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ABSTRACT

This paper presents the first significant work on directly predicting 3D face land-
marks on neural radiance fields (NeRFs). This direct NeRF approach is shown
to surpass existing single or multi-view image approaches. Our 3D coarse-to-
fine Face Landmarks FLNeRF model efficiently samples from a given face NeRF
individual facial features for accurate landmarks detection. Expression augmenta-
tion is applied at facial features in fine scale to simulate large emotions range in-
cluding exaggerated facial expressions (e.g., cheek blowing, wide opening mouth)
for training FLNeRF. Qualitative and quantitative comparison with related state-
of-the-art 3D facial landmark estimation methods demonstrate the efficacy of
FLNeRF, which contributes to downstream tasks such as high-quality face edit-
ing and swapping with direct control using our NeRF landmarks. Code and data
will be available.

1 INTRODUCTION

3D facial landmarks prediction is fundamental in computer vision for various important applica-
tions. With the emergence of Neural Radiance Field (NeRF), a game-changing approach to 3D
scene representation model for novel view synthesis, a 3D scene can be represented by a compact
fully-connected neural network (Mildenhall et al., 2020). The network, directly trained on 2D im-
ages, is optimized to approximate a continuous scene representation function which maps 3D scene
coordinates and 2D view direction to a view-dependent color and a density value. The implicit
5D continuous scene representation allows NeRF to represent more complex and subtle real-world
scenes, overcoming reliance of explicit 3D data, where custom capture, sensor noise, large memory
footprint, and discrete representations are long-standing issues. Further studies have improved the
performance, efficiency and generalization of NeRF, with its variants quickly and widely adopted in
dynamic scene reconstruction (Park et al., 2021; Xian et al., 2020; Li et al., 2020b; Pumarola et al.,
2020; Du et al., 2021), novel scene composition (Ost et al., 2020; Yuan et al., 2021; Niemeyer &
Geiger, 2020; Guo et al., 2020b; Liu et al., 2021; Yang et al., 2021; Müller et al., 2022; Kundu et al.,
2022), articulated 3D shape reconstruction (Yang et al., 2022; Shao et al., 2022; Weng et al., 2022;
Zhao et al., 2022; Jiang et al., 2022; Zheng et al., 2022; Xu et al., 2022; Chen et al., 2022; Noguchi
et al., 2021; Peng et al., 2021) and various computer vision tasks, including face NeRFs (Gafni et al.,
2021; Athar et al., 2022; Or-El et al., 2022; Sun et al., 2021; Deng et al., 2022; Hong et al., 2022),
the focus of this paper.

This paper presents FLNeRF, which is to our knowledge the first work to accurately estimate 3D
face landmarks directly on NeRFs. FLNeRF contributes a coarse-to-fine framework to predict
3D face landmarks directly on NeRFs, where keypoints are identified from the entire face region
(coarse), followed by detailed keypoints on facial features such as eyebrows, cheekbones, and lips
(fine). To encompass non-neutral, expressive and exaggerated expressions e.g., half-open mouth,
closed eyes, and even smiling fish face, we apply effective expression augmentation and conse-
quently, our augmented data consists of 110 expressions, including subtle as well as exaggerated
expressions. This expressive facial data set will be made available. We demonstrate application of
FLNeRF, by simply replacing the shape and expressions codes in (Zhuang et al., 2022) with our fa-
cial landmarks, to show how direct control using landmarks can achieve comparable or better results
on face editing and swapping.
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In summary, we propose FLNeRF, a coarse-to-fine 3D face landmark predictor on NeRFs, as the
first significant model for 3D face landmark estimation directly on NeRF without any intermedi-
ate representations. We show this direct NeRF is significantly more accurate than state-of-the-art
landmark detection from single or multi-view images. We demonstrate applications of accurate 3D
landmarks produced by FLNeRF on multiple high-quality downstreamon tasks, such as face editing
and face swapping (Figure 1).

Figure 1: Accurate 3D landmarks on face NeRF. FLNeRF directly operates on dynamic NeRF, where an
animator can easily edit, control and transfer emotion from another face NeRF. With precise landmarks on
facial features, exaggerated facial expressions can be readily rigged and controlled by the animator.

