for
832 responses that are both factually incorrect and improperly formatted. Finally, we penalize overly long
833 and inconclusive responses (Yu et al., 2025), and apply a strong penalty of -1.0 for exceeding the
834 predefined token limit without a final answer. For tool-use tasks, we employ a simpler binary reward.
835 A response is given a reward of +1.0 if it is completely correct, and 0.0 otherwise.836 We implement SFT algorithms based on LLaMA-Factory (Zheng et al., 2024), and implement RL
837 algorithms based on Trinity-RFT (Pan et al., 2025). Experiments are conducted on 8 NVIDIA A100
838 GPUs and 8 NVIDIA H20 GPUs.839 For evaluation, we adopt accuracy as the metric. To avoid high variance in results and ensure fair
840 comparisons, we report avg@32 on AIME24 and AIME 25, and avg@8 on AMC, respectively.
841 Reported results are on the best checkpoint determined by the validation set.842 A.3 PROMPTS
843844 **Prompt for Math Problems** The adopted prompt for math problems is shown below.
845846 **Example: Prompt for Math Problems**

847 <|im_start|>system

848 You are a helpful assistant that solves MATH problems. You should first think about
849 the reasoning process in mind and then provide the user with the answer. You should
850 present your reasoning process using the format: <think>\n...your reasoning process
851 here... </think>\n first. You should always include your final answer in \boxed{ } as
852 closed-form results.<|im_end|>

853 <|im_start|>user

854 1. A bus leaves the station at exactly 7:43 a.m. and arrives at its destination at exactly 8:22
855 a.m. on the same day. How long, in minutes, was the bus trip?<|im_end|>

856 <|im_start|>assistant

857 For the performance of the base model, we report the higher score achieved using either the above
858 prompts for math problems or the default prompt provided by Qwen (Yang et al., 2024b): “Please
859 reason step by step, and put your final answer within \boxed{ }”.
860861 **Prompt for the MMLU-Pro Dataset** The adopted prompt for the MMLU-Pro dataset is shown
862 below. We use the same system prompt as for the math problems, except that for multiple-choice
863 questions, we modify the answer format to require the corresponding integer as the response.

864
865

Example: Prompt for MMLU-Pro Question

866

<|im_start|>system

867

You are a helpful assistant that solves MATH problems. You should first think about the reasoning process in mind and then provide the user with the answer. You should present your reasoning process using the format: <think>\n...your reasoning process here... </think>\n first. You should always include your final answer in \boxed{ } as closed-form results.<|im_end|>

871

<|im_start|>user

872

Let V be the set of all real polynomials $p(x)$. Let transformations T, S be defined on V by $T : p(x) \rightarrow xp(x)$ and $S : p(x) \rightarrow p'(x) = d/dx p(x)$, and interpret $(ST)(p(x))$ as $S(T(p(x)))$. Which of the following is true? Below are multiple choice options. You should answer your choice by selecting the index of the option as a number:

876

0. $ST + TS$ is the identity map of V onto itself.

877

1. $TS = 0$

878

2. $ST = 1$

879

3. $ST - TS = 0$

880

4. $ST = T$

881

5. $ST = 0$

882

6. $ST = TS$

883

7. $ST - TS$ is the identity map of V onto itself.

884

8. $TS = T$

885

9. $ST = S$ <|im_end|>

886

<|im_start|>assistant

887

888

Prompt for the Tool-use Tasks For the tool-use tasks, we follow (Zhang et al., 2025a) to adopt their experimental setup and use the prompt provided in their Figure 8. This prompt is consistently applied to train the LLaMA3.2-3B-Instruct policy model and to generate SFT data with the DeepSeek-R1 expert model.

892

893

B EXPERIMENTAL RESULTS AND ANALYSIS

894

895

B.1 ADAPTIVE TUNING μ

896

897

In addition to the fixed decay schedule for μ , we explored an adaptive strategy to dynamically adjust the SFT loss weight based on the model’s ongoing performance, as measured by the average reward. We conducted experiments to validate this idea.

901

On the Tool-use task, we implemented a strategy where μ is adjusted based on the mean reward of the rollouts. Specifically, for a given reward threshold τ , the new μ is calculated as $\mu' = \max(0, \tau - \text{reward_mean})$. This mechanism ensures that as the model’s average reward surpasses the threshold, the SFT component is gradually phased out ($\mu' \rightarrow 0$), allowing the training to focus purely on RL. We tested this with thresholds $\tau = 0.5$ and $\tau = 0.7$.

906

907

Table 3: Performance comparison of Adaptive μ strategies on ToolACE.

908

Method	Live	Non-live	Overall
Original Model	50.9	39.9	46.2
SFT-best	59.2	84.2	69.8
SFT-best + RL	67.6	87.9	76.1
GRPO (Pure RL)	68.5	88.8	77.1
CHORD- ϕ (Ours)	69.9	90.2	78.5
CHORD- μ (Fixed Schedule)	69.4	88.6	77.6
Adaptive μ ($\tau = 0.5$)	69.7	89.4	78.1
Adaptive μ ($\tau = 0.7$)	65.9	88.6	75.6

918 The results, presented in Table 3, show that setting the reward threshold to 0.5 yields a strong overall
 919 score of 78.1, which is highly competitive with our main approach using a fixed decay schedule.
 920 This indicates that dynamically reducing the SFT contribution as the model improves is a viable and
 921 effective strategy.

922 However, we also found that this configuration is still dependent on task-specific hyperparameter
 923 tuning. When we set a higher threshold of 0.7, performance degraded significantly. This is likely
 924 because the policy was subjected to excessive SFT even when achieving moderately high rewards,
 925 disrupting the optimization process.

927 These experiments serve as a proof of concept, demonstrating that an automated, reward-aware
 928 schedule for μ can work effectively and represents a logical extension of our core ideas. However,
 929 since this method still requires tuning another hyperparameter (the reward threshold), its practical
 930 implementation is not necessarily simpler to tune. Therefore, we present this as a preliminary
 931 exploration into adaptive mixing coefficients, leaving a more thorough investigation of robust and
 932 generalizable adaptive schemes as a promising direction for future work.

933 B.2 VARYING THE ϕ FUNCTION

935 To validate the robustness of our approach and explore alternative weighting strategies, we conduct
 936 ablation studies comparing different variants of the token-wise weighting function $\phi(\cdot)$ against our
 937 proposed method. We evaluate these variants on both the tool-use and mathematical reasoning tasks.

938 **Evaluated ϕ Variants.** We compare the following token-wise weighting strategies:

- 940 • **CHORD- ϕ (Ours):** Our proposed method, with $\phi(p) = p \times (1 - p)$.
- 941 • **Entropy Top:** Only trains on the top 5% of tokens with the highest entropy, setting $\phi(\cdot) = 1$
 942 for these tokens and $\phi(\cdot) = 0$ for others.
- 943 • **Entropy Norm:** Normalizes the SFT loss weights based on entropy magnitude, with
 944 $\phi(p_t) \propto H(t)$.
- 945 • **IS Clip:** Applies importance sampling correction but clips tokens with $p_t > 0.4$.
- 946 • **Focal Loss:** Adapts focal loss (Lin et al., 2017) to the SFT context, giving higher weight to
 947 tokens with lower probability: $\phi(p) = (1 - p)^\gamma$.

950 **Experimental Setup.** For the mathematical reasoning experiments here, we relax the strict on-
 951 policy training protocol: we synchronize the policy model every 2 training steps (instead of after each
 952 update) and increase the number of rollouts per prompt to 16. Training is conducted for 400 steps.
 953 For tool-use tasks, we maintain the same setup as described in Appendix A.

955 **Results and Analysis.** Table 4 presents the results on the ToolACE benchmark, while Table 5
 956 shows the performance on mathematical reasoning tasks.

