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1. Introduction

Variational Autoencoders (VAEs) (Kingma and Welling, 2014) are deep generative latent
variable models that transform a simple distribution over a latent space into a complex
data distribution. VAE inference consists of learning two components: (1) a generative
model, which transforms a simple distribution over a latent space into the distribution over
observed data, and (2) an inference model, which approximates the posterior of the latent
codes given data. The two components are jointly learned by optimizing a lower bound to
the generative model’s log marginal likelihood (LML). In early phases of joint training, the
inference model poorly approximates the latent code posteriors. Recently, He et al. (2019)
showed that this leads optimization to get stuck in local optima, negatively impacting the
learned generative model. To mitigate this issue, He et al. (2019) suggest ensuring a high-
quality inference model via iterative training: maximizing the objective function relative to
the inference model before every update to the generative model.Unfortunately, iterative
training is inefficient, requiring heuristic criteria for reverting from iterative training back
to joint training for speed. One way to speed up non-joint VAE inference is to train the
generative and inference models independently, for example, by analytically computing the
posterior of a given generative model. However, there is no systematic way to analytically
approximate high-quality inference models for arbitrary generative models. In this work,
we suggest an alternative VAE inference algorithm that trains the generative and inference
models independently. Specifically, we propose a method to approximate the posterior of
the true model a priori; fixing this posterior approximation, we then maximize the lower
bound relative to only the generative model. We note that, by conventional wisdom, this
approach should rely on the true prior and likelihood of the true model to approximate its
posterior, both of which are unknown. In this work, we show that we can, in fact, com-
pute a deterministic, model-agnostic posterior approximation (MAPA) of the true model’s
posterior. We then use MAPA to develop a proof-of-concept inference method for VAEs.
We present preliminary results on low-dimensional synthetic data that (1) MAPA captures
the trend of the true posterior, and (2) our MAPA-based inference method performs better
density estimation with less computation than baselines. Lastly, we present a roadmap for
scaling the MAPA-based inference method to high-dimensional data.
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2. Background and Notation

We are given N observations xn ∈ RD, generated from corresponding latent codes zn ∈ RL
with L < D. We define X = {xn}Nn=1 and Z = {zn}Nn=1.

Model. We assume our observed data was generated as follows:

z ∼ pz(·;ψ), x|z ∼ px|z(·|fθ(z)), (1)

where ψ parameterizes the prior and θ parameterizes a NN, fθ(·). We define log px(x; θ, ψ) =
logEz∼pz(·;ψ)

[
px|z(x|fθ(z))

]
to be the LML. We refer to θGT, ψGT as the parameters of

the ground-truth, data-generating model, and zGT
n as the ground-truth latent codes that

generated xn (similarly, ZGT = {zGT
n }Nn=1).

Inference. Our goal is to maximize the observed data LML px(X; θ, ψ). Since it is in-
tractable, we instead maximize the IWAE stochastic bound (Burda et al., 2016):

log px(xn; θ, ψ) ≥ Ez(1),...,z(S)∼qz|x(·|xn;ϕ)

[
log

1

S

S∑
s=1

px|z(xn|fθ(z(s))) · pz(z(s);ψ)
qz|x(z(s)|xn;ϕ)

]
︸ ︷︷ ︸

stochastic lower bound, LSIWAE(xn;θ,ψ,ϕ)

, (2)

where qz|x(·|xn;ϕ) is the proposal distribution, whose parameters ϕ are jointly optimized
with θ. This bound has two notable properties. First, it monotonically tightens as the
number of importance samples S increases, becoming tight when S → ∞ (Burda et al.,
2016). Second, the tightness of the bound is proportional to the variance of the importance
sampling scheme (Domke and Sheldon, 2018). For this bound, a naive implementation
with auto-differentiation results in noisy gradients with respect to ϕ, requiring a specialized
gradient estimator (Roeder et al., 2017; Tucker et al., 2019).

3. “Empiricalized” Models

Empiricalized model. Given the original generative model from Eq. (1), we “empirical-
ize” it, meaning we replace the prior pz(·, ψ) with an empirical distribution:

zm ∼ pz(·;ψ) for m ∈ [1,M ], in ∼ pi(·) = U [1, . . . ,M ], xn|in, Z ∼ px|i,Z(·|fθ(zin)). (3)

Under this new generative process, we assume we’ve already sampled M draws from the
prior pz(·, ψ). We then use index in, drawn at uniform, to select which latent code to
decode. Z is therefore the prior’s hyperparameter. The empiricalized model is similar in
spirit to bootstrapping, converging to the original generative process as M → ∞. From
here on, we set that M = N , since our inference will leverage this for efficiency.

Maximizing the LML. Whereas in the original model, the LML requires a marginal-
ization over the latent code z, empiricalized models require marginalization over the latent
indices i:

log px(x; θ, Z) = logEi∼pi(·)
[
px|i,Z(x|fθ(zi))

]
= log

1

N

N∑
i=1

px|i,Z(x|fθ(zi)). (4)
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Here, we can think of Z as the hyper-parameter of the prior, equivalent to ψ of the original
prior pz(·;ψ); the locations of latent codes control the shape of the prior. If we were to
fix zn to a grid in the latent space, at this point in the derivation, it would resemble a
Generative Topographic Mapping (Bishop et al., 1998). Our goal, however, is to maximize
log px(X; θ, Z) relative to θ and ψ (which in this case, refers to Z):

θ∗, Z∗ = argmaxθ,Z
1

N

N∑
n=1

log
1

N

N∑
i=1

px|i,Z(xn|fθ(zi)). (5)

Given Z∗, we can fit a model (e.g. Normalizing Flow (Kobyzev et al., 2020)) to Z∗ to obtain
a parametric pz(·;ψ). Since for our empiricalized model to converge to the original model,
N needs to be sufficiently large, the inner sum in Eq. (5) becomes expensive to compute.
In Section 5, we introduce a novel inference method that circumvents this issue.