Early models including Active Shape Models (ASM) (Milborrow & Nicolls, 2008; Cootes et al.,
1995; Cootes & Taylor, 1992) and Active Appearance Models (AAM) (Cootes et al., 1998; Sauer
et al., 2011) localize 2D landmarks on 2D images. However, 2D landmarks do not work well un-
der large variations in pose and illumination. Moreover, applying 2D landmark prediction indi-
vidually to multiple images capturing the same 3D face does not guarantee consistency. Even for
single-image scenarios, some 3D face information (e.g., depth) is often estimated where 3D facial
landmarks can be directly predicted. 3D landmarks estimation methods have been developed and
applied in various downstream tasks, e.g., face recognition (Sharma & Kumar, 2021; Sharifisoraki
et al., 2023; Mousavi et al., 2021), face synthesis (Zakharov et al., 2019), face alignment (Xia et al.,
2022), and face reenactment (Kosarevych et al., 2020; Hao et al., 2020). Note that the input are
still often 2D image(s) despite 3D discrete representations such as mesh, voxel, and point cloud
are available, where controlled illumination, special sensors or synchronized cameras are required
during data acquisition (Mildenhall et al., 2020; Pillai et al., 2019; Laszlo A. Jeni, 2019).

2 RELATED WORK

2D Face Landmarks Prediction ASM (Milborrow & Nicolls, 2008; Cootes et al., 1995; Cootes
& Taylor, 1992) and AAM (Cootes et al., 1998; Sauer et al., 2011) are classic methods in 2D face
landmarks prediction. Today CNN-based methods have become mainstream, consisting of heatmap
regression models and coordinate regression models. Heatmap models (Wu et al., 2018; Zhu et al.,
2019a; Sun et al., 2019; Valle et al., 2018) generate probability maps for each landmark location.
However, face landmarks are not independent sparse points. Heatmap methods are prone to oc-
clusion and appearance variations due to lack of face structural information. In contrast to heatmap
regression models, directly learning landmarks coordinates could encompass weak structural knowl-
edge (Trigeorgis et al., 2016b; Li et al., 2020a). Most coordinate regression methods (Sun et al.,
2013; Trigeorgis et al., 2016a; Lv et al., 2017; Zhu et al., 2015; Su et al., 2019) progressively mi-
grate predictions toward ground truth landmarks on 2D image.

3D Face Model and 3D Face Landmarks Prediction 3D Morphable Model (3DMM) (Blanz &
Vetter, 1999) is among the earliest methods in representing 3D face which is usually used as an
intermediate to guide learning of face models. However, this model restricts flexibility of face
models due to its strong 3D prior and biased training data. To represent faces with wider range of
expressions and preserve identity information, (Vlasic et al., 2006) proposed bilinear model, which
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Figure 2: FLNeRF pipeline of our 3D facial landmarks detection. We choose 4 representative regions i.e.,
eyes, mouth and the whole face to detect facial landmarks. In each region, 4 channel volumes are sampled
from the NeRF. Together with the 3D position encoding, feature volumes will be encoded as a 1D vector by
3D VolResNet or VGG backbone. Four separate 1D vectors received from the 4 coarse-to-fine scales (i.e., the
whole face, left and right eyes including eyebrows, and lips including philtrum and cheekbone regions) are
concatenated and decoded to bilinear parameters and pose (given by the transform matrix) using MLPs.

parameterizes face models in identity and expression dimensions. Facescape (Zhu et al., 2021)
builds bilinear model from topologically uniformed models, through which 3D landmarks can be
extracted, achieving better representation quality especially for identity preservation and wide range
of expressions.
3D models in face-related tasks are more preferable to their 2D counterparts in representation power
and robustness against pose and illumination changes. Before NeRFs, traditional 3D representa-
tion methods include voxel, mesh, and point cloud. However, building 3D models using these
methods require controlled illumination, explicit 3D image, special sensors or synchronized cam-
eras (Mildenhall et al., 2020; Pillai et al., 2019; Laszlo A. Jeni, 2019). Due to the demanding
requirements for data acquisition, state-of-the-art 3D face landmarks prediction methods focus on
localizing 3D landmarks on a single 2D image (Zhu et al., 2019b; Wu et al., 2021; Bulat & Tz-
imiropoulos, 2017; Feng et al., 2021; Guo et al., 2020a; Kumar et al., 2020; Yi et al., 2019). (Wu
et al., 2021; Guo et al., 2020a; Zhu et al., 2019b; Yi et al., 2019) regress parameters of 3DMM fol-
lowed by extracting 3D landmarks. (Bulat & Tzimiropoulos, 2017; Feng et al., 2021; Kumar et al.,
2020) regress the coordinates of dense vertices or other 3D representations. These methods suffer
from large memory footprint and long inference time, since they usually adopt heavy networks such
as hourglass (Newell et al., 2016).
State-of-the-art 3D face landmarks localization methods have suboptimal accuracy and limited ex-
pression range and pose variations due to the 2D input. Although representations such as voxels and
meshes can be constructed, an expressive face contains important subtle features which can easily
get lost in such discrete representations. While low-resolution processing leads to severe informa-
tion loss, high-resolution processing induces large memory footprint and long training and rendering
time. Thus, a continuous, compact, and relatively easy-to-obtain 3D representation is preferred as
input to 3D landmarks localization models for more direct and accurate estimation.

