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Abstract
High-stakes prediction tasks (e.g., patient diagno-
sis) are often handled by trained human experts.
A common source of concern about automation
in these settings is that experts may exercise intu-
ition that is difficult to model and/or have access
to information (e.g., conversations with a patient)
that is simply unavailable to a would-be algorithm.
This raises a natural question whether human ex-
perts add value which could not be captured by
an algorithmic predictor. In this work, we develop
a statistical framework under which we can pose
this question as a natural hypothesis test. We high-
light the utility of our procedure using admissions
data collected from the emergency department
of a large academic hospital system, where we
show that physicians’ admit/discharge decisions
for patients with acute gastrointestinal bleeding
(AGIB) appear to be incorporating information
not captured in a standard algorithmic screening
tool. This is despite the fact that the screening
tool is arguably more accurate than physicians’
discretionary decisions, highlighting that – even
absent normative concerns about accountability or
interpretability – accuracy is insufficient to justify
algorithmic automation.

1. Introduction
Progress in machine learning, and in algorithmic decision
aids more generally, has raised the prospect that algorithms
may complement or even automate human decision mak-
ing in a wide variety of settings. If implemented carefully,
these tools have the potential to improve accuracy, fairness,
interpretability and consistency in many prediction and deci-
sion tasks. However, a primary challenge in nearly all such
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settings is that some of the relevant inputs – ‘features,’ in
machine learning parlance – are difficult or even impossible
to encode in a way that an algorithm can easily consume.
For example, doctors use direct conversations with patients
to inform their diagnoses, and sports franchises employ pro-
fessional scouts to qualitatively assess prospective players.
One can think of these experts as incorporating informa-
tion which is practically difficult to provide to an algorithm,
particularly as tabular data, or perhaps exercising judgment
which is infeasible to replicate with a computational process.
Either perspective presents a challenge when deploying pre-
dictive algorithmic tools, as any such model will necessarily
fail to incorporate at least some of the information that a
human expert might consider. Thus, as we seek to use al-
gorithms to improve decision-making, we must answer the
following question:

For a given prediction task, do human experts add value
which could not be captured by any algorithmic forecasting

rule?

The answer to this question has significant consequences: if
experts are incorporating salient but hard-to-quantify infor-
mation, we might attempt to somehow ensemble or combine
the human and algorithmic predictions; this is commonly
referred to as seeking ‘complementarity’ in the literature
on human-machine interaction. On the other hand, if it ap-
pears that an expert is not extracting signal beyond whatever
is contained in the available features, we might consider
whether we can automate the prediction task entirely, or
at least reduce the degree to which a human may override
algorithmic recommendations.

At this stage it is worth asking – why not simply compare
the prediction accuracy of a human expert to that of a par-
ticular predictive algorithm? If the human expert performs
better than a competing algorithm, we might say the expert
adds value which is not captured by the algorithm. How-
ever, as the example presented next illustrates, it is possible
for the expert to incorporate information that could not be
captured by any learning algorithm – even when the expert
substantially underperforms a particular algorithm trained
to accomplish the same task. Indeed, this is not just a hypo-
thetical: a large body of prior literature (see e.g. Agrawal
(2019) for a comprehensive overview) suggests that humans
reliably underperform even simple statistical models, and in
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Section 5, we find exactly this dynamic in real-world patient
triage data. Nonetheless, as we highlight next, humans may
still add valuable information in a given forecasting task.

An illustration: experts may add information despite
poor predictions. Let Y denote the outcome of interest and
let X,U be features that drive the outcome. Specifically, let

Y = X + U + ϵ1, (1)

where ϵ1 is some exogenous noise. For the purposes of this
stylized example, we’ll assume that X,U, ϵ1 are all zero
mean and pairwise independent random variables. Suppose
the human expert can observe both X and U , but only X
is made available to a predictive algorithm. An algorithm
tasked with minimizing squared error might then seek to
precisely estimate E[Y |X] = X . In contrast, the expert
may instead use simpler heuristics to construct an estimate
which can be modeled as

Ŷ = sign(X) + sign(U) + ϵ2, (2)

where ϵ2 is independent zero-mean noise, and can be
thought of as modeling idiosyncracies in the expert’s cogni-
tive process1. As discussed in detail in Appendix F, there
exist natural distributions over (X,U, ϵ1, ϵ2) such that the
algorithm performs substantially better than the expert in
terms of predictive accuracy. In fact, we show that there
exist natural distributions where the algorithm outperforms
the expert even under any linear post-processing of Ŷ (e.g.,
to correct for expert predictions which are highly correlated
with Y but perhaps incorrectly centered or scaled). Nonethe-
less, the expert predictions clearly contain information (cf.
sign(U)) that is not captured by the algorithm.

However, because U is not recorded in the available data, it
is not obvious how to distinguish the above scenario from
one in which the expert only extracts signal from X . For
example, they might instead make predictions as follows:

Ŷ = sign(X) + ϵ2. (3)

While a learning algorithm may outperform the expert in
both cases, the expert in scenario (2) still captures valuable
information; the expert in (3) clearly does not. The goal
of this work will be to develop a test which allows us to
distinguish between scenarios like these without the strong
modeling assumptions made in this example.

Contributions. To understand whether human experts can
add value for a given prediction task, we develop a statis-
tical framework under which answering this question be-
comes a natural hypothesis test. We then provide a simple,

1For example, a well-known study by Eren & Mocan (2018)
demonstrates that unexpected losses by the Louisiana State Univer-
sity football team lead judges to hand out longer juvenile sentences;
this is a form of capricious decision making which will manifest
as noise (ϵ2) in an analysis of sentencing decisions.

data-driven procedure to test this hypothesis. Our proposed
algorithm takes the form of a conditional independence test,
and is inspired by the Model-X Knockoffs framework of
Candès et al. (2016), the Conditional Permutation Test of
Berrett et al. (2018) and the ‘Model-Powered’ test of Sen
et al. (2017). Our test is straightforward to implement and
provides transparent, interpretable p-values.

Our work is closely related to a large body of literature com-
paring human performance to that of an algorithm (Cowgill
(2018), Dawes et al. (1989), Grove et al. (2000), among
others), and developing learning algorithms which are com-
plementary to human expertise (Madras et al. (2018), Raghu
et al. (2019), Mozannar & Sontag (2020), Keswani et al.
(2021), Agrawal et al. (2018) and Bastani et al. (2021)).
However, although similarly motivated, we address a differ-
ent problem which is in a sense ‘upstream’ of these works,
as we are interested in testing for whether a human fore-
caster demonstrates expertise which cannot be replicated by
any algorithm. Thus, we think of our test as assessing as a
necessary condition for achieving human-AI complementar-
ity; success in practice will further depend on the ability of
a mechanism designer to actually incorporate human exper-
tise into some particular algorithmic pipeline or feedback
system. We discuss these connections further in Appendix
A.

We apply our test to evaluate whether emergency room
physicians incorporate valuable information which is not
summarized in a common algorithmic risk score for pa-
tients with acute gastrointestinal bleeding (AGIB). To that
end, we utilize patient admissions data collected from the
emergency department of a large academic hospital system.
Consistent with prior literature, we find that this algorith-
mic score is an exceptionally sensitive measure of patient
risk – and one that is highly competitive with physicians’
expert assessments. Nonetheless, our test provides strong
evidence that physician decisions to either hospitalize or
discharge patients with AGIB are incorporating valuable
information that is not captured by the screening tool. Our
results highlight that prediction accuracy is not sufficient to
justify automation of a given prediction task. Instead, our
results make a case for experts working with a predictive
algorithm, even when algorithms might handily outperform
their human counterparts.

Organization. In Section 2, we formalize the problem
of auditing for expertise, and in Section 3 we present our
data-driven hypothesis test. Section 4 then examines the
theoretical properties of the test. In Section 5 we present
our empirical findings from applying this test to real-world
patient triage data. Finally, Section 6 provides discussion of
our results and directions for future work. We also include
a discussion of additional related work in Appendix A, and
provide numerical simulations to corroborate our theoretical
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and empirical results in Appendix F2.

2. Setup and question of interest
We consider a generic prediction task in which the goal is
to forecast some outcome Y ∈ R on the basis of observable
features X ∈ X . The human expert may additionally have
access to some auxiliary private information U ∈ U . For
concreteness, let X = Rd for some d ≥ 1; we assume
(without loss of generality) that X ⊥⊥ U but place no other
modeling assumptions on U throughout.

We posit that the outcome Y is generated as follows: for
some unknown function f : X × U → R,

Y = f(X,U) + ϵ1, (4)

where, without loss of generality, ϵ1 represents mean zero
idiosyncratic noise with unknown variance.

We are also given predictions by a human expert, denoted
as Ŷ . We posit that the expert predictions Ŷ are generated
as follows: for some unknown function f̂ : X × U → R,

Ŷ = f̂(X,U) + ϵ2, (5)

where ϵ2 also captures mean zero idiosyncratic noise with
unknown variance.

We observe (X,Y, Ŷ ) which obey (4)-(5); the private aux-
iliary feature U is not observed. Concretely, we observe n
data points (xi, yi, ŷi), i ∈ [n] ≡ {1, . . . , n}.

Our goal is to answer the question “do human experts add
information which could not be captured by any algorithm
for a given prediction task?” We assume that any competing
learning algorithm can utilize X to predict Y , but it can
not utilize U . Thus, our problem reduces to testing whether
U has some effect on both Y and Ŷ , which corresponds
to the ability of an expert to extract signal about Y from
U . If instead U has no effect on Y , Ŷ or both (either be-
cause U is uninformative about Y or the expert is unable to
perceive this effect), then conditioned on X , Y and Ŷ are
independent. That is, if the human expert fails to add any in-
formation which could not be extracted from the observable
features X , the following must hold:

H0 : Y ⊥⊥ Ŷ | X. (6)

Intuitively, H0 captures the fact that once we observe X ,
Ŷ provides no additional information about Y unless the
expert is also making use of some unobserved signal U
(whether explicitly or implicitly). In contrast, the rejection
of H0 should be taken as an evidence that the expert (or

2Publication of the results and data associated with the empiri-
cal study in section 5 have been approved by the relevant institu-
tional review board (IRB).

experts) can add value to any learning algorithm trained on
the observable features X ∈ X ; indeed, a strength of this
framework is that it does not require specifying a particular
algorithmic baseline. However, it’s worth remarking that
an important special case is to take X to be the prediction
made by some specific learning algorithm trained to forecast
Y . In this setting, our test then reduces to assessing whether
Ŷ adds information to the predictions made by this learning
algorithm, and can be viewed as a form of feature selection.

