
Subgraph Federated Learning for Local Generalization
Sungwon Kim

KAIST
swkim@kaist.ac.kr

Yoonho Lee
KAIST

sml0399benbm@kaist.ac.kr

Yunhak Oh
KAIST

yunhak.oh@kaist.ac.kr

Namkyeong Lee
KAIST

namkyeong96@kaist.ac.kr

Sukwon Yun
UNC Chapel Hill
swyun@cs.unc.edu

Junseok Lee
KAIST

junseoklee@kaist.ac.kr

Sein Kim
KAIST

rlatpdlsgns@kaist.ac.kr

Carl Yang
Emory University

j.carlyang@emory.edu

Chanyoung Park∗
KAIST

cy.park@kaist.ac.kr

ABSTRACT
Federated Learning (FL) on graphs enables collaborative model
training to enhance performance without compromising the pri-
vacy of each client. However, previous methods often overlook the
mutable nature of graph data, which frequently introduces new
nodes and leads to shifts in label distribution. Unlike prior meth-
ods that struggle to generalize to unseen nodes with diverse label
distributions, our proposed method, FedLoG, effectively addresses
this issue by alleviating the problem of local overfitting. Our model
generates global synthetic data by condensing the reliable informa-
tion from each class representation and its structural information
across clients. Using these synthetic data as a training set, we alle-
viate the local overfitting problem by adaptively generalizing the
absent knowledge within each local dataset. This enhances the
generalization capabilities of local models, enabling them to handle
unseen data effectively. Our model outperforms the baselines in
proposed experimental settings, which are designed to measure
generalization power to unseen data in practical scenarios. Our
code is available at https://github.com/sung-won-kim/FedLoG

KEYWORDS
Subgraph Federated Learning; Graph Neural Network; Local Over-
fitting

1 INTRODUCTION
In the realm of Graph Neural Networks (GNNs), most systems
are designed for a unified, centralized graph. However, real-world
applications [21] frequently involve individual users or institu-
tions maintaining private graphs, isolated due to privacy concerns.
Graph Federated Learning (GFL) [10] provides a solution by en-
abling clients to independently train local GNNs on their data. This
decentralized training approach allows a central server to aggregate
the locally updated weights from multiple clients, creating a unified
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FedKDD ’24, August 26, 2024, Barcelona, Spain.
© 2024 ACM.

model that respects privacy constraints. In this paper, we explore
a particularly challenging aspect of GFL—distributed subgraphs
(subgraph-FL), where clients manage largely disjoint sets of nodes
and their links.

In real-world scenarios, graph data frequently changes, partic-
ularly in social, citation, and e-commerce networks [12, 14, 15].
These changes often result in new label distribution patterns that
are distinct from the existing local label distribution. Despite this,
existing subgraph-FL methods [2, 17, 18, 21] primarily focus on
optimizing models based on the current label distribution within
each client (i.e., local optimization). However, some studies [4, 9, 20]
demonstrate that client models are particularly prone to local over-
fitting after local updates, resulting in a significant decrease in the
accuracy of minority classes (i.e., tail classes) within the local data.
Given these limitations, current approaches encounter significant
practical challenges, particularly in adapting to new nodes added
to the original local graph, especially those in tail or unseen classes
which are not present in the local graph but existing in others
(i.e., missing classes). These nodes, which form new connections
with existing nodes, often have structural patterns unfamiliar to
local clients, leading to substantial discrepancies in both label and
structural distributions.

Existing methods in FL [4, 9, 20] aim to ensure that local models
can make predictions for all classes without bias by mitigating local
overfitting caused by the local label distribution. Specifically, they
propose regularizing the logits of each class in the local models
to align more closely with those of the global model. While these
methods effectively address local overfitting and manage tail or
missing classes, increasing the logits of local tail data risks am-
plifying noisy data, which is harmful for the class representation
of the global model. Beyond FL, another approach to mitigating
the problem of overfitting on train data involves addressing class
imbalance by reducing the long-tail class distribution. Techniques
such as down-sampling [6], over-sampling [22], or constructing
expert models for long-tailed data [19] are commonly used. Despite
their effectiveness, they require at least one data point to be present
for each class, facing challenges when a class is missing in a local
client while present in others.

In this paper, we propose to address the local overfitting issue of
subgraph-FL by introducing reliable global synthetic data that 1)
learn accurate class representations, and 2)mitigate class imbalance,
including missing classes. Specifically, we aggregate knowledge
from local data across all clients for each class and integrate it into

https://github.com/sung-won-kim/FedLoG

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

the global synthetic data. Subsequently, each client adaptively uti-
lizes the global synthetic data as additional training data to ensure
effective learning for all classes, including those that are under-
represented or missing in each client. This strategy helps prevent
local overfitting even after local updates and enables accurate class
representation (i.e., local generalization). However, there exist two
crucial challenges that need consideration:

C1. Which data across all clients should be aggregated to
ensure reliability? Since clients heavily rely on the knowledge
from other clients to learn locally absent knowledge in FL, it be-
comes crucial to obtain and share knowledge from reliable data
within each local graph. Here, data reliability refers to the accuracy
and consistency of information sourced from decentralized nodes.

C2. How can data from other clients be utilized without
compromising privacy? While direct sharing of the data between
clients prevents local overfitting, it raises severe privacy concerns.
Furthermore, directly using training data from all clients incurs
high communication costs.

For the above two challenges, we propose the following solu-
tions:

Solution to C1. Knowledge from Head degree and Head
class nodes. We find that nodes with a high number of connected
edges (i.e., head degree) and that belong to the majority class (i.e.,
head class) possess reliable structural and class representative infor-
mation, significantly influencing the model generalization ability
to unseen data. Motivated by these insights, we gather knowledge
from clients and filter it based on their headness in terms of both
degree and class.

Solution to C2. Data condensation. We propose to condense
only reliable knowledge into synthetic data to share across the
clients, thereby avoiding the direct use of individual client data
while also minimizing the amount of data transferred between the
server and local clients.

In summary, we propose a subgraph Federated Learning frame-
work for Local Generalization, FedLoG, that generates global syn-
thetic data with a novel reliable knowledge condensation strategy.
This approach reduces the risk of noise in class representations,
and enables each client to compensate for locally absent knowledge
without compromising privacy. By doing so, FedLoG prevents lo-
cal overfitting and ensures a well-generalized representation of all
classes, enabling the successful handling of unseen data, including
missing classes.

In this paper, we make the following contributions:

• We introduce FedLoG, the first work in subgraph-FL that focuses
on preventing local overfitting, including the issue of missing
classes, to address the mutable nature of the graph domain. This
approach enhances the performance of the global model and the
generalization power of local models, enabling them to effectively
address unseen data for all classes.
• We analyze what constitutes reliable data in graph-based feder-
ated learning and propose a method to condense and share this
knowledge across clients. This approach not only leverages reli-
able data effectively but also protects privacy by using condensed
synthetic data.
• We propose practical evaluation settings for subgraph-FL, en-
abling measurement of the model’s generalization on future data,
assessing robustness in mutable graph domains, and demonstrat-
ing consistent outperformance over other baselines.

2 PRELIMINARIES
Related works are provided in Appendix A.

Notations. We use G = (V, E) to denote a graph with the
set of nodes V and the set of edges E. The dataset D = (G, 𝑌)
includes labels 𝑌 for the nodes, and 𝑋V ∈ R |V |×𝑑 is the feature
matrix with 𝑑 as the feature dimension. Each node 𝑣 ∈ V has a
feature vector 𝑥𝑣 ∈ R𝑑 . The nodes are classified into |CV | distinct
classes. In subgraph-FL, a server 𝑆 and 𝐾 clients manage disjoint
subgraphs G𝑘 = (V𝑘 , E𝑘) for each client 𝑘 . The global set of nodes
isV = ⋃𝐾

𝑘=1V𝑘 withV𝑖 ∩V𝑗 = ∅ for all 𝑖 ̸= 𝑗 . The local dataset
for client 𝑘 is D𝑘 = (G𝑘 , 𝑌𝑘), and the combined local datasets are
Dlocal = ⋃𝐾

𝑘=1D𝑘 . Additionally, we generate a global synthetic
set D𝑔 = (G𝑔, 𝑌𝑔), where G𝑔 = (V𝑔, E∅) consists of isolated nodes
𝑣𝑔 ∈ V𝑔 with no edges E∅.V𝑔 includes 𝑠 nodes per class, totaling 𝑠×
|CV | nodes. A summary of the notations is provided in Appendix N.

Problem Statement. We aim to develop a distributed learning
framework for collaborative training of a node classifier. Specifi-
cally, the classifier 𝐹 uses optimized parameters 𝜙 to minimize a
predefined task loss. The objective is to find global parameters 𝜙∗
that minimizes the aggregated local empirical risk R, defined as:
𝜙∗ = arg min𝜙 R(𝐹 (𝜙)) = 1

𝐾

∑𝐾
𝑘=1 R𝑘 (𝐹𝑘 (𝜙)), where R𝑘 (𝐹𝑘 (𝜙)) :=

E(G𝑘 ,𝑌𝑘)∼Dlocal [L𝑘 (𝐹𝑘 (𝜙 ;G𝑘), 𝑌𝑘)] and the task-specific loss L𝑘 is
defined as
L𝑘 := 1

|V𝑘 |
∑
𝑣𝑘 ∈V𝑘 𝑙(𝜙 ;G𝑘 (𝑣𝑘), 𝑦𝑣𝑘) + 1

|V𝑔 |
∑
𝑣𝑔∈V𝑔 𝑙(𝜙 ; 𝑣𝑔, 𝑦𝑣𝑔).

To allow each client to generalize across all classes, including miss-
ing classes, we generate global synthetic data D𝑔 and introduce an
additional loss term (i.e., the second term) to take into account this
data to prevent local overfitting.

Data Reliability. Data reliability refers to the accuracy and
consistency of information from decentralized nodes, which is es-
sential for training models across varied environments (i.e., clients).
Our analysis shows that both head-degree and head-class nodes
are reliable. Detailed analysis of the reliability of these nodes is
provided in Appendix C.

3 METHODOLOGY
Our proposed subgraph-FL framework, FedLoG, condenses data
from both head-degree and head-class nodes within each local
graph to gather reliable knowledge from distributed graph data.
This condensed data is then used as an additional training dataset
for all clients, along with their local graph data, to prevent local
overfitting. Our method operates as follows:

• Step 1 – Local Fitting (Section 3.1): The server initializes the
local model parameters of 𝐾 clients with the parameters of the
global model 𝜙 . Each local model is then trained using local data
D𝑘 . Concurrently, head degree and tail degree knowledge are
condensed into synthetic nodes within each client, denoted as
V𝑘,head andV𝑘,tail.
• Step 2 – Global Aggregation and Global Synthetic Data Gen-
eration (Section 3.2): After local training, the server aggregates
the local models to create the global model𝜙 , and generates global
synthetic data D𝑔 by aggregatingV𝑘,head for all 𝑘 , weighted by
the proportion of the head classes within each client 𝑘 .
• Step 3 – Local Fitting (Section 3.1) & Local Generalization
(Section 3.3): Similar to Step 1, local fitting and data condensation
proceed. After local fitting, local models are generalized using

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

Local graph 𝒢!

Head-degree Branchℎ!!

⋮

𝑃",$%&'

𝑃",(&)*

G
N
N
𝜑
",$

Clf.
𝜑
!,#

Clf.
𝜑
!,$

NG

NG

NG

Local Adaptation

(b) Local Fitting

Tail-degree Branch
𝐩 ℒ!,#$%

(c) Local Generalization

G
N

N
 𝜑
!,&

𝜑
#,%

𝜑
#,&

ℒ!,%

𝛾#

Local model 𝜙#

Local m
odel, 𝜙

"

𝛼

1 − 𝛼

Global
Global

Global 𝜙

Init with

𝒱",$%&'

𝒱",(&)*

𝒟+

0.8
0.2
0.0Cl

ie
nt

 1
(C

ls
ra

te
 𝑟 "
)

0.1
0.1
0.8Cl

ie
nt

 2
(C

ls
ra

te
𝑟 $#

)

Global

𝒟+

(a) Server

(𝜙!∀𝑘

Global 𝜙
𝒢#
*+,(a1) Global Aggregation

(a2) Global Synthetic Data Gen.

Figure 1: Overview of FedLoG with 2 Clients and 3 Classes.

D𝑔 which possess both head degree and head class knowledge,
adaptively learning the locally absent knowledge.

While the framework starts with Step 1, it continues to alternate
between Steps 2 and 3 until the final round𝑅 is reached. In summary,
our method extracts head degree knowledge at the client level
and head class knowledge at the server level, then condense them
into the global synthetic data, which is utilized to train the local
model during Local Generalization to adaptively compensate for the
locally absent knowledge within each client. The overall framework
of FedLoG is depicted in Figure 1.

3.1 Local Fitting
The local model for each client 𝑘 consists of one GNN embedder
(𝜑𝑘,𝐸) and two classifiers (𝜑𝑘,𝐻 and 𝜑𝑘,𝑇), for the head and tail
degree branches, respectively, as shown in Figure 1(b). Each branch
has 𝑠 × |CV | learnable nodes, each with features of dimension 𝑑 ,
allocating 𝑠 nodes per class. Thus, each client has learnable node
sets V𝑘,head and V𝑘,tail with features 𝑋V𝑘,head ∈ R(𝑠×|CV |)×𝑑 and
𝑋V𝑘,tail ∈ R(𝑠×|CV |)×𝑑 , respectively.