Face NeRFs Since NeRF represents 3D face continuously as solid (i.e., unlike point cloud crust
surface), encoding 3D information in a compact set of weights (e.g., a 512×512×512 voxel versus a
256×256×9 network), and that it only requires multiview RGB images with camera poses, applying
NeRF on face-related tasks has recently attracted research effort. (Gafni et al., 2021) combines a
scene representation network with a low-dimensional morphable model, while (Athar et al., 2022)
utilizes a deformation field and uses 3DMM as a deformation prior. In (Or-El et al., 2022), a NeRF-
style volume renderer is used to generate high fidelity face images. In face editing and synthesis,
training NeRF generators (Sun et al., 2021; Deng et al., 2022; Hong et al., 2022) reveals promis-
ing prospects for the inherently continuous 3D representation of the volume space, with drastic
reduction of demanding memory and computational requirements of voxel-based methods. Mo-
FaNeRF (Zhuang et al., 2022) encodes appearance, shape, and expression and directly synthesizes
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Table 1: Quantitative comparison of FLNeRF and representative methods in average Wing loss. All values are
multiplied by 10. Empty entries mean different landmarks definition on the corresponding regions.

Method Predictor Average Wing Loss of All Expressions Average Wing Loss of Exaggerated Expression Avg. #FailMouth Eyes Nose Mouth Eyes Nose

2D Estimation
+

Triangulation

RSN 5.15±0.57 - - 4.80±0.53 - - 0.00
RTMDet 4.93±0.47 - 4.81±0.38 4.66±0.41 - 4.88±0.25 0.00
DarkPose 4.94±0.51 - 5.15±0.46 4.47±0.61 - 5.43±0.55 0.00

DeepPose-SW 4.86±0.60 - 5.02±0.46 4.49±0.47 - 5.38±0.51 0.00
STAR 5.94±1.01 5.47±0.56 5.44±1.00 6.42±1.18 6.23±1.01 6.90±1.59 56.83

2D FAN 4.94±0.47 4.94±0.17 5.19±0.15 4.64±0.22 5.03±0.16 5.32±0.22 5.02
SPIGA 5.61±0.98 5.13±0.66 5.21±0.92 5.79±0.93 5.84±0.94 6.33±1.28 57.99
PIPNet 5.90±0.84 5.55±0.62 5.41±0.62 5.49±0.75 5.96±0.73 5.87±0.65 2.11

Averaged 3D
Estimation on
Single Images

3DDFA 1.71± 0.66 2.10± 0.34 1.42± 0.22 4.07± 0.22 2.52± 0.36 1.54± 0.21 48.29
SynergyNet 2.63± 0.62 3.63± 0.30 1.80± 0.20 3.85± 0.56 3.96± 0.28 1.79± 0.19 1.88

3D FAN 2.43± 0.61 3.60± 0.37 1.94± 0.23 3.58± 0.47 4.25± 0.45 1.80± 0.28 2.00
DECA 2.22± 0.58 3.25± 0.28 1.29± 0.21 3.46± 0.48 3.85± 0.33 1.48± 0.11 0.00

Estimation
on NeRF FLNeRF 0.85±0.37 0.62±0.16 0.55±0.20 0.78±0.20 0.61±0.11 0.57±0.22 -

photo-realistic face. Continuous face morphing can be achieved by interpolating the three codes.
We modify MoFaNeRF to support high-quality face editing and face swapping to demonstrate the
advantages of direct control using 3D landmarks. (Gao et al., 2020; Rebain et al., 2022; Shi et al.,
2022; Chan et al., 2022) reconstruct face NeRFs from a single image. We will show our FLNeRF
can be generalized to estimate 3D face landmarks on 2D in-the-wild images, using face NeRFs
reconstructed by EG3D Inversion (Chan et al., 2022).