Goal. Test the null hypothesis H0 using observed data
(xi, yi, ŷi), i ∈ [n] ≡ {1, . . . , n}.

To make this model concrete, in Section 5 we use our frame-
work to test whether emergency room physicians incor-
porate information that is not summarized in a common
algorithmic risk score when deciding whether to hospi-
talize patients. Accordingly, we let X ∈ N be the risk
score, Ŷ ∈ {0, 1} be a binary variable indicating whether
a given patient was hospitalized, and Y ∈ {0, 1} be an
indicator for whether, in retrospect, a patient should have
been hospitalized. The risk score alone turns out to be a
highly accurate predictor of Y , but physicians take many
other factors into account when making hospitalization de-
cisions. We thus seek to test whether physicians indeed
extract signal which is not already summarized by the risk
score (Y ̸⊥⊥ Ŷ | X), or whether attempts to incorporate
other information and/or exercise expert judgement simply
manifest as noise (Y ⊥⊥ Ŷ | X).

3. ExpertTest: a statistical test for human
expertise

To derive a statistical test of H0, we will make use of the
following elementary but powerful fact about exchangeable
random variables.

A test for exchangeability. Consider K + 1 vari-
ables (U0, . . . , UK) which are exchangeable, i.e. the
joint distribution of (U0, . . . , UK) is identical to that of
(Uσ(0), . . . , Uσ(K)) for any permutation σ : {0, . . . ,K} →
{0, . . . ,K}. For example, if U0, . . . , UK are independent
and identically distributed (i.i.d.), then they are exchange-
able. Let F be a function that maps these variables to a
real value. For any such F (·), it can be verified that the or-
der statistics (with any ties broken uniformly at random) of
F (U0), . . . , F (UK) are uniformly distributed over (K+1)!
permutations of {0, . . . ,K}. That is, τK defined next, is
distributed uniformly over {0, 1/K, 2/K, . . . , 1}:

τK =
1

K

K∑
k=1

1[F (U0) ≲ F (Uk)] (7)

where we use definition 1[α ≲ β] = 1 if α < β and 0 if
α > β. If instead α = β, we independently assign it to
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be 1 or 0 with equal probability. Thus, if (U0, . . . , UK) are
exchangeable, then P(τK ≤ α) ≤ α+ 1/(K + 1)

K→∞→ α
and we can reject the hypothesis that (U0, . . . , UK) are
exchangeable with p-value (effectively) equal to τK .

Observe that while this validity guarantee holds for any
choice of F (·), the power of the test will depend crucially
on this choice; for example, a constant function which maps
every argument to the same value would have no power to
reject the null hypothesis. We return to the choice of F (·)
below.

Constructing exchangeable distributions. We will lever-
age the prior fact about the order statistics of exchangeable
random variables to design a test of H0 : Y ⊥⊥ Ŷ | X . In
particular, we would like to use the observed data to con-
struct K + 1 random variables that are exchangeable under
H0, but not exchangeable otherwise. To that end, consider
a simplified setting where n = 2, with x1 = x2 = x. Thus,
our observations are U0 = {(x, y1, ŷ1), (x, y2, ŷ2)}. Sup-
pose we now sample (ỹ1, ỹ2) uniformly at random from
{(ŷ1, ŷ2), (ŷ2, ŷ1)}. That is, we swap the observed val-
ues (ŷ1, ŷ2) with probability 1

2 to construct a new dataset
U1 = {(x, y1, ỹ1), (x, y2, ỹ2)}.

Under H0, it is straightforward to show that U0 and U1 are
independent and identically distributed conditioned on ob-
serving (x, x), (y1, y2) and either (ŷ1, ŷ2) or (ŷ2, ŷ1). That
is, U0, U1 are exchangeable, which will allow us to utilize
the test described above for H0.

Why condition on this somewhat complicated event? Intu-
itively, we would like to resample Ỹ = (ỹ1, ỹ2) from the
distribution of DŶ |X ; under the null, (x, y, ŷ) and (x, y, ỹ)
will be exchangeable by definition. However, this requires
that we know (or can accurately estimate) the distribution
of Ŷ | X , which in turn requires modeling the expert’s
decision making directly. Instead, we simplify the resam-
pling process by only considering a swap of the observed
ŷ values between identical values of x – this guarantees
exchangeable data without modeling DŶ |X at all!

This approach can be extended for n larger than 2. Specifi-
cally, if there are L pairs of identical x values, i.e. x2ℓ−1 =
x2ℓ for 1 ≤ ℓ ≤ L, then it is possible to construct i.i.d.
U0, . . . , UK for larger K by randomly exchanging values
of ŷ for each pair of data points.

As discussed above, we’ll also need to choose a particular
function F (·) to apply to U0 and U1. A natural, discrimi-
natory choice of F is a loss function: for example, given
D = {(xi, yi, ŷi) : i ≤ 2L}, let F (D) =

∑
i(yi − ŷi)

2.
This endows τK with a natural interpretation – it is the prob-
ability that an expert could have performed as well as they
did (with respect to the chosen loss function F ) by pure
chance, without systematically leveraging some unobserved
U .

Of course, in practice we are unlikely to observe many
pairs where x2ℓ−1 = x2ℓ, particularly when x takes value
in a non-finite domain, e.g. [0, 1] or R. However, if the
conditional distribution of Ŷ |X is nearly the same for close
enough values of X = x and X = x′, then we can use a
similar approach with some additional approximation error.
This is precisely the test that we describe next.

ExpertTest. Let L ≥ 1 be an algorithmic parameter and
m : X × X → R≥0 be some distance metric over X , e.g.
the ℓ2 distance. Let F (·) be some loss function of interest,
e.g. the mean squared error.

First, compute m(xi, xj) : i ̸= j ∈ [n] and greedily select
L disjoint pairs which are as close as possible under m(·, ·).
Denote these pairs by {(xi2ℓ−1

, xi2ℓ) : ℓ ∈ [L]}.

Let D0 = {(xi, yi, ŷi) : i ∈ {i2ℓ−1, i2ℓ : ℓ ∈ [L]}} denote
the observed dataset restricted to the L chosen pairs. Let
D1 be an additional dataset generated by independently
swapping each pair (ŷi2ℓ−1

, ŷi2ℓ) with probability 1/2, and
repeat this resampling procedure to generate D1 . . . DK .
Next, compute τK as follows:

τK =
1

K

K∑
k=1

1[F (D0) ≲ F (Dk)] (8)

Finally, we reject the hypothesis H0 with p-value α+1/(K+
1) if τK ≤ α for any desired confidence level α ∈ (0, 1).
Our test is thus quite simple: find L pairs of points that
are close under some distance metric m(·, ·), and create
K synthetic datasets by swapping the expert forecasts for
each pair independently with probability 1/2. If the expert’s
loss on the original dataset is “small” relative to the loss on
these resampled datasets, this is evidence that the synthetic
datasets are not exchangeable with the original, and thus,
the expert is using some private information U .

Of course, unlike in the example above, we swapped pairs
of predictions for different values of x. Thus, D0 . . . DK

are not exchangeable under H0. However, we’ll argue that
because we paired “nearby” values of x, these datasets are
“nearly” exchangeable. These are the results we present
next.

4. Results
We provide theoretical guarantees associated with the Ex-
pertTest. First, we demonstrate the validity of our test in a
generic setting. That is, if H0 is true, then ExpertTest will
not reject it with high probability. We then quantify this
guarantee precisely under a meaningful generative model.

To state the validity result, we need some notation. For any
(x, ŷ) and (x′, ŷ′), define the odds ratio as follows:
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r((x, ŷ), (x′, ŷ′)) =
Q(ŷ | X = x)Q(ŷ′ | X = x′)

Q(ŷ′ | X = x)Q(ŷ | X = x′)
, (9)

where Q(·|·) represents the density of the conditional distri-
bution of human predictions Ŷ |X under H0. For simplicity,
we assume that such a conditional density exists.

Theorem 4.1 (Validity of ExpertTest). Given α ∈ (0, 1)
and parameters K ≥ 1, L ≥ 1, the Type I error of Ex-
pertTest satisfies

P
(
τK ≤ α

)
≤ α+

(
1− (1− ε∗n,L)

L
)
+

1

K + 1
. (10)

Where ε∗n,L is defined as follows

ε∗n,L = max
ℓ∈[L]

∣∣∣ 1

1 + r((xi2ℓ−1
, ŷi2ℓ−1

), (xi2ℓ , ŷi2ℓ))
− 1

2

∣∣∣.
(11)

We remark briefly on the role of the parameters L and K
in this result. To begin with, 1

K+1 is embedded in the type
I error, and thus taking the number of resampled datasets
K to be as large as possible (subject only to computational
constraints) sharpens the validity guarantee. We also ob-
serve that the bound becomes weaker as L increases. How-
ever, observe also that ExpertTest is implicitly using an
L-dimensional distribution (or L fresh samples) to reject
H0, which means that increasing L also provides additional
power to the test.

Notice also that the odds ratio (4) is guaranteed to be 1 if
x = x′, regardless of the underlying distribution D. This
is not a coincidence, and our test is based implicitly on
the heuristic that the odds ratio will tend away from 1 as
the distance m(x, x′) increases (we quantify this intuition
precisely below). Thus, increasing L will typically also
increase ε∗n,L, because larger values of L will force us to
pair additional observations (x, x′) which are farther apart
under the distance metric.

The type one error bound (10) suggests that we can balance
the trade off between validity and power when ε∗n,LL≪ 1
or o(1), as the right hand side of (10) reduces to α+ o(1).
Next we describe a representative generative setup where
there is a natural choice of L that leads to ε∗n,LL = o(1).