957 Table 4: Performance comparison of different ϕ function variants on ToolACE (BFCL benchmark).

959 Method	960 Live	961 Non-live	962 Overall
961 GRPO (Pure RL)	962 68.5	963 88.8	964 77.1
962 CHORD- ϕ (Ours)	963 69.9	964 90.2	965 78.5
963 Entropy Top	964 69.1	965 89.4	966 77.8
964 Entropy Norm	965 69.6	966 89.4	967 78.0
965 IS Clip	966 66.2	967 89.1	968 75.9
966 Focal Loss	967 65.6	968 84.0	969 73.4

968 The experimental results reveal several interesting patterns across the different weighting strategies:

- 970 • **CHORD- ϕ (Ours):** Our proposed method achieves consistently strong performance across
 971 both tool-use and mathematical reasoning benchmarks, demonstrating its effectiveness and
 972 robustness.

972 Table 5: Performance comparison of different ϕ function variants on mathematical reasoning tasks.
973

974 Method	975 AMC23	976 AIME2024	977 AIME2025
978 GRPO (Pure RL)	979 55.0	980 12.6	981 7.3
982 CHORD- ϕ (Ours)	983 59.7	984 14.0	985 14.2
986 Entropy Top	987 58.8	988 17.2	989 13.8
990 Entropy Norm	991 52.5	992 15.0	993 9.2
994 IS Clip	995 55.0	996 13.9	997 12.0
998 Focal Loss	999 34.4	1000 3.8	1001 4.2

- 984 • **Entropy-based Variants (Entropy Top & Norm):** These methods validate the intuition
985 of focusing on uncertain tokens. **Entropy Top** shows particularly strong performance on
986 AIME2024 (17.2), proving that selectively emphasizing high-entropy tokens can effectively
987 integrate expert knowledge. However, their performance gains are not as consistent as our
988 method across all benchmarks.
- 989 • **IS Clip:** This variant, which clips high-probability tokens, shows limited effectiveness and
990 even underperforms the pure RL baseline on the tool-use task. This suggests that simply
991 clipping tokens is not a sufficiently nuanced strategy.
- 992 • **Focal Loss:** This strategy, which aggressively up-weights low-probability (high-surprise)
993 tokens, leads to severe training instability and a significant performance collapse on both
994 task types. This confirms our hypothesis that giving excessive weight to tokens the model
995 deems unlikely can disrupt its learned reasoning abilities and lead to overfitting on expert
996 patterns.

998 These results highlight the importance of fine-grained control in token-wise weighting. While various
999 strategies can provide improvements over pure RL in specific scenarios, the choice of weighting
1000 function significantly impacts both training stability and final performance across different task
1001 domains. We note that our proposed $\phi(\cdot)$ instantiation represents one effective realization of the
1002 general principle of down-weighting tokens at both probability extremes. The varied performance of
1003 different variants suggests that there remains room for exploring alternative weighting schemes that
1004 may be better suited to specific task characteristics or training scenarios, and we hope these empirical
1005 observations can inspire future research in this direction.

1006 B.3 VARYING EXPERT DATA SOURCE

1008 To further validate the robustness and generalizability of our approach, we conduct additional
1009 experiments using expert demonstrations generated by Qwen2.5-72B-Instruct instead of DeepSeek-
1010 R1. This setup is particularly interesting because Qwen2.5-72B-Instruct, while being a weaker expert
1011 model compared to DeepSeek-R1, produces responses with reasoning patterns that are more aligned
1012 with the base LLaMA3.2-3B-Instruct model. This allows us to investigate how the choice of expert
1013 data source—and specifically, the degree of **pattern shift** introduced—affects the effectiveness of
1014 different training methods.

1015 Table 6 presents the performance comparison on the BFCL benchmark using expert data from both
1016 DeepSeek-R1 and Qwen2.5-72B-Instruct. The results lead to several key insights.

1018 When using expert data from Qwen2.5-72B-Instruct, which exhibits reasoning patterns closer to those
1019 of LLaMA3.2-3B-Instruct, CHORD- μ achieves improved performance (78.1 vs. 77.6) compared
1020 to using DeepSeek-R1 data. This validates our hypothesis that the distributional shift introduced
1021 by expert data is a critical factor. When the expert’s reasoning pattern is more compatible with the
1022 base model’s existing policy, the progressive integration strategy of CHORD- μ can more effectively
1023 leverage this alignment, leading to better final performance.

1024 Despite the weaker quality of Qwen2.5-72B-Instruct compared to DeepSeek-R1, CHORD- ϕ maintains
1025 strong and consistent performance (78.3 vs. 78.5) across both expert data sources. This demonstrates
the robustness of the token-wise weighting mechanism, which allows the model to selectively absorb

Table 6: Performance comparison on BFCL benchmark using different expert data sources.

Method	Live	Non-live	Overall
GRPO (Pure RL)	68.5	88.8	77.1
Original Model	50.9	39.9	46.2
CHORD- μ (DeepSeek-R1)	69.4	88.6	77.6
CHORD- μ (Qwen2.5-72B)	68.8	<u>90.6</u>	<u>78.1</u>
CHORD- ϕ (DeepSeek-R1)	<u>69.9</u>	90.2	78.5
CHORD- ϕ (Qwen2.5-72B)	<u>68.9</u>	90.9	78.3
SFT-best + RL (DeepSeek-R1)	67.4	87.9	76.1
SFT-best + RL (Qwen2.5-72B)	68.1	<u>90.6</u>	77.7

useful patterns while mitigating the negative effects of distributional mismatch, regardless of the expert's absolute strength or stylistic differences.

Interestingly, the baseline SFT-best + RL method also shows notable improvement when using Qwen2.5-72B-Instruct data (77.7 vs. 76.1). This further corroborates our core motivation: the effectiveness of SFT is not solely determined by the quality of expert demonstrations in isolation, but is also heavily influenced by the degree of **pattern shift** they introduce relative to the base model. A smaller pattern shift, even from a weaker expert, can be more beneficial than a larger shift from a stronger but stylistically divergent expert.

Pattern Examples To provide qualitative insight into these pattern differences, we present example responses from DeepSeek-R1, Qwen2.5-72B-Instruct, and the LLaMA3.2-3B-Instruct model after pure RL training below.

<think>

Okay, let me figure out how to respond to the user. The user mentioned they have an important fact about the Mars climate that they want to store. The assistant asked for the specific fact, and the user provided it: "Mars has the largest dust storms in the solar system which can last for months and can cover the entire planet."

Now, the assistant's role is to help store this information. Looking at the available functions, there's a `storeMemory` function that takes a "knowledge" parameter. The user's fact is the knowledge to be stored. So, the correct action is to call `storeMemory` with the provided fact as the argument. There's no other function needed here since the user just wants to store the information. I need to make sure the parameters are correctly formatted as a JSON object with the "knowledge" key. No other parameters are missing here. So, the tool call should be straightforward.

</think>

```
<tool_call> [{"name": "storeMemory", "arguments": {"knowledge": "Mars has the largest dust storms in the solar system which can last for months and can cover the entire planet."}}]
</tool call> <| im_end|>
```

Example: Response from Owen2.5-72B-Instruct (Weaker Expert, Smaller Pattern Shift)

<think>

The inquirer wants to know the recent disclosed securities report for Apple Inc. with the company code 'AAPL'. I can use the 'getDisclosedToday' function to fetch this information. However, since the inquirer did not specify a range, I will use the current date as both the start and end strings.

</think>

```
<tool_call> [{"name": "getDisclosedToday", "arguments": {"company_code": "AAPL", "start_string": "2023-04-01", "end_string": "2023-04-30"}}] </tool call> <| im end|>
```

1080

Example: Response from LLaMA3.2-3B-Instruct (Pure RL trained)

1081

<think>

1083

To answer the question, I need to use a method to retrieve a list of available phone brands from the available database.