At the client level, we condense knowledge from locally observed
nodes into these learnable nodes. Head degree nodes are condensed
intoV𝑘,head and tail degree nodes intoV𝑘,tail, integrating conden-
sation and prediction into a single process. Learnable nodes serve
as prototypes within each branch, forming a prototypical network.
The detailed processes are as follows:
(Initialization) In the initial round (𝑟 = 0), we initialize the local
model weights for each client 𝑘 , denoted as 𝜙𝑘 = {𝜑𝑘,𝐸 , 𝜑𝑘,𝐻 , 𝜑𝑘,𝑇 },
with the global set of parameters 𝜙 = {𝜑𝐸 , 𝜑𝐻 , 𝜑𝑇 }.
(Embedding) For each node 𝑣𝑘 ∈ V𝑘 with initial featuresℎ

(0)
𝑣𝑘

= 𝑥𝑣𝑘 ,
a shared GraphSAGE [5] GNN encoder 𝜑𝑘,𝐸 is employed to embed
the local node 𝑣𝑘 ∈ V𝑘 and the learnable nodes 𝑣𝑘,head ∈ V𝑘,head
and 𝑣𝑘,tail ∈ V𝑘,tail:

ℎ𝑣𝑘 = GNN𝜑𝑘,𝐸 (𝑣𝑘 , G𝑘), ℎ𝑣𝑘,head = GNN𝜑𝑘,𝐸 (𝑣𝑘,head, G𝐼),
ℎ𝑣𝑘,tail = GNN𝜑𝑘,𝐸 (𝑣𝑘,tail, G𝐼)

(1)

where ℎ𝑣𝑘 , ℎ𝑣𝑘,head , and ℎ𝑣𝑘,tail are the representations of nodes 𝑣𝑘 ,
𝑣𝑘,head, and 𝑣𝑘,tail, respectively, and G𝐼 represents a discrete graph
with no edges. The learnable nodes do not adhere to a specific graph
structure but share the same GNN encoder with the local graph,
allowing us to condense structural information into the features of
the learnable nodes.

After acquiring node representations, we generate model pre-
dictions in each branch using class prototypes, which are the rep-
resentations of learnable nodes. For instance, in the head branch,

prototypes are defined as
𝑃𝑘,head = {ℎ

𝑣
(1,1)
𝑘,head

, . . . , ℎ
𝑣

(1,𝑠)
𝑘,head

, . . . , ℎ
𝑣

(|CV |,1)
𝑘,head

, . . . , ℎ
𝑣

(|CV |,𝑠)
𝑘,head

}, (2)

with 𝑠 prototypes per class. To ensure all class information con-
tributes to the final prediction, the target node representations are
further updated based on feature differences with all prototypes
assigned to each class as follows:

ℎ′𝑣𝑘 = 𝜑𝑘,𝐻 (ℎ𝑣𝑘 , {ℎ𝑣𝑘 − ℎ𝑣(1,1)
𝑘,head

, . . . , ℎ𝑣𝑘 − ℎ𝑣(|CV |,𝑠)
𝑘,head

}). (3)

Please refer to Appendix D for more details on 𝜑𝑘,𝐻 . Then, the class
probability for target node 𝑣𝑘 is given as follows:

𝑝(𝑐 |ℎ′𝑣𝑘) =
exp(−𝑑(ℎ′𝑣𝑘 , ℎ̄V𝑐𝑘,head))∑|CV |

𝑐′=1 exp(−𝑑(ℎ′𝑣𝑖 , ℎ̄V𝑐′(𝑘,head)
))
, (4)

where 𝑑(·, ·) is the squared Euclidean distance and ℎ̄V𝑐
𝑘,head

indicates
the average of prototypes of class 𝑐 , i.e., ℎ̄V𝑐

𝑘,head
= 1
𝑠

∑𝑠
𝑖=1 ℎ𝑣(𝑐,𝑖)

𝑘,head
.

To obtain final prediction p , we combine the class probabilities
from both branches phead and ptail by weighting them based on the
degree value of the target node 𝑣𝑘 (i.e., deg(𝑣𝑘)) as follows:

p = 𝛼 · phead + (1 − 𝛼) · ptail, (5)

where 𝛼 = 1/(1 +𝑒−(deg(𝑣𝑘)−(𝜆+1))), and 𝜆 is the tail degree threshold
outlined in the Appendix E. Note that, the parameter 𝛼 balances
the influence of head and tail branches based on the node’s de-
gree, preventing nodes with very high degree from dominating
the head branch. High-degree nodes, which rely heavily on the
head degree branch for predictions, significantly influence the fea-
tures of learnable nodes within the head degree branch, condensing
their knowledge into V𝑘,head. The tail degree branch specializes
in classifying tail degree nodes, which possess knowledge that is
not suitable for sharing across clients due to their potentially noisy
characteristics [16]. Then, the prediction loss for each client 𝑘 is cal-
culated as follows: L𝑘,𝑐𝑙𝑠 = ∑

𝑣𝑘 ∈V𝑘
∑
𝑐∈CV −I(𝑦𝑣𝑘 = 𝑐) log(p[𝑐]).

Furthermore, to ensure the stability of the condensation process,
we minimize the 𝐿2 norm of the learnable features, denoted as
L𝑘,𝑛𝑜𝑟𝑚 . Thus, the total loss for model parameters is

L𝑘 (𝜙𝑘 , 𝑋V𝑘,head , 𝑋V𝑘,tail) = L𝑘,𝑐𝑙𝑠 + 𝛽 · L𝑘,𝑛𝑜𝑟𝑚, (6)

where 𝛽 adjusts the extent of regularization.

3.2 Global Aggregation and Global Synthetic
Data Generation

Global Aggregation. In Figure 1(a), after training the 𝐾 local
clients, the server aggregates the local model weights for round

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Table 1: Model performance across settings. Mean accuracy with standard deviation over 3 runs.

(a
)S

ee
n
G
ra
ph

Cora CiteSeer PubMed Amazon Photo Amazon Computers
Methods 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients

Local 0.7357
(0.0030)

0.7325
(0.0066)

0.8039
(0.0008)

0.6674
(0.0069)

0.6647
(0.0045)

0.7128
(0.0035)

0.8445
(0.0003)

0.8108
(0.0000)

0.8024
(0.0011)

0.6724
(0.0003)

0.7959
(0.0106)

0.7562
(0.0137)

0.6523
(0.0221)

0.5764
(0.0001)

0.6645
(0.0051)

FedAvg 0.8416
(0.0044)

0.6332
(0.0166)

0.7162
(0.0382)

0.7426
(0.0024)

0.7498
(0.0049)

0.7252
(0.0035)

0.7126
(0.0000)

0.8640
(0.0024)

0.8586
(0.0010)

0.7668
(0.0414)

0.5695
(0.0483)

0.5669
(0.0974)

0.5626
(0.0715)

0.4195
(0.0173)

0.4858
(0.0187)

FedSAGE+ 0.7560
(0.0237)

0.4156
(0.0034)

0.3522
(0.1196)

0.7505
(0.0150)

0.5167
(0.0389)

0.4929
(0.0075)

0.8980
(0.0001)

0.9091
(0.0025)

0.9041
(0.0012)

0.9239
(0.0083)

0.6670
(0.0206)

0.6246
(0.0585)

0.7539
(0.0062)

0.6934
(0.0006)

0.6656
(0.0082)

FedGCN 0.8226
(0.0062)

0.8124
(0.0158)

0.7243
(0.0172)

0.7376
(0.0111)

0.7649
(0.0010)

0.7123
(0.0122)

0.7127
(0.0000)

0.8504
(0.0011)

0.8441
(0.0070)

0.7398
(0.0036)

0.5717
(0.0583)

0.5627
(0.0957)

0.5782
(0.0623)

0.4217
(0.0243)

0.4908
(0.0183)

FedPUB 0.8476
(0.0021)

0.8448
(0.0009)

0.8622
(0.0059)

0.7455
(0.0065)

0.7694
(0.0074)

0.7505
(0.0081)

0.9064
(0.0016)

0.9069
(0.0019)

0.9092
(0.0019)

0.9399
(0.0020)

0.9122
(0.0016)

0.8983
(0.0052)

0.8339
(0.0142)

0.8202
(0.0141)

0.8181
(0.0124)

FedNTD 0.8452
(0.0067)

0.8526
(0.0024)

0.6984
(0.0030)

0.7455
(0.0069)

0.7826
(0.0047)

0.7146
(0.0079)

0.9049
(0.0002)

0.9065
(0.0009)

0.9061
(0.0012)

0.9378
(0.0029)

0.9166
(0.0021)

0.9119
(0.0036)

0.8492
(0.0107)

0.8619
(0.0034)

0.8707
(0.0055)

FedED 0.8542
(0.0084)

0.8398
(0.0024)

0.6779
(0.0343)

0.7305
(0.0086)

0.7624
(0.0050)

0.6251
(0.0149)

0.9080
(0.0006)

0.9086
(0.0027)

0.8985
(0.0025)

0.9463
(0.0014)

0.9101
(0.0027)

0.8950
(0.0059)

0.8623
(0.0136)

0.8722
(0.0035)

0.8356
(0.0158)

FedLoG 0.8601
(0.0118)

0.8575
(0.0074)

0.8451
(0.0103)

0.7663
(0.0086)

0.7728
(0.0049)

0.7624
(0.0063)

0.9180
(0.0005)

0.9129
(0.0015)

0.9115
(0.0043)

0.9653
(0.0020)

0.9496
(0.0037)

0.9305
(0.0049)

0.9073
(0.0012)

0.8986
(0.0014)

0.8742
(0.0107)

(b
)M

is
si
ng

C
la
ss

Cora CiteSeer PubMed Amazon Photo Amazon Computers
Methods 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients

Local 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

FedAvg 0.3900
(0.1104)

0.1119
(0.0202)

0.0652
(0.0568)

0.2022
(0.0751)

0.1914
(0.0140)

0.3189
(0.0218)

0.0000
(0.0000)

0.0013
(0.0013)

0.0020
(0.0010)

0.0000
(0.0000)

0.0000
(0.0000)

0.0085
(0.0148)

0.0000
(0.0000)

0.0000
(0.0000)

0.0073
(0.0127)

FedSAGE+ 0.5000
(0.0457)

0.1393
(0.0317)

0.0287
(0.0111)

0.5581
(0.0524)

0.1622
(0.0470)

0.3701
(0.0528)

0.0000
(0.0000)

0.0015
(0.0013)

0.0034
(0.0004)

0.0000
(0.0000)

0.0000
(0.0000)

0.0036
(0.0051)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

FedGCN 0.0702
(0.0713)

0.2123
(0.0197)

0.0549
(0.0091)

0.1648
(0.0187)

0.1702
(0.0833)

0.0833
(0.0584)

0.0000
(0.0000)

0.0000
(0.0000)

0.0006
(0.0006)

0.0000
(0.0000)

0.0156
(0.0271)

0.0097
(0.0169)

0.0000
(0.0000)

0.0000
(0.0000)

0.0085
(0.0148)

FedPUB 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0012
(0.0021)

0.0053
(0.0026)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0002
(0.0003)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

FedNTD 0.3714
(0.1273)

0.1895
(0.0098)

0.0336
(0.0317)

0.4257
(0.0077)

0.2438
(0.0476)

0.2878
(0.0459)

0.0003
(0.0002)

0.0256
(0.0256)

0.0512
(0.0050)

0.0000
(0.0000)

0.0019
(0.0009)

0.0061
(0.0064)

0.0038
(0.0015)

0.0008
(0.0008)

0.0104
(0.0024)

FedED 0.5305
(0.1078)

0.1080
(0.0158)

0.0350
(0.0305)

0.3184
(0.2660)

0.1534
(0.0470)

0.1039
(0.1785)

0.0056
(0.0045)

0.0097
(0.0097)

0.0050
(0.0022)

0.2192
(0.0395)

0.1796
(0.0634)

0.0004
(0.0007)

0.1162
(0.0297)

0.0005
(0.0005)

0.0004
(0.0007)

FedLoG 0.6472
(0.0811)

0.4948
(0.0930)

0.4037
(0.0619)

0.6142
(0.0292)

0.5922
(0.1037)

0.5958
(0.0608)

0.1070
(0.0623)

0.1700
(0.1236)

0.2290
(0.0308)

0.4795
(0.0949)

0.5525
(0.1464)

0.1328
(0.0562)

0.3580
(0.1256)

0.2175
(0.0638)

0.0412
(0.0327)

𝑟 using the weighted average 𝜙 (𝑟+1) ← 1
|V |

∑𝐾
𝑘=1 |V𝑘 |𝜙

(𝑟)
𝑘
, where

|V| is the total number of nodes, and |V𝑘 | is the number of nodes
for the 𝑘-th client.
Global Synthetic Data Generation. In addition, the server gener-
ates global synthetic data, which will be employed during the Local
Generalization phase (Section 3.3) to help mitigate the issue of local
overfitting. More specifically, we first generate node features in
global synthetic data D𝑔 by merging the head degree condensed
nodesV𝑘,head from all clients, weighted by the proportion of head
classes for each client, since each client has expert knowledge of
the dominant classes within their data as shown in Appendix C.
More formally, for each class 𝑐 ∈ C, the feature vector of the 𝑖-th
global synthetic node for class 𝑐 , 𝑥

𝑣
(𝑐,𝑖)
𝑔

, is generated as follows:

𝑥
𝑣

(𝑐,𝑖)
𝑔

=
1∑𝐾

𝑘=1 𝑟
𝑐
𝑘

𝐾∑︁
𝑘=1

𝑟𝑐
𝑘
𝑥
𝑣

(𝑐,𝑖)
𝑘,head

, (7)

where 𝑟𝑐
𝑘

=
|V𝑐
𝑘
|

|V𝑘 | represents the proportion of nodes labeled 𝑐 in
the 𝑘-th client’s dataset. In this way, the server generates 𝑠 × |CV |
global synthetic nodesV𝑔 with features

𝑋V𝑔 = {𝑥
𝑣

(1,1)
𝑔
, . . . , 𝑥

𝑣
(1,𝑠)
𝑔
, . . . , 𝑥

𝑣
(|CV |,1)
𝑔

, . . . , 𝑥
𝑣

(|CV |,𝑠)
𝑔

},

encompassing knowledge related to both head degree and head
class across clients. Thus, the initially generated global synthetic
data is D𝑔 = (G𝑔 = (V𝑔, E∅), 𝑌V𝑔) with node features 𝑋V𝑔 .