Generative model. Let X = [0, 1]d ⊂ Rd. Let the con-
ditional density of the human expert’s forecasts Q(·|x) be
smooth. Specifically, for any x, x′ ∈ [0, 1]d,

sup
ŷ∈R

Q(ŷ | X = x)

Q(ŷ | X = x′)
≤ 1 + C × ∥x− x′∥2, (12)

for some constant C > 0. Under this setup, Theorem 4.1
reduces to the following.

Theorem 4.2 (Asymptotic Validity). Given α ∈ (0, 1) and
under (12), with the appropriate choice of L ≥ 1, the type I
error of ExpertTest satisfies

P
(
τK ≤ α

)
≤ α+ o(1). (13)

as n,K →∞.

Intuitively, (12) is intended to model a forecasting rule
which is ‘simple,’ in the sense that human experts don’t
finely distinguish between instances whose feature vectors
are close under the ℓ2 norm. Importantly, this does not rule
out the possibility that predictions for two specific (x, x′)
instances could differ substantially – only that the distribu-
tions Ŷ | X = x and Ŷ | X = x′ are similar when x ≈ x′.
We make no such assumption about DY |X , the conditional
distribution of the true outcomes.

Proofs of theorems 4.1 and 4.2 can be found in Appendices
B and C respectively. We now illustrate the utility of our
test with an empirical study of physician hospitalization
decisions.

5. A case study: physician expertise in
emergency room triage

Emergency room triage decisions present a natural real-
world setting for our work, as we can assess whether physi-
cians make hospitalization decisions by incorporating infor-
mation which is not available to an algorithmic risk score.
We consider the particular case of patients who present
in the emergency room with acute gastrointestinal bleed-
ing (hereafter referred to as AGIB), and assess whether
physicians’ decisions to either hospitalize or discharge each
patient appear to be capturing information which is not sum-
marized by the Glasgow-Blatchford Score (GBS). The GBS
is a standardized measure of risk which is known to be
a highly sensitive indicator for whether a patient present-
ing with AGIB will indeed require hospitalization (findings
which we corroborate below). However, despite the excel-
lent performance of this algorithmic risk score, we might be
understandably hesitant to automate triage decisions without
any physician oversight. As just one example, anticoagulant
medications (‘blood thinners’) are known to exacerbate the
risk of severe bleeding. However, whether or not a patient is
taking anticoagulant medication is not included as a feature
in the construction of the Glasgow-Blatchford score, and
indeed may not even be recorded in the patient’s electronic
health record (if, for example, they are a member of an
underserved population and have had limited prior contact
with the healthcare system). This is one of many additional
factors an emergency room physician might elicit directly
from the patient to inform an admit/discharge decision. Im-
portantly, recall that ExpertTest is designed to detect not
just whether physicians attempt to incorporate additional
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information into hospitalization decisions, but whether this
information actually improves their decisions (relative to
relying only on the GBS). We thus seek to answer the fol-
lowing question:

Do emergency room physicians usefully incorporate
information which is not summarized by the

Glasgow-Blatchford score?

We answer in the affirmative, demonstrating that although
the GBS provides risk scores which are highly competitive
with (and indeed, arguably better than) physicians’ discre-
tionary decisions, there is strong evidence that physicians
are incorporating additional information which is not cap-
tured in the construction of the GBS. Before presenting our
results, we first provide additional background about this
setting.

Background: risk stratification and triage for gastroin-
testinal bleeding. Acute gastrointestinal bleeding is a po-
tentially serious condition for which 530,855 patients/year
receive treatment in the United States alone (Peery et al.
(2022)). It is estimated that 32% of patients with presumed
bleeding from the lower gastrointestinal tract (Oakland et al.
(2017)) and 45% of patients with presumed bleeding from
the upper gastrointestinal tract (Stanley et al. (2017)) re-
quire urgent medical intervention; overall mortality rates
for AGIB in the U.S. are estimated at around 3 per 100, 000
(Peery et al. (2022)). For patients who present with AGIB in
the emergency room, the attending physician is tasked with
deciding whether the bleeding is severe enough to warrant
admission to the hospital. However, the specific etiology
of AGIB is often difficult to determine from patient pre-
sentation alone, and gold standard diagnostic techniques –
an endoscopy for upper GI bleeding or a colonoscopy for
lower GI bleeding – are both invasive and costly, particu-
larly when performed urgently in a hospital setting. To aid
emergency room physicians in making this determination
more efficiently, the Glasgow-Blatchford Bleeding Score
or GBS (Blatchford et al. (2000)) is a standard screening
metric used to assess the risk that a patient with acute upper
GI bleeding will require red blood cell transfusion, inter-
vention to stop bleeding, or die within 30 days. It has been
also validated in patients with acute lower gastrointestinal
bleeding3 to assess need for intervention to stop bleeding
or risk of death (Asad Ur-Rahman & Abusaada (2018));
accordingly, we interpret the GBS as a measure of risk for
patients who present with either upper or lower GI bleed-

3International guidelines use the Glasgow-Blatchford score as
the preferred risk score for assessing patients with upper gastroin-
testinal bleeding Barkun et al. (2019). Other risk scores tailored
to bleeding in the lower gastrointestinal tract have been proposed
in the literature, but these are less commonly used in practice. We
refer interested readers to Almaghrabi et al. (2022) for additional
details.

ing in the emergency department. This score is calculated
by thresholding the output of a logistic regression model,
which takes as input basic features about a patient’s clinical
history and current presentation. Scores are integers ranging
from 0 to 23, with higher scores indicating a higher risk that
a patient will require subsequent intervention. International
guidelines (Barkun et al. (2019)) suggest that patients with a
score of 0 or 1 can be safely discharged from the emergency
department, with further investigation to be performed out-
side the hospital. For additional details on the construction
of the GBS, we refer to Blatchford et al. (2000).

Defining an outcome of interest. We consider a sample
of 3617 patients who presented with AGIB at one of three
hospitals in a large academic health system between 2014
and 2018. Consistent with the goals of triage for patients
with AGIB, we record an ‘adverse outcome’ if a patient (1)
requires some form of urgent intervention to stop bleeding
(endoscopic, interventional radiologic, or surgical; exclud-
ing patients who only undergo a diagnostic endoscopy or
colonoscopy) while in the hospital (2) dies within 30 days
of their emergency room visit or (3) is initially discharged
but later readmitted within 30 days.4 As is typical of large
urban hospitals in the United States, staffing protocols at
this health system dictate a separation of responsibilities be-
tween emergency room physicians and other specialists. In
particular, while emergency room physicians make an initial
decision whether to hospitalize a patient, it is typically a gas-
trointestinal specialist who subsequently decides whether a
patient admitted with AGIB requires some form of urgent
hemostatic intervention. Thus, consistent with clinical and
regulatory guidelines – to avoid hospitalizing patients who
do not require urgent intervention (Stanley et al. (2009)),
and to avoid discharging patients who are likely to be read-
mitted within 30 days (NEJM (2018)) – we interpret the
emergency room physician’s decision to admit or discharge
a patient as a prediction that one of these adverse outcomes
will occur. Importantly, because our outcome of interest is
whether a patient received or should have received hospital-
based treatment, we assume that it is not confounded by the
emergency room physician’s initial decision about whether
to hospitalize the patient. See Appendix E for additional
discussion of this outcome definition.

We thus instantiate our model by letting Xi ∈ {0, 1...23} be
the Glasgow-Blatchford score for patient i, with Ŷi ∈ {0, 1}
indicating whether that patient was initially hospitalized,
and Yi ∈ {0, 1} indicating whether that patient suffered one
of the adverse outcomes defined above.

4This threshold is consistent with the definition used in the
Centers for Medicare and Medicaid Services Hospital Readmis-
sion Reduction Program, which seeks to incentivize healthcare
providers to avoid discharging patients who will be readmitted
within 30 days (NEJM (2018))
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Assessing the accuracy of physician decisions. We first
summarize the performance of the emergency room physi-
cians’ hospitalization decisions, and compare them with the
performance of a simple rule which would instead admit
every patient with a GBS above a certain threshold and dis-
charge the remainder (Table 1). We consider thresholds of 0,
1 and 2 – the generally accepted range for low risk patients –
as well as a threshold of 7, which we find maximizes over-
all accuracy. For additional context, we also provide the
total fraction of patients admitted under each decision rule.
Results are reported ± 2 standard errors, rounded to two
significant figures.

Table 1: Physician and GBS performance

Decision Rule Accuracy Sensitivity Specificity

Physician 0.55 ± 0.02 0.99 ± 0.00 0.24 ± 0.02
GBS > 0 0.53 ± 0.02 0.99 ± 0.00 0.19 ± 0.02
GBS > 1 0.60 ± 0.02 0.98 ± 0.00 0.33 ± 0.02
GBS > 2 0.66 ± 0.02 0.97 ± 0.00 0.43 ± 0.02
GBS > 7 0.79 ± 0.02 0.73 ± 0.02 0.84 ± 0.02

Unsurprisingly, we find that the physicians calibrate their
decisions to maximize sensitivity (minimize false negatives)
at the expense of admitting a significant fraction of patients
who, in retrospect, could have been discharged immediately.
Indeed we find that although 86% of patients are hospital-
ized, only ≈ 42% actually suffer an adverse outcome which
would justify hospitalization. Consistent with Blatchford
et al. (2000) and Chatten et al. (2018), we also find that
thresholding the GBS in the range of [0, 2] achieves a sensi-
tivity of close to 100%. We further can see that using one
of these thresholds may achieve overall accuracy (driven
by improved specificity) which is substantially better than
physician discretion. Nonetheless, we seek to test whether
physicians demonstrate evidence of expertise in distinguish-
ing patients with identical (or nearly identical) scores.

Testing for physician expertise. We now present the results
of running ExpertTest for K = 1000 resampled datasets
and various values of L (where L = 1808 is the largest
possible choice given n = 3617) in Table 2. We define
the distance metric m(x1, x2) ..= ||x1 − x2||2, though this
choice is inconsequential when the number of ‘mismatched
pairs’ (those pairs x, x′ where x ̸= x′) is 0.