1084

</think>

1085

<tool_call> [{"name": "Get All Phone Brands", "arguments": {}}] </tool_call>

1086

<|im_end|>

1087

1088

As illustrated in these examples, DeepSeek-R1 produces much more verbose and elaborate reasoning with extensive meta-commentary, while Qwen2.5-72B-Instruct adopts a more concise style that is closer to the direct, structured approach learned by LLaMA3.2-3B-Instruct through pure RL training. This qualitative analysis confirms that Qwen2.5-72B-Instruct introduces a smaller pattern shift, which aligns with the quantitative improvements observed in Table 6.

1089

1090

1091

1092

1093

1094

1095

B.4 NON-VERIFIABLE TASKS

1096

1097

1098

To further test the generalizability of CHORD beyond verifiable tasks, we conduct additional experiments on the RaR-Medicine dataset (Gunjal et al., 2025), a medical question-answering task that requires reasoning and explanation without deterministic verification.

1099

1100

1101

1102

1103

1104

We perform training on the Qwen2.5-7B-Instruct model for 200 steps, with both SFT and RL batch sizes of 96, 8 rollouts per prompt, a learning rate of 1×10^{-6} , and the μ decay step is set to 50. We use Qwen3-30B-3A-Instruct as the judge model. The expert demonstrations are sourced from the English subset of the medical-o1-reasoning dataset (Chen et al., 2025d), which contains high-quality reasoning traces for medical questions.

1105

1106

1107

1108

1109

1110

Table 7 and Figure 10 present the experimental results. Both CHORD- μ and CHORD- ϕ significantly outperform pure RL, achieving testset scores of 80.6 and 81.3 compared to 76.8 for pure RL. Figure 10 further show that CHORD- ϕ achieves faster convergence and higher final rewards compared to pure RL, indicating more efficient exploration guided by expert demonstrations, where CHORD- μ possesses a similar “shift-readapt” pattern similar to the main experiment. These results validate that our approach can further generalize to more diverse post-training domains.

1111

1112

1113

1114

Table 7: Comparison of test score and response length on RaR-Medicine task.

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

B.5 SFT/RL SYNERGY FOR WEAKER POLICY MODELS

1126

1127

1128

1129

1130

1131

1132

1133

An important consideration is how the SFT/RL synergy works when the initial policy model is less capable. Intuitively, one might assume that for a weaker model, supervised fine-tuning (SFT) on expert data would become more critical, as the model’s own on-policy exploration is likely to be less effective.

However, our experiments reveal a more nuanced reality: a weaker model can also struggle to effectively absorb knowledge from expert data. As shown in Table 8, naively fine-tuning the weaker Qwen2.5-3B-Instruct model with SFT leads to a performance collapse (RL settings are similar to Appendix B.2). This is in stark contrast to the result observed when training the Qwen2.5-7B-Instruct

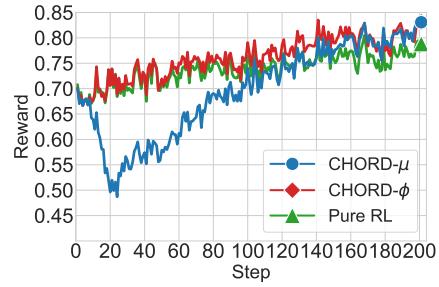


Figure 10: Reward curves for training on the RaR-Medicine dataset.

model, whose performance significantly improves with the same 5k SFT samples (e.g., AIME2024 accuracy rising from 11.7% to 15.8%). For the weaker model, while Pure RL still provides a consistent performance lift, a naive SFT+RL combination could yield unstable results. The results show that the CHORD- ϕ method achieves good performance, demonstrating its ability to create a potent and robust synergy between SFT and RL even when naive imitation fails.

1139

1140 Table 8: Performance on MATH tasks with a weaker policy model (Qwen2.5-3B-Instruct).

1141

Method	AMC23	AIME2024	AIME2025
Original Model (3B)	33.1	4.8	1.6
SFT	22.5	1.9	1.0
Pure RL	39.1	7.0	2.4
SFT+RL	36.2	6.2	3.7
CHORD- ϕ (Ours)	41.9	7.9	4.0

1142

1143

1144 B.6 DIVERSE MODEL ARCHITECTURES

1145

To assess the broader applicability of our method, we extended our evaluation to a model with a distinct architecture and origin: the Phi-mini-MoE-instruct model (Li et al., 2025) (a light-weight Mixture of Experts (MoE) model with 3.8B total, 1.1B active params). This experiment also tests our method’s effectiveness beyond the dense Qwen and LLaMA models.

1146

As shown in Table 9, the MoE model exhibits a similar vulnerability to naive SFT in tool-use tasks, with performance collapsing significantly. In stark contrast, our CHORD- ϕ effectively achieves the highest performance and boosts the overall accuracy from 49.5 to 61.6.

1147

These results show that our method is not only architecture-agnostic, and further demonstrates its effectiveness across diverse model families and architectures.

1148

1149

1150 Table 9: Performance on the Tool-Use task with Phi-mini-MoE-instruct model on tool-use tasks.

1151

Method	Live	Non-live	Overall
Original Model	42.3	59.2	49.5
SFT	18.2	45.0	29.6
Pure RL	51.2	69.3	58.9
SFT+RL	44.1	63.0	52.1
CHORD- ϕ (Ours)	52.1	74.5	61.6

1152

1153

1154 B.7 TUNING μ IN CONJUNCTION WITH ϕ

1155

The proposed CHORD employs a dual-control mechanism: a global coefficient μ and a token-wise weighting function $\phi(\cdot)$. While this raises the question of their joint scheduling, we find that the fine-grained control from $\phi(\cdot)$ makes the framework more robust to the specific schedule of μ . This innovation alleviates the need for meticulous tuning of the global coefficient, simplifying the practical application of CHORD.

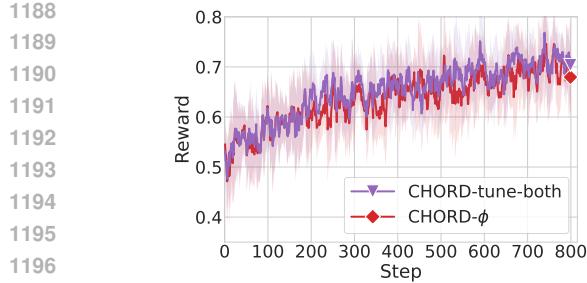
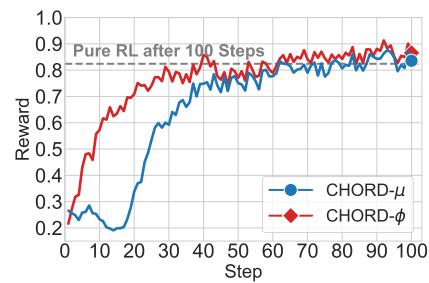
1156

The aggressive decay schedule for μ (starting from a high value) was designed to manage the “shift-readapt” progression. However, since the weight function $\phi(\cdot)$ also aims to stabilize learning and prevent pattern disruption, such an aggressive start may be unnecessary. A more theoretically aligned approach would be to gently introduce the expert data via a warmup-then-decay (Hu et al., 2024) schedule for μ (e.g., warming up from 0 to 0.3 before decaying). This would align with the stabilizing nature of $\phi(\cdot)$.

1157

1158

We compare these two schedules in Figure 11. Although CHORD-tune-both that leverages a more refined warmup-then-decay μ schedule yields a slightly better reward progression during training, the final performance gap between the two approaches is not that significant.



B.8 EXPERIMENTAL RESULTS ON TOOL-USE TRAINING

We provide the training curves on tool-use tasks in Figure 12 and a more detailed experimental result on the BFCL benchmark in Table 10. The average performance reported in the BFCL benchmark is averaged by instance, meaning that categories with more instances have a greater contribution to the final average score. All methods are evaluated using the same system prompt format.

Table 10: Detailed performance comparisons on BFCL bench.