3 3D FACE NERF LANDMARKS DETECTION
Figure 2 shows the pipeline of FLNeRF which is a multi-scale coarse-to-fine 3D face landmarks
predictor on NeRF. Our coarse model takes a face NeRF as input, and produces rough parameters
estimation of the bilinear model, location and orientation (Sec. 3.1) of the input face by 3D con-
volution of the sampled face NeRF with position encoding. Unlike SynergyNet (Wu et al., 2021)
which crops faces in 2D images, our coarse model can localize the pertinent 3D head in the NeRF
space. Based on the estimated coarse landmarks, our fine model resamples from four regions: whole
face, the left and right eyes including eyebrows, and mouth including lips, philtrum and cheekbone
regions. In our coarse-to-fine implementation, the resolution of the sampled 3D volumes (coarse
and fine) are respectively 643.
The resampled volumes are then used to estimate more accurate bilinear model parameters with
position encoding in Sec. 3.1. After describing how to benefit from the underlying continuous
NeRF representation in sampling in Sec. 3.2, we will explain our coarse model in Section 3.3 and
fine model in Section 3.4. Since there are only 20 discrete expressions in FaceScape (Zhu et al.,
2021) with fixed head location and orientation, more diverse expressions and head poses are not
covered in the dataset. To alleviate this limitation, we apply data augmentation to enrich our dataset
to 110 expressions with different head poses per person, allowing our model to accurately locate
and predict landmarks for faces with more complex expressions. We will describe our coarse data
augmentation and fine expressions augmentation in Section 4.

3.1 BILINEAR MODEL

We utilize the bilinear model to approximate face geometry. FaceScape builds the bilinear model
from generated blendshapes in the space of 26317 vertices × 52 expressions × 938 identities. Tucker
decomposition decomposes the large rank-3 tensor into a small core tensor Cr ∈ R26317×52×50 and
two low dimensional components wexp ∈ R52, wid ∈ R50 for expression and identity. Here, we only
focus on the 68 landmarks subspace C ′

r ∈ R68·3×52×50. The flattened 68 3D landmarks Vf ∈ R3·68

can be generated by Eq. (1):
Vf = C ′

r × wid × wexp (1)

To align Vf with an input face NeRF, a transform matrix P ∈ R3×4 is predicted. New aligned
landmarks can be written as:

Va = P

[
Vf

1

]
. (2)

3.2 NERF SAMPLING

NeRF is a continuous representation underlying a 3D scene. In our case, each face NeRF is trained
from 120 multi-view images in Facescape (Zhu et al., 2021). So far, most feature extractors are
applied in discrete spaces such as voxel, mesh and point cloud, which inevitably induce information
loss. In order to maximize the benefit of the continuous representation, we adopt a coarse-to-fine
sampling strategy. Specifically, given a NeRF containing a human head, uniform coarse sampling
will first be performed in the whole region of the NeRF with respect to the radiance and density
channels to generate feature volumes (RGB is used to represent radiance). To make the radiance
sampled on the face surface more accurate, we assume the viewing direction is looking at the frontal
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Figure 3: Accurate 3D landmarks detection of FLNeRF.

Figure 4: Qualitative comparison of FLNeRF with state-of-the-art methods, whose depth estimation and ro-
bustness under lateral view directions are erroneous. Each subfigure is estimated 3D landmarks overlayed on a
lateral-view image, by triangulation or average single-image 3D landmarks estimation.

face when we sample the NeRF. We only utilize the radiance and density queried at given points of
the NeRF, thus our model is applicable to most NeRF representations. To discard noisy samples,
voxels with density smaller than a threshold (set to 20 by experiments) will be set to 0 in all channels
(RGB and density), and voxel with density larger than the threshold will have the value one in density
channel with RGB channels remaining the same. In the fine sampling, given the predicted coarse
landmarks, orientation and translation of the head, the sampling regions of the whole face, eyes, and
mouth are cubic boxes centered at the mean points of the landmarks belonging to corresponding
regions with a suitable size proportional to the scale of the head. These cubic sampling boxes are
aligned to the same rotation of the head. The same noise discarding strategy is used here.