We also observe that, in the special case of binary predic-
tions and outcomes, it is possible to analytically determine
the number of swaps which increase or decrease the value
of nearly any natural loss function F (·). Thus, although
we let F (D) ..= 1

n

∑
i 1[yi ̸= ŷi] for concreteness, our re-

sults are largely insensitive to this choice; in particular, they
remain the same when false negatives and false positives
might incur arbitrarily different costs. We elaborate on this

phenomenon in Appendix E. In Table 2 we report the num-
ber of swaps which increase the loss as L+ and the number
which decrease the loss as L−.

Table 2: Testing for physician expertise

L mismatched pairs L+ L− τ

100 0 4 0 0.043
250 0 11 2 0.004
500 0 21 3 <.001

1000 0 36 3 <.001
1808 5 71 5 <.001

As the results demonstrate, there is very strong evidence
that emergency room physicians usefully incorporate in-
formation other than what is summarized in the Glasgow-
Blatchford score5. In particular, our test indicates physicians
can reliably distinguish patients who present with identical
Glasgow-Blatchford scores – and make hospitalization deci-
sions accordingly – even though simple GBS thresholding is
highly competitive with physician performance. To interpret
the value of τ , observe that for L ≥ 500 we recover the
smallest possible value τ = 1/(K + 1) = 1/1001. Fur-
thermore, for all but the final experiment, the number of
mismatched pairs is 0, which means there is no additional
type one error incurred (i.e., ε∗n,L (11) is guaranteed to be 0
in this setting).

6. Discussion and limitations
In this work we provide a simple test to detect whether
a human forecaster is incorporating unobserved informa-
tion into their predictions, and illustrate its utility in a case
study of hospitalization decisions made by emergency room
physicians. A key insight is to recognize that this requires
more care than simply testing whether the forecaster out-
performs an algorithm trained on observable data; indeed, a
large body of prior work suggests that this is rarely the case.
Nonetheless, there are many settings in which we might
expect that an expert is using information or intuition which
is difficult to replicate with a predictive model.

An important limitation of our approach is that we do not
consider the possibility that expert forecasts might inform
decisions which causally effect the outcome of interest, as
is often the case in practice. We also do not address the
possibility that the objective of interest is not merely ac-
curacy, but perhaps some more sophisticated measure of
utility (e.g., one which also values fairness or simplicity);

5To interpret the result of the experiment where L = 100, recall
that any ties in the aggregate loss are broken uniformly at random.
Thus, although none of the possible swaps strictly decrease the
loss, there are some draws of Ỹ in which none of the 4 possible
swaps which increase the loss are realized.
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this is explored in Rambachan (2022). We caution more
generally that there are often normative reasons to prefer
human decision makers, and our test captures merely one
possible notion of expertise. The results of our test should
thus not be taken as recommending the automation of a
given forecasting task.

Furthermore, while our framework is quite general, it is
worth emphasizing that the specific algorithm we propose
is only one possible test of H0. Our algorithm does not
scale naturally to settings where X is high-dimensional, and
in such cases it is likely that a more sophisticated test of
conditional independence (e.g. a kernel-based method; see
Fukumizu et al. (2004), Gretton et al. (2007) and Zhang
et al. (2011), among others) would have more power to
reject H0. Another possible heuristic is to simply choose
some learning algorithm to estimate (e.g.) E[Y | X] and
E[Y | X, Ŷ ], and examine which of the two provides better
out of sample performance. This can be viewed as a form
of feature selection; indeed the ‘knockoffs’ approach of
Candès et al. (2016) which inspires our work is often used as
a feature selection procedure in machine learning pipelines.
However, most learning algorithms do not provide p-values
with the same natural interpretation we describe in section
3, and we thus view these approaches as complementary to
our own.

Finally, our work draws a clean separation between the ‘up-
stream’ inferential goal of detecting whether a forecaster is
incorporating unobserved information and the ‘downstream’
algorithmic task of designing tools which complement or
otherwise incorporate human expertise. These problems
share a very similar underlying structure however, and we
conjecture that – as has been observed in other supervised
learning settings, e.g. Kearns et al. (2018) – there is a tight
connection between these auditing and learning problems.
We leave an exploration of these questions for future work.
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A. Additional related work
Human decision making, interplay with algorithms. Our work contributes to a vast literature on understanding how
humans, and particularly human experts, make decisions. We do not attempt to provide a comprehensive summary of this
work, but refer the reader to Tversky & Kahneman (1974) and Camerer & Johnson (1991) for general background. Of
particular relevance for our setting is work which investigates whether humans make systematic mistakes in their decisions,
which has been studied in the context of bail decisions ((Kleinberg et al., 2017), Rambachan (2022), Lakkaraju et al. (2017)
and Arnold et al. (2020)), college admissions (Kuncel et al. (2013), Dawes (1971)) and patient triage and diagnosis (Currie
& MacLeod (2017), Mullainathan & Obermeyer (2019)) among others. One common theme in these works is that the
decision made by the human expert will often influence the outcome of interest; for example, an emergency room doctor’s
initial diagnosis will inform the treatment a patient receives, which subsequently affects their health outcomes. Furthermore,
it is often the case that even observing the outcome of interest is contingent on the human’s decision: for example, in a
college admissions setting, we might only observe historical outcomes for admitted students, which makes it challenging to
draw inferences about applicants. This one-sided labeling problem is a form of endogeneity which has been well studied in
the context of causal inference, and these works often adopt a causal perspective to address these challenges.

As discussed in Section 6, our instead work assumes that all outcomes are observable and, importantly, that they are not
affected by the human predictions. We also do not explicitly grapple with whether the human expert has an objective other
than maximizing accuracy under a known metric (e.g., squared error). Though this is often a primary concern in many
high-stakes settings – for example, ensuring that bail decisions are not only accurate but also nondiscriminatory – it is
outside the scope of our work, and we refer the reader instead to Rambachan (2022) for further discussion.

As discussed in section 1, another closely related theme is directly comparing human performance to that of an algorithm
(Cowgill (2018), Dawes et al. (1989), Grove et al. (2000)), and developing learning algorithms which are complementary to
human expertise (Madras et al. (2018), Raghu et al. (2019), Mozannar & Sontag (2020), Keswani et al. (2021), Agrawal et al.
(2018) and Bastani et al. (2021)). A key design consideration when designing algorithms to complement human expertise
involves reasoning about the ways in which humans may respond to the introduction of an algorithm, which may be strategic
(e.g. Kleinberg & Raghavan (2018), Perdomo et al. (2020), Cen & Shah (2021), Hardt et al. (2015), Liu et al. (2020)) or
subject to behavioral biases (Kleinberg et al. (2022)). These behaviors can make it challenging to design algorithms which
work with humans to achieve the desired outcomes, as humans may respond to algorithmic recommendations or feedback in
unpredictable ways.

Conditional independence testing. We cast our setting as a special case of conditional independence testing, which has
been well studied in the statistics community. For background we refer the reader to Dawid (1979). It has long been known
that testing conditional independence between three (possibly high-dimensional) random variables is a challenging problem,
and the recent result of Shah & Peters (2018) demonstrates that this is in fact impossible in full generality. Nonetheless,
there are many methods for testing conditional independence under natural assumptions; perhaps the most popular are the
kernel-based methods introduced by Fukumizu et al. (2004) and subsequently developed in Gretton et al. (2007) and Zhang
et al. (2011), among others.

Our work instead takes inspiration from the ‘knockoffs’ framework developed in Candès et al. (2016), Barber et al. (2018)
and Barber & Candès (2019), as well as the closely related conditional permutation test of Berrett et al. (2018). These works
leverage the elementary observation that, under the null hypothesis that (specialized to our notation) the outcome Y and
prediction Ŷ are independent conditional on the observed data X , new samples from the distribution of Ŷ | X should be
exchangeable with Ŷ . Thus, if we know – or can accurately estimate – the distribution of Ŷ | X , it is straightforward to
generate fresh samples (‘knockoffs’) which are statistically indistinguishable from the original data under the null hypothesis
H0 : Y ⊥⊥ Ŷ | X . Thus, if the observed data appears anomalous with respect to these knockoffs, this may provide us a
basis on which to reject H0.

Our work avoids takes inspiration from this framework, but avoids estimating the distribution of Ŷ | X by instead leveraging
a simple nearest-neighbors style algorithm for generating knockoffs. In that sense, our technique builds upon the nearest-
neighbors based estimator of (Runge, 2017), and is nearly identical to the one-nearest-neighbor procedure proposed in the
‘model-powered’ conditional independence test of Sen et al. (2017). This algorithm is a subroutine in their more complicated
end-to-end procedure, which involves training a model to distinguish between the observed data and knockoffs generated
via swapping the ‘predictions’ (again specializing their general test to our setting) associated with instances which are as
close as possible under the ℓ2 norm. By contrast, we analyze a similar procedure under different smoothness assumptions
which allow us to recover p-values that are entirely model free.

11
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B. Proof of Theorem 4.1
We establish the proof of Theorem 4.1 following the intuition presented in Section 3. Specifically, we first bound the type
I error of ExpertTest in the idealized case where the data set contains L identical pairs of observations x = x′. We then
refine this bound to handle the case, which is more likely in practice, that the pairs chosen are merely close together. Our
final bound thus includes additional approximation error to account for the ‘similarity’ of the pairs – if we succeed in finding
L pairs which are identical, we get nearly exact type I error control, whereas if we are forced to pair instances which are ‘far
apart’, we incur additional approximation error. We formalize this intuition below.

An idealized bound. We first establish that P(τK ≤ α) ≤ α+ 1
K+1 for any α ∈ [0, 1] when x = x′ for every (x, x′) pair

chosen by ExpertTest.

To that end, we observe n data points (xi, yi, ŷi), i ∈ [n]. Let L = {i2ℓ−1, i2ℓ : ℓ ∈ [L]} denote the indices of the pairs
chosen by ExpertTest, with (xi2ℓ−1

, xi2ℓ) for ℓ ∈ [L] denoting the pairs themselves.