Prior amortization. We amortize the prior latent codes zn ∈ Z with a NN, zn = gψ(xn),
parameterized by ψ:

θ∗, ψ∗ = argmaxθ,ψ
1

N

N∑
n=1

log
1

N

N∑
i=1

px|i,Z(xn|fθ ◦ gψ(xi)). (6)

The above can be thought of as an “amortized mixture model,” where the mixture compo-
nents are parameterized by an autoencoder (AE), fθ ◦ gψ(·), to lie on a lower-dimensional
manifold. At a high level, this amortization resembles non-parametric priors for VAEs
(e.g. Tomczak and Welling (2018)), used to match the prior to the aggregated posterior.
In contrast, the amortization here serves other practical purposes. First, it increases the
efficiency of training, since gradients relative to ψ help shape the entire prior (whereas gra-
dients with respect to a batch of zn’s do not). Second, it provides a convenient mapping
to and from the latent space, which is useful downstream. Lastly, it prevents overfitting
by ensuring that the latent codes lie on a well-behaved low-dimensional manifold. In Ap-
pendix B.1, we show a new relationship between Eq. (6) and the training objective of an
AE—that the AE objective is a lower bound.

4. Deterministic Model-Agnostic Posterior Approximation (MAPA)

So why perform approximate inference on the empiricalized model as opposed to on the
original model? Because this will allow us to estimate the probability of a latent code’s
index in independently of its location in latent space zn. Now, we leverage this trick to
propose a deterministic, model-agnostic posterior approximation (over indices) of the true
empiricalized model,

pi|x,Z(i|x; θGT, ZGT) =
px|i,Z(x|fθGT(zGT

i )) · pi(i)
N∑
j=1

px|i,Z(x|fθGT(zGT
j )) · pi(j)

=
px|i,Z(x|fθGT(zGT

i ))

N∑
j=1

px|i,Z(x|fθGT(zGT
j ))

. (7)

Insight. Even without knowing the ground-truth decoder fθGT(·) of the empiricalized gen-
erative model, we already know something about pi|x,Z(i|x; θGT, ZGT). Consider two obser-
vations xn, xm and the corresponding indices in, im that generated them. If xn and xm are
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“far” from each other (according to the likelihood), the posteriors pi|x,Z(im|xn; θGT, ZGT)

and pi|x,Z(in|xm; θGT, ZGT) are likely to be low, while the posteriors pi|x,Z(in|xn; θGT, ZGT)

and pi|x,Z(im|xm; θGT, ZGT) should be high. Fig. 1 depicts this exactly: in the figure, the
three nearby observations x1, x2, x3 all have similar posteriors, under which all three la-
tent codes z1, z2, z3 have a high score. In contrast, x4, which is far from the first three
observations, has a different posterior and its latent code z4 have a low score under their
posteriors. This confirms the intuition behind MAPA, in which the posteriors of nearby
observations should score their corresponding latent code with high probability. More-
over, this behavior holds across multiple choices of decoder fθ(·), meaning it is robust to
model non-identifiability. We will now incorporate this insight into an approximation of the
ground-truth posterior (without knowing the ground-truth prior or decoder fθGT(·)), using
some notion of “distance” between observations.

MAPA. We define MAPA as a categorical distribution with the ith probability set to:

pi|x,Z(i|x; θGT, ZGT) ≈ κ(xn|xi)
N∑
j=1

κ(xn|xj)
= qi|n(i|n), (8)

where κ(·|·) represents a notion of proximity between observations (though it need not be
symmetric). This approximation is “model-agnostic” because it does not depend on the
choice of prior or likelihood, though in practice, we select κ(·|·) in accordance with the
observation noise distribution. Moreover, it can be computed once per data-set and cached.
See Appendix B.2 for the derivation, which starts with the left-hand form (given all ground-
truth parameters) and ends with the right-hand form (independent of the true prior and
likelihood, and of the ground-truth parameters). In Section 6, we demonstrate that MAPA
captures the trend of the ground-truth empiricalized and original posteriors.

We note that MAPA resembles a Kernel Density Estimator (KDE) (Chen, 2017). As
such, one might wonder: how would this scale to high-dimensional data? Whereas KDEs
use distance in observation-space to approximate a distribution over (high-dimensional)
observation-space, MAPA uses these distances to approximate a posterior distribution over
a low-dimensional latent space. MAPA also bears similarity to Approximate Bayesian Com-
putation (Sisson et al., 2018) in using distances between observations generated from the
prior (or original generative process) to estimate a posterior over unobserved variables.

5. Proof-of-Concept: MAPA-based Inference

MAPA-based stochastic lower bound. We now leverage qi|n(i|n) to derive a lower
bound to the LML of the empiricalized model from Eq. (6). We define Bn(k) to be the
set of k ∈ {1, . . . , N} indices for which qi|n(·|n) is largest and q̃ki|n(i|n) to be qi|n(·|n) to be
renormalized after setting the probability of its k largest elements to 0:

q̃ki|n(i|n) =
qi|n(i|n) · I[i /∈ Bn(k)]

N∑
j=1

qi|n(j|n) · I[j /∈ Bn(k)]
. (9)
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Figure 1: Intuition behind MAPA: nearby points score highly under each other’s
posteriors—distant points do not. Bottom row: four samples drawn from
pz(·) = U [0, 1]. Top row: the generative process (i.e. zi, fθ(zi), ϵi, and the
resultant xi), visualized on-top of the joint distribution of the observed and latent
variables (gray contours) for two different functions that yield the same marginal
distribution (in blue). In “Variant 1,” fθ(z) = (0.5 − z)2, and in “Variant 2,”
fθ(z) = 0.25 · z2 (Yacoby et al., 2020b). The posteriors of each of the four
observations xi are visualized in the green density plots.