3.3 COARSE MODEL

Inspired by the CoordConv (Liu et al., 2018), to enhance ability of 3D CNNs to represent spatial
information, we add position encoding channels to each feature volume. Instead of directly using the
Cartesian coordinates, a higher dimensional vector encoded from x, y, z normalized to [0,1] are used
as position encoding. The mapping function from x, y, z to higher dimensional space is modified
from that in (Mildenhall et al., 2020) which includes the original Cartesian coordinates:

γ(p) = (p, sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)). (3)

We set L = 4 and γ(·) is applied to individual coordinates. We adopt the VoxResNet (Chen et al.,
2016) and 3D convolution version of VGG (Simonyan & Zisserman, 2015) as our backbone to
encode the pertinent feature volumes into a 1D long vector. Three seperate fully-connected layers
are used as decoder to predict the transform matrix and bilinear model parameters. The transform
matrix contains the head location and orientation. The Wing loss (Feng et al., 2018) is:

wing(x) =

{
ω ln(1 + |x′ − x|/ϵ) if |x′ − x| < ω

|x′ − x| − C otherwise
(4)
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Figure 5: FLNeRF can predict decent 3D landmarks on a suboptimal face NeRF reconstructed from a single
in-the-wild image (Chan et al., 2022). (b) and (c) are overlayed side views and front view rendered from the
face NeRF with predicted landmarks. (d) is the overlayed original image with predicted landmarks.
where we set ω = 10 and ϵ = 2. The x′ ∈ R204×1 is the predicted landmarks. The x ∈ R204×1 is
reshaped from ground truth landmarks ∈ R68×3.

3.4 FINE MODEL

With the location, orientation, and coarse landmarks of the face given by the coarse model, a bound-
ing box aligned with the head can be determined. Usually, the eyes and mouth have more expressive
details. The bounding box of the eyes and mouth can also be determined, according to the coarse
landmarks. Due to the low sampling resolution used in the coarse model and the inaccuracy of the
coarse model prediction, the bounding boxes are made slightly larger to include all necessary fa-
cial features and their proximate regions. The same sampling method and position encoding as the
coarse model is performed on these bounding boxes. Similar to the coarse model, VoxResNet and
the 3D convolution version of VGG are used as the backbone to encode these four feature volumes
into four 1D long vectors. These 1D long vectors containing expressive information on eyes, mouth,
and the whole face are concatenated to predict the bilinear model parameters and a transform matrix,
which are used to compute fine 3D landmarks. The loss function is the same as that in the coarse
model.

3.5 EVALUATION AND COMPARISON

Accuracy. Fig. 3 shows qualitative results of our 3D landmark detection from NeRFs over a wide
range of expressions. For quantitative evaluation and comparison with state-of-the-art methods,
we randomly choose 5 identities as our test dataset. For the scale of prediction, we divide ground
truth coordinates of 3D landmarks in Facescape (Zhu et al., 2021) by 100, and transform all pre-
dicted landmarks to the same coordinate system and scale of the divided ground truth. Table 1
shows quantitative comparison on all expressions (20 unaugmented expressions) and the exagger-
ated expression (unaugmented mouth stretching expression) of our FLNeRF with: (1) 2D face
landmarks prediction on single images followed by triangulation, where state-of-the-art 2D pre-
dictors include RSN (Cai et al., 2020), RTMDet (Lyu et al., 2022), DarkPose (Zhang et al., 2020),
DeepPose-SW (Zhu et al., 2020), STAR Zhou et al. (2023), 2D FAN (Bulat & Tzimiropoulos, 2017),
SPIGA (Prados-Torreblanca et al., 2022), PIPNet (Jin et al., 2021); and (2) Averaged 3D face land-
marks prediction on single images, where state-of-the-arts 3D predictors include 3DDFA (Zhu et al.,
2019b), SynergyNet (Wu et al., 2021), 3D FAN (Bulat & Tzimiropoulos, 2017), DECA (Feng et al.,
2021). The last column shows the average number of single images on which 2D or 3D landmarks
estimators malfunction. The average number of estimations used to perform triangulation by (1), or
to take average by (2) is thus (120 - Avg. #Fail). Since Facescape’s annotations of landmarks on
cheeks are different from all existing methods, we cannot compare performance on those landmarks
quantitatively, while providing quantitative statistics on eyes, nose, and mouth. The last row of Ta-
ble 2 shows performance of FLNeRF on all 110 expressions. Fig. 4 shows qualitative comparison,
where superiority of our FLNeRF over all other methods on all landmarks could be clearly observed.
Work for in-the-wild face NeRF? To show FLNeRF is robust under various scenes and gen-
eralizable to in-the-wild face NeRF, we perform 3D face landmarks localization on face NeRFs
reconstructed from a single in-the-wild face image using EG3D Inversion (Chan et al., 2022), which
incorporates face localization and background removal, thus allowing FLNeRF to predict 3D land-
marks on NeRFs containing only a face (and sparse noise). Fig. 5 shows that despite suboptimal
reconstruction quality, FLNeRF can still accurately localize most feature points on the reconstructed
face NeRF.
Please refer to our supplementary material: Section 1 provides additional training details. Sec-
tion 2.1 offers a quantitative comparison in terms of additional metrics. Section 2.2 thoroughly
analyzes the sub-optimal results obtained from 2D estimation followed by triangulation, supported
by exhaustive experiments. Furthermore, Section 2.3 explains the reasons behind the inferior results
of averaged 3D estimation on single images. Section 3 provides more visualization results.
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Figure 6: Expression augmentation. Subfigure 1 is the original stretch mouth NeRF with facial landmarks.
Others are the feature volumes sampled non-uniformly from this NeRF using 3D TPS with the target landmarks.