By assumption, ExpertTest succeeds in finding identical pairs:

xi2ℓ−1
= xi2ℓ , ∀ ℓ ∈ [L]. (14)

Therefore, from the definition (4) it follows that r((xi2ℓ−1
, ŷi2ℓ−1

), (xi2ℓ , ŷi2ℓ)) = 1 for all ℓ ∈ [L].

As discussed in Section 3, ExpertTest will repeatedly generate n fresh data points, denoted by D̃, as follows. For each
index i ∈ [n]\L, i.e. those not corresponding to those selected in L pairs, we select exactly the observed data (xi, yi, ŷi).

For i ∈ L, we sample a data triplet as follows: for i ∈ {i2ℓ−1, i2ℓ}, we let (xi2ℓ−1, yi2ℓ−1), (xi2ℓ, yi2ℓ) be the observed
values but sample the corresponding ŷ values from {(ŷ2ℓ−1, ŷ2ℓ), (ŷ2ℓ, ŷ2ℓ−1)} with equal probability. That is, we swap the
ŷ values associated with (xi2ℓ−1, yi2ℓ−1), (xi2ℓ, yi2ℓ) with probability 1

2 . We argue that this resampling process is implicitly
generating a fresh, identically distributed dataset from the underlying distribution D conditioned on the following event F :

F = {(xi, yi, ŷi) : i ∈ [n]\L} ∪ {(xi, yi) : i ∈ L} ∪ {(ŷi2ℓ−1
, ŷi2ℓ) ∨ (ŷi2ℓ , ŷi2ℓ−1

) : ℓ ∈ [L]}. (15)

Why condition on F? As discussed in section 3, a straightforward test would involve simply resampling K fresh datasets
from the underlying distribution DX × DŶ |X × DY |X and observing that, by definition, these datasets are distributed

identically to the observed data D0 under H0 : Y ⊥⊥ Ŷ | X . While this would form the basis for a valid test along the
lines of the one described in Section 3, it requires knowledge of the underlying distribution which we are unlikely to have
in practice. Thus, we instead condition on nearly everything in the observed data – the values and exact ordering of X
and the values and exact ordering of Y , and the values of Ŷ up to a specific set of allowed permutations (those induced
by swapping 0 or more paired ŷi2ℓ−1

, ŷi2ℓ values). This substantially simplifies the resampling problem, as we only need
to reason about the correct ‘swap’ probability for each such pair. This can be viewed as an alternative factorization of the
underlying distribution D under H0 – rather than sampling X ∼ DX , Y ∼ DY |X , Ŷ ∼ DŶ |X , instead sample an event

F ∼ DF from the induced distribution over events of the form (15), and then sample Ŷ ∼ DŶ |F .

First, we show that conditional on F , the resampled dataset D̃ and the observed dataset D0 are indeed identically distributed
under H0 : Y ⊥⊥ Ŷ | X (that they are also independent, conditional on F , is clear by construction). To see this, observe
that for each ℓ ∈ [L]:

P((xi2ℓ−1
, yi2ℓ−1

, ŷi2ℓ−1
), (xi2ℓ , yi2ℓ , ŷi2ℓ)) (16)

= P(xi2ℓ−1
)P(yi2ℓ−1

| xi2ℓ−1
)P(ŷi2ℓ−1

| xi2ℓ−1
)P(xi2ℓ)P(yi2ℓ | xi2ℓ)P(ŷi2ℓ | xi2ℓ) (17)

= P(xi2ℓ−1
)P(yi2ℓ−1

| xi2ℓ−1
)P(ŷi2ℓ | xi2ℓ−1

)P(xi2ℓ)P(yi2ℓ | xi2ℓ)P(ŷi2ℓ−1
| xi2ℓ) (18)

= P((xi2ℓ−1
, yi2ℓ−1

, ŷi2ℓ), (xi2ℓ , yi2ℓ , ŷi2ℓ−1
)) (19)

In above, (17) follows from H0 and the assumption that the data are drawn i.i.d., and (18) follows from assumption (14) that
xi2ℓ−1

= xi2ℓ . By construction, the events in (16) and (19) are the only two possible outcomes after conditioning on F , and
this simple argument shows that in fact they are equally likely.

12
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Thus, let D̃1, . . . , D̃K be K independent and identically distributed datasets generated by the above procedure. Let D̃0

be one additional sample from this distribution, which we showed was distributed identically to D0 under the idealized
assumption (14).

As discussed in Section 3, for any real-valued function F that maps each dataset to R, we have

τK =
1

K

K∑
k=1

1[F (D̃0) ≲ F (D̃k)] (20)

where we use definition of 1[· ≲ ·] as in (7).

Because D̃0, . . . , D̃K are i.i.d., and thus exchangeable, it follows that 1
K

∑K
k=1 1[F (D̃0) ≲ F (D̃k] is uniformly distributed

{0, 1
K , . . . , 1}. Therefore, with a little algebra it can be verified that for any α ∈ [0, 1], τK satisfies

PD̃0,...,D̃K |F (τK ≤ α) ≤ α+
1

K + 1
. (21)

Because D0 and D̃0 are independent and identically distributed under (14), the same holds if we replace D̃0 with D0. Thus,
ExpertTest provides nearly exact type I error control in the case that the idealized assumption (14) holds. This result will
serve as a useful building block, as we’ll now proceed to relax this assumption and bound the type I error of ExpertTest in
terms of the total variation distance between D̃0 and D0.

Fixing the approximation. D̃1, . . . , D̃K are synthetically generated datasets that are independent and identically distributed.
The argument above replaced the observed dataset D0 with a resampled ‘idealized’ dataset D̃0, which is also independent
and identically distributed with respect to D̃1, . . . , D̃K , and then used this fact to demonstrate that PD̃0,...,D̃K |F (τ ≤ α) ≤
α+ 1

K+1 . If the idealized assumption (14) holds, replacing D0 with D̃0 is immaterial as we showed the two are identically
distributed conditional on F . Of course, this assumption will not hold in general, and this is what we seek to correct next.

Let D̄0 ∼ D·|F be a random variable distributed according to the true underlying distribution D, conditional on the event
F . The observed data D0 can be interpreted as one realization of this random variable. One way to quantify the excess
type I error incurred by using D̃0 in place of D0 is to bound the total variation distance between the joint distributions of
(D̃0, . . . D̃K) and that of (D̄0, D̃1, . . . D̃K). Specifically, it follows from the definition of total variation distance that:

PD̄0,...,D̃K |F (τK ≤ α) ≤ PD̃0,...,D̃K |F (τK ≤ α) + TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ), (22)

where TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ) denotes the total variation distance between its arguments. Due to the independence
of the resampled datasets, this simplifies to:

TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ) = TV(PD̄0|F ,PD̃0|F ). (23)

Therefore, we need only bound the total variation distance between PD̄0|F and PD̃0|F to conclude the proof.6

As defined in (11), the ε∗n,L provides us with a way of bounding the total variation distance between the distribution of
D̄0 and D̃0. To see this, observe that the distributions of D̃0 and D̄0, conditioned on F , can be described as follows. To
construct D̃0, we can imagine flipping L fair coins to decide the assignment of ŷi in each of the (ŷi2ℓ−2

ŷi2ℓ) pairs; if it
comes up heads, we swap the observed pair (ŷi2ℓ−2

ŷi2ℓ ) and if it comes up tails we do not. The observed (xi, yi) as well as
ŷi for i ̸∈ L are set in D̃0 as they are observed in D0.

D̄0 is constructed similarly, but we instead flip a coin with bias (1 + r((xi2ℓ−1
, ŷi2ℓ−1

), (xi2ℓ , ŷi2ℓ)))
−1 to decide the

assignment of (ŷi2ℓ−2
ŷi2ℓ ) – again, heads indicates that we swap the observed ordering, and tails indicates that we do not.

6This technique is inspired by the proof of type I error control given for the Conditional Permutation Test in Berrett et al. (2018); see
Appendix A.2 of their work for details
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By construction, the distributions of D̄0 and D0 are identical conditioned onF , as r((xi2ℓ−1
, ŷi2ℓ−1

), (xi2ℓ , ŷi2ℓ)) denotes the
true relative odds of observing each of the two possible (x, ŷ) pairings. In contrast, the distribution of D̃0 is different, as it was
sampled using the simplifying assumption (14) – in particular, D̃0 is generated assuming r((xi2ℓ−1

, ŷi2ℓ−1
), (xi2ℓ , ŷi2ℓ)) = 1!

The difference between the biases of these coins is bounded above by ε∗n,L. We’ll use this observation, along with the
following lemma, to complete the proof.

Lemma B.1 (Bounding the total variation distance between i.i.d. coin flips). Let i ∈ [L] index a sequence of i.i.d. coin flips
u1 . . . uL each with bias pi, and v1 . . . vL be a sequence of i.i.d. coin flips with bias qi. Then we can show:

TV((u1 . . . uL), (v1 . . . vL)) ≤ 1− (1−max
i
|pi − qi|)L (24)

We defer the proof of lemma B.1 to Appendix D. This implies that the total variation distance between D̄0 and D̃0 is
bounded above by 1− (1− ε∗n,L)

L. This, along with (21), (22) and (23) concludes the proof of Theorem 4.1.

Corollary B.2 (Weaker type I error bound).

P(τ ≤ α) ≤ α+ ε∗n,LL+
1

K + 1
(25)

Corollary B.2 is a weaker bound than the one given in Theorem 4.1, but is easier to interpret and manipulate. We will make
use of this fact in the following section; the proof is an immediate consequence of theorem 4.1 and provided in Appendix D
for completeness.

C. Proof of Theorem 4.2
To establish theorem 4.2, we will argue that ε∗n,L goes to 0 at a rate of O(n− 1

d ). This implies that, provided L = o(n
1
d ), the

excess type I error established in theorem 4.1 is o(1) as desired. To do this, we first show that each pair (xi2ℓ−1
, xi2ℓ) chosen

by ExpertTest will be close under the ℓ2 norm (lemmas C.1 and C.2 below). We then leverage the smoothness assumption
(12) to demonstrate that this further implies that ε∗n,L concentrates around 0. For clarity we state auxiliary lemmas inline,
and defer proofs to Appendix D.