We then derive the following stochastic lower bound (derivation in Appendix B.3):

LSMAPA(xn; θ, ψ) = log

 1

N

∑
i∈Bn(k)

px|i,Z(xn|fθ ◦ gψ(xi)) +
1

NS

S∑
s=1

px|i,Z(xn|fθ ◦ gψ(xi(s)))
q̃ki|n(i

(s)|n)

 ,

(10)

where i(s) ∼ q̃ki|n(i|n). As a reminder, we use the prior amortization scheme from Section 3

to represent Z via gψ(·). When k = 1 and S = 0, we recover the AE loss, and increasing k, S
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tightens the bound. After maximizing LSMAPA with respect to θ, ψ, we learn a parametric
prior distribution of zn = gψ(xn) via method of our choice (e.g. KDE, Normalizing Flows).

Generating samples. After learning θ, ψ as described in this section, we can generate
new samples using the original generative process from Eq. (1).

Computational efficiency. Computing qi|n(·|n) requires pairwise comparisons O(N2 ·
D), but can be parallelized. Since it only depends on the data-set, it can be computed
once and shared online. Across random restarts and hyper-parameter selection, the cost
of computing MAPA becomes advantageous. During training, we see a second boost in
efficiency: fθ ◦ gψ is evaluated on at most N points. We can therefore reuse forward passes
when evaluating LSMAPA(·; θ, ψ) on a batch of points. As we show later, this will substantially
reduce the number of forward passes needed per gradient computation, which will speed up
training for models for which evaluations of fθ ◦ gψ dominate the computation.

6. Experiments and Results

Setup. We compare our approach (MAPA) with a VAE and IWAE with pz(·;ψ) = N (0, I)
(fixed) on 5 synthetic data-sets (for which we know the ground-truth)—the “Figure-8,”
“Clusters,” and “Spiral-Dots” examples for which mean-field Gaussian VAEs struggle, and
the “Absolute-Value” and “Circle” examples for which they do not (Yacoby et al., 2020b)
(details in Appendix C.1). Both the VAE and IWAE use a mean-field Gaussian qz|x(·|x;ϕ).
We used 10 random restarts for each method (selecting the best random restart via vali-
dation log-likelihood (LL)), averaging results on 10 draws of each data-set. Each method
was given the hyper-parameters of the ground-truth model (details in Appendix C.2). For
all methods, LL was evaluated by (a) fixing the learned generative model parameters θ∗, ψ∗

and fitting IWAE with a 50-component mixture of Gaussians qz|x(·|x;ϕ) with S = 500, and
(b) approximating the LL with this bound with S = 20000. As such, our evaluation favors
IWAE. For MAPA, we ensured that pz(·;ψ) is Gaussian via the procedure in Appendix C.3.

MAPA outperforms baselines on density estimation across different S. MAPA
outperforms the VAE and IWAE on density estimation across all but one of the data-sets.
Further, MAPA performs as well with qi|n(·|n) as it does with the true posterior of the
approximate model (“MAPA-GT”). Lastly, when qi|n(·|n) is artificially set to a uniform
(“MAPA-naive”), it performs poorly, indicating that our proposed qi|n(·|n) is necessary for
good performance. See Fig. 2(a) (full results in Appendix D.1).

MAPA inference requires fewer forward-passes. We compare how many NN-passes
MAPA requires vs. IWAE per gradient computation. Specifically, we plot the average
number of NN-passes required when evaluating each method on a batch of size 100, varying
the number of importance samples S. We find that, across all data-sets, when the cost of
the decoder dominates the gradient computation, the cost of MAPA with S = 200 is that
of IWAE’s with S = 50. When the decoder and encoder dominate, the cost of MAPA with
S = 200 is that of IWAE’s with S = 100. See Fig. 2(b) (full results in Appendix D.2).

MAPA captures trend of ground-truth posterior. Across all data-sets, qi|n(·|n)
captures the trend of the ground-truth posterior of the empiricalized model (Eq. (7)), as
well as of the original ground-truth model (full results in Appendix D.3).
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(a) Test Performance: “Absolute Value” and “Spiral-Dots” (b) Efficiency

Figure 2: (a) MAPA is more accurate than baselines; it better matches the true data dis-
tribution (lower test KL) than VAE and IWAE. (b) MAPA is more efficient; it
requires fewer NN-passes (plots are similar for both data-sets). Full results and
details in Appendices D.1 and D.2.

MAPA is robust to model non-identifiability. Given two different decoders fθGT(·) ̸=
fθ̂(·) that induce the same px(·; θGT) = px(·; θ̂), MAPA captures the trend in both equally
well; it is therefore robust to model non-identifiability (full results in Appendix D.4).

7. Discussion and Future Work

We propose a novel, deterministic, model-agnostic posterior approximation and use it to
develop a preliminary inference method for VAEs that is both accurate and faster than
baselines: on low-dimensional synthetic data, our method requires fewer forward-passes
and better captures the data distribution given a fixed computational budget.

Roadmap to scaling MAPA-based inference to high-dimensions. The preliminary
inference method from Section 5 can be adapted to scale to higher dimensions in two ways.
First, we can reduce the quadratic cost of estimating MAPA, e.g. via sketching algorithms,
approximate nearest neighbor searches, or sparse KDE (thanks to its relationship with
KDE). We can also reduce GPU-memory usage (from keeping MAPA in memory) by via
batching schemes that reduce the memory footprint per batch. Second, Eq. (10) ignores
the entropy due to the location of the latent codes—it should be adapted to account for
this entropy for good performance in higher-dimensions (Welling et al., 2008).