4 AUGMENTATION AND ABLATION

4.1 DATA AUGMENTATION FOR COARSE MODEL

FaceScape consists of forward-looking faces situated at the origin. Taking into account NeRF imple-
mentations with different scales or coordinate systems, to boost generality and support 3D landmarks
prediction on a wide variety of input NeRF containing a head, we augment the data set with vari-
ous face locations, orientations and scales. We perform data augmentation during sampling these
NeRFs into feature volumes R4×N×N×N and assume the meaningful region of NeRF is within
[−1, 1]3, which can be easily normalized as such otherwise. Each sampled point S ∈ [−1, 1]3 will
be transformed by a matrix τ [Rt] to a new position, where R ∈ SO(3), τ ∈ [2, 3] and t ∈ [−1, 1]3.
New augmented feature volumes are generated by sampling NeRF at new sampling position. This
operation is equivalent to scale, translate and rotate the head in the feature volumes. Although the
sampled points may lie outside the captured NeRF, their densities are usually less than the threshold.
Even some exceed the threshold, they are random noise points in the feature volumes that can be
discarded by FLNeRF easily.

4.2 EXPRESSION AUGMENTATION FOR FINE MODEL

Fig. 6 illustrates our data augmentation to include more expressive facial features for training.
First, we rig 20 expressions to 52 blendshapes based on FACS (Alkawaz et al., 2015). Then,
we linearly interpolate these 52 blendshapes to 110 expressions. A total of 110 expression vol-
umes from FaceScape (Zhu et al., 2021) are sampled non-uniformly from the given 20 expression
NeRFs using 3D thin plate spline (3D TPS) (Bookstein, 1989). Note that the variation of the 20
discrete expressions in the FaceScape (Zhu et al., 2021) is insufficient for training 3D landmarks
detector on the NeRF to cover wide range of facial emotions. Given a original N 3D landmarks
L ∈ RN×3 and the target N 3D landmarks L′ ∈ RN×3, we can construct f(x) to warp x ∈ R3

to x′ ∈ R3. Let [l1, l2, · · ·, lN−1, lN ]⊺ = L and [l′1, l
′
2, · · ·, l′N−1, l

′
N ]⊺ = L′: x′ = f(x) =

A0 + A1x +

N∑
i=1

ωiU(∥ li − x∥), where A0 =

[
ax
ay
az

]
,A1 =

[
axx axy axz
ayx ayy ayz
azx azy azz

]
, ωi =

[
ωix

ωiy

ωiz

]
.

A0 +A1x⃗ is the best linear transformation mapping L to L′. U(∥xi − x∥) measures the distance
from x to control points L. We use U(r) = r2 log(r) as the radial basis kernel and ∥·∥ denotes L2

norm. These coefficients A0, A1 and ωi can be found by solving a linear system (supplemental ma-
terial Section 4). In summary, a warped feature volume can be sampled non-uniformly from a NeRF
by 3D TPS warp specified by the original and target landmarks. For each person in the FaceScape
data set, a total of 110 expressions are available