Finding pairs which are close under the ℓ2 norm.

Let ML to be the set of matchings of size L on x1...xn; i.e. each element of ML is a set of L disjoint (x, x′) pairs. Let m∗
L

be the ‘optimal’ matching satisfying:

m∗
L ∈ argmin

z∈ML

max
(x,x′)∈z

∥x− x′∥2. (26)

That is, m∗
L minimizes the maximum distance between any pair of observations in a mutually disjoint pairing of 2L

observations. Let

d∗L = max
(x,x′)∈m∗

L

∥x− x′∥2. (27)

That is, the smallest achievable maximum ℓ2 distance over all matchings of size L. We’ll first show that:

Lemma C.1 (Existence of an optimal matching). If X = [0, 1]d for some d ≥ 1,

d∗n
4
= O

(
n− 1

d

)
(28)

with probability 1.

That is, there exists a matching of size at least n
4 such the maximum pairwise distance in this matching scales like O(n− 1

d ).
Lemma C.1 demonstrates the existence of a sizable matching in which the maximum pairwise distance indeed tends to 0.7

We next demonstrate that this approximates the optimal matching, at the cost of a factor of 2 on L.

7In principle, we could find this optimal matching by binary searching for d∗L using the non-bipartiate maximal matching algorithm of
Edmonds (1965); for simplicity, our implementation uses a greedy matching strategy instead.
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Lemma C.2 (Greedy approximation to the optimal matching).

max
l∈[L]
||x2l−1 − x2l||2 ≤ d∗2L (29)

That is, the maximum distance between any of the L pairs of observations chosen by our algorithm will be no more than the
maximum such distance in the optimal matching of size 2L.

Corollary C.3. For L ≤ n
8 , we have:

max
l∈[L]
||x2l−1 − x2l||2 = O

(
n− 1

d

)
(30)

This follows immediately by invoking lemma C.1 to bound the right hand side of lemma C.2. Corollary C.3 demonstrates
that as n grows large, the maximum pairwise ℓ2 distance between L greedily chosen pairs will go to zero at a rate of
O
(
n− 1

d

)
provided L ≤ n

8 . We now show that the smoothness condition (12) further implies that, under these same
conditions, we recover the asymptotic validity guarantee (13).

From approximately optimal pairings to asymptotic validity.

With the previous lemmas in place, the proof of theorem 4.2 is straightforward. Plugging the smoothness condition (12) into
the definition of the odds ratio (4) yields the following:

For all (x2ℓ−1, y2ℓ−1), (x2ℓ, y2ℓ),

r((x2ℓ−1, y2ℓ−1), (x2ℓ, y2ℓ)) ∈
[

1

(1 + C||x2ℓ−1 − x2ℓ||2)2
, (1 + C||x2ℓ−1 − x2ℓ||2)2

]
(31)

Where C > 0 is the same constant in the definition of the smoothness condition (12). Corollary C.3 shows that ||x2ℓ−1 −
x2ℓ||2 = O

(
n− 1

d

)
, so (31) immediately implies that ε∗n,L, defined in (11), also goes to zero at a rate of O

(
n− 1

d

)
. Thus, if

we take L to be a constant and K →∞, the type I error given in (10) can be rewritten as

P
(
τK ≤ α

)
≤ α+ (1− (1− ε∗n,L)

L) +
1

K + 1
(32)

≤ α+ ε∗n,LL+
1

K + 1
(33)

= α+O
(
n− 1

d

)
(34)

Where (33) follows from corollary B.2. If we instead allow L to scale like o(n
1
d ) (still taking K →∞), (33) implies:

P
(
τK ≤ α

)
≤ α+ o(1) (35)

which concludes the proof of theorem 4.2.

D. Proofs of auxiliary lemmas
Proof of Lemma B.1.

Recall that one definition of the total variation distance between two distributions P and Q is to consider the set of couplings
on these distributions. In particular, the total variation distance can be equivalently defined as:

TV(P,Q) = inf
(X,Y )∼C(P,Q)

P(X ̸= Y ) (36)

15



Auditing for Human Expertise

Where C(·, ·) is the set of couplings on its arguments. Consider then the following straightforward coupling on X ..=
(u1 . . . uL) and Y ..= (v1 . . . vL): draw L random numbers independently and uniformly from the interval [0, 1]. Denote
these by c1 . . . cL. Let ui = 1[ci ≤ pi], and vi = 1[ci ≤ qi]. It’s clear that X and Y are marginally distributed according to
p1 . . . pL and q1 . . . qL, respectively. Furthermore, the probability that ui ̸= vi is |pi − qi| by construction. Thus we have:

P(X ̸= Y ) = 1− P(X = Y ) = 1−Πi∈[L](1− |pi − qi|) ≤ 1− (1−max
i
|pi − qi|)L (37)

This concludes the proof.

Proof of Corollary B.2.

In the preceding proof of lemma B.1, observe that we could have instead written:

P(X ̸= Y ) =
⋃

i∈[L]

{vi ̸= ui} ≤︸︷︷︸
union bound

∑
i∈[L]

|pi − qi| ≤ Lmax
i∈[L]

|pi − qi| (38)

Specializing this result to the definitions D̄0 and D̃0 (and, in particular, the definition of ε∗n,L) completes the proof.

Proof of Lemma C.1.

Our proof will proceed via a covering argument. In particular, we cover the feature space [0, 1]d with a set of non-overlapping
d-dimensional hypercubes, each of which has edge length 0 < b < 1, and show that sufficiently many pairs (x, x′) must lie
in the same ‘small’ hypercube. To that end, let C = {c1 . . . ck} be a set of hypercubes of edge length b with the following
properties:

∀c ∈ C, c ⊆ [−b, 1 + b]d (39)
∀c, c′ ∈ C, c ∩ c′ = ∅ (40)
∀x ∈ D0,∃c ∈ C | x ∈ c (41)

Where D0 is the observed data. It’s clear that such a covering C must exist, for example by arranging c1 . . . ck in a regularly
spaced grid which cover [0, 1]d (though note that per condition (39), some of these ‘small’ hypercubes may extend outside
[0, 1]d if b does not evenly divide 1). Such a covering may be difficult to index as care must be exercised around the
boundaries of each small hypercube; however, as we only require the existence of such a covering, we ignore these details.
We now state the following elementary facts:

|C| ≤ ⌊ (1 + 2b)d

bd
⌋ (42)

∀c ∈ C, x, x′ ∈ c, ||x− x′||2 ≤ b
√
d (43)

Where (42) follows because the volume of each c ∈ C is bd, and the total volume of all such hypercubes cannot exceed the
volume of the containing hypercube [−b, 1 + b]d, which gives us an upper bound on the size of the cover C. Furthermore,
(43) tells us that for any (x, x′) which lie in the same ‘small’ hypercube c, we have ∥x− x′∥2 ≤ b

√
d.

Let nc
..= |{xi | xi ∈ c}| denote the number of observations contained in each small hypercube c ∈ C.

Corollary D.1. For any c ∈ C, there exist at least ⌊nc

2 ⌋ disjoint pairs (x, x′) ∈ c such that ||x− x′||2 ≤ b
√
d.

With these preliminaries in place, we’ll proceed to prove lemma C.1. To do this, we’ll first state one additional auxiliary
lemma.

Let Na,b
..= ad

bd
≥ ⌊a

d

bd
⌋, an upper bound on the number of non-overlapping ‘small’ hypercubes with edge length b which

can fit into [0, a]d. We’ll show for any z > 0, with b ..= z√
d
, a ..= 1 + 2b, we have:

Lemma D.2 (Pairwise distance in terms of packing number).

n ≥ 2Na,b ⇒ ∃
n

4
pairs satisfying ||x− x′||2 ≤ z (44)
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That is, the pairwise distance between the closest set of n
4 pairs (half the observed data in total) can be written in terms of

the appropriately parameterized covering number. We defer the proof of this lemma to the following section. For now, we
simply plug in the definition of Na,b and rearrange to recover:

n ≥ 2Na,b = 2

(
1 + 2 z√

d

)d
(

z√
d

)d ⇒ 2
1
d

√
d

n
1
d − 21+

1
d

≤ z (45)

Recall that z is the maximum distance between any pairs (x, x′) contained in the same small hypercube with edge length
z√
d

. The preceding argument holds for all z > 0 which satisfy (45), so in particular, it holds for

z∗ ..=
2

1
d

√
d

n
1
d − 21+

1
d

. (46)

z∗ is the maximum pairwise distance corresponding to one possible matching on n
4 (x, x′) pairs, so this further implies that

there exists a matching M of size n
4 such that:

max
(x,x′)∈M

||x− x′||2 ≤
2

1
d

√
d

n
1
d − 21+

1
d

= O(n− 1
d )

With probability 1. Thus, it follows that the maximum distance between any pair in the optimal matching d∗n
4

also satisfies:

d∗n
4
= O

(
2

1
d

√
d

n
1
d − 21+

1
d

)
= O

(
n− 1

d

)
With probability 1, as desired. This establishes the existence of a matching of up to L = n

4 disjoint pairs (x, x′) ∈ [0, 1]d

such that the maximum distance between any such pair scales like O
(
n− 1

d

)
.

We also consider the case where instead of X ..= [0, 1]d, we instead have P
(
X ∈ [0, 1]d

)
≥ 1− δ for some δ ∈ (0, 1). For

example, this will capture the case where X is a (appropriately re-centered and re-scaled) multivariate Gaussian. In this
case, we provide a corresponding high probability version of lemma C.1.

Corollary D.3. Suppose instead of X ..= [0, 1]d, we have for some δ ∈ (0, 1):

P(X ∈ [0, 1]d) ≥ 1− δ (47)

Define m ..= (1− δ)2n

We can then show:

P

(
d∗m

4
≤ 2

1
d

√
d

m
1
d − 21+

1
d

)
≥ 1− e−

δ2(1−δ)n
2 (48)

That is, we can still achieve a constant factor approximation to the optimal matching in Lemma C.1 with probability that
exponentially approaches 1.