Theory. In future work, we plan to theoretically analyze the tightness of our bound,
as well as the distance of qi|n(·|n) from the ground-truth posterior. We also plan to use
sampling-without-replacement schemes in sampling from the proposal in Eq. (10) (e.g. Kool
et al. (2019); Shi et al. (2020)), which will further tighten the bound to the LML.

Extensions. In this work, we only derive MAPA for a limited set of observation noise
distributions. In future work, we plan to develop a more general method for specifying
κ(·, ·) to allow additional observation noise models and data modalities (e.g. time-series),
and to incorporate MAPA into other types of latent variable models.
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Yingzhen Li and Richard E Turner. Rényi divergence variational inference. Advances in
neural information processing systems, 29, 2016.

Gabriel Loaiza-Ganem and John P Cunningham. The continuous bernoulli: fixing a per-
vasive error in variational autoencoders. Advances in Neural Information Processing
Systems, 32, 2019.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised
learning of disentangled representations. In international conference on machine learning,
pages 4114–4124. PMLR, 2019.

Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P. Adams,
and Ricky T. Q. Chen. SUMO: unbiased estimation of log marginal probability for latent
variable models. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Vaden Masrani, Tuan Anh Le, and Frank Wood. The thermodynamic variational objective.
Advances in Neural Information Processing Systems, 32, 2019.

9



Yacoby Pan Doshi-Velez

Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted autoen-
coders and jackknife variational inference. In International conference on learning repre-
sentations, 2018.

Maurice H Quenouille. Approximate tests of correlation in time-series 3. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 45, pages 483–484. Cambridge
University Press, 1949.

Maurice H Quenouille. Notes on bias in estimation. Biometrika, 43(3/4):353–360, 1956.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 1530–1538. JMLR.org, 2015.

Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-
variance gradient estimators for variational inference. Advances in Neural Information
Processing Systems, 30, 2017.

Kensen Shi, David Bieber, and Charles Sutton. Incremental sampling without replacement
for sequence models. In International Conference on Machine Learning, pages 8785–8795.
PMLR, 2020.

Scott A Sisson, Yanan Fan, and Mark Beaumont. Handbook of approximate Bayesian
computation. CRC Press, 2018.

Artem Sobolev and Dmitry P Vetrov. Importance weighted hierarchical variational infer-
ence. Advances in Neural Information Processing Systems, 32, 2019.

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on
Artificial Intelligence and Statistics, pages 1214–1223. PMLR, 2018.

George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J. Maddison. Doubly reparam-
eterized gradient estimators for monte carlo objectives. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net, 2019.
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Appendix A. Related Work

Improving VAE inference. Since VAE inference requires maximizing an intractable
LML, recent work focuses on developing efficient and accurate approximate inference meth-
ods. The majority of this work introduces an inference model that is jointly optimized with
the generative model to maximize a variational lower bound to the LML. As the inference
model gets closer to the true posterior of the latent codes given the observations, the gap
between the bound and the LML decreases. These bounds can therefore be tightened at an
additional computational cost by increasing the flexibility of the inference model.

We loosely group these bounds into three categories of algorithms used to train latent
variable models. First are algorithms that extend the classical Expectation-Maximization
algorithm (EM) (Dempster et al., 1977) to Variational Inference; these algorithms optimize
a single variational lower bound that can be tightened with more compute. For example,
in the original formulation of the VAE (Kingma and Welling, 2014) and the α-divergence
formulation (Li and Turner, 2016), the bounds can be tightened by increasing the flexibility
of the inference model (e.g. Rezende and Mohamed (2015); Yin and Zhou (2018)). In the
importance weighted (or “divide-and-couple”) formulation (e.g. Burda et al. (2016); Domke
and Sheldon (2019)), the bound can be additionally tightened by increasing the number of
samples in the inner MC-estimate. Similarly, in the thermodynamic formulation (Masrani
et al., 2019), the bound can be tightened by increasing the number of “partitions” used.
These bounds can be further combined in a variety of ways (e.g. Sobolev and Vetrov (2019);
Daudel et al. (2023)). The second category of algorithms are those that extend the classical
Wake-Sleep algorithm (Hinton et al., 1995); these algorithms use separate objectives to train
the inference and generative models (Bornschein and Bengio, 2015; Várady et al., 2020; Le
et al., 2020). The last category of algorithms are those that de-bias existing bounds via
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classical techniques such as Jack-Knife (e.g. Quenouille (1949, 1956)) and Russian Roulette
(Kahn, 1955) schemes (e.g. Nowozin (2018); Luo et al. (2020); Ishikawa and Goda (2021)).

In contrast to these works, our method does not optimize an inference model; instead,
we propose a deterministic approximation to the ground-truth model’s posterior, computed
once per data-set, without needing to make assumptions about the ground-truth model.
The works most similar to our approach are (a) Generative Topographic Mappings (Bishop
et al., 1998), which also discretize the prior distribution (though they do this on a fixed
grid over the latent space), and (b) Approximate Bayesian Computation (e.g. Sisson et al.
(2018)), which use distances between observations generated from the prior (or original
generative process) to estimate a posterior over unobserved variables.