Although structural information is vital for understanding the
data distribution in graph-structured data, the initially generated
global synthetic data D𝑔 comprises only the feature information
of nodes and lacks any surrounding neighbor information. Conse-
quently, we propose generating a single neighbor node that can
effectively represent the ℎ-hop subgraph of the synthetic node,
using pre-trained neighbor generators. These generators are specif-
ically trained to produce class-specific neighbors, as elaborated
in Appendix B. Local clients utilize these neighbor generators at
the local level to adaptively customize the features of the global

synthetic data, and then generate the neighbors of the customized
features, as detailed in following Section 3.3.

In summary, at the end of each round 𝑟 , the server distributes
the model weights 𝜙 (𝑟+1) and the global synthetic data D𝑔 .

3.3 Local Generalization
At the beginning of each round (𝑟 > 1), each client initializes
its local model with the distributed global model parameters 𝜙 .
After the local update within their local data (i.e., Local Fitting),
we additionally train the local model with the global synthetic
data D𝑔 , enabling it to generalize to locally absent knowledge (i.e.,
Local Generalization), such as tail and missing classes. Since each
client has different locally absent knowledge, we first adaptively
customize the global synthetic data for the current state of local
model and then train with the customized data.
Local Adaptation – Feature Scaling. Motivated by recent work
[1], we adjust the difficulty of the training data class-wise to prevent
overfitting to major classes while allowing the model to effectively
learn tail and missing classes. To achieve this, we use feature scaling
on the global synthetic data 𝑋V𝑔 as follows:

𝑥
𝑣

(𝑐,𝑖)
𝑔

= 𝑥
𝑣

(𝑐,𝑖)
𝑔

+ 𝛾𝑘 [𝑐] · (𝑥V𝑔 − 𝑥𝑣(𝑐,𝑖)
𝑔

), (8)

where 𝑥V𝑔 = 1
|V𝑔 |

∑
𝑥𝑣𝑔 ∈𝑋V𝑔 𝑥𝑣𝑔 and 𝛾𝑘 ∈ R | CV | is a class-wise

adaptive factor that adjusts prediction difficulty by moving the
global synthetic data of class 𝑐 to the average of global synthetic
data, making it harder to predict. Note that when 𝛾𝑘 = 1, the global
synthetic data for class 𝑐 is completely replaced with the average of
the global synthetic data, whereas the global synthetic data for class
𝑐 remains unchanged when𝛾𝑘 = 0. During training, we dynamically
modify the factor by incrementing it by 0.001 whenever the local
model’s accuracy for class 𝑐 exceeds the threshold at the end of the
round, thereby increasing the difficulty of the corresponding class.
Local Adaptation – Neighbor Generation. As structural infor-
mation is crucial for optimizing the GNN model, we generate a

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

neighbor for each customized global synthetic data using the class-
specific neighbor generator NG𝑐 for the corresponding class 𝑐 , as
shown in Figure 1(c). We then construct the synthetic graph set
Gsyn
𝑘

, which consists of graphs, each containing the customized
global synthetic node neighboring with its generated neighbor node.
It is worth noting that the generated neighbor node effectively rep-
resents the ℎ-hop subgraph structure of each synthetic node. The
details of how to pre-train the neighbor generators are provided in
Appendix B.
Train with Customized Data. Using the synthetic graphs Gsyn

𝑘
,

the prediction for the target synthetic nodes within V𝑔 follows
Eqs. 1-5 using the same local model𝜙𝑘 as for normal nodesV𝑘 , with
𝛼 set to 0.5. The prediction loss forD𝑔 isL𝑘,𝑔 = ∑

𝑣𝑔∈V𝑔
∑
𝑐∈CV −I(𝑦𝑣𝑔 =

𝑐) log(p[𝑐]). At the end of each round, we adjust the adaptive factor
𝛾𝑘 based on the class prediction accuracy.

In summary, the final loss of the local model isL𝑘 = L𝑘,𝑐𝑙𝑠+L𝑘,𝑔 .

4 EXPERIMENTS
4.1 Experimental Settings
Datasets.We conduct experiments on five real-world graph datasets.
Distributed subgraphs are constructed by dividing each dataset into
a certain number of clients using the METIS graph partitioning
algorithm [7]. The datasets used are Cora, CiteSeer, PubMed [14],
Amazon Computer, and Amazon Photo [12, 15]. For more details,
see Appendix J.
Baseline Methods. 1) Local: Refers to local training without any
weight sharing. 2) FedAvg [13]: The most widely-used FL baseline.
3) FedSAGE+ [21], 4) FedGCN [18] and 5) FedPUB [2]: subgraph-
FL baselines that primarily address missing knowledge within the
current local label distribution. To ensure a fair comparison, we
also evaluate our method against 6) FedNTD [9] and 7) FedED
[4], which address local overfitting in FL. For more details, see
Appendix K.
Evaluation Protocol.We perform FL for 100 rounds. Node classifi-
cation accuracy is measured on the client side and averaged across
all clients over three runs. More details are in Appendix L.

4.2 Experiment Results
Q1. How FedLoG perform in conventional FL settings? Ta-
ble 1(a) presents the evaluation of models on graphs that were used
for training. The label distributions of the test nodes match the
training label distribution of each client. We refer to this conven-
tional setting as Seen Graph, where models are evaluated on test
nodes within the same graph structure as the training nodes (i.e.,
transductive setting [8]). The overall performance of FedLoG on the
‘Seen Graph’ outperforms that of other baselines, demonstrating
its strong performance in conventional settings.
Q2. Does FedLoG generalize to unseen data after local updates?
In this section, we introduce a practical test setting for subgraph-FL,
evaluating on unseen node with missing classes within their local
graphs (i.e., Missing Class setting) to measure the model’s gen-
eralization performance on potential future unseen data. (Details
of other possible scenarios of unseen data, such as ‘Unseen node
with seen classes’ and ‘New client never participated in the training
phase’, are provided in Appendix G.1). Specifically, each client has
new nodes with missing classes added to its local graph. In order
to predict unseen nodes with missing classes, extensive knowledge
from other clients is required. We evaluate the performance on

new nodes representing missing classes for each client, assessing
how effectively the FL framework enables the local model to learn
previously absent knowledge.

In Table 1(b), Local and personalized FL models like FedPUB [2]
fail to predict the missing classes as they optimize for the training
label distribution. Although FedSAGE+ [21] and FedGCN [18] at-
tempt to compensate for missing neighbors, they are not always
effective because the missing class is not always within the neigh-
bors. Moreover, FedNTD [9] and FedED [4] address local overfitting
and achieve relatively high performance in missing class prediction.
However, they regularize the local model logits to match the global
model, risking noisy information from tail data and resulting in
inconsistent performance across different settings.

In contrast, FedLoG alleviates local overfitting by using reli-
able class representations and structural information across clients,
reducing the emphasis on noisy information. Thus, FedLoG success-
fully addresses unseen data, ensuring robust performance even with
missing classes due to its generalization ability across all classes
and structural features.

Additional experiments, including ablation studies and hyper-
parameter analysis, are provided in Appendix G. In addition, we
provide the privacy analysis of the synthetic data and the commu-
nication overhead in Appendix H and Appendix I, respectively.

5 CONCLUSION
In this study, we address the challenges of local overfitting and
unseen nodes in subgraph-FL with our proposed method, FedLoG.
Our model generates global synthetic data by condensing reliable
information from each class representation and its structural infor-
mation across clients, enabling adaptive generalization of absent
knowledge within local datasets. This approach enhances the gen-
eralization capabilities of local models, allowing them to handle
unseen data effectively. Our experimental results demonstrate that
FedLoG outperforms existing baselines, proving its efficacy in prac-
tical scenarios for generalizing to unseen data.

REFERENCES
[1] Sumyeong Ahn, Jongwoo Ko, and Se-Young Yun. 2023. Cuda: Curriculum of data

augmentation for long-tailed recognition. arXiv preprint arXiv:2302.05499 (2023).
[2] Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jaehong Yoon, and Sung Ju Hwang.

2023. Personalized subgraph federated learning. In International Conference on
Machine Learning. PMLR.

[3] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-
balanced loss based on effective number of samples. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition.

[4] Kuangpu Guo, Yuhe Ding, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. 2024.
Not all Minorities are Equal: Empty-Class-Aware Distillation for Heterogeneous
Federated Learning. arXiv preprint arXiv:2401.02329 (2024).

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[6] Haibo He and Yunqian Ma. 2013. Imbalanced learning: foundations, algorithms,
and applications. (2013).

[7] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[8] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[9] Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. 2022.
Preservation of the global knowledge by not-true distillation in federated learning.
Advances in Neural Information Processing Systems 35 (2022).

[10] Rui Liu, Pengwei Xing, Zichao Deng, Anran Li, Cuntai Guan, and Han Yu. 2024.
Federated Graph Neural Networks: Overview, Techniques, and Challenges. IEEE
Transactions on Neural Networks and Learning Systems (2024).

[11] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-gnn: Tail-node graph
neural networks. In Proceedings of the 27th ACM SIGKDDConference on Knowledge

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Discovery & Data Mining.
[12] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval.

[13] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR.

[14] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008).

[15] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[16] Arjun Subramonian, Jian Kang, and Yizhou Sun. 2024. Theoretical and Empirical
Insights into the Origins of Degree Bias in Graph Neural Networks. arXiv preprint
arXiv:2404.03139 (2024).

[17] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.
Fedgnn: Federated graph neural network for privacy-preserving recommendation.
arXiv preprint arXiv:2102.04925 (2021).

[18] Yuhang Yao, Weizhao Jin, Srivatsan Ravi, and Carlee Joe-Wong. 2024. FedGCN:
Convergence-Communication Tradeoffs in Federated Training of Graph Con-
volutional Networks. Advances in Neural Information Processing Systems 36
(2024).

[19] Sukwon Yun, Kibum Kim, Kanghoon Yoon, and Chanyoung Park. 2022. Lte4g:
Long-tail experts for graph neural networks. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management.

[20] Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao
Wu. 2022. Federated learning with label distribution skew via logits calibration.
In International Conference on Machine Learning. PMLR.

[21] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Sub-
graph federated learning with missing neighbor generation. Advances in Neural
Information Processing Systems 34 (2021).

[22] Tianxiang Zhao, Xiang Zhang, and SuhangWang. 2021. Graphsmote: Imbalanced
node classification on graphs with graph neural networks. In Proceedings of the
14th ACM international conference on web search and data mining.

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

Supplementary Material for Subgraph Federated Learning for Local Generalization

A Related Works 8

A.1 Subgraph Federated Learning 8

A.2 Local Overfitting in Federated Learning 8

B Detailed Process of Pretraining the Neighbor Generator 8

C Analysis of Reliability of Head Degree and Head Class Nodes 9

D Detailed Process of the Classifier 𝜑𝑘,𝐻 and 𝜑𝑘,𝑇 10

E Criteria for Threshold Degree Value for Tail-Degree Nodes 11

F Detailed Process of Evaluating Unseen Data 11

F.1 Closed Set 11

F.2 Open Set 12

G Additional Experiments 13

G.1 Performance on Unseen Node & New Client settings 13

G.2 Do the headness of degree and class really help other clients? 13

G.3 Ablation Study 13

G.4 Impact of the Hyperparameters 14

G.5 Experimental Results on the Open Set 15

H Privacy Analysis 15

I Communication Overhead 17

J Datasets 17

K Baselines 17

L Implementation Details 18

M Detailed Process of Generating HH/HT/TH/TT Global Synthetic Data 18

N Notations 19

O Experimental Dataset Statistics 21

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

A RELATEDWORKS
A.1 Subgraph Federated Learning
Recent works [10] have introduced FL frameworks that enable collaborative GNN training without sharing graph data. Subgraph-FL aims
to leverage disjoint graphs from each local client to collaboratively train a global model for solving downstream tasks. Existing studies
[10, 17, 18, 21] have attempted to supplement the local absent knowledge among local graphs that each client currently holds. For instance,
FedSAGE+ [21], FedGNN [17], and FedGCN [18] request node information from other clients to recover missing neighborhood nodes and
compensate for potential edges. FedPUB [2] focuses on personalizing the local model by finding similar communities with the current local
data across the clients. However, due to the mutable properties of graph domains, subgraph-FL must generalize well not only to the current
label distribution but also to new nodes that will emerge in the future. Unlike these approaches [2, 17, 18, 21] that only focus on finding
missing knowledge relevant to the current state, our model learns representations for all classes and their connection patterns, ensuring
better generalization across various future scenarios.

A.2 Local Overfitting in Federated Learning
Imbalanced data distribution is common in real-world scenarios, and significant efforts [3, 19] have been made to address the resulting
deterioration in model performance. Federated Learning cannot avoid the data imbalance problem, as the presence of multiple clients implies
that each client has its own data imbalance, making it prone to overfitting to the local data [4, 9, 20]. Recent works [4, 9, 20] aim to alleviate
local overfitting in FL by regularizing local models to be similar to the global model. FedLC [20], and FedED [4] introduce logit calibration,
which aligns the logits of each class in the local models more closely with those of the global model. While FedED [4] addresses the missing
class problem in FL, it does not consider the noisy properties of tail data [16]. Our method, FedLoG, addresses local overfitting and ensures
reliable representation of all classes by leveraging class-specific knowledge across clients and considering their structural properties. To the
best of our knowledge, this is the first work to tackle local overfitting with missing classes in subgraph-FL.