	Live				Non-live				Overall		
	Simple	Multiple	Parallel	Parallel Multiple	Simple	Multiple	Parallel	Parallel Multiple	Live Avg	Non-live Avg	Overall
LLaMA3.2-3B-Instruct	52.3	51.8	25.0	12.5	38.5	45.5	22.5	22.5	50.9	39.9	46.2
SFT-light	33.7	30.8	18.8	8.3	50.5	46.0	16.0	29.0	30.8	38.4	34.0
SFT-best	69.8	57.0	68.8	37.5	77.0	89.0	77.0	76.0	59.2	84.2	69.8
SFT-light + RL	72.9	67.5	68.8	50.0	90.3	95.5	86.0	85.0	68.2	89.4	77.2
SFT-best + RL	72.9	66.1	75.0	58.3	91.5	91.5	84.5	79.0	67.4	87.9	76.1
SASR	69.4	65.3	62.5	58.3	92.0	92.0	74.0	82.5	66.0	86.5	74.7
CHORD- μ	74.0	68.8	68.8	50.0	83.0	92.5	83.0	84.0	69.4	88.6	77.6
GRPO (Pure RL)	70.2	68.3	62.5	62.5	83.5	94.5	83.5	85.5	68.5	88.8	77.1
CHORD- ϕ	71.3	69.8	62.5	62.5	85.0	94.5	85.0	86.0	69.9	90.2	78.5

B.9 EXPERIMENTAL RESULTS ON THE MMLU-PRO DATASET

We provide a more detailed experimental result on the MMLU-pro dataset in Table 11. The adopted prompts for generating these results can be found in Appendix A.3.

Table 11: Detailed performance comparisons on the MMLU-Pro dataset.

	TAG (by category)													Average Overall Acc.	
	Business	Law	Psych.	Biology	Chemistry	History	Other	Health	Econ.	Math	Physics	Comp. Sci.	Philosophy	Engineering	
Qwen2.5-7B-Instruct	31.18	11.72	23.81	26.22	26.15	20.73	22.40	22.74	25.95	35.75	26.48	25.12	21.84	20.02	24.71
SFT-light	40.56	8.17	21.05	25.52	36.22	14.44	23.38	24.57	27.01	44.63	37.34	28.29	17.43	21.47	28.01
SFT-best	54.50	13.90	31.70	41.98	49.12	21.78	30.84	27.51	40.76	59.29	47.96	42.93	22.85	28.79	38.42
SFT-light + RL	48.80	26.52	51.50	61.09	45.41	41.21	43.72	46.82	52.73	45.89	47.19	46.10	37.68	33.95	44.61
SFT-best + RL	60.84	26.34	51.75	64.02	56.18	40.16	49.57	49.27	57.94	62.10	57.35	51.46	43.09	39.22	51.29
SASR	52.57	23.17	47.89	59.16	46.66	36.38	44.77	42.36	55.98	52.31	51.49	46.10	36.40	30.99	45.09
CHORD- μ	55.64	18.71	31.95	43.38	36.18	30.71	34.20	34.60	45.14	64.03	54.81	47.80	28.66	35.81	43.28
GRPO (Pure RL)	56.91	18.35	44.74	58.58	52.30	34.38	41.23	40.22	54.86	57.88	52.19	46.10	37.07	36.02	45.77
LUFFY (Yan et al., 2025)	52.22	24.25	45.11	54.39	49.29	34.91	41.13	43.40	49.76	54.77	49.42	43.90	32.46	30.13	43.97
CHORD- ϕ	66.79	30.88	60.78	69.87	58.30	45.93	51.19	55.13	66.35	68.47	61.66	53.41	45.89	43.14	56.22

1242 C DETAILED DISCUSSIONS OF RELATED WORKS

1244 C.1 FINETUNING FOR LLMs

1246 **SFT for LLMs.** SFT has established itself as a cornerstone for aligning LLMs, primarily due to its
 1247 conceptual simplicity and cost-effectiveness, making it a favored approach within the open-source
 1248 community for creating capable instruction-following models (Taori et al., 2023; Köpf et al., 2023).
 1249 Early work emphasized the power of high-quality datasets (Zhou et al., 2023; Young et al., 2024),
 1250 while the required expert curation is labor-intensive and costly. Moreover, to cover the diverse use
 1251 cases of modern LLMs, the paradigm has shifted towards massive-scale SFT (Grattafiori et al., 2024;
 1252 Lambert et al., 2024). This trend makes it computationally prohibitive for many to fine-tune from a
 1253 base model, promoting continued tuning on pre-aligned instruction models instead. Furthermore,
 1254 the interplay between SFT and RL has grown more complex, from recent methods like DFT (Wu et al.,
 1255 2025) or iw-SFT (Qin & Springenberg, 2025) that incorporate RL-inspired importance sampling
 1256 into SFT, to reasoning models like DeepSeek-R1 (Guo et al., 2025) that strategically integrate both
 1257 paradigms, highlighting that the optimal, principled integration of these methods remains a critical
 1258 and open area of research.

1259 **RL for LLMs.** Recent applications of Reinforcement Learning (RL) for Large Language Models
 1260 (LLMs) have expanded beyond traditional human preference alignment (Bai et al., 2022; Ouyang
 1261 et al., 2022), demonstrating significant progress in complex reasoning domains such as mathematics
 1262 and code generation (Shao et al., 2024; Yang et al., 2024b; Guo et al., 2025). In particular, a surge of
 1263 recent work has focused on Reinforcement Learning from Verifiable Rewards (RLVR) (Lambert et al.,
 1264 2024; Guo et al., 2025), where rewards are derived from definitive outcomes like correct answers or
 1265 passing unit tests. This paradigm has achieved remarkable results on various benchmarks. However,
 1266 a fundamental challenge persists in how RL can facilitate effective exploration to surpass the inherent
 1267 capabilities of its base model (Yue et al., 2025). The search for novel solutions is often constrained by
 1268 the model’s pre-existing knowledge, limiting its discovery of superior reasoning pathways. To address
 1269 this, introducing external expert data — either for distillation (Hu et al., 2025b; Liu et al., 2025b;
 1270 Guha et al., 2025), cold start (Guo et al., 2025), or to guide exploration towards diverse, high-quality
 1271 patterns (Yan et al., 2025; Ma et al., 2025) — emerges as a promising approach to transcend these
 1272 limitations and unlock new problem-solving frontiers.

1273 C.2 ON- AND OFF-POLICY REINFORCEMENT LEARNING

1275 **Combining On-policy and Off-policy Data in Traditional RL** In traditional RL domains like
 1276 robotics (Kober et al., 2013) or games (Mnih et al., 2015), combining on-policy and off-policy data
 1277 is a potent strategy. Methods ranging from alternating training phases (Gao et al., 2025), to mixing
 1278 data from separate buffers (Ball et al., 2023), or directly augmenting on-policy replay buffers with
 1279 expert trajectories (Nachum et al., 2017) have been proven useful. While such methods yield good
 1280 results in the traditional RL fields, the discrepancy arises from two fundamental distinctions of LLMs:
 1281 their strong initial priors, where aggressive off-policy updates risk disrupting established reasoning
 1282 patterns, and their vast, autoregressive action space that radically increases the off-policy degree
 1283 of expert data, especially for long reasoning chains, and invalidates the assumptions underpinning
 1284 conventional off-policy algorithms.

1285 **Combining On-policy and Off-policy Data in RL for LLM** Leveraging off-policy data to
 1286 improve the sample efficiency is a well-established strategy in RL. Several studies have focused on
 1287 leveraging stale, self-generated data by employing techniques such as refining importance sampling
 1288 corrections (Tang et al., 2025), mixing on- and off-policy gradients (Li & Khashabi, 2025), modifying
 1289 the optimization loss objective (Roux et al., 2025; Arnal et al., 2025), or adjusting the synchronization
 1290 frequency between online and target policies (Lanchantin et al., 2025).