Mitigating non-identifiability in VAEs. VAEs are known to be non-identifiable, in
that their latent space can be transformed while still explaining the observed data equally
well (e.g. Locatello et al. (2019); Yacoby et al. (2020a,b)). In such scenarios, it has been
shown that the undesirable effects of non-identifiability can be mitigated by modifying the
model itself to become identifiable (e.g. Khemakhem et al. (2020); Wang et al. (2021)), or
by specifying additional model selection criteria (Zhao et al., 2018). In contrast to these
works, we do not modify the original model to make it identifiable; instead, we propose an
inference method that is agnostic to model non-identifiability, meaning that the inductive
bias of the variational family does not affect the choice of learned model, allowing us to
freely apply additional selection criteria to identify the model.

Appendix B. Derivations

B.1. Connections with (non-variational) autoencoders (AEs)

At a high-level, Eq. (6) can be seen as a generalization of an AE, in which we translate
learning one empirical distribution (over the observation space) into learning an empirical
distribution over another (the latent space). We make this connection concrete by showing
that the AE loss is a lower bound to the LML of the empiricalized model in Eq. (6):

log px(xn; θ, ψ) = log
1

N

N∑
i=1

px|i,Z(xn|fθ ◦ gψ(xi)) (11)

= log
N∑
i=1

px|i,Z(xn|fθ ◦ gψ(xi))− logN (12)

= log

px|i,Z(xn|fθ ◦ gψ(xn)) +∑
i ̸=n

px|i,Z(xn|fθ ◦ gψ(xi))

− logN (13)

= log px|i,Z(xn|fθ ◦ gψ(xn))− logN︸ ︷︷ ︸
autoencoder loss + const.

+ log

1 +

∑
i ̸=n

px|i,Z(xn|fθ ◦ gψ(xi))

px|i,Z(xn|fθ ◦ gψ(xn))


︸ ︷︷ ︸

“gap” or “regularizer” ≥ 0

(14)
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In the above, the first term is the AE reconstruction objective, and the second term is
non-zero (it’s the log of a value ≥ 1), representing a “gap” / “regularizer.” For large N , the
AE loss is also a lower bound to the original LML. This decomposition is different than the
popular ELBO decomposition into a reconstruction term (often regarded as analogous to
the AE’s objective) and an information-theoretic regularizer (KL-divergence between the
variational posterior and prior).

B.2. Derivation of MAPA

To see why qi|n(·|n), defined in Eq. (8), is a sensible approximation, we relate it to the true
posterior of the empiricalized model. For the following derivation, we assume a Gaussian
observation noise; that is, we assume that xn = f(zn; θ) + ϵn, where ϵn ∼ N (0, σ2ϵ · I). We
further assume that we observed θGT and ZGT, as well as the ground-truth values of the
noise, ϵGT

n . We begin our derivation by relying on all of these components of the ground-
truth data-generating process, θGT, ZGT, ϵGT

n , and we’ll end up with an analytic form that
depends on none of them:

pi|x,Z(i|xn; θGT, ZGT) =
pi(i) · px|i,Z(xn|fθGT(zGT

i ))

N∑
j=1

pi(j) · px|i,Z(xn|fθGT(zGT
j ))

(15)

=
px|i,Z(xn|fθGT(zGT

i ))

N∑
j=1

px|i,Z(xn|fθGT(zGT
j ))

(16)

≈
px|i,Z(xn|fθGT(zGT

i ) + ϵGT
i )

N∑
j=1

px|i,Z(xn|fθGT(zGT
j ) + ϵGT

j )

since xj = fθGT(zGT
j ) + ϵGT

j

(17)

=
κ(xn|xi)
N∑
j=1

κ(xn|xj)
(18)

= qi|n(i|n) (19)

where κ(xn|xi) is a Gaussian (RBF) kernel with bandwidth σ2ϵ .

Similar derivations hold for likelihood distributions whose support is the same as the
support of their parameters (e.g. the Continuous Bernoulli (Loaiza-Ganem and Cunning-
ham, 2019)). For distributions for which this property does not hold, we have to tweak the
derivation. For example, for a Bernoulli likelihood, a naive application of MAPA will yield,

κ(xn|xi) =
D∏
d=1

x
(d)
i · x(d)n + (1− x

(d)
i ) · (1− x(d)n ), (20)
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which will be 0 if xn and xi do not match in even one location d. As such, we tweak the
above by softening the probabilities with a hyper-parameter ρ ∈ (0, 1):

κ(xn|xi; ρ) =
D∏
d=1

(ρ · x(d)i ) · x(d)n + (1− ρ · x(d)i ) · (1− x(d)n ), (21)

selected to be close to 1 (e.g. ρ = 0.9). Here, ρ controls the “peakiness” of the posterior
approximation.

In both the Gaussian and Bernoulli cases, notice that there’s a hyper-parameter that
needs to be selected (σ2ϵ and ρ, respectively). In both cases, the bulk of the computation
is in computing pairwise differences between all points (using different notions of distance,
depending on the case). Given a matrix of pairwise differences, one can apply these hyper-
parameters post-hoc, adding little overhead.

B.3. Derivation of the MAPA-based stochastic lower bound

We leverage qi|n(·|n) to derive a lower bound to the LML of the empiricalized model from
Eq. (6):

log px(xn; θ, ψ) = log
1

N

N∑
i=1

px|i,Z(xn|fθ ◦ gψ(xi)) (22)

= log
N∑
i=1

px|i,Z(xn|fθ ◦ gψ(xi))− logN. (23)

We define Bn(k) to be the set of k indices for which qi|n(·|n) is largest, where k ∈ {1, . . . , N}.
We use membership in this set to split the above sum into two sums:

log px(xn; θ, ψ) = log

 ∑
i∈Bn(k)

px|i,Z(xn|fθ ◦ gψ(xi)) +
∑

i/∈Bn(k)

px|i,Z(xn|fθ ◦ gψ(xi))

− logN,

(24)

where the second term will be approximated with a S-sample importance weighted lower
bound. We split the objective into two sums for two reasons. First, this maintains a clear
connection with (non-variational) AEs; when k = 1, S = 0, this objective reduces to the AE
loss. Second, when qi|n(·|n) has a long tail, we expect increasing k would reduce variance.
In essence, this objective uses a nearest-neighbor approximation of the expectations for the
empiricalized model’s LML.