B DETAILED PROCESS OF PRETRAINING THE NEIGHBOR GENERATOR

NeighGen
𝐍𝐆𝟏

NeighGen
𝐍𝐆𝟐

Class 1
NeighGen

Class 2
NeighGen

Class 3
NeighGen

Global 𝐍𝐆𝒄s

𝐍𝐆#

mean feat.

gen feat.

𝑣!

ℎ-hop

G
N

N
 𝝓
𝒓𝒂𝒏𝒅

∇ℒ()*+

∇ℒ,-.

ℒ!,#$%&

Synthetic Graph

True Subgraph

ℒ!,'(%)

Local graph
𝒢#

Local.

'𝑦/!
()*+

'𝑦/!
,-.

Server.Feature Matching

Gradient Matching

𝑥*!

𝒢!,*!
+,-

Figure 2: Overview of Pretraining the Neighbor Generator.

In this section, we will conceptually outline the process of pretraining local neighbor generators and the method of aggregating these
generators on the server to produce unbiased local neighbors.

Local. In Figure 2, we train a neighbor generatorNG𝑘 for each local client 𝑘 . The input to the neighbor generator is the feature vector of the
target node 𝑣𝑘 , denoted by 𝑥𝑣𝑘 . The neighbor generator produces a feature vector 𝑥N𝑣𝑘 = NG𝑘 (𝑥𝑣𝑘) ∈ R1×𝑑 , whereN𝑣𝑘 is a single generated
neighbor node for the target node 𝑣𝑘 . Then we generate a subgraph for the target node, which we denote as Gsyn

𝑘,𝑣𝑘
= (V𝑣𝑘 = {𝑣𝑘 ,N𝑣𝑘 }, E𝑘,𝑣𝑘),

where E𝑘,𝑣𝑘 has only one connection between nodes 𝑣𝑘 and N𝑣𝑘 .
This process condenses information from the ℎ-hop subgraph around 𝑣𝑘 into the generated neighbor node and mimics the training effect

of the true ℎ-hop subgraph into the generated subgraph Gsyn
𝑘,𝑣𝑘

. To achieve this, for any target node 𝑣𝑘 ∈ V𝑘 , we extract the ℎ-hop subgraph
G𝑘,𝑣𝑘 = (V𝑘,𝑣𝑘 , E𝑘,𝑣𝑘) ⊆ G𝑘 , then minimize the distance between the average features of real neighbors and generated features:

L𝑘,feat =
1
|V𝑘 |

∑︁
𝑣𝑘 ∈V𝑘

∥𝑥N𝑣𝑘 − 𝑥N𝑣𝑘 ∥
2
2, where 𝑥N𝑣𝑘 =

1
|V𝑘,𝑣𝑘 |−1

∑︁
𝑣∈V𝑘,𝑣𝑘 \𝑣𝑘

𝑥𝑣 . (9)

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

After that, we minimize the difference between gradients of GNNs applied to Gsyn
𝑘,𝑣𝑘

and G𝑘,𝑣𝑘 with 𝑁 randomly initialized weights 𝜙 (𝑛)
rand

(for 𝑛 = 1, 2, . . . , 𝑁) optimizing for the target-node classification task as follows:

L𝑘,grad =
1
𝑁

𝑁∑︁
𝑛=1

∇𝜙 (𝑛)
rand
𝑙 (𝜙 (𝑛)

rand;Gsyn
𝑘,𝑣𝑘

(𝑣𝑘), 𝑦𝑣𝑘) − ∇
𝜙

(𝑛)
rand
𝑙 (𝜙 (𝑛)

rand;G𝑘,𝑣𝑘 (𝑣𝑘), 𝑦𝑣𝑘)

2

2
(10)

The final loss for optimizing the local neighbor generator is defined as
LNG𝑘 = L𝑘,feat + L𝑘,grad . (11)

We pretrain NG𝑘 for all 𝑘 ∈ {1, . . . , 𝐾} over 𝑃 epochs (i.e., 100) using the training sets within each local dataset, resulting in a collection
𝔑 = {NG1, . . . ,NG𝐾 }. We set 𝑁 as 20.

Server. Since clients have different label distributions, local neighbor generators tend to be biased towards generating neighbors of the
dominant class within their respective local graphs. This means that each local neighbor generator has expert knowledge of generating
neighbors for dominant classes within its local data. Therefore, as shown in Figure 1(a), we aggregate the local neighbor generators on a
class-wise basis, weighting them by the proportion of each class within the local training set.

Formally, for each class 𝑐 ∈ C, the aggregated neighbor generator NG𝑐 is defined as:

NG𝑐 =
1∑𝐾

𝑘=1 𝑟
𝑐
𝑘

𝐾∑︁
𝑘=1

𝑟𝑐
𝑘
NG𝑘 , (12)

where 𝑟𝑐
𝑘

=
|V𝑐
𝑘
|

|V𝑘 | represents the proportion of nodes with label 𝑐 in the 𝑘-th client’s local dataset,V𝑐
𝑘
is the set of nodes with label 𝑐 in the

𝑘-th client’s graph, and |V𝑘 | is the total number of nodes in the 𝑘-th client’s graph. In practice, we only utilize the nodes within the training
set for counting the number of nodes. Consequently, we generate class-specific neighbor generators NG𝑐 for all 𝑐 ∈ C. These generators are
then frozen and shared with all clients for the entire federated learning process.

C ANALYSIS OF RELIABILITY OF HEAD DEGREE AND HEAD CLASS NODES
In this section, we detail the process of evaluating data reliability within the graph data. We define “Data Reliability” as the accuracy and
consistency of information from decentralized nodes. Specifically, we assess which data within the local dataset positively or negatively
impacts other clients in the FL framework. Inspired by the robust performance of GNNs on head class and head degree nodes [19, 22], we
found that data reliability largely depends on 1) the extent of data connections (i.e., degree headness) and 2) the predominance of certain
classes (i.e., class headness).

We set the base settings for both perspectives. In the FL framework, we assign two roles to each client. The ‘Receiver’ is the client who
receives information about the target class from other clients. This client is trained using the same training data across all settings for this
section, ensuring a fair comparison to validate the impact from other clients. ‘Contributors’ are the clients who share knowledge from their
own data with the ‘Receiver’. Their training sets (i.e., information shared through the FL framework) vary for each setting, such as adjusting
the proportion of head/tail degree nodes or class imbalance rate. In a global setting with 𝐾 clients in FL, we assign one client as the ‘Receiver’
and the others as ‘Contributors’ (i.e., 𝐾 − 1 clients).

To assess how degree or class headness affects data reliability, we measure the target class accuracy of the ‘Receiver’ when varying the
training sets of ‘Contributors’. This helps identify whether headness or tailness of data positively or negatively impacts the ‘Receiver’. We
construct the global model by averaging the weights from each client and then evaluate the global model on the ‘Receiver’s’ local graph
following FedAvg [13].

Impact of Degree Headness on the Data Reliability. We divide head degree and tail degree using the tail degree threshold 𝜆 set to 3, as
justified in Appendix E. Nodes with degrees less than or equal to 3 are considered tail degree nodes, while those with degrees greater than 3
are head degree nodes. We only vary the training dataset of the ‘Contributors’. We create three different training sets for each ‘Contributor’:
1) Head Degree nodes only (Head degree), 2) Tail Degree nodes only (Tail degree), and 3) Balanced degree nodes (Head+Tail degree). Each
training set contains the same number of nodes, but their headness differs according to the setting. The ‘Head degree’ setting includes
only head degree nodes with the target class, the ‘Tail degree’ setting includes only tail degree nodes, and the ‘Balanced degree’ setting
includes an equal mix of head and tail degree nodes. We use the FedAvg [13] framework for the federated learning setting with 100 rounds.
At the final round, we evaluate the accuracy of the target class within the ‘Receiver’s’ local data using the global model. We average the
performances across all classes and report the mean of three seeds results.

Figure 3(left) shows receiver accuracy with contributor training sets composed of 1) ‘Head Degree nodes only (Head Deg.)’, 2) ‘Tail Degree
nodes only (Tail degree)’, and 3) ‘Balanced degree nodes (Head+Tail Deg.)’. The receiver’s performance improves with knowledge from head
degree nodes within contributors, indicating their reliability over tail degree nodes. As the number of clients increases, the performance gap
widens, highlighting the negative impact of noise within tail degree nodes.

Impact of Class Headness on the Data Reliability. We define the ‘Imbalance Rate’ using the proportion of the number of the target class
within each ‘Contributor”s local data. We fix the training nodes of the target class for each ‘Contibutor’, and varies the number of training
nodes for other classes which are not the target class. Let 𝑛𝑐 be the number of nodes per class, and let the number of training nodes of the
target class be 𝑛𝑡 . We then assign 𝑛𝑘 number of training nodes for each non-target class:

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

←�HEAD TAIL→

Figure 3: Data Reliability Analysis (PubMed used).

𝑛𝑘 = 𝑛𝑡 +
𝑟imb
10
×min(𝑛𝑐∀𝑐 ∈ 𝐶) (13)

where min(𝑛𝑐∀𝑐 ∈ 𝐶) is the minimum number of nodes across all other classes 𝑐 within the set 𝐶 , and 𝑟imb is the imbalance rate can be
defined as:

𝑟imb = 10 × 𝑛𝑘 − 𝑛𝑡
min(𝑛𝑐∀𝑐 ∈ 𝐶)

.

Thus, if the 𝑟imb has a negative value (i.e., 𝑛𝑡 > 𝑛𝑘), it means the target class becomes a head class within the local data. Conversely, when
the 𝑟imb has a positive value, the target class becomes a tail class. As the value of 𝑟imb increases, the tailness of the target class gets higher.
We set 𝑟imb in the range from -5 to +5, and we average the performances of the ‘Receiver’ at the final round across all classes and report the
mean of three seed results.

Figure 3(right) manipulates label distribution within each contributor’s local graph, transforming the target class into a tail or head class
by varying the number of training nodes in other classes while keeping the target class constant. When the class headness of the target
class within contributors is high (i.e., negative imbalance rates), contributors enhance the receiver’s performance. Conversely, with low
headness (i.e., positive imbalance rates), the receiver’s performance deteriorates as contributors struggle to represent the target class [19].
This negative impact is magnified with more clients.

In summary, data with ‘headness’ in both degree and class from other clients helps a client learn reliable representations, while ‘tailness’
data negatively impacts learning due to insufficient or noisy information. Our method, FedLoG, collects knowledge from head degree and
head class data across all clients to alleviate locally absent knowledge.

D DETAILED PROCESS OF THE CLASSIFIER 𝜑𝑘,𝐻 AND 𝜑𝑘,𝑇
In this section, we provide the detailed process of the classifiers 𝜑𝑘,𝐻 and 𝜑𝑘,𝑇 . Specifically, we describe the details of Eq. 4:

ℎ′𝑣𝑘 = 𝜑𝑘,𝐻 (ℎ𝑣𝑘 , {ℎ𝑣𝑘 − ℎ𝑣(0,1)
𝑘,head

, . . . , ℎ𝑣𝑘 − ℎ𝑣(|CV |,𝑠)
𝑘,head

}),

which is one of the classifiers (i.e., the classifier for the head degree branch) within the local model. Since both the head degree and tail
degree classifiers have the same architecture, we describe the details only for the head degree classifier.

Our main purpose for the classifier is to ensure that all prototypes 𝑃head participate in the final prediction of the target node, so the
prediction loss is influenced by all prototypes. For this, we first generate a message m𝑘 𝑗 from a prototype node 𝑣 𝑗 ∈ 𝑃𝑘,head to the target
node 𝑣𝑘 using the distance 𝑑𝑘 𝑗 between them utilizing MLPmsg:

m𝑘 𝑗 = MLPmsg([ℎ𝑣𝑘 ∥ n𝑣𝑘 , 𝑑𝑘 𝑗]), (14)

where 𝑑𝑘 𝑗 is calculated as:
𝑑𝑘 𝑗 = ∥∆r𝑘 𝑗 ∥2, ∆r𝑘 𝑗 = [ℎ𝑣𝑘 ∥ n𝑣𝑘] − [ℎ𝑣𝑗 ∥ ℎ𝑣𝑗], (15)

and ∥ denotes concatenation. Here, n𝑣𝑘 = 1
|N𝑣𝑘 |

∑
𝑣𝑜 ∈N𝑣𝑘 ℎ𝑣𝑜 represents the average embedding of the 1-hop neighbors of the target node 𝑣𝑘 .

We use neighbor information because the representations of neighbors from high-degree nodes and low-degree nodes differ, allowing each
branch to leverage degree-specific knowledge. The target node embedding ℎ𝑣𝑘 is then updated by applying a learned transformation to the
representation differences ℎ𝑣𝑘 − ℎ𝑣𝑗 and aggregating these transformations:

t𝑘 𝑗 = (ℎ𝑣𝑘 − ℎ𝑣𝑗) ⊙ MLPtrans(m𝑘 𝑗), (16)

T𝑘 =
1

|𝑃𝑘,head |
∑︁
𝑗

t𝑘 𝑗 , (17)

ℎ′𝑣𝑘 = ℎ𝑣𝑘 + T𝑘 , (18)

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

where MLPtrans transform the message𝑚𝑘 𝑗 into a scalar value.
In summary, the classifiers 𝜑𝑘,𝐻 and 𝜑𝑘,𝑇 update the embedding of the target node ℎ𝑖 by reflecting the interaction between all different

prototypes in 𝑃head so that the final prediction and its loss are influenced by all prototypes (i.e., learnable synthetic nodes).