1291 More closely related to our work are methods that leverage external expert data to guide the reinforce-
 1292 ment learning process for LLMs. These methods can be broadly categorized. One strategy is direct
 1293 data mixing (Yan et al., 2025; Dong et al., 2025; Li & Khashabi, 2025). For example, [SimpleMix](#) (Li
 1294 & Khashabi, 2025), [operates within a DPO framework and combines off-policy and on-policy data via](#)
 1295 [simple dataset-level sampling](#). LUFFY (Yan et al., 2025) on the other hand, incorporates off-policy
 1296 expert trajectories directly into the on-policy rollout groups within a GRPO framework. [While such](#)

1296 approaches expose the model to expert data, they also introduce significant constraints: they usually
 1297 require strict prompt alignment between datasets or lack the dynamic, token-level weighting needed
 1298 to manage severe distribution shifts. Another strategy involves using expert data as guidance for
 1299 generation. For instance, UFT (Liu et al., 2025a) and BREAD (Zhang et al., 2025b) utilize supervised
 1300 fine-tuning (SFT) trajectories as prefixes for on-policy rollouts; UFT progressively masks the suffix
 1301 of the expert demonstration, while BREAD initiates new rollouts by branching from intermediate
 1302 steps. A third category interleaves RL updates with SFT steps on expert data, either selectively for
 1303 challenging examples (Ma et al., 2025) or based on a probabilistic schedule (Chen et al., 2025c).
 1304 Most recently, SRFT (Fu et al., 2025) unifies these approaches into a single-stage framework by not
 1305 only mixing SFT samples into the on-policy rollout groups but also applying a dedicated SFT loss
 1306 whose influence is adjusted at the sample level.

1307 Our work diverges from these methods in a crucial aspect. The aforementioned approaches, including
 1308 state-of-the-art methods like SRFT (Fu et al., 2025), LUFFY (Yan et al., 2025), and Reift (Ma et al.,
 1309 2025), primarily operate under a “zero-RL” paradigm, initiating training from a base model with a
 1310 nascent policy. In stark contrast, our work addresses the challenge of fine-tuning a model that already
 1311 possesses a well-developed, instruction-following policy. This advanced starting point inherently
 1312 creates a more significant distributional shift between the model’s existing policy and the external
 1313 expert data, thereby exacerbating the off-policy correction problem that our method aims to solve.
 1314 For further empirical analysis and results, please refer to Appendix D.1.

D FURTHER DISCUSSIONS

D.1 THE INFLUENCE OF OFF-POLICY DATA ON BASE VS. INSTRUCTION MODELS

1321 The challenges of controlling the influence of off-policy data and maintaining training stability are
 1322 significantly amplified when fine-tuning instruction models. This is mainly due to the established
 1323 policy inherent in these instruction models.

1325 **Starting from Base Model vs. Instruct Model** A base model, having been pre-trained solely with
 1326 a language modeling objective, lacks a coherent, task-specific policy for instruction following. It
 1327 often has not yet converged on a particular response pattern. When learning from off-policy expert
 1328 data, the training process is akin to initial policy formation. The model learns a new skill without the
 1329 risk of conflicting with an existing pattern, thus avoiding significant instability during training.

1330 In contrast, an instruction model has already developed a sharply-peaked policy. Training these
 1331 models on off-policy expert data that may reflect different reasoning patterns introduces a substantial
 1332 *distributional mismatch*. The RL algorithm’s efforts to reconcile this mismatch can result in large,
 1333 disruptive policy updates, destabilizing the established policy and potentially leading to a collapse in
 1334 performance.

1335 Figure 13 provides empirical observation to support the above discussions. When learning from
 1336 a mixture of on-policy and off-policy data, the reward of a base model improves monotonically,
 1337 displaying none of the instability issues that can affect instruction models under similar conditions.

1338 Different from most existing studies (Zeng et al., 2025; Yan et al., 2025; Fu et al., 2025), which focus
 1339 on the “Zero-RL” setting that trains from a base model, this paper addresses a more challenging
 1340 yet practical problem: how to effectively integrate knowledge from off-policy experts into a model
 1341 that already possesses an established policy. Training from a base model is not always feasible in
 1342 practical applications. For instance, such methods are ineffective for tool-use tasks, as the base model
 1343 typically lacks the basic capability to follow the necessary instructions.

1344 **Applying “Zero-RL” Methods to Our Setting** To demonstrate the unique advantages of CHORD
 1345 for aligning **already instruction-tuned** models, we conduct additional experiments comparing our
 1346 proposed CHORD with LUFFY (Yan et al., 2025) and SRFT (Fu et al., 2025) on the tool-use task.
 1347 Note that both LUFFY and SRFT require strict alignment between expert demonstrations and RL
 1348 prompts, as they directly mix expert trajectories into on-policy rollouts. Hence, we generate expert
 1349 demonstrations for all 5,000 training prompts using DeepSeek-R1. In contrast, CHORD only uses
 500 expert demonstrations without requiring prompt-level alignment.

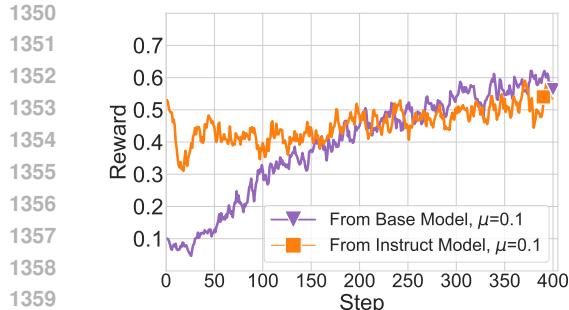


Figure 13: Reward curves for training the base or instruct model with fixed $\mu = 0.1$.

The results in Table 12, show that CHORD significantly outperforms both methods. As discussed in Appendix C, when applied to instruction-tuned models with established policies, directly mixing expert trajectories causes significant distributional mismatch, leading to training instability. Specifically, LUFFY’s upweighting of low-probability tokens on top of importance sampling can still cause policy shifts when the distribution gap between expert and policy gap is large. SRFT’s uniform sample-level weighting cannot distinguish valuable tokens from irrelevant ones within a trajectory, leading to inefficient and misguided updates. In contrast, our $\phi(\cdot)$ function provides token-wise adaptive weighting, enabling selective absorption of expert patterns while maintaining policy stability. These results validate that our method achieves superior performance with better expert data efficiency and maintains training stability on instruction-tuned models, making it more practical for many more real-world applications.

D.2 TASK-RELATED PERFORMANCE

The differing performance gains on the MATH and tool-use tasks stem from the fundamental distinctions between these two domains. We deliberately chose these tasks to represent two distinct paradigms, thereby demonstrating the robustness and flexibility of our proposed method.

The math domain benefits from complex, structured, and long-form reasoning. For such tasks, acquiring the necessary problem-solving patterns through pure on-policy exploration (i.e., Pure RL) can be inefficient in comparison. Supervised Fine-Tuning (SFT) on expert data is highly beneficial in this context, as it directly exposes the model to well-structured, step-by-step reasoning chains. This allows the model to efficiently learn complex reasoning frameworks that are difficult to discover from scratch. As we discussed in Section 4.2, the model’s performance on math problems often correlates with its ability to produce more comprehensive and detailed reasoning steps, a pattern effectively taught by expert data. Therefore, a method that can successfully integrate these expert reasoning patterns, like ours, is expected to yield substantial improvements.

The tool-use domain, in contrast, relies more on the exact tool call result rather than the reasoning process. In this setting, naive imitation of expert trajectories through SFT can even be detrimental, as an expert’s solution may contain stylistic artifacts (e.g., verbosity) that are not conducive to performance. As shown in Table 7 and discussed in Section 4.2, tool-use tasks favor concise and efficient responses, a pattern that Pure RL naturally learns by shortening response lengths. The primary challenge here is not just to imitate the expert, but to leverage expert guidance to accelerate exploration without being overly constrained or picking up suboptimal habits. The consistent performance gain of our method over the strong Pure RL baseline demonstrates its ability to achieve this delicate balance: successfully extracting useful signals from expert data while avoiding the pitfalls of naive imitation.