Next, we approximate the gap via a stochastic lower bound. To do this, we define,
q̃ki|n(i|n) to be qi|n(·|n) renormalized after setting the probability of its k largest elements
to 0:

q̃ki|n(i|n) =
qi|n(i|n) · I[i /∈ Bn(k)]

N∑
j=1

qi|n(j|n) · I[j /∈ Bn(k)]
, (25)
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We now approximate the second term inside the log as follows:

∑
i/∈Bn(k)

px|i,Z(xn|fθ ◦ gψ(xi)) =
∑

i/∈Bn(k)

q̃ki|n(i|n) ·
px|i,Z(xn|fθ ◦ gψ(xi))

q̃ki|n(i|n)
(26)

= Ei∼q̃k
i|n(i|n)

[
px|i,Z(xn|fθ ◦ gψ(xi))

q̃ki|n(i|n)

]
(27)

≈ 1

S

S∑
s=1

px|i,Z(xn|fθ ◦ gψ(xi(s)))
q̃ki|n(i

(s)|n)
, i(s) ∼ q̃ki|n(i|n) (28)

This gives us the following importance weighted stochastic lower bound:

LSMAPA(xn; θ, ψ) = log

 ∑
i∈Bn(k)

px|i,Z(xn|fθ ◦ gψ(xi)) +
1

S

S∑
s=1

px|i,Z(xn|fθ ◦ gψ(xi(s)))
q̃ki|n(i

(s)|n)

− logN,

(29)

where i(s) ∼ q̃ki|n(i|n). That is,

log px(xn; θ, ψ) ≥ Ei(1),...,i(S)∼q̃k
i|n(i|n)

[
LSMAPA(xn; θ, ψ)

]
. (30)

Like the IWAE-bound, this bound tightens as S or k increase. Unlike the IWAE-bound,
however, this bound does not require specialized gradient estimators, since it does not
differentiate with respect to qi|n(·|n).

Appendix C. Experimental Setup

C.1. Data

In this section, we describe the synthetic examples used in this paper. We chose these
data-sets because they have been previously used to demonstrate pathologies of VAE in-
ference (Yacoby et al., 2020b). For each one of these example decoder functions, we fit a
surrogate NN, fθ, with 3 layers of 50 hidden nodes using full supervision (ensuring that the
MSE < 1e− 4 and use that fθ to generate the actual data used in the experiments. For
each data-set, we generated N = 5000 points.

Figure-8 Example. Let Φ(z) is the Gaussian CDF and σ2ϵ = 0.02.

z ∼ N (0, 1)

ϵ ∼ N (0, σ2ϵ · I)
u(z) = (0.6 + 1.8 · Φ(z))π

x|z =

[ √
2
2 · cos(u(z))

sin(u(z))2+1√
2 · cos(u(z)) sin(u(z))

sin(u(z))2+1

]
︸ ︷︷ ︸

f
θGT (z)

+ϵ

(31)
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Circle Example. Let Φ(z) is the Gaussian CDF and σ2ϵ = 0.01.

z ∼ N (0, 1)

ϵ ∼ N (0, σ2ϵ · I)

x|z =
[
cos(2π · Φ(z))
sin(2π · Φ(z))

]
︸ ︷︷ ︸

f
θGT (z)

+ϵ
(32)

Absolute-Value Example. Let Φ(z) is the Gaussian CDF and σ2ϵ = 0.01.

z ∼ N (0, 1)

ϵ ∼ N (0, σ2ϵ · I)

x|z =
[
|Φ(z)|
|Φ(z)|

]
︸ ︷︷ ︸
f
θGT (z)

+ϵ
(33)

Clusters Example. Let σ2ϵ = 0.2.

z ∼ N (0, 1)

ϵ ∼ N (0, σ2ϵ · I)

u(z) =
2π

1 + e−
1
2
πz

t(u) = 2 · tanh (10 · u− 20 · ⌊u/2⌋ − 10) + 4 · ⌊u/2⌋+ 2

x|z =
[
cos(t(u(z)))
sin(t(u(z)))

]
︸ ︷︷ ︸

f
θGT (z)

+ϵ

(34)

Spiral-Dots Example. Let σ2ϵ = 0.01.

z ∼ N (0, 1)

ϵ ∼ N (0, σ2ϵ · I)

u(z) =
4π

1 + e−
1
2
πz

t(u) = tanh (10 · u− 20 · ⌊u/2⌋ − 10) + 2 · ⌊u/2⌋+ 1

x|z =
[
t(u(z)) · cos(t(u(z)))
t(u(z)) · sin(t(u(z)))

]
︸ ︷︷ ︸

f
θGT (z)

+ϵ

(35)

C.2. Hyper-parameters

Across all synthetic data, we fix the hyper-parameters that match those of the ground-truth
data-generating process. Specifically, we fix the latent dimensions L, observation noise
variance σ2ϵ , and architecture of the NNs to those of the ground-truth (see Appendix C.1)
for details. We selected the remaining hyper-parameters using validation log-likelihood.
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Optimization. To train each model, we used the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001, and batch size of 100 for 500 epochs. To train the IWAE-
bound used for evaluation (with the mixture of Gaussians qz|x(·|x;ϕ), described in the main
text), we use a learning rate of 0.001 and a batch size of 1000 for 100 epochs. Lastly, to
learn the MAPA prior (Appendix C.3), we used a learning rate of 0.0005, a batch size of
100 or 5000, for 500 epochs.