E CRITERIA FOR THRESHOLD DEGREE VALUE FOR TAIL-DEGREE NODES

𝜆

Figure 4: The number of nodes for HH/HT/TH/TT at threshold 𝜆 (Cora dataset used).

Recent methods [11, 19] addressing the degree long-tail problem consider nodes with degrees less than or equal to 5 as tail degree nodes,
while those with degrees greater than 5 are considered head degree nodes.

As shown in Figure 4, we illustrate the number of nodes belonging to 1) Head class & Head degree (HH), 2) Head class & Tail degree (HT),
3) Tail class & Head degree (TH), and 4) Tail class & Tail degree (TT) as we vary the threshold value 𝜆 within the global graph. We use the
Cora dataset for validation.

When the threshold 𝜆 increases, the number of HH nodes significantly decreases, reducing the amount of knowledge that can be condensed
into the global synthetic data. In this work, we set 𝜆 to 3 to utilize a sufficient amount of HH knowledge while filtering out noisy information
from tail degree nodes.

F DETAILED PROCESS OF EVALUATING UNSEEN DATA

𝒱! 𝒱"

New
Client𝒱#

𝒱! 𝒱"

𝒱#
New
Client

𝒱!"

𝒱!"

𝒱!"

(a) Closed set (b) Open set

Figure 5: Overview of Unseen Data settings (𝐾 = 3).

In this section, we provide a detailed description of our proposed ‘Unseen Data’ test settings (i.e., ‘Unseen Node’, ‘Missing Class’, and
‘New Client’). To evaluate realistic scenarios, we define two different settings for evaluating unseen data: 1) Closed set nodes setting (Closed
set) and 2) Open set nodes setting (Open set). The results in Table 1 are evaluated on the closed set nodes setting.

F.1 Closed Set
Following recent work [2], we partition the global graph into several subgraphs using the Metis graph partitioning algorithm [7]. For the
‘New Client’ setting, we generate an additional subgraph, resulting in the partitioning of the global graph into 𝑘 + 1 subgraphs, where 𝑘
denotes the number of clients. Due to the properties of the Metis algorithm, the extra subgraph has a distinct label distribution, as the
algorithm minimizes the number of edges between partitions, leading to the formation of distinct communities.

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Table 2: Model performance across settings. Mean accuracy with standard deviation over 3 runs.

(a
)U

ns
ee
n
N
od

e

Cora CiteSeer PubMed Amazon Photo Amazon Computers
Methods 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients

Local 0.1250
(0.0030)

0.2957
(0.0079)

0.2854
(0.0263)

0.4443
(0.0131)

0.3471
(0.0020)

0.5177
(0.0052)

0.7510
(0.0010)

0.7292
(0.0000)

0.7489
(0.0013)

0.1333
(0.0000)

0.1900
(0.0392)

0.3958
(0.0211)

0.1687
(0.0000)

0.2488
(0.0000)

0.3890
(0.0043)

FedAvg 0.5403
(0.0797)

0.5198
(0.0179)

0.4139
(0.1308)

0.6585
(0.0220)

0.6098
(0.0301)

0.6199
(0.0084)

0.6154
(0.0000)

0.8189
(0.0120)

0.8070
(0.0043)

0.1782
(0.0419)

0.2125
(0.0136)

0.3727
(0.0221)

0.2275
(0.1017)

0.3095
(0.0179)

0.4177
(0.0335)

FedSAGE+ 0.5653
(0.0546)

0.4265
(0.0062)

0.3836
(0.0705)

0.6572
(0.0093)

0.4023
(0.0339)

0.6154
(0.0034)

0.8944
(0.0048)

0.8921
(0.0089)

0.8926
(0.0051)

0.4781
(0.0093)

0.2298
(0.0394)

0.4607
(0.0391)

0.3462
(0.0325)

0.3555
(0.0196)

0.3596
(0.0024)

FedGCN 0.3689
(0.0646)

0.5877
(0.0018)

0.5075
(0.0001)

0.6232
(0.0243)

0.6530
(0.1095)

0.6139
(0.0119)

0.6154
(0.0000)

0.7759
(0.0058)

0.8188
(0.0049)

0.2565
(0.0067)

0.2604
(0.0077)

0.3708
(0.0304)

0.2086
(0.0597)

0.3084
(0.0140)

0.4103
(0.0342)

FedPUB 0.5529
(0.0246)

0.5192
(0.0064)

0.4767
(0.0286)

0.6798
(0.0334)

0.6691
(0.0057)

0.6938
(0.0245)

0.8878
(0.0003)

0.8822
(0.0056)

0.8836
(0.0043)

0.4085
(0.0118)

0.3890
(0.0404)

0.5033
(0.0155)

0.4414
(0.0225)

0.5025
(0.0466)

0.5253
(0.0471)

FedNTD 0.6355
(0.0195)

0.5880
(0.0041)

0.3913
(0.1235)

0.7057
(0.0173)

0.7014
(0.0614)

0.6151
(0.0155)

0.8939
(0.0068)

0.8852
(0.0044)

0.8816
(0.0031)

0.4042
(0.0155)

0.5833
(0.0043)

0.5286
(0.0030)

0.5056
(0.0440)

0.6034
(0.0309)

0.6482
(0.0226)

FedED 0.7338
(0.0294)

0.5514
(0.0117)

0.3916
(0.1184)

0.6646
(0.0658)

0.6148
(0.0097)

0.5381
(0.0781)

0.9008
(0.0027)

0.8884
(0.0036)

0.8730
(0.0077)

0.6227
(0.0429)

0.4265
(0.0675)

0.4629
(0.0137)

0.4582
(0.0176)

0.5408
(0.0223)

0.4940
(0.0275)

FedLoG 0.7341
(0.0273)

0.7413
(0.0316)

0.7406
(0.0527)

0.7624
(0.0522)

0.7415
(0.0142)

0.8044
(0.0078)

0.9044
(0.0021)

0.8956
(0.0033)

0.8965
(0.0061)

0.7065
(0.0715)

0.7077
(0.0571)

0.7176
(0.0277)

0.7677
(0.0237)

0.8156
(0.0326)

0.6735
(0.0292)

(b
)N

ew
C
li
en

t

Cora CiteSeer PubMed Amazon Photo Amazon Computers
Methods 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients

Local 0.0995
(0.0084)

0.1488
(0.0059)

0.1778
(0.0284)

0.1435
(0.0113)

0.1968
(0.0006)

0.1337
(0.0000)

0.3570
(0.0000)

0.3947
(0.0000)

0.3936
(0.0001)

0.0313
(0.0001)

0.0965
(0.0004)

0.1169
(0.0089)

0.1571
(0.0000)

0.1974
(0.0000)

0.2816
(0.0111)

FedAvg 0.3583
(0.0206)

0.2713
(0.0057)

0.3924
(0.1880)

0.2572
(0.0222)

0.2859
(0.0348)

0.2976
(0.0138)

0.3333
(0.0000)

0.5243
(0.0138)

0.5175
(0.0240)

0.2597
(0.0118)

0.0853
(0.0044)

0.1661
(0.0172)

0.1978
(0.0000)

0.2924
(0.0637)

0.4799
(0.0904)

FedSAGE+ 0.2411
(0.0109)

0.3250
(0.0226)

0.4129
(0.1052)

0.3630
(0.0385)

0.0646
(0.0099)

0.1048
(0.0322)

0.3834
(0.0022)

0.5616
(0.0126)

0.5279
(0.0000)

0.2782
(0.0086)

0.0900
(0.0021)

0.1472
(0.0549)

0.2132
(0.3683)

0.3718
(0.1044)

0.2756
(0.0062)

FedGCN 0.3449
(0.0494)

0.3320
(0.0052)

0.4825
(0.0189)

0.2572
(0.0072)

0.4548
(0.1900)

0.2144
(0.0566)

0.3333
(0.0000)

0.4830
(0.0048)

0.4890
(0.0067)

0.2597
(0.0550)

0.0659
(0.0226)

0.1605
(0.0169)

0.2066
(0.0781)

0.3009
(0.0590)

0.4841
(0.0920)

FedPUB 0.3990
(0.0239)

0.2258
(0.0153)

0.4031
(0.0087)

0.3929
(0.0485)

0.3408
(0.0113)

0.3930
(0.0296)

0.4112
(0.0007)

0.6036
(0.0060)

0.5743
(0.0008)

0.3171
(0.0120)

0.1075
(0.0102)

0.2540
(0.0078)

0.5244
(0.0276)

0.6764
(0.0289)

0.5543
(0.0586)

FedNTD 0.3805
(0.0328)

0.3169
(0.0010)

0.3705
(0.1879)

0.4321
(0.0479)

0.5288
(0.0940)

0.3057
(0.0166)

0.4153
(0.0039)

0.6321
(0.0093)

0.6026
(0.0106)

0.4617
(0.1349)

0.1473
(0.0036)

0.2980
(0.0361)

0.0038
(0.0602)

0.7146
(0.0101)

0.7873
(0.0232)

FedED 0.4527
(0.0353)

0.2537
(0.0165)

0.3194
(0.1364)

0.3303
(0.1068)

0.4053
(0.0240)

0.1346
(0.0136)

0.4842
(0.0226)

0.6352
(0.0019)

0.5969
(0.0131)

0.5451
(0.0586)

0.1563
(0.0098)

0.2622
(0.0027)

0.1162
(0.0712)

0.7147
(0.0067)

0.5228
(0.0610)

FedLoG 0.5047
(0.0884)

0.4439
(0.0455)

0.6055
(0.0914)

0.5973
(0.1623)

0.5647
(0.0179)

0.6487
(0.1143)

0.6053
(0.1293)

0.7091
(0.0557)

0.7546
(0.0107)

0.5605
(0.1052)

0.5083
(0.1794)

0.5574
(0.0368)

0.7386
(0.0190)

0.9164
(0.0071)

0.8029
(0.0866)

The closed set setting includes unseen data for the ‘Unseen Node’ and ‘Missing Class’ settings from other clients. Specifically, in Figure 5(a),
the global set of nodes isV = ⋃𝐾

𝑘=1V𝑘 , withV𝑖 ∩V𝑗 = ∅ for all 𝑖 ̸= 𝑗 . We construct the ‘Unseen Node’ and ‘Missing Class’ nodes for client
𝑘 by expanding the ℎ-hop subgraph from the local graph G𝑘 at testing time. Since we allocate all nodes within the global node setV to the
clients, the nodes within the ℎ-hop subgraph (i.e.,V𝑢

𝑘
) inevitably overlap with those of other clients. Although nodes may overlap, no edges

are shared between different clients. Unseen nodes from other clients establish new connections with the local data.
For the ‘Missing Class’ setting, we select the missing classes for each client and then exclude the nodes corresponding to those classes (i.e.,

Vuc
𝑘

) within each local graph G𝑘 . To maintain the overall context of the local graph, we select the missing class from tail classes, which have
the smallest portion within each local graph. If the number of nodes corresponding to the missing classes is insufficient, we add additional
missing classes for those clients. Excluded nodesVuc

𝑘
are included inV𝑢

𝑘
.

When evaluating the ‘Missing Class’ at test time, we expand the local graph G𝑘 to the range of ℎ-hop, and within the evolved graph
structure, the local model predicts the labels of nodes inVuc

𝑘
. For ‘Unseen Node’, the local model predicts the labels of nodes inV𝑢

𝑘
\ Vuc

𝑘
.

For real-world case for the Closed Set setting, consider Store-A, which uses a model tailored to the purchasing habits of its regular
customers. This model may struggle to adapt to the distinct buying patterns of customers from Store-B. These new patterns could create
unfamiliar ‘also-bought’ connections between products within Store-A, especially if they involve new products that Store-A has never sold
before. However, these customers can visit Store-A at any time, forming new relationships with existing nodes, reflecting a real-world
scenario. This complexity increases the difficulty in effectively integrating and addressing new nodes in the model. In addition, we provide
the data statistics for each setting in Appendix O.

F.2 Open Set
In real-world scenarios, unseen data outside the global nodesV in the FL system can emerge and form new relationships with existing
nodes. We define this setting as Open Set, where the unseen nodes areV𝑢

𝑘
∩V = ∅. To create this setting, we randomly crop 20% of the

global graph before partitioning it into 𝑘 + 1 subgraphs, denoting the cropped node set asVcrop.
Similar to the Closed Set, we exclude nodes corresponding to locally assigned missing classes within each local graph. At test time, for the

‘Unseen Node’ and ‘Missing Class’ settings, we reconstruct the structure between cropped nodes Vcrop and local nodes V𝑘 . Within the
reconstructed graph, we evaluate the nodes inVcrop that belong to the missing classes for the ‘Missing Class’ setting and those having
locally trained classes for the ‘Unseen Node’ setting.

In Table 3, we provide the experimental results on the open set in Appendix G.5.

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

G ADDITIONAL EXPERIMENTS
G.1 Performance on Unseen Node & New Client settings
In Table 2, we provide the results of performance on ‘Unseen Node’ and ‘New Client’ settings of baselines and our proposed method FedLoG.
Detailed settings are described in Appendix F.

1) Unseen Node (Table 2(a)). Each client has new nodes with seen classes added to its local graph, which introduce structural changes.
We perform evaluations on the new nodes to assess how well the FL framework adapts to these structural changes.

2) New Client (Table 2(b)). A new client that has never participated in the FL framework emerges. This client has a distinct label
distribution and graph structure. We assess how well the FL framework generalizes to accommodate this new client, ensuring robust
performance across diverse scenarios. We evaluate the nodes within the unseen graph using each model after local updates, and then report
the mean accuracy for all clients.

In these experiments, our proposed method,FedLoG, demonstrates superior performance compared to other models. Specifically, in the
‘Unseen Node’ setting, FedLoG shows a remarkable ability to adapt to new structural changes introduced by the addition of new nodes with
seen classes. This adaptability is crucial for maintaining model accuracy and reliability in dynamic environments where the structure of the
data can change over time.