These two domains present different challenges for unifying offline SFT and online RL, and our proposed method proves its effectiveness by excelling in both scenarios. It learns to produce comprehensive reasoning for MATH while generating concise, efficient tool calls for tool-use tasks, demonstrating its capability to selectively absorb expert knowledge in a task-specific manner. This validates our approach as a robust and versatile framework for diverse applications.

Table 12: Performance comparison with other “Zero-RL” methods on BFCL benchmark. CHORD significantly outperforms “Zero-RL” methods.

Method	Live	Non-live	Overall
GRPO (Pure RL)	68.5	88.8	77.1
CHORD- μ	69.4	88.6	77.6
CHORD- ϕ	69.9	90.2	78.5
SFT-best	59.2	84.2	69.8
SFT-best + RL	67.4	87.9	76.1
LUFFY	67.2	88.0	76.1
SRFT	64.6	85.8	73.6

1404 D.3 SCALING SFT IS NOT ENOUGH: THE NECESSITY OF ON-POLICY LEARNING
14051406 A crucial question is whether extensive SFT on high-quality expert data could eliminate the need
1407 for combining SFT and RL. Indeed, as the quantity and diversity of data increase, the problem
1408 of exposure bias (Zhang et al., 2019) can be alleviated, leading to better generalization. And for
1409 knowledge-intensive tasks like MATH, model performance can be highly correlated with the volume
1410 and quality of SFT data. To investigate this, we expanded the MATH SFT dataset from 5k to
1411 20k examples, which substantially boosted the pure SFT model’s AIME accuracy from 15% to
1412 approximately 24%.1413 However, even with larger volumes of SFT data, a principled transition to on-policy learning remains
1414 critical for reaching the performance frontier. Recent literature (Liu et al., 2025b) also shows that
1415 extensive SFT followed by RL fine-tuning is an effective strategy for maximizing model capabilities.
1416 By applying our SFT/RL combined approach, we can further elevate the accuracy from 24% to 33%.
1417 This demonstrates that RL is not redundant but complementary, enabling the model to refine its policy
1418 beyond the static distribution of expert data.1419 D.4 THEORETICAL INSPIRATION BEHIND CHORD- μ AND CHORD- ϕ
14201421 The proposed CHORD is a principled, problem-driven method designed to address the empirical
1422 instabilities observed when integrating off-policy expert data with an already proficient instruction-
1423 tuned model—a phenomenon we term the “shift-readapt-overfit” pattern (illustrated in Figure 2). The
1424 theoretical inspirations for our core components, the global coefficient μ and the token-wise weight
1425 $\phi(\cdot)$, are discussed below.1427 **Inspiration for the global coefficient μ** The design of the global coefficient μ and its decay
1428 schedule is theoretically connected to the mitigation of **exposure bias** (Zhang et al., 2019; Schmidt,
1429 2019). Models trained solely via teacher forcing (i.e., off-policy SFT) often fail to generalize to their
1430 own generated distributions during inference. Scheduled sampling (Bengio et al., 2015) addresses this
1431 by dynamically mixing ground-truth tokens with model-generated tokens during training. CHORD
1432 generalizes this principle to the loss landscape by conceptualizing the SFT loss as the teacher-forcing
1433 component (correction via the expert distribution) and the on-policy RL loss as the autoregressive
1434 component (optimization of the model’s own distribution). The coefficient μ acts as a continuous
1435 relaxation of the mixing probability in scheduled sampling. By annealing μ , CHORD enforces a
1436 smooth, curriculum-based transition from off-policy correction to on-policy exploration, bridging the
1437 gap between the training and inference distributions to enable superior performance.1438 **Inspiration for the token-wise weight $\phi(p)$** The token-wise weight $\phi(p)$ is introduced as a
1439 regularizer in response to the observed limitations of standard importance sampling (IS) in this
1440 context. We find that directly applying standard IS (Equation 4) tends to disproportionately amplify
1441 updates for high-probability tokens. This leads to overfitting on those specific tokens and causes
1442 premature entropy collapse, thereby hindering exploration (as evidenced in Figure 8). Consequently,
1443 rather than pursuing a strictly unbiased estimation, we design our correction term to prioritize training
1444 stability.1445 Our proposed weighting function $\phi(p) = p(1 - p)$ offers an effective alternative with a clear
1446 information-theoretic interpretation: it quantifies the model’s uncertainty for a given token (as
1447 discussed in Section 4.3). By incorporating this measure, the learning process adaptively focuses on
1448 tokens where the model is most uncertain, creating a favorable region for effective learning. This
1449 design serves two crucial stabilizing roles:1450

- 1451 • It down-weights low-probability tokens ($p \rightarrow 0$), preventing large, disruptive updates from
1452 highly surprising expert actions. This effect is similar to that of clipped importance sampling.
- 1453 • It also down-weights high-probability tokens ($p \rightarrow 1$), averting overconfidence and the
1454 entropy collapse observed with standard IS, thus preserving the model’s capacity for explo-
1455 ration.

1456 While establishing formal theoretical guarantees is a challenging but promising direction for future
1457 research—especially when lacking direct access to the expert policy distribution—CHORD is both

1458
 1459 theoretically inspired and empirically validated. The consistent improvements in performance and
 1460 training stability across diverse tasks provide strong evidence for the effectiveness of our design.
 1461

1462 E CASE STUDIES

1463 For a better understanding, we compare the generation patterns of RL-only (i.e., pure RL), SFT-only,
 1464 and the proposed CHORD.
 1465

- 1466 • **RL-only:** The model trained solely with RL exhibits a concise and structured, yet ultimately
 1467 rigid, reasoning pattern. It tends to follow a fixed template, such as beginning with “To...”
 1468 and using connectors like “First” and “Next”, and proceeds linearly without engaging in
 1469 self-correction or exploring alternative solution paths. While this approach leads to efficient
 1470 responses, it may result in less robust solutions.
- 1471 • **SFT-only and CHORD- μ :** In contrast, the model trained solely on expert demonstrations can
 1472 be verbose and exploratory. It exhibits a “think-aloud” style with frequent meta-commentary
 1473 (e.g., “Let me think...”), backtracking, and verification of intermediate steps. The generated
 1474 responses are comprehensive, but often lack a concise structure. Note that the proposed
 1475 CHORD- μ has a similar reasoning pattern to SFT-only.
- 1476 • **CHORD- ϕ :** It exhibits a hybrid reasoning style that retains a clean and logical structure
 1477 while selectively incorporating the expert’s sophisticated verification strategies. As shown
 1478 in the example below, it develops patterns such as “Alternatively...” and “Both methods
 1479 confirm...” to produce responses that are both well-structured and robust. We select the
 1480 checkpoints at 800 steps as the models to generate the examples here.

1481 Example: Response generated by Qwen2.5-7B-Instruct

1482
 1483 <think>
 1484 To calculate the duration of the bus trip, we need to subtract the departure time from the
 1485 arrival time.

1486
 1487 The departure time is 7:43 a.m.
 1488 The arrival time is 8:22 a.m.
 1489 Subtracting the two times:
 1490 - From the hours: $8 - 7 = 1$ hour
 1491 - From the minutes: $22 - 43 = -21$ minutes

1492 Since we can’t have negative minutes directly, we borrow 1 hour (60 minutes) from the hour
 1493 part, making it 0 hours and adding 60 minutes to the 22 minutes. Then, $60 + 22 = 82$ minutes.
 1494 So, we subtract 21 minutes from 82 minutes:
 1495 $82 - 21 = 61$ minutes

1496
 1497 Therefore, the bus trip duration is 1 hour and 61 minutes, which is simply expressed as 61
 1498 minutes.

1499 </think>
 1500 \boxed{61} <| im_end |>

1501 Example: Response generated by the model trained solely with RL

1502
 1503 <think>
 1504 To determine the duration of the bus trip, we need to calculate the difference in time between
 1505 the departure time and the arrival time. The departure time is 7:43 a.m. and the arrival time is
 1506 8:22 a.m. on the same day.