MAPA. We selected k (in Eq. (10)) to be either 10% or 90% of the number of importance
samples in the bound S.

C.3. Copula-based prior recovery for 1D latent spaces

Given θ∗, ϕ∗ learned by maximizing LSMAPA(xn; θ, ψ), we have to learn a parametric form
for the distribution of all zn = gψ∗(xn). Since our synthetic data-sets are in one dimension
and since we found Normalizing Flow training to be finicky, we use the following procedure
to ensure the resultant prior is a standard Gaussian. This helped us ensure our evaluation
was of our proposed bound only, and is not hindered by Normalizing Flow optimization.
We emphasize that this process only works when the latent space is 1D, and that we only
chose this procedure for its reliability in evaluating our proposed method.

1. Compute zn = gψ∗(xn) for all n.

2. Compute the empirical Gaussian copula of the data:

un = Φ−1

(
1

N

N∑
i=1

I(zi ≥ zn)

)
, (36)

where Φ−1 is the inverse CDF of a standard Gaussian.

3. Whiten the resultant Gaussian:

z∗n =
un − µu
σu

, (37)

where µu, σu are the sample mean and standard deviation. At this point, z∗n should
be distributed like a standard Normal, which is our desired prior.

4. Now that we have transformed our original latent space into a Gaussian, all that’s left
is learning a function to map to and from this Gaussian as follows:

fθ∗ ◦ gψ∗(·) = fθ∗ ◦ h︸ ︷︷ ︸
f
θ†

◦h−1 ◦ gψ∗︸ ︷︷ ︸
g
ψ†

(·). (38)

We do this by solving the following optimization problem:

ϕ† = argminψ
1

N

N∑
n=1

∥z∗n − gϕ(xn)∥22, (39)

θ† = argminθ
1

N

N∑
n=1

DKL

[
px|z(xn|fθ∗ ◦ gψ∗(xn))||px|z(xn|fθ ◦ gψ†(xn))

]
. (40)
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Appendix D. Results

D.1. MAPA better estimates density across different S

In Fig. 3, we compare MAPA’s performance in estimating the observed data distribution
relative to baselines. We do this by computing DKL

[
px(·; θGT, ψGT)||px(·; θ∗, ψ∗)

]
, where

px(·; θGT, ψGT) refers to the ground-truth model (see Appendix C.1) and px(·; θ∗, ψ∗) refers
to the learned model (all with the prior fixed to a standard Gaussian). Fig. 3 shows
that, except on the “Clusters” Example, for which the MAPA is less accurate, MAPA
outperforms both the VAE and IWAE on density estimation; it achieves a lower test KL.
Further, MAPA performs as well with qi|n(·|n) as it does with the true posterior of the
approximate model (“MAPA-GT”), defined in Eq. (7). Lastly, when qi|n(·|n) is artificially
set to a uniform (“MAPA-naive”), it performs poorly, indicating that our model-agnostic
posterior approximation is indeed effective.
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(a) “Absolute Value” Example (b) “Circle” Example

(c) “Clusters” Example (d) “Figure-8” Example

(e) “Spiral-Dots” Example

Figure 3: MAPA better estimates density across different S. Except for on
the “Clusters” Example, for which the MAPA is less accurate (see Fig. 8),
MAPA outperforms baselines on density estimation (i.e. achieves a lower test
DKL

[
px(·; θGT, ψGT)||px(·; θ∗, ψ∗)

]
). Further, MAPA performs as well with

qi|n(·|n) as it does with the true posterior of the approximate model (“MAPA-
GT”). Lastly, when qi|n(·|n) is artificially set to a uniform (“MAPA-naive”), it
performs poorly, indicating that the posterior approximation is what explains the
good performance. 20



Towards Model-Agnostic Posterior Approximation for VAE Inference

D.2. MAPA inference requires fewer forward-passes

Figs. 4 and 5 compares how many NN-passes MAPA requires vs. IWAE per gradient com-
putation. Specifically, we plot the average number of NN-passes required when evaluating
each method on a batch of size 100, varying the number of importance samples S. In Fig. 4,
we assume that the cost of the decoder NN dominates the computation of the objective,
whereas in Fig. 5, we assume that the cost of the decoder and encoder NNs equally dominate
the computation. “MAPA Max” is the maximum number of samples that MAPA can use
(the number of data points N). For readability, we divide the number of forward passes by
the batch size to get the number of forward passes needed per point.

Both figures show that MAPA requires significantly fewer forward passes than IWAE.
We find that, across all data-sets, when the cost of the decoder dominates the gradient
computation, the cost of MAPA with S = 200 is roughly that of IWAE’s with S = 50
(Fig. 4). Similarly, when the decoder and encoder dominate, the cost of MAPA with
S = 200 is roughly that of IWAE’s with S = 100 (Fig. 5). This result potentially makes
MAPA more memory efficient and thus better suited for GPUs (though we have not tested
this).