In the ‘New Client’ scenario, FedLoG’s performance is particularly noteworthy. The method shows excellent generalization capabilities,
effectively handling the introduction of a new client with a unique label distribution and graph structure. This scenario simulates real-world
situations where new clients with different data characteristics join the FL framework. FedLoG’s ability to maintain high performance in this
setting highlights its robustness and flexibility, making it a reliable choice for diverse and evolving federated learning environments.

Overall, FedLoG consistently outperforms other models in both settings, showcasing its effectiveness in adapting to new data and
generalizing across different scenarios. These results underscore the potential of FedLoG as a powerful tool for federated learning applications,
where adaptability and generalization are critical for success.

G.2 Do the headness of degree and class really help other clients?

(a) Seen Graph (b) Unseen Node (c) Missing Class (d) New Client

Figure 6: Impact of headness of class/degree for various scenarios (Amazon Clothing - 3 Clients).

We evaluate the importance of the headness of class/degree under various scenarios, both of which are expected to enhance the data
reliability. As FedLoG additionally trains the clients using global synthetic data, we measure the impact by varying the knowledge condensed
into the global synthetic data. Specifically, we compare four different test settings for constructing global synthetic data using 1) Head Class
& Head Degree nodes (HH), 2) Head Class & Tail Degree nodes (HT), 3) Tail Class & Head Degree nodes (TH), and 4) Tail Class & Tail
Degree nodes (TT). Detailed descriptions are provided in Appendix M.

Figure 6 shows test accuracy curves that verify the impact of each test setting on performance and stability. Data reliability varies with
global synthetic data knowledge, with HH knowledge being the most reliable. Class headness significantly affects reliability, evident in the
performance gap between head and tail classes. Degree headness impacts stability, with tail degree settings showing more fluctuations. Thus,
we can conclude that using HH knowledge is crucial for maintaining reliability and stable outcomes.

G.3 Ablation Study

Unseen Node Missing Class New Client

Figure 7: Ablation studies (CiteSeer - 3 Clients).

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

We perform an ablation study on 1) Local Generalization (w/o LG), 2) Neighbor Generator (w/o NG), and 3) Adaptive Factor (w/o Adapt).
As these modules are all directly related to addressing unseen data, we depict the test accuracy curves in Unseen Data settings to easily
verify the effectiveness of each module.

Local Generalization. Local Generalization is an essential phase to prevent local overfitting after the local updates of each client within
the FL framework. The Local Generalization phase enables clients to learn locally absent knowledge from the global synthetic data, allowing
them to generalize all classes even if they don’t have any data for certain classes within their local data (i.e., missing class). As shown in
Figure 7, our method without the Local Generalization phase fails to generalize the missing class, which means Local Generalization is
crucial for addressing the absent knowledge. Furthermore, for the Unseen Node and New Client settings, the performance deteriorates when
we omit the Local Generalization phase.

Neighbor Generator. We evaluate the effectiveness of the neighbor generators NG𝑐∀[𝑐]. The neighbor generators generate the neighbors
of the global synthetic data D𝑔 , which contain the ℎ-hop neighbor information for the target nodes and also contribute to training by
mimicking the true ℎ-hop subgraphs’ gradient. We perform the ablation study for the neighbor generators by omitting the generation of
neighbors for the global synthetic data, which means we train them without any generated neighbors. In Figure 7, without neighbors, there is
a discrepancy in the training mechanism of the GNN between isolated nodes and nodes within the graph structure, leading to a performance
decrease for all settings. Furthermore, the learning curves fluctuate when training the global synthetic data without neighbor generation,
indicating that using only the features of synthetic nodes negatively affects stability.

Adaptive Factor 𝛾 . The Adaptive Factor 𝛾 helps each client learn all classes adaptively. The Adaptive Factor adjusts the difficulty of the
global synthetic data for each client depending on the class prediction ability for all classes at the current round. Thus, the Adaptive Factor
affects the stability of learning for each client. In Figure 7, we can verify the effectiveness of the Adaptive Factor, as the learning curves are
more fluctuating than the original FedLoG method, and the performance is decreased.

G.4 Impact of the Hyperparameters

(a) The number of synthetic data, 𝑠 (b) Tail-degree Threshold 𝜆
Seen Graph Unseen Node Missing Class New Client Seen Graph Unseen Node Missing Class New Client

Figure 8: Hyperparameter analysis.

In Figure 8, we analyze the impact of hyperparameters such as the number of synthetic data for each class (𝑠) and the tail degree threshold
(𝜆).

The Number of Synthetic Data, 𝑠 . For generating the global synthetic data, sets of learnable nodes V𝑘,head and V𝑘,tail are constructed
during the Local Fitting phase within each client. We assign 𝑠 learnable synthetic nodes per class and vary 𝑠 to assess its impact on global
synthetic nodes.

As shown in Figure 8(a), we vary 𝑠 within the range [1, 5, 10, 20, 50] and evaluate the model’s performance on the same test data using the
Cora dataset with 3 clients. Notably, 𝑠 significantly impacts the ‘Unseen Data’ settings, particularly the ‘Missing Class’ setting, which relies
heavily on global synthetic data. A larger number of synthetic data condenses diverse knowledge expressions. However, too many synthetic
data points complicate modeling the interaction between the target node and each synthetic nodes (i.e., prototypes), as all prototypes
participate in the final prediction described in Section 3.1. Consequently, accuracy for ‘Unseen Data’—including ‘Unseen Node’, ‘Missing
Class’, and ‘New Client’—improves with more synthetic data, but an excessive number (e.g., 𝑠 = 50) can reduce performance. Conversely, the
performance of the ‘Seen Graph’ settings shows robustness to the number of synthetic data compared to the ‘Unseen Data’ settings because
the dependency on knowledge from other clients is lower for test data with the same distribution as the training data.

Tail-Degree Threshold 𝜆. We evaluate the impact of the tail-degree threshold 𝜆 on performance. Varying 𝜆 within the range [0, 3, 5, 10, 20],
we use the CiteSeer dataset with 3 clients for the evaluation. As shown in Figure 8(b), the tail-degree threshold 𝜆 significantly impacts
the ’Unseen Data’ settings as it directly influences the knowledge condensed into the global synthetic data. Increasing 𝜆 filters out more
knowledge from tail-degree nodes, condensing primarily head-degree node knowledge. However, as illustrated in Figure 4 in Section E, the
number of HH nodes significantly decreases with a higher 𝜆, reducing the amount of knowledge to be condensed into the global synthetic

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

Table 3: Performance on Unseen Node and Missing Class in the Open Set setting.

(a
)U

ns
ee
n
N
od

e

Cora CiteSeer PubMed Amazon Photo Amazon Computers
Methods 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients

Local 0.1250
(0.0030)

0.2957
(0.0077)

0.2854
(0.0263)

0.4443
(0.0131)

0.3471
(0.0020)

0.5177
(0.0052)

0.7510
(0.0010)

0.7292
(0.0000)

0.7489
(0.0013)

0.1333
(0.0000)

0.1900
(0.0039)

0.3958
(0.0211)

0.1687
(0.0001)

0.2891
(0.0000)

0.3890
(0.0043)

FedAvg 0.6696
(0.0232)

0.5939
(0.0215)

0.4243
(0.1304)

0.6055
(0.0033)

0.7126
(0.0210)

0.5255
(0.0119)

0.8679
(0.0059)

0.7192
(0.0170)

0.6793
(0.0127)

0.2481
(0.0455)

0.2491
(0.0671)

0.2692
(0.0304)

0.3480
(0.0428)

0.2980
(0.0198)

0.2617
(0.0074)

FedSAGE+ 0.6362
(0.0764)

0.5050
(0.0047)

0.3953
(0.0527)

0.4090
(0.0155)

0.2667
(0.0160)

0.3945
(0.0571)

0.9035
(0.0028)

0.8820
(0.0015)

0.8312
(0.0124)

0.3117
(0.0071)

0.2529
(0.0198)

0.3651
(0.0183)

0.4205
(0.0073)

0.6028
(0.0055)

0.3404
(0.0189)

FedGCN 0.6840
(0.0083)

0.6299
(0.0022)

0.4389
(0.1433)

0.6148
(0.0124)

0.6500
(0.0319)

0.5767
(0.0254)

0.8571
(0.0027)

0.7138
(0.0114)

0.6558
(0.0044)

0.2329
(0.0448)

0.2411
(0.0512)

0.2617
(0.0238)

0.3519
(0.0506)

0.2923
(0.0235)

0.2621
(0.0041)

FedPUB 0.6772
(0.0039)

0.5971
(0.0117)

0.4717
(0.0114)

0.6097
(0.0264)

0.7222
(0.0087)

0.5958
(0.0049)

0.8842
(0.0114)

0.8954
(0.0022)

0.8864
(0.0023)

0.4842
(0.0204)

0.5109
(0.0331)

0.3790
(0.0359)

0.4886
(0.0123)

0.5068
(0.0286)

0.4574
(0.0125)

FedNTD 0.7066
(0.0241)

0.6402
(0.0076)

0.4245
(0.1274)

0.6443
(0.0105)

0.7639
(0.0082)

0.5664
(0.0168)

0.8953
(0.0052)

0.8769
(0.0033)

0.8789
(0.0013)

0.5516
(0.0283)

0.6196
(0.0098)

0.4903
(0.0165)

0.4183
(0.0033)

0.6707
(0.0252)

0.6778
(0.0102)

FedED 0.6904
(0.0163)

0.5453
(0.0185)

0.3024
(0.0038)

0.5985
(0.0330)

0.6568
(0.0060)

0.4448
(0.0232)

0.8978
(0.0047)

0.8771
(0.0043)

0.8805
(0.0028)

0.6491
(0.0346)

0.5872
(0.0395)

0.2581
(0.0460)

0.4326
(0.0119)

0.7420
(0.0291)

0.5751
(0.0374)

FedLoG 0.7224
(0.0102)

0.7163
(0.0216)

0.6203
(0.0089)

0.6363
(0.0153)

0.7645
(0.0141)

0.6634
(0.0235)

0.8627
(0.0078)

0.8622
(0.0058)

0.8627
(0.0062)

0.8754
(0.0049)

0.8275
(0.0340)

0.6576
(0.0202)

0.7759
(0.0475)

0.8625
(0.0180)

0.7163
(0.0279)

(b
)M

is
si
ng

C
la
ss

Cora CiteSeer PubMed Amazon Photo Amazon Computers
Methods 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients 3 Clients 5 Clients 10 Clients

Local 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0001
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

FedAvg 0.0000
(0.0000)

0.2091
(0.0291)

0.0000
(0.0317)

0.1801
(0.0405)

0.4269
(0.0517)

0.1490
(0.0387)

0.2771
(0.0207)

0.0499
(0.0133)

0.0166
(0.0064)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0246)

FedSAGE+ 0.2030
(0.0883)

0.2774
(0.0528)

0.0244
(0.0326)

0.3243
(0.2832)

0.4155
(0.0220)

0.2007
(0.1161)

0.0495
(0.0116)

0.0733
(0.0160)

0.1166
(0.0217)

0.0000
(0.0000)

0.0000
(0.0000)

0.0175
(0.0304)

0.0000
(0.0000)

0.0000
(0.0000)

0.0189
(0.0327)

FedGCN 0.0000
(0.0000)

0.2940
(0.0280)

0.0579
(0.0520)

0.0961
(0.0364)

0.3562
(0.1246)

0.1831
(0.0253)

0.2035
(0.0165)

0.0478
(0.0058)

0.0049
(0.0012)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0177
(0.0085)

FedPUB 0.0000
(0.0000)

0.0082
(0.0094)

0.0352
(0.0000)

0.0000
(0.0000)

0.0251
(0.0220)

0.0070
(0.0060)

0.0318
(0.0125)

0.0002
(0.0004)

0.0100
(0.0087)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

FedNTD 0.1182
(0.0686)

0.2650
(0.0189)

0.0457
(0.0402)

0.4054
(0.0375)

0.5822
(0.0504)

0.2054
(0.0166)

0.0733
(0.0638)

0.2688
(0.0659)

0.3895
(0.0263)

0.0292
(0.0479)

0.0385
(0.0376)

0.1558
(0.0305)

0.1708
(0.0137)

0.0088
(0.0047)

0.0017
(0.0014)

FedED 0.1333
(0.0844)

0.1449
(0.0143)

0.0370
(0.0339)

0.2523
(0.0364)

0.2922
(0.0412)

0.1197
(0.0219)

0.1487
(0.0460)

0.1118
(0.0696)

0.1604
(0.0067)

0.0503
(0.0820)

0.0000
(0.0000)

0.0029
(0.0050)

0.0613
(0.0434)

0.1232
(0.0973)

0.0091
(0.0063)

FedLoG 0.4273
(0.0567)

0.5528
(0.0569)

0.2649
(0.0174)

0.4234
(0.0324)

0.5342
(0.0449)

0.4484
(0.0203)

0.5697
(0.2118)

0.4758
(0.1292)

0.5697
(0.2169)

0.3333
(0.0142)

0.5423
(0.1803)

0.4397
(0.1365)

0.7648
(0.0985)

0.2548
(0.0204)

0.2929
(0.0348)

data. Thus, setting 𝜆 to 3 yields the best performance, effectively filtering out tail-degree knowledge while ensuring a sufficient amount of
HH nodes.

G.5 Experimental Results on the Open Set
We evaluate the Unseen Node and Missing Class in the Open Set settings to validate the model’s ability to generalize to nodes never seen
at the global level. The results are provided in Table 3. Similar to the Closed Set, our method, FedLoG, outperforms the baselines across
most settings. However, in the Unseen Node setting on the PubMed dataset, some baselines show better performance than our method.
We attribute this to the PubMed dataset providing a sufficient number of training data for each class, allowing methods to generalize well
within each class’s local data. Conversely, in the Missing Class setting, the baselines fail to generalize due to the absence of local data for
the missing classes. In contrast, our model effectively generalizes to all classes, including missing classes, demonstrating its robustness on
various real-world scenarios.