Proof of Corollary D.3

Define the set of points which falls in [0, 1]d as follows:

S0
..= {Xi | Xi ∈ [0, 1]d} (49)

and
n0

..= |S0| (50)
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It is clear that in this setting, the proof of lemma C.1 holds if we simply replace n with n0, the realized number of
observations which fall in [0, 1]d. However, n0 is now a random quantity which follows a binomial distribution with mean
(1− δ)n (recall that we assume (xi, yi, ŷi) are drawn i.i.d. throughout). Thus, all that remains is to bound n0 away from 0,
which we can do via a simple Chernoff bound:

P(n0 ≤ (1− δ)2n) ≤ e−
δ2(1−δ)n

2 (51)

Thus, it follows that

P(n0 ≥ (1− δ)2n) ≥ 1− e−
δ2(1−δ)n

2 (52)

Thus, we have shown n0 ≥ m with the desired probability. It is clear that we only require a lower bound on n0 to recover the
result of Theorem C.1, as additional observations which fall in [0, 1]d can only improve the quality of the optimal matching
d∗m

4
.

Proof of Lemma C.2

We will show that the procedure in ExpertTest which greedily pairs the closest remaining pair of points L times will always
be able to choose at least one of the pairs in an optimal matching of size 2L. Intuitively, this is because each pair (x, x′)
chosen by ExpertTest can only ‘rule out’ at most two pairs (x, x′′), (x′, x′′′) in any optimal matching of size 2L. Thus, our
greedy algorithm for choosing L pairs can perform no worse than an optimal matching of size 2L, the sense of minimizing
the maximum pairwise distance.

Let m∗
2L be an optimal matching of size 2L in the sense of (26). Then suppose towards contradiction that:

max
l∈[L]
||x2l−1 − x2l||2 > d∗2L (53)

Where d∗2L is the smallest achievable maximum distance for any matching of size 2L as in (27).

Finally, let lm ..= argminl∈[L] ||x2l−1 − x2l||2 > d∗2L; i.e. the first pair which is chosen by ExpertTest that violates (53).
Because pairs are chosen greedily to minimize ℓ2 distance, and m∗

2L is a matching of size 2L where all pairs are separated
by at most d∗2L under the ℓ2 norm, it must be that none of the pairs which make up m∗

2L were available to ExpertTest at
the lm-th iteration. In particular, at least one element of every (x, x′) pair in m∗

2L must have been selected on a previous
iteration:

∀(x, x′) ∈ m∗
2L, x ∈ {x1 . . . x2lm−2} ∨ x′ ∈ {x1 . . . x2lm−2} (54)

As m∗
2L contains 2L disjoint pairs – 4L observations total – this implies that 2lm − 2 ≥ 2L ⇒ lm − 1 ≥ L ⇒ lm > L.

This is a contradiction, as ExpertTest only chooses L pairs, so lm only ranges in [1, L]. This completes the proof.

Corollary D.4. Validity in finite samples

Theorem 4.2 implies that we can achieve a bound on the excess type one error in finite samples if we knew the constant C in
(12). In particular, let

m∗ ..= max
ℓ∈[L]

||x2ℓ−1 − x2ℓ||2 (55)

ϵ∗ ..= max
r∈[(1+Cm∗)−2,(1+Cm∗)2]

∣∣∣∣ 1

r + 1
− 1

2

∣∣∣∣ (56)

Then (10) implies that we can always construct a valid (if underpowered) test at exactly the nominal size α by updating our
REJECT threshold to

α−
(
1− (1− ϵ∗)L

)
− 1

K + 1
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Proof of lemma D.2

let C ..= {c1...ck} denote any set of k ‘small’ nonoverlapping hypercubes of edge length b satisfying properties (39), (40)
and (41). As discussed in the proof of lemma C.1, each element of C is not guaranteed to lie strictly in [0, 1]. Rather, each
c ∈ C must merely intersect [0, 1]d, implying that each element of the cover is instead contained in the slightly larger
hypercube [−b, 1 + b]d. As in the proof of lemma C.1, we’ll again let nc denote the number of observations xi which lie in
some c ∈ C.

By Corollary D.1, we have that ⌊nc

2 ⌋ pairs in each c ∈ C will satisfy ||x− x′||2 ≤ b
√
d = z. Thus what’s left to show is

that:
n ≥ 2Na,b ⇒

∑
j∈[k]

⌊
ncj

2
⌋ ≥ n

4

We can see this via the following argument:

∑
j∈[k]

⌊
ncj

2
⌋ ≥

∑
j∈[k]

(
ncj

2
− 1

2

)
(57)

=
n

2
− k

2
(58)

≥ n

2
− Na,b

2
(59)

≥ n

2
− n

4
=

n

4
(60)

Where (59) follows from (42) and the definition of Na,b, and (60) follows because n ≥ 2Na,b by assumption. This completes
the proof.

E. Omitted Details from Section 5
E.1. Identifying relevant patient encounters and classifying outcomes

As described in Section 5, we consider a set of 3617 patients who presented with signs or symptoms of acute gastrointestinal
bleeding at the emergency department at a large quaternary academic hospital system from January 2014 to December
2018. These patient encounters were identified using a database mapping with a standardized ontology (SNOMED-CT)
and verified by manual physician chart review. Criteria for inclusion were the following: any text that identifies acute
gastrointestinal bleeding for hematemesis, melena, hematochezia from either patient report or physical exam findings
(which were considered equally valid for the purposes of inclusion). Exclusion criteria were the following: patients with
other reasons for overt bleeding symptoms (e.g. epistaxis) or missingness in input variables required to calculate the
Glasgow-Blatchford Score.

This identified a set of 3627 patients, of which a further 10 were removed from consideration due to unclear emergency
department disposition (neither Admit nor Discharge). As described in Section 5, we record an adverse outcome
(Y = 1) for admitted patients who required some form of hemostatic intervention (excluding a diagnostic endoscopy or
colonoscopy), or patients who are readmitted or die within 30 days. We record an outcome of 0 for all other patients.

The use of readmission as part of the adverse event definition is subject to two important caveats. First, we are only able to
observe patients who are readmitted within the same hospital system. Thus, although the hospital system we consider is the
dominant regional health care network, it is possible that some patients subseqeuently presented elsewhere with signs or
symptoms of AGIB; such patients would be incorrectly classified as not having suffered an adverse outcome. Second, we
only record an outcome of 1 for patients who are readmitted with signs or symptoms of AGIB, subject to the same inclusion
criteria defined above. Patients who are readmitted for other reasons are not recorded as having suffered an adverse outcome.

E.2. The special case of binary outcomes and predictions

In our experiments we define the loss measure F (D) ..= 1
n

∑
i 1[yi ̸= ŷi], but it’s worth remarking that this is merely one

choice within a large class of natural loss functions for which ExpertTest produces identical results when Y, Ŷ are binary.
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In particular, observe that a swap of (y1, ŷ1), (y2, ŷ2) can only change the value of F (·) if y1 ̸= y2 and ŷ1 ̸= ŷ2 (we’ll
assume throughout that all observations contribute equally to the loss; i.e. it is invariant to permutations of the indices
i ∈ [n]). This implies that there are only 22 out of 24 possible configurations of (y1, ŷ1, y2, ŷ2) where a swap can change
the loss at all. Of these, two configurations create a false negative and a false positive in the synthetic data which did not
exist in the observed data:

(y1 = 1, ŷ1 = 1, y2 = 0, ŷ2 = 0)︸ ︷︷ ︸
original data

→
swap

(y1 = 1, ŷ1 = 0, y2 = 0, ŷ2 = 1)︸ ︷︷ ︸
synthetic data

(y1 = 0, ŷ1 = 0, y2 = 1, ŷ2 = 1) →
swap

(y1 = 0, ŷ1 = 1, y2 = 1, ŷ2 = 0)

The other two configurations which change the loss are symmetric, in that a swap removes both a false negative and false
positive that exists in the observed data:

(y1 = 0, ŷ1 = 1, y2 = 1, ŷ2 = 0) →
swap

(y1 = 0, ŷ1 = 0, y2 = 1, ŷ2 = 1)

(y1 = 1, ŷ1 = 0, y2 = 0, ŷ2 = 1) →
swap

(y1 = 1, ŷ1 = 1, y2 = 0, ŷ2 = 0)

Thus, for any natural loss function which is strictly increasing in the number of mistakes
∑

i 1[yi ̸= ŷi], the first two
configurations of (y1, ŷ1, y2, ŷ2) will induce swaps which strictly increase the loss, while the latter two will induce swaps
that strictly decrease the loss. This means that for a given set of L pairs, we can compute the number of swaps which would
increase (respectively, decrease) the loss for any function in this class of natural losses. In particular, this class includes loss
functions which may assign arbitrarily different costs to false negatives and false positives. Thus, in the particular context of
assessing physician triage decisions, our results are robust to variation in the way different physicians, patients or other
stakeholders might weigh the relative cost of false negatives (failing to hospitalize patients who should have been admitted)
and false positives (hospitalizing patients who could have been discharged to outpatient care).

F. Numerical Experiments
We first elaborate here on the example 1 presented in the introduction. Consider the following stylized data generating
process:

Example: experts can add value despite poor performance.

Let X,U, ϵ1, ϵ2 be independent random variables distributed as follows:

X ∼ U([−2, 2]), U ∼ U([−1, 1]), ϵ1 ∼ N (0, 1), ϵ2 ∼ N (0, 1)

Where U(·) and N (·, ·) are the uniform and normal distribution, respectively. Suppose the true data generating process for
the outcome of interest Y is

Y = X + U + ϵ1

Suppose a human expert constructs a prediction Ŷ which is intended to forecast Y and can be modeled as:

Ŷ = sign(X) + sign(U) + ϵ2

Where sign(X) ..= 1[X > 0]− 1[X < 0].