1507
 1508 First, let’s identify the departure and arrival times:
 1509 - Departure time: 7:43 a.m.
 1510 - Arrival time: 8:22 a.m.

1512
1513
1514

Next, we need to find the difference between these two times. We can do this by subtracting the departure time from the arrival time.

1515
1516
1517

From 7:43 a.m. to 8:00 a.m. is the time from 7:43 to 8:00. This is 17 minutes because $8:00 - 7:43 = 17$ minutes (since 8:00 is 17 minutes after 7:43).

1518
1519

Now we need to add the time from 8:00 a.m. to 8:22 a.m., which is 22 minutes.

1520
1521
1522

So, the total trip time is 17 minutes (from 7:43 to 8:00) + 22 minutes (from 8:00 to 8:22) = 39 minutes.

1523
1524
1525
1526

Therefore, the duration of the bus trip is $\boxed{39}$ minutes. </think>
The duration of the bus trip is $\boxed{39}$ minutes. <|im_end|>

Example: Response generated by the model trained solely with SFT

1529
1530
1531
1532

<think>
Okay, let me try to solve this problem step by step. Let me think aloud so I can explain my reasoning.

1533
1534

So, the problem is: A bus leaves the station at exactly 7:43 a.m. and arrives at its destination at exactly 8:22 a.m. on the same day. How long, in minutes, was the bus trip?

1535
1536

Let me visualize this. Let me think about the time elapsed from 7:43 a.m. to 8:22 a.m.

1537
1538
1539

Let me break this down. Let me think of it as two parts: from 7:43 a.m. to 8:00 a.m., and then from 8:00 a.m. to 8:22 a.m.

1540
1541

Let me check that. Let me see if that makes sense.

1542
1543

So, from 7:43 a.m. to 8:00 a.m., how many minutes is that?

1544
1545

Let me calculate that. Let me think, from 7:43 to 8:00 is 17 minutes. Let me think, let me count:

1546
1547

7:43 to 8:00 is 17 minutes. Because 8:00 minus 7:43 is 17 minutes.

1548
1549
1550

Let me confirm that. Let me think, 7:43 to 7:50 is 7 minutes, and then 7:50 to 8:00 is 10 minutes. So, $7 + 10 = 17$ minutes. Okay, that seems right.

1551
1552

So, that's the first part: 17 minutes from 7:43 a.m. to 8:00 a.m.

1553
1554

Then, the second part is from 8:00 a.m. to 8:22 a.m., which is 22 minutes.

1555
1556

So, adding those two parts together: 17 minutes + 22 minutes = 39 minutes.

1557
1558

Let me check that. Let me think, $17 + 22$. Let me do the addition:

1559

$17 + 22 = 39$.

1560
1561

So, that seems correct.

1562
1563

Let me think if there is another way to calculate this.

1564
1565

Let me think, maybe using a different approach.

1566 Let me think, the total time from 7:43 a.m. to 8:22 a.m.
 1567
 1568 Let me think, let me calculate the difference between 8:22 and 7:43.
 1569
 1570 Let me break it down hour by hour.
 1571
 1572 From 7:43 a.m. to 8:00 a.m. is 17 minutes, as we already knew.
 1573
 1574 Then, from 8:00 a.m. to 8:22 a.m. is 22 minutes.
 1575
 1576 So, adding those together gives $17 + 22 = 39$ minutes.
 1577
 1578 Let me think if there is a formula or a quicker way.
 1579
 1580 Let me think, maybe using the formula:
 1581 Total time = (End time hour - Start time hour) * 60 + (End time minute - Start time minute)
 1582
 1583 Let me try that.
 1584
 1585 So, let me denote the start time as 7:43 a.m.
 1586
 1587 End time as 8:22 a.m.
 1588
 1589 So, End time hour = 8
 1590
 1591 Start time hour = 7
 1592
 1593 End time minute = 22
 1594
 1595 Start time minute = 43
 1596 So, Total time = $(8 - 7) * 60 + (22 - 43)$
 1597
 1598 Let me calculate that.
 1599
 1600 First, $(8 - 7) * 60 = 1 * 60 = 60$ minutes
 1601
 1602 Then, $(22 - 43) = -21$ minutes
 1603
 1604 So, Total time = $60 + (-21) = 39$ minutes
 1605
 1606 Oh, that's interesting! So, using this formula, we get 39 minutes as well.
 1607
 1608 Let me think, let me check if this makes sense.
 1609
 1610 So, when we subtract the start time from the end time, we get:
 1611
 1612 $8:22 - 7:43$
 1613
 1614 Let me think of this as 8 hours and 22 minutes minus 7 hours and 43 minutes.
 1615
 1616 But since we are subtracting times, let me think of it as:
 1617
 1618 $8:22 - 7:43 = (8 - 7) \text{ hours} + (22 - 43) \text{ minutes}$
 1619

1620 But since 22 minutes is less than 43 minutes, we need to borrow an hour.
 1621
 1622 So, 8 hours is 7 hours and 60 minutes.
 1623
 1624 So, 7 hours and 60 minutes minus 7 hours and 43 minutes is 0 hours and $(60 - 43)$ minutes =
 1625 17 minutes.
 1626
 1627 Then, the remaining hour is 1 hour.
 1628
 1629 So, total time is 1 hour + 17 minutes = 60 minutes + 17 minutes = 77 minutes.
 1630
 1631 Wait, but that doesn't match. Let me think if this is correct.
 1632
 1633 Let me think, maybe this method is complicating it. Let me think, maybe the first method is
 1634 simpler and more accurate.
 1635
 1636 Let me think, let me think of it as total time = end time - start time.
 1637
 1638 So, end time is 8:22 a.m.
 1639
 1640 Start time is 7:43 a.m.
 1641
 1642 So, let me calculate the difference.
 1643
 1644 From 7:43 to 8:00 is 17 minutes.
 1645
 1646 From 8:00 to 8:22 is 22 minutes.
 1647
 1648 So, $17 + 22 = 39$ minutes.
 1649
 1650 So, that seems correct.
 1651
 1652 Let me think, let me think of it another way.
 1653
 1654 Let me think, let me convert both times to minutes since midnight and subtract them.
 1655
 1656 Let me think, that might be complicated, but let me try.
 1657
 1658 Let me think, 7:43 a.m. is 7 hours and 43 minutes.
 1659
 1660 So, in minutes, that is $7 * 60 + 43 = 420 + 43 = 463$ minutes since midnight.
 1661
 1662 Similarly, 8:22 a.m. is 8 hours and 22 minutes, which is $8 * 60 + 22 = 480 + 22 = 502$ minutes
 1663 since midnight.
 1664
 1665 So, the difference is $502 - 463 = 39$ minutes.
 1666
 1667 Oh, so that also gives 39 minutes.
 1668
 1669 So, this method also confirms that the answer is 39 minutes.
 1670
 1671 Therefore, I think all methods lead to the same answer, so I can be confident that the bus trip
 1672 lasted 39 minutes.
 1673
 Final Answer
 The bus trip lasted \boxed{39} minutes.