H PRIVACY ANALYSIS
In this section, we analyze the potential privacy problem with FedLoG.

1) Does utilizing the class distribution of the clients pose a privacy problem? The class distribution does not include individual data
but merely represents the proportion for each class. This information is less sensitive than raw data. Class distribution is general statistical
information that indicates the trends within a group rather than specific data about individual users. Therefore, it is very difficult for an
attacker to infer specific data of individual nodes from the class distribution.

If privacy issues arise from knowing the trends of the group, we can add noise to the class rate to make it difficult to determine the exact
class distribution. We experimented with two methods of adding noise to the class rate: 1) adding class-wise Gaussian noise with 𝜇 as 0 and
𝜎 as 𝑎 × 𝑟𝑐

𝑘
, where 𝑎 is in the range [0.01, 0.1, 0.2, 0.5] and 𝑟𝑐

𝑘
=
|V𝑐
𝑘
|

|V𝑘 | , and 2) performing random permutation of the elements in the class
rate vector. To maintain the trend while applying random permutation, we permuted only the elements within the head classes and within
the tail classes.

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Table 4: GN: Gaussian Noise, RP: Random Permutation (Cora dataset with 3 clients used)

FedLoG FedLoG FedLoG FedLoG FedLoG FedLoG
w.o. noise w. GN (𝑎 = 0.01) w. GN (𝑎 = 0.1) w. GN (𝑎 = 0.2) w. GN (𝑎 = 0.5) w. RP

Seen Graph 0.8601
(0.0118)

0.8530
(0.0089)

0.8542
(0.0080)

0.8583
(0.0054)

0.8560
(0.0010)

0.8631
(0.0010)

Unseen Node 0.7341
(0.0273)

0.7127
(0.0191)

0.7217
(0.0318)

0.7336
(0.0252)

0.7057
(0.0123)

0.7351
(0.0054)

Missing Class 0.6472
(0.0811)

0.6244
(0.05275)

0.6032
(0.0457)

0.6540
(0.0967)

0.6277
(0.0148)

0.6328
(0.0586)

New Client 0.5047
(0.0884)

0.5278
(0.0326)

0.5297
(0.0523)

0.5401
(0.0658)

0.4883
(0.0232)

0.5199
(0.0421)

As shown in Table 4, both Gaussian Noise (GN) and Random Permutation (RP) noise methods, which are roughly similar to the original
class rate, showed no significant difference in performance, except for the GN (𝑎 = 0.5) setting that highly deteriorates the trend of the class
rate, indicating that our model does not require an exact class distribution as long as the general trend is maintained. Through this approach,
we can protect privacy more rigorously.

2) Can synthetic data be specified to match the original data’s features? We acknowledge that since the synthetic data is generated
by condensing the original nodes within each client’s graph, there may be a potential risk to privacy. One possible way to validate the
violation of privacy is to examine the difference in the feature distribution of the original nodes (i.e.,V𝑘) and that of the synthetic nodes (i.e.,
V𝑘,head andV𝑘,tail). That is, if the two distributions overlap, then we can say that the original node features can be reconstructed from the
synthetic data, which indicates the potential risk of privacy violation. In Figure 9, we visualize the 2-dimensional PCA of both the original
feature matrix (blue) and the synthetic feature matrix (orange) for the same class (using the CiteSeer dataset). We observe that the PCA
visualization of these two matrices is significantly different, indicating that sharing the synthetic nodes poses less risk of privacy violation.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

Figure 9: 2-dimensional PCA visualization of feature distributions for the same class in the CiteSeer dataset.

Additionally, the risk of privacy violation is further alleviated as synthetic data cannot be assigned to individual nodes, since it contains
features aggregated from all training nodes. This aggregation also condenses the structural information into the features, leading to a
different distribution compared to the original feature space, which does not contain the structural information. as the synthetic nodes
have no inherent structure. This is because the synthetic nodes have no structure compared to the original nodes. Therefore, the structural
information from the original nodes must be distilled into the synthetic node’s feature space, resulting in a different distribution from the
original feature space.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

O
rig

in
al

 N
od

es
Sy

nt
he

tic
 N

od
es

Feature Index

N
ode Index

Figure 10: Heatmap visualization of feature distributions for the CiteSeer dataset.

Moreover, in Figure 10, we visualize the feature distribution of both the original features (top row) and the condensed synthetic features
(bottom row) for the same class in a heatmap. As shown, the values of the features within each feature set show significant differences,
making it difficult to reconstruct the raw features of the corresponding class in the original data.

3) Protection Against Gradient Inversion Attacks. In the context of adversaries attempting to restore original data from gradients
uploaded to the server (i.e., gradient inversion attacks), FedLoG provides enhanced protection. This protection is achieved because each local
client is trained not only on local data but also on global synthetic data. The inclusion of global synthetic data introduces noise into the
gradients from the adversaries’ perspective, making it harder for them to extract information solely from the original data.

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

4) Privacy Enhancement Through Feature Scaling Variability. Moreover, each client applies different extents of feature scaling
(Section 3.3) to the global synthetic data, and these scaling extents are never shared with others. This variation further complicates the
task of distinguishing the gradients originating from the global synthetic data. As a result, it becomes more challenging for adversaries to
accurately invert the gradients and reconstruct the original data.

I COMMUNICATION OVERHEAD
We provide comparisons of communication overhead across different baselines. FedLoG uploads and downloads both the synthetic data
and the model parameters at the end of each round. For the Cora dataset with a setting of 3 clients and 𝑠 = 20, our model has 1,081,926
parameters to share with the server, resulting in 4 bytes×1,081,926=4.32 MB (excluding the neighbor generator, which is only trained once
at the first round). Additionally, the synthetic data has 182,000 parameters (𝑠 × |CV |×𝑑 , where |CV | denotes the number of classes and 𝑑
denotes the dimension of the features), amounting to 0.72 MB. In summary, our model requires 10.08 MB (2 × (4.32 + 0.72)) for upload and
download each round. Below are comparisons of communication overhead between models over 100 rounds:

FedAvg FedSAGE+ FedGCN FedPUB FedNTD FedED FedLoG

Cost (MB) 393.11 1543.58 393.11 786.03 393.11 393.11 1011.14

Table 5: Comparison of Communication Cost (MB) Across Different Models

Although FedLoG relatively requires higher communication overhead compared to other baselines, it shows faster convergence due to its
utilization of reliable class representation, leading to a stable training process. Below are comparisons of communication overhead until each
model reaches the same accuracy (i.e., 0.8 on the Cora dataset with 3 clients).

Model FedAvg FedSAGE+ FedGCN FedPUB FedNTD FedED FedLoG

Rounds to Reach 0.8 58 100 (Fails to reach) 57 29 19 39 10
Cost (MB) 228.00 1543.58 224.07 227.95 72.79 149.41 101.11

Table 6: Comparison of Rounds to Reach 0.8 Accuracy and Communication Cost Across Different Models

Despite FedLoG’s higher communication overhead per round, its faster convergence results in a lower overall communication overhead to
achieve the same accuracy compared to other baselines. This demonstrates the efficiency and stability of FedLoG’s training process, making
it an effective approach despite the initially higher communication cost per round.

J DATASETS
Cora [14]: The Cora dataset consists of 2,708 scientific publications classified into one of seven classes. The citation network contains

5,429 links. Each publication in the dataset is described by a 1,433-dimensional binary vector, indicating the absence/presence of a word from
a dictionary.

CiteSeer [14]: The CiteSeer dataset comprises 3,327 scientific publications classified into one of six classes. The citation network consists
of 4,732 links. Each publication is described by a 3,703-dimensional binary vector.

PubMed [14]: The PubMed dataset includes 19,717 scientific publications from the PubMed database pertaining to diabetes, classified into
one of three classes. The citation network comprises 44,338 links. Each publication is described by a TF/IDF-weighted word vector from a
dictionary with a size of 500.

Amazon Computers [12]: The Amazon Computers dataset is a subset of the Amazon co-purchase graph. It consists of 13,752 nodes
(products) and 245,861 edges (co-purchase relationships). Each product is described by a 767-dimensional feature vector, and the task is to
classify products into 10 classes.

Amazon Photos [15]: The Amazon Photos dataset is another subset of the Amazon co-purchase graph. It consists of 7,650 nodes (products)
and 143,663 edges (co-purchase relationships). Each product is described by a 745-dimensional feature vector, and the task is to classify
products into 8 classes.

K BASELINES
In this section, we provide implementation details for the baselines.

Local. This is a non-FL baseline where each local model is trained independently using the GCN embedder without any weight sharing.

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Table 7: Dataset Statistics

Dataset Nodes Edges Features Classes Description

Cora 2,708 5,429 1,433 7 Scientific publications
CiteSeer 3,327 4,732 3,703 6 Scientific publications
PubMed 19,717 44,338 500 3 Scientific publications
Amazon Computers 13,752 245,861 767 10 Amazon co-purchase
Amazon Photos 7,650 143,663 745 8 Amazon co-purchase

FedAvg. [13]. This FL baseline involves clients sending their local model weights to the server, which then averages these weights based
on the number of training samples at each client. The aggregated model is then distributed back to the clients. In our implementation, we
use GCN as the graph embedder.

FedSAGE+. [21]. This subgraph-FL baseline involves clients using GraphSAGE as an embedder and a missing neighbor generator, trained
using a graph mending technique. The neighbor generator creates missing neighbors based on their number and features. With the neighbor
generator, local models are trained with compensated neighbors and then their weights are aggregated on the server using FedAvg-based FL
aggregation.

FedGCN. [18]. This subgraph-FL baseline involves clients who collect ℎ-hop averaged neighbor node features from other clients at the
beginning of training to address missing information. The server then collects local model weights for FedAvg-based FL aggregation.

FedPUB. [2]. This subgraph-FL baseline proposes weight aggregation based on the similarity between clients. It identifies highly correlated
clients with similar community graph structures by using the functional embeddings of local GNNs, which are computed using random
graphs as inputs to determine similarities.

FedNTD. [9]. This FL baseline is designed to tackle the challenge of overfitting in local models due to non-IID data across clients. It
performs local-side distillation only for non-true classes to prevent forgetting global knowledge corresponding to regions outside the local
distribution. In our implementation, we use GCN as the graph embedder.

FedED. [4]. This FL baseline is designed to tackle the challenge of overfitting in local models and addresses the issue of local missing
classes. Similar to our task, it addresses the missing class problem in FL by adding a loss term that regularizes the logits of missing classes to
be similar to those of the global model. In our implementation, we use GCN as the graph embedder.

L IMPLEMENTATION DETAILS
In this section, we provide implementation details of FedLoG.

Model Architecture. In our experiments, we use a 2-layer GraphSAGE [5] implementation (𝜑𝐸) with a dropout rate of 0.5, a hidden
dimension of 128, and an output dimension of 64. The model parameters with learnable features 𝑋Vk,head and 𝑋V𝑘,tail are optimized with
Adam optimizer using a learning rate of 0.001. The classifiers 𝜑𝐻 and 𝜑𝑇 consist of 2 main learnable functions (i.e., MLPmsg and MLPtrans)
as follows:

• Message generating function (MLPmsg): Two linear layers with SiLU activation (Inputs→ Linear (2 × 64→ 64)→ SiLU→ Linear (64
→ 64)→ SiLU→ Outputs).
• Message embedding function (MLPtrans): Three linear layers with SiLU activation (Inputs→ Linear (64→ 64)→ SiLU→ Linear (64→
64)→ Linear (64→ 1)→ Outputs).

In all experiments, we utilize 2-layer classifiers.

Training Details. Our method is implemented on Python 3.10, PyTorch 2.0.1, and Torch-geometric 2.4.0. All experiments are conducted
using four 24GB NVIDIA GeForce RTX 4090 GPUs. For all experiments, we set the number of rounds (𝑅) to 100 and the number of local
epochs to 1. This setting is applied consistently across all baselines.

Hyperparameters. We set the number of learnable nodes 𝑠 to 20, the tail-degree threshold 𝛾 to 3, and select the regularization parameter 𝛽
to values in the range of [0.01, 0.1, 1].

M DETAILED PROCESS OF GENERATING HH/HT/TH/TT GLOBAL SYNTHETIC DATA
In this section, we describe the process of generating global synthetic data using 1) Head Class & Head Degree nodes (HH), 2) Head Class &
Tail Degree nodes (HT), 3) Tail Class & Head Degree nodes (TH), and 4) Tail Class & Tail Degree nodes (TT). FedLoG has two branches, each
generatingV𝑘,head andV𝑘,tail, which contain knowledge from head degree nodes and tail degree nodes, respectively.

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

HH.. As described in Section 3.2, we generate HH global synthetic data by merging the head degree condensed nodesV𝑘,head from all
clients, weighted by the proportion of head classes for each client. In Figure 1(d), for each class 𝑐 ∈ C, the feature vector of the 𝑖-th global
synthetic node for class 𝑐 , 𝑥

𝑣
(𝑐,𝑖)
𝑔

, is defined as:

𝑥
𝑣

(𝑐,𝑖)
𝑔

=
1∑𝐾

𝑘=1 𝑟
𝑐
𝑘

𝐾∑︁
𝑘=1

𝑟𝑐
𝑘
𝑥
𝑣

(𝑐,𝑖)
𝑘,head

,

where 𝑟𝑐
𝑘

=
|V𝑐
𝑘
|

|V𝑘 | represents the proportion of nodes labeled 𝑐 in the 𝑘-th client’s dataset.