We compare this human prediction to that of an algorithm f̂(·) which can only observe X , and correctly estimates

f̂(X) = E[Y | X] = X

20



Auditing for Human Expertise

As described in the introduction, we use this example to demonstrate that ExpertTest can detect that the forecast Ŷ is
incorporating the unobserved U even though the accuracy of Ŷ is substantially worse than that of f̂(X). In particular, we
consider the mean squared error (MSE) of each of these predictors:

Algorithm MSE ..=
1

n

∑
i

(Yi − f̂(Xi))
2

Human MSE ..=
1

n

∑
i

(Yi − Ŷi)
2

We’ll show below that the Algorithm MSE is substantially smaller than the Human MSE. However, we may also wonder
whether the performance of the human forecast Ŷ is somehow artificially constrained by the the relative scale of Ŷ and
Y , as the sign(·) operation restricts the range of Ŷ . For example, a forecaster who always outputs Ŷ = Y

100 is perfectly
correlated with the outcome but will incur very large squared error; this is a special case of the more general setting where
human forecasts are directionally correct but poorly calibrated. To test this hypothesis, we can run ordinary least squares
regression (OLS) of Y on Ŷ and compute the squared error of this rescaled prediction. It is well known OLS estimates the
optimal linear rescaling with respect to squared error, and we further use the in sample MSE of this rescaled prediction to
provide a lower bound on the achievable loss. In particular, let:

(β∗, c∗) ..= min
β,c∈R

||Y − βŶ − c||22 (61)

Rescaled Human MSE ..=
1

n

∑
i

(Yi − β∗Ŷi − c∗)2 (62)

In Table 3 we report the mean squared error (plus/minus two standard deviations) over 100 draws of n = 1000 samples from
the data generating process described above. As we can see, both the original and rescaled human forecasts substantially
underperform f̂(·).

Table 3: Expert vs Algorithm Performance

Algorithm MSE Human MSE Rescaled Human MSE

1.33 ± 0.12 2.67 ± 0.24 1.92 ± 0.16

We now assess the power of ExpertTest in this setting by repeatedly simulating n = 1000 draws of (X,U, ϵ1, ϵ2) along with
the associated outcomes Y ..= X + U + ϵ1 and expert predictions Ŷ ..= sign(X) + sign(U) + ϵ2. We sample 100 datasets
in this manner, and run ExpertTest on each one with L,K = 100, and the distance metric m(x, x′) ..=

√
(x− x′)2. The

distribution of p-values τ1...τ100 is plotted in Figure 1.

We see that ExpertTest produces a highly nonuniform distribution of the p-value τ , and rejects the null hypothesis 94%
of the time at a critical value of α = .05. To assess whether this power comes at the expense of an inflated type I
error, we also run ExpertTest with both X and U ‘observed’; in particular, suppose the distance measure was instead
m((x, u), (x′, u′)) =

√
(x− x′)2 + (u− u′)2 with everything else defined as above. The distribution of τ in this setting is

again plotted in Figure 2.

When both X and U are observed, and thus the null hypothesis should not be rejected, we instead see that we instead get
an approximately uniform distribution of τ with a false discovery rate of only .03 at a critical value of α = .05. Thus, the
power of ExpertTest to detect that the synthetic expert is incorporating some unobserved information U does not come at
the expense of inflated type I error, at least in this synthetic example.

Assessing the power of ExpertTest

We now present additional simulations to highlight how the power of ExpertTest scales with the number of pairs L and the
sample size n in a more general setting. In particular, we consider a simple synthetic dataset (xi, yi, ŷi), i ∈ [n] ≡ {1, . . . , n}
where x1...xn = [1, 1, 2, 2, ...n2 ,

n
2 ]

′ and y1...yn is the alternating binary string [0, 1, 0, 1 . . . 0, 1]′ (we consider only even n
for simplicity). This guarantees that each of the L pairs chosen are such that (x2ℓ−1 = x2ℓ) and y2ℓ−1 ̸= y2ℓ. Importantly,
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Figure 1: distribution of τ is sharply nonuniform when the expert incorporates unobserved information U in the toy example.
The vertical red line indicates a critical threshold of α = .05, and the dashed line traces a uniform distribution.

Figure 2: distribution of τ is approximately uniform when the expert does not incorporate unobserved information in the toy
example. The vertical red line indicates a critical threshold of α = .05, and the dashed line traces a uniform distribution.
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it’s also clear that x is uninformative about the true outcome y – if the expert can perform better than random guessing, it
must be by incorporating some unobserved signal U .

We model this unobserved signal by an ‘expertise parameter’ δ ∈ [0, 1
2 ]. In particular, for each pair (y2ℓ−1, y2ℓ) for

ℓ ∈ [1 . . . n
2 ], we sample (ŷ2ℓ−1, ŷ2ℓ) such that (ŷ2ℓ−1, ŷ2ℓ) = (y2ℓ−1, y2ℓ) with probability 1

2 + δ and (y2ℓ, y2ℓ−1)

otherwise. Intuitively, δ governs the degree to which the expert predictions Ŷ incorporate unobserved information – at δ = 0,
we model an expert who is randomly guessing, whereas at δ = 1

2 the expert predicts the outcome with perfect accuracy.

First, we consider the case of n ∈ {200, 600, 1200} and fix L at n
8 as suggested by the proof of Theorem 4.2. For each of

these cases, we examine how the discovery rate scales with the expertise parameter δ ∈ {0, .05....45, .50}. In particular, we
choose a critical threshold of α = .05 and compute how frequently ExpertTest rejects H0 over 100 independent draws of
the data for each value of δ. These results are plotted below in Figure 3.

Figure 3: The power of ExpertTest as a function of sample size n and expertise parameter δ. The horizontal dashed line
corresponds to a power of 80%

Unsurprisingly, the power of ExpertTest depends critically on the sample size – at n = 1200, ExpertTest achieves 80%
power in rejecting H0 when the expert only performs modestly better than random guessing (δ ≈ .1). In contrast, at
n = 200, ExpertTest fails to achieve 80% power until δ ≈ .25 – corresponding to an expert who provides the correct
predictions over 75% of the time even when the observed x is completely uninformative about the true outcome.

Next we examine how the power of ExpertTest scales with L. We now fix n = 600 and let δ = .2 to model an expert
who performs substantially better than random guessing, but is still far from providing perfect accuracy. We then vary
L ∈ {20, 40 . . . 200} and plot the discovery rate (again at a critical value of α = .05, over 500 independent draws of the
data) for each choice of L. These results are presented below in Figure 4.

As expected, we see that power is monotonically increasing in L, and asymptotically approaching 1. With δ = .2, we see
that ExpertTest achieves power in the neighborhood of only 50% with L = 20 pairs, but sharply improves to approximately
80% power once L increases to 40. Beyond this threshold we see that there are quickly diminishing returns to increasing L.

Excess type I error of ExpertTest

Recall that, per Theorem 4.1, ExpertTest becomes more likely to incorrectly reject H0 as L increases relative to n. In
particular, larger values of L will force ExpertTest to choose (x, x′) pairs which are farther apart under any distance metric
m(·, ·), and thus induce larger values of ε∗n,L as defined in (11). Furthermore, even for fixed ε∗n,L> 0, the type one error
bound given in Theorem 4.1 degrades with L. We empirically investigate this phenomenon via the following numerical
simulation.

First, let X = (X1, X2, X3) ⊂ R3 be uniformly distributed over [0, 10]3. Let Y = X1 + X2 + X3 + ϵ1 and Ŷ =
X1 + X2 + X3 + ϵ2, where ϵ1, ϵ2 are independent standard normal random variables. In this setting, it’s clear that
H0 : Y ⊥⊥ Ŷ | X holds.
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Figure 4: The power of ExpertTest as a function of L, with n = 600, δ = .2. The horizontal dashed line corresponds to a
power of 80%

We repeatedly sample n = 500 independent observations from this distribution over (X,Y, Ŷ ) and run ExpertTest for each
L ∈ {25, 50 . . . 250}. We let K = 50 and m(x, x′) ..= ||x− x′||22 be the ℓ2 distance. We let the loss function F (·) be the
mean squared error of Ŷ with respect to Y . For each scenario we again choose a critical threshold of α = .05, and report
how frequently ExpertTest incorrectly rejects the null hypothesis over 50 independent simulations in Figure 5.

Figure 5: The type I error rate of ExpertTest as a function of L, with n = 500 and a critical threshold of .05. The horizontal
dashed line corresponds to the nominal false discovery rate of .05

As we can see, the type I error increases sharply as a function of L, and ExpertTest incurs a false discovery rate of 100% at
the largest possible value of L = n

2 ! This suggests that significant care should be exercised when choosing the value of L,
particularly in small samples, and responsible use of ExpertTest will involve leveraging domain expertise to assess whether
the pairs chosen are indeed ‘similar’ enough to provide type I error control.

G. Pseudocode for ExpertTest
In this section we provide pseudocode for ExpertTest. Inputs D0, L,K, α, F (·),m(·, ·) are as defined in Section 3.
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ExpertTest(D0, L,K, α, F (·),m(·, ·))
0: X0 ← {x | (x, ·, ·) ∈ D0} {initialize set of remaining observations}
0: P ← ∅ {initialize set of paired predictions}
0: for ℓ = 1 : L do
0: (x2ℓ−1, x2ℓ)← argmin

(x,x′)

m(x, x′) {find closest remaining pair, breaking ties arbitrarily}

0: Xℓ ← Xℓ−1 \ {x2ℓ−1, x2ℓ}
0: P ← P ∪ {(ŷ2ℓ−1, ŷ2ℓ)} {save predictions associated with closest remaining pair}
0: end for
0: f0 ← F (D0) {calculate observed loss}
0: for k = 1 : K do
0: Dk ← swap(D0, P,

1
2 ) {independently swap each (ŷ2ℓ−1, ŷ2ℓ) ∈ P with equal probability}

0: fk ← F (Dk) {calculate synthetic loss}
0: end for
0: τ ← 1

K

∑
k 1[fk ≲ f0] {calculate quantile of observed loss, breaking ties at random}

0: if τ ≤ α then {if τ ≤ α, H0 is rejected with p-value α+ 1
K+1}

REJECT
0: end if=0
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