Lastly, while the bounds tighten as k increases, both figures show that the additional
number of forward passes is negligible.
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(a) “Absolute Value” Example (b) “Circle” Example

(c) “Clusters” Example (d) “Figure-8” Example

(e) “Spiral-Dots” Example

Figure 4: MAPA requires fewer forward-passes than IWAE. Here, we assume that
the forward pass through the decoder is significantly more expensive than that
of the encoder of both MAPA and IWAE, and that it dominates the rest of the
computation of the objective. We plot the average number of NN evaluations
required (per iteration of gradient descent, per point) given a batch size of 100.
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(a) “Absolute Value” Example (b) “Circle” Example

(c) “Clusters” Example (d) “Figure-8” Example

(e) “Spiral-Dots” Example

Figure 5: MAPA requires fewer forward-passes than IWAE. Here, we assume that
the forward pass through the decoder and encoder networks of both MAPA and
IWAE are equally expensive, and dominate the rest of the computation of the
objective. We plot the average number of NN evaluations required (per iteration
of gradient descent, per point) given a batch size of 100.
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D.3. MAPA captures trend of ground-truth posterior

Across different values of x, Figs. 6 to 10 compare:

1. The true posterior of the ground-truth model (black):

pz|x(z|x; θGT, ψGT) =
px|z(x|fθGT(z)) · pz(z;ψGT)

px(x; θGT, ψGT)
. (41)

2. The true posterior of the ground-truth empiricalized model (red), defined in Eq. (7):
pi|x,Z(i|x; θGT, ZGT).

3. MAPA (blue), defined in Eq. (8): qi|n(i|n).

The figures plot the above log posteriors relative to the ground-truth latent codes zGT. Note:
since pi|x,Z(i|x; θGT, ZGT) and qi|n(i|n) both have sums (as opposed integrals) in their de-

nominator, they require scaling byN to be plotted with the same units as pz|x(z|x; θGT, ψGT).

The figures all show that the pz|x(z|x; θGT, ψGT) matches pz|x(z|x; θGT, ψGT) (red matches
black) nearly perfectly. The only places the two may diverge is towards the extreme values
of zGT. This is because for these values of zGT, the prior is low, which is reflected in the
density of the red points in the plot, not in the empiricalized prior. As such, they actually
reflect the same trends.

The figures further show that qi|n(i|n) captures the trend of pi|x,Z(i|x; θGT, ZGT); the
blue points look like “noise” centered around the red curve. This noise comes from the
addition of ϵGT in the derivation of MAPA (Appendix B.2). Since our bound uses qi|n(i|n)
as an importance sampling distribution, it suffices to capture the trend for a tight bound.
The only data-set for which this “noise” presents an issue is the “Clusters” data-set (Fig. 8),
suggesting MAPA may not work as well on this type of data-set.
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Figure 6: MAPA captures trend of ground-truth posterior on “Absolute-Value”
Example. The panels compare the log-posteriors (of different x’s) vs. zGT. The
black, red and blue represent the true posterior of the original model, the true
posterior of the empiricalized model, and the MAPA, respectively. Details in
Appendix D.3.
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Figure 7: MAPA captures trend of ground-truth posterior on “Circle” Example.
The panels compare the log-posteriors (of different x’s) vs. zGT. The black, red
and blue represent the true posterior of the original model, the true posterior of
the empiricalized model, and the MAPA, respectively. Details in Appendix D.3.
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Figure 8: MAPA captures trend of ground-truth posterior on “Clusters” Exam-
ple. The panels compare the log-posteriors (of different x’s) vs. zGT. The black,
red and blue represent the true posterior of the original model, the true posterior
of the empiricalized model, and the MAPA, respectively. Details in Appendix D.3.
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Figure 9: MAPA captures trend of ground-truth posterior on “Figure-8” Exam-
ple. The panels compare the log-posteriors (of different x’s) vs. zGT. The black,
red and blue represent the true posterior of the original model, the true posterior
of the empiricalized model, and the MAPA, respectively. Details in Appendix D.3.
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Figure 10: MAPA captures trend of ground-truth posterior on “Spiral-Dots” Ex-
ample. The panels compare the log-posteriors (of different x’s) vs. zGT. The
black, red and blue represent the true posterior of the original model, the true
posterior of the empiricalized model, and the MAPA, respectively. Details in
Appendix D.3.
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D.4. MAPA is robust to model non-identifiability

In Appendix D.3, we showed that MAPA captures the trend of the ground-truth posterior.
But if several models explain the observed data equally well, can MAPA capture the pos-
terior trends in all? Given two different decoders fθGT(·) ̸= fθ̂(·) that induce the same true

data distribution px(·; θGT) = px(·; θ̂), MAPA captures the trend in both equally well. We
designed the following experiment to show this:

1. We selected two data-sets—the “Absolute-Value” and “Circle” examples—for which
a VAE can estimate the data distribution accurately, but for which the inductive bias
of the mean-field Gaussian variational family prevents it from recovering the ground-
truth fθ(·) (Yacoby et al., 2020b).

2. For these data-sets, we call the ground-truth data-generating model “Variant 1” and
the equally-good, learned model “Variant 2.”

3. We confirm that the two variants indeed have different decoders fθ(·) by visualizing
them in the top-rows of Figs. 11 and 12.

4. Now, we compare how well MAPA approximates the posteriors of each variant (as done
in Appendix D.3) on the same selection of points (each x gets its own row). Note:
since we get Variant 2 by training a VAE, we cannot plot its log posterior relative to
zGT. We instead use means of the mean-field Gaussian posterior approximations.

Figs. 11 and 12 show the result of this experiment: MAPA is robust to model non-
identifiability—it is computed once per data-set, but yields equally-good approximations
on both variants.
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Figure 11: MAPA is robust to model non-identifiability on “Absolute-Value” Ex-
ample. Top-row: Two generative models with different fθ(·) that yield the same
px(·; θ). Under them, the left and right columns compare the MAPA approxi-
mation to the ground-truth posteriors for each of the two models, respectively,
on the same x’s. MAPA captures the trend in both equally well.
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Figure 12: MAPA is robust to model non-identifiability on “Circle” Example.
Top-row: Two generative models with different fθ(·) that yield the same px(·; θ).
Under them, the left and right columns compare the MAPA approximation to
the ground-truth posteriors for each of the two models, respectively, on the same
x’s. MAPA captures the trend in both equally well.
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