HT.. In generating HT global synthetic data, we substituteV𝑘,head withV𝑘,tail. Thus, for each class 𝑐 ∈ C, the feature vector of the 𝑖-th
global synthetic node for class 𝑐 , 𝑥

𝑣
(𝑐,𝑖)
𝑔

, is defined as:

𝑥
𝑣

(𝑐,𝑖)
𝑔

=
1∑𝐾

𝑘=1 𝑟
𝑐
𝑘

𝐾∑︁
𝑘=1

𝑟𝑐
𝑘
𝑥
𝑣

(𝑐,𝑖)
𝑘,tail

,

TH.. For generating TH global synthetic data, we aim to give more weight to the tail classes. To achieve this, we adjust the weights
inversely proportional to 𝑟𝑐

𝑘
, ensuring that tail classes (with lower 𝑟𝑐

𝑘
) receive higher weights. The new equation is given by:

𝑥
𝑣

(𝑐,𝑖)
𝑔

=
1∑𝐾

𝑘=1 𝛼
𝑐
𝑘

𝐾∑︁
𝑘=1

𝛼𝑐
𝑘
𝑥
𝑣

(𝑐,𝑖)
𝑘,head

, where 𝛼𝑐
𝑘

=
∑𝐾
𝑗=1 𝑟

𝑐
𝑗

𝑟𝑐
𝑘

+ 𝜖
(19)

Here, 𝜖 is a very small positive value added to prevent division by zero. In this revised equation, 𝛼𝑐
𝑘
assigns higher weights to classes with

smaller 𝑟𝑐
𝑘
values, thereby giving more importance to the tail classes.

TT.. Finally, we generate TT global synthetic data using:

𝑥
𝑣

(𝑐,𝑖)
𝑔

=
1∑𝐾

𝑘=1 𝛼
𝑐
𝑘

𝐾∑︁
𝑘=1

𝛼𝑐
𝑘
𝑥
𝑣

(𝑐,𝑖)
𝑘,tail

, where 𝛼𝑐
𝑘

=
∑𝐾
𝑗=1 𝑟

𝑐
𝑗

𝑟𝑐
𝑘

+ 𝜖
(20)

N NOTATIONS
In this section, we summarize the main notations used in this paper. Table 8 provides the main notations and their descriptions. For simplicity,
we describe the notation based on a head-branch.

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Table 8: Summary of the notations

Notation Description

General Notations
𝑆 Server
𝐾 Number of clients
G Graph
V Set of nodes
E Set of edges
D Dataset consisting of G and 𝑌
𝑌 Label set for the nodes
𝑋V Feature matrix of a set of nodesV
𝑥𝑣 Feature vector of a node 𝑣 ∈ V
𝜙 Set of parameters of a global model
|CV | Number of classes within a set of nodesV
𝑟 Current round
ℎ𝑣 Representation of a node 𝑣
𝛼 Weight of prediction between head and tail branches

Local Client 𝑘 Notations
G𝑘 Local graph for client 𝑘
V𝑘 Set of nodes within a local graph for client 𝑘
E𝑘 Set of edges within a local graph for client 𝑘
D𝑘 Local dataset for client 𝑘
Dlocal Combined local datasets, Dlocal = ⋃𝐾

𝑘=1D𝑘
𝑌𝑘 Label set for the nodes within a local graph for client 𝑘
𝜙𝑘 Set of parameters of a local model for client 𝑘
𝜑𝑘,𝐸 Parameters of a GNN embedder for client 𝑘
𝜑𝑘,𝐻 Parameters of a head-branch classifier for client 𝑘
𝜑𝑘,𝑇 Parameters of a tail-branch classifier for client 𝑘
V𝑘,head Set of synthetic nodes within a head-degree branch of client 𝑘
𝑣

(𝑐,𝑠)
𝑘,head 𝑠-th synthetic node for class 𝑐 in a head-branch for client 𝑘
𝑋V𝑘,head Feature matrix of a set of nodesV𝑘,head
𝑥

(𝑐,𝑠)
𝑘,ℎ𝑒𝑎𝑑

Feature of the 𝑠-th synthetic node for class 𝑐 in a head-branch for client 𝑘

ℎ
(𝑐,𝑠)
𝑘,ℎ𝑒𝑎𝑑

Representation of the 𝑠-th synthetic node for class 𝑐 in a head-branch for client 𝑘
𝑃𝑘,ℎ𝑒𝑎𝑑 Set of prototype representations (i.e., representations of synthetic nodes) in a head-branch

for client 𝑘
ℎ̄V𝑐

𝑘,head
Average of prototype representations of class 𝑐 in a head-branch for client 𝑘

𝑟𝑐
𝑘

Proportion of nodes labeled 𝑐 in client 𝑘’s dataset D𝑘
NG𝑘 Pretrained neighbor generator for client 𝑘 (regardless of specific class)
𝛾𝑘 Class-wise adaptive factor for client 𝑘
Gsyn
𝑘

Synthetic graph set consisting of graphs, each containing the global synthetic nodes (which
are adapted locally) neighboring with their generated neighbor nodes.

N𝑣𝑘 Generated neighbor node of node 𝑣𝑘
𝑥N𝑣𝑘 Generated feature of generated neighbor node N𝑣𝑘 for the input feature 𝑥𝑣𝑖 of node 𝑣𝑘
𝑥N𝑣𝑘 Average of features of the ℎ-hop neighbors of node 𝑣𝑘 within G𝑘
Global Synthetic Node Notations
D𝑔 Global synthetic dataset
G𝑔 Global synthetic graph
V𝑔 Set of global synthetic nodes
𝑌𝑔 Label set for the global synthetic nodes
𝑋V𝑔 Feature matrix of the global synthetic nodesV𝑔
𝑥
𝑣

(𝑐,𝑠)
𝑔

Feature of the 𝑠-th global synthetic node 𝑣𝑔 for class 𝑐
NG𝑐 Class-specific neighbor generator for class 𝑐 (by aggregating NG𝑘 for all 𝑘 in a class-wise

manner)

Hyperparameter Notations
𝑠 Hyperparameter for assigning the number of synthetic nodes per class
𝜆 Hyperparameter for adjusting tail degree threshold
𝛽 Hyperparameter for adjusting the extent of regularization of the features of synthetic nodes

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

O EXPERIMENTAL DATASET STATISTICS
In this section, we provide the experimental dataset statistics for all testing settings for three clients, allowing for an easy verification of the
data distribution of each client and the New Client. In the ‘Global’ row, we sum up the statistics from all local clients.

Table 9: Cora Dataset Statistics (Closed Set)

Seen Graph Unseen Node Missing Class

Dataset Class Train Valid Test Test Test

Global

0 49 37 32 268 86
1 82 45 75 258 0
2 140 110 133 217 220
3 242 206 171 605 0
4 120 82 90 268 0
5 45 41 32 120 29
6 53 42 27 9 59

Client 0

0 8 12 4 121 0
1 7 4 3 124 0
2 4 2 3 190 0
3 208 168 131 125 0
4 33 22 22 96 0
5 0 0 0 0 29
6 0 1 0 1 23

Client 1

0 0 0 0 0 86
1 7 1 3 117 0
2 136 108 130 27 0
3 6 15 14 202 0
4 74 49 60 74 0
5 3 4 2 44 0
6 0 0 0 0 36

Client 2

0 41 25 28 147 0
1 68 40 69 17 0
2 0 0 0 0 220
3 28 23 26 278 0
4 13 11 8 98 0
5 42 37 30 76 0
6 53 41 27 8 0

New Client

0 - - 222 - -
1 - - 12 - -
2 - - 2 - -
3 - - 107 - -
4 - - 87 - -
5 - - 166 - -
6 - - 9 - -

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Table 10: CiteSeer Dataset Statistics (Closed Set)

Seen Graph Unseen Node Missing Class

Dataset Class Train Valid Test Test Test

Global

0 41 24 25 72 0
1 90 75 90 185 0
2 196 163 137 424 93
3 116 85 77 210 0
4 154 96 110 132 121
5 37 25 26 88 53

Client 0

0 19 5 11 26 0
1 52 50 58 59 0
2 67 52 32 296 0
3 73 52 44 76 0
4 7 1 7 60 0
5 0 0 0 0 53

Client 1

0 5 5 2 18 0
1 27 16 26 79 0
2 129 111 105 128 0
3 16 15 14 66 0
4 0 0 0 0 121
5 25 13 17 44 0

Client 2

0 17 14 12 28 0
1 11 9 6 47 0
2 0 0 0 0 93
3 27 18 19 68 0
4 147 95 103 72 0
5 12 12 9 44 0

New Client

0 - - 35 - -
1 - - 53 - -
2 - - 12 - -
3 - - 110 - -
4 - - 93 - -
5 - - 211 - -

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

Table 11: PubMed Dataset Statistics (Closed Set)

Seen Graph Unseen Node Missing Class

Dataset Class Train Valid Test Test Test

Global
0 1271 983 949 221 168
1 1176 897 951 572 1003
2 2972 2171 2141 658 0

Client 0
0 277 222 209 93 0
1 0 0 0 0 346
2 1642 1227 1189 193 0

Client 1
0 994 761 740 128 0
1 0 0 0 0 657
2 594 408 414 213 0

Client 2
0 0 0 0 0 168
1 1176 897 951 572 0
2 736 536 538 252 0

New Client
0 - - 787 - -
1 - - 3500 - -
2 - - 591 - -

FedKDD ’24, August 26, 2024, Barcelona, Spain. Sungwon Kim et al.

Table 12: Photos Dataset Statistics (Closed Set)

Seen Graph Unseen Node Missing Class

Dataset Class Train Valid Test Test Test

Global

0 150 102 108 61 28
1 592 502 468 881 0
2 266 219 197 61 20
3 358 241 258 329 0
4 300 258 250 327 0
5 332 217 247 0 25
6 214 146 128 907 0
7 39 17 27 307 0

Client 0

0 0 0 0 0 28
1 71 50 49 345 0
2 261 215 196 3 0
3 49 26 33 135 0
4 5 6 10 186 0
5 332 217 247 0 0
6 9 5 7 96 0
7 9 5 9 59 0

Client 1

0 146 100 107 7 0
1 394 369 333 226 0
2 0 0 0 0 20
3 11 8 8 101 0
4 3 1 0 67 0
5 0 0 0 0 18
6 197 132 113 69 0
7 1 0 3 40 0

Client 2

0 4 2 1 54 0
1 127 83 86 310 0
2 5 4 1 58 0
3 298 207 217 93 0
4 292 251 240 74 0
5 0 0 0 0 7
6 8 9 8 742 0
7 29 12 15 208 0

New Client

0 - - 0 - -
1 - - 72 - -
2 - - 3 - -
3 - - 43 - -
4 - - 64 - -
5 - - 1 - -
6 - - 1412 - -
7 - - 248 - -

Subgraph Federated Learning for Local Generalization FedKDD ’24, August 26, 2024, Barcelona, Spain.

Table 13: Computers Dataset Statistics (Closed Set)

Seen Graph Unseen Node Missing Class

Dataset Class Train Valid Test Test Test

Global

0 168 120 115 146 140
1 297 221 201 1604 0
2 558 442 410 2 479
3 91 63 66 765 0
4 1399 1094 1103 3397 0
5 129 69 98 0 60
6 182 134 164 132 93
7 343 220 232 4 167
8 748 597 580 1321 0
9 119 80 79 105 22

Client 0

0 164 118 114 32 0
1 98 65 71 398 0
2 558 442 410 2 0
3 66 42 46 206 0
4 41 25 30 813 0
5 0 0 0 0 46
6 0 0 0 0 93
7 343 220 232 4 0
8 12 10 8 447 0
9 108 59 61 25 0

Client 1

0 4 2 1 114 0
1 125 84 80 573 0
2 0 0 0 0 262
3 7 6 5 235 0
4 139 123 117 1504 0
5 129 69 98 0 0
6 181 133 164 4 0
7 0 0 0 0 143
8 707 561 552 178 0
9 11 21 18 80 0

Client 2

0 0 0 0 0 140
1 74 72 50 633 0
2 0 0 0 0 217
3 18 15 15 324 0
4 1219 946 956 1080 0
5 0 0 0 0 14
6 1 1 0 128 0
7 0 0 0 0 24
8 29 26 20 696 0
9 0 0 0 0 22

New Client

0 - - 30 - -
1 - - 1374 - -
2 - - 2 - -
3 - - 302 - -
4 - - 1360 - -
5 - - 1 - -
6 - - 1 - -
7 - - 1 - -
8 - - 167 - -
9 - - 5 - -

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Local Fitting
	3.2 Global Aggregation and Global Synthetic Data Generation
	3.3 Local Generalization

	4 Experiments
	4.1 Experimental Settings
	4.2 Experiment Results

	5 conclusion
	References
	A Related Works
	A.1 Subgraph Federated Learning
	A.2 Local Overfitting in Federated Learning

	B Detailed Process of Pretraining the Neighbor Generator
	C Analysis of Reliability of Head Degree and Head Class Nodes
	D Detailed Process of the Classifier _k,H and _k,T
	E Criteria for Threshold Degree Value for Tail-Degree Nodes
	F Detailed Process of Evaluating Unseen Data
	F.1 Closed Set
	F.2 Open Set

	G Additional Experiments
	G.1 Performance on Unseen Node & New Client settings
	G.2 Do the headness of degree and class really help other clients?
	G.3 Ablation Study
	G.4 Impact of the Hyperparameters
	G.5 Experimental Results on the Open Set

	H Privacy Analysis
	I Communication Overhead
	J Datasets
	K Baselines
	L Implementation Details
	M Detailed Process of Generating HH/HT/TH/TT Global Synthetic Data
	N Notations
	O Experimental Dataset Statistics