1674
 1675 </think>
 1676
 1677 To determine the duration of the bus trip, we need to calculate the time difference between the
 1678 departure time (7:43 a.m.) and the arrival time (8:22 a.m.).
 1679 1. Calculate the time from 7:43 a.m. to 8:00 a.m.:
 1680 - From 7:43 a.m. to 8:00 a.m. is 17 minutes.
 1681
 1682 2. Calculate the time from 8:00 a.m. to 8:22 a.m.:
 1683 - From 8:00 a.m. to 8:22 a.m. is 22 minutes.
 1684
 1685 3. Add the two intervals together:
 1686 - Total time = 17 minutes + 22 minutes = 39 minutes.
 1687
 1688 Thus, the bus trip lasted (\boxed{39}) minutes.<| im_end |>

Example: Response generated by the model trained with CHORD- μ

1690
 1691
 1692 <think>
 1693 Okay, let me try to solve this problem step by step. Let me think aloud so I can explain my
 1694 reasoning.
 1695
 1696 So, the problem is: A bus leaves the station at exactly 7:43 a.m. and arrives at its destination
 1697 at exactly 8:22 a.m. on the same day. How long, in minutes, was the bus trip?
 1698
 1699 Let me visualize this. I need to find the time elapsed between 7:43 a.m. and 8:22 a.m.
 1700
 1701 Let me break this down. A good way to handle time calculations that cross an hour is
 1702 to use the top of the hour as a stepping stone. In this case, that's 8:00 a.m. So, I can
 1703 think of the trip in two parts: from 7:43 a.m. to 8:00 a.m., and then from 8:00 a.m. to 8:22 a.m.
 1704
 1705 Let me check that. Let me see if that makes sense. Yes, that splits the problem into two easier
 1706 calculations.
 1707
 1708 So, first part: from 7:43 a.m. to 8:00 a.m. How many minutes is that?
 1709 Let me calculate that. An hour has 60 minutes. So, the time from 7:43 to 8:00 is $60 - 43$
 1710 minutes.
 1711 Let me think... $60 - 40$ is 20, so $60 - 43$ is 17. Yes, 17 minutes.
 1712 So, the first part is 17 minutes.
 1713
 1714 Then, the second part is from 8:00 a.m. to 8:22 a.m. That's straightforward, it's just 22
 1715 minutes.
 1716
 1717 So, to get the total time, I just need to add those two parts together: 17 minutes + 22
 1718 minutes.
 1719 Let me do the addition: $17 + 22$.
 1720 $10 + 20$ is 30, and $7 + 2$ is 9. So $30 + 9 = 39$.
 1721 The total is 39 minutes. So, that seems correct.
 1722
 1723 Let me think if there is another way to calculate this to be sure.
 1724 Let me try converting both times to minutes past midnight and then subtracting.
 1725
 1726 Let me think, start time is 7:43 a.m.
 1727 In minutes, that is $(7 \text{ hours} * 60 \text{ minutes/hour}) + 43 \text{ minutes}$.
 1728 $7 * 60 = 420$.
 1729 $420 + 43 = 463$ minutes since midnight.
 1730

1728 Now the end time: 8:22 a.m.
 1729 In minutes, that is (8 hours * 60 minutes/hour) + 22 minutes.
 1730 $8 * 60 = 480$.
 1731 $480 + 22 = 502$ minutes since midnight.
 1732
 1733 So, the difference is $502 - 463$.
 1734 Let me calculate that. $502 - 400$ is 102. $102 - 60$ is 42. $42 - 3$ is 39.
 1735 So, $502 - 463 = 39$ minutes.
 1736
 1737 Oh, so that also gives 39 minutes. This method confirms my previous answer.
 1738
 1739 Let me think about one more method, direct subtraction with borrowing.
 1740 I want to calculate $8:22 - 7:43$.
 1741 Let me write it as hours and minutes.
 1742 8 hours 22 minutes
 1743 - 7 hours 43 minutes
 1744 I can't subtract 43 from 22. So I need to borrow 1 hour (which is 60 minutes) from the 8 hours.
 1745 So, 8 hours and 22 minutes becomes 7 hours and $(60 + 22)$ minutes, which is 7 hours and 82 minutes.
 1746
 1747 Now let me subtract:
 1748 7 hours 82 minutes
 1749 - 7 hours 43 minutes
 1750 -----
 1751 0 hours 39 minutes
 1752 So, the result is 39 minutes.
 1753
 1754 All three methods lead to the same answer, so I can be confident that the bus trip lasted 39 minutes.
 1755
 1756 **Final Answer**
 1757 The bus trip lasted (\boxed{39}) minutes.
 1758 </think>
 1759 To determine the duration of the bus trip, we need to calculate the time difference between the
 1760 departure time (7:43 a.m.) and the arrival time (8:22 a.m.).
 1761
 1762 We can solve this by breaking the duration into two parts using 8:00 a.m. as a reference point.
 1763
 1764 1. Calculate the time from 7:43 a.m. to 8:00 a.m.:
 1765 - From 7:43 a.m. to 8:00 a.m. is $60 - 43 = 17$ minutes.
 1766
 1767 2. Calculate the time from 8:00 a.m. to 8:22 a.m.:
 1768 - From 8:00 a.m. to 8:22 a.m. is 22 minutes.
 1769
 1770 3. Add the two intervals together:
 1771 - Total time = 17 minutes + 22 minutes = 39 minutes.
 1772
 1773 Thus, the bus trip lasted (\boxed{39}) minutes.<| im_end |>

1777 **Example: Response generated by the model trained with CHORD- ϕ**

1778 <think>

1779 To determine the duration of the bus trip, I need to calculate the time difference between the
 1780 departure and arrival times. The departure time is 7:43 a.m. and the arrival time is 8:22 a.m.
 1781

1782

1783 on the same day. The key is to find the difference between these two times.

1784

1785 First, I'll visualize the time on a clock face. Starting at 7:43 a.m., the bus arrives at 8:22 a.m.
1786 The difference between these two times is 39 minutes (from 7:43 to 8:22).

1787

1788 Alternatively, I can break down the calculation step by step:

1789

1. From 7:43 a.m. to 8:00 a.m. is 17 minutes (since $8:00 - 7:43 = 0:17$).
2. From 8:00 a.m. to 8:22 a.m. is 22 minutes.
3. Adding these two intervals together: 17 minutes + 22 minutes = 39 minutes.

1790

1791 Therefore, the total duration of the bus trip is 39 minutes. Let me confirm this with a different
1792 approach to ensure accuracy.

1793

1794 Another way to think about it is to calculate the total minutes between 7:43 a.m. and 8:22 a.m.:

1795

1. Convert 7:43 a.m. to minutes since midnight: $7 \text{ hours} * 60 \text{ minutes/hour} + 43 \text{ minutes} = 420 \text{ minutes} + 43 \text{ minutes} = 463 \text{ minutes}$.
2. Convert 8:22 a.m. to minutes since midnight: $8 \text{ hours} * 60 \text{ minutes/hour} + 22 \text{ minutes} = 480 \text{ minutes} + 22 \text{ minutes} = 502 \text{ minutes}$.
3. The difference in minutes between 502 minutes and 463 minutes is $502 - 463 = 39 \text{ minutes}$.

1796

1797 Both methods confirm that the bus trip lasted 39 minutes. Therefore, the answer is
1798 $\boxed{39}$.

</think>

1799

1800 To determine the duration of the bus trip from departure at 7:43 a.m. to arrival at 8:22 a.m.,
1801 we need to calculate the time difference between these two times.

1802

1. First, let's break down the time from 7:43 a.m. to 8:00 a.m.:
 - From 7:43 a.m. to 8:00 a.m. is 17 minutes (since $8:00 - 7:43 = 0:17$).
2. Next, calculate the time from 8:00 a.m. to 8:22 a.m.:
 - From 8:00 a.m. to 8:22 a.m. is 22 minutes.
3. Add these two intervals together:
 - 17 minutes + 22 minutes = 39 minutes.

1803

Alternatively, we can convert the times to minutes since midnight:

- 7:43 a.m. is $7 \text{ hours} * 60 \text{ minutes/hour} + 43 \text{ minutes} = 463 \text{ minutes}$.
- 8:22 a.m. is $8 \text{ hours} * 60 \text{ minutes/hour} + 22 \text{ minutes} = 502 \text{ minutes}$.
- The difference is $502 \text{ minutes} - 463 \text{ minutes} = 39 \text{ minutes}$.

1804

1805 Both methods confirm that the bus trip lasted 39 minutes. Therefore, the answer is
1806 $\boxed{39}$.<|im_end|>

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

USE OF LARGE LANGUAGE MODELS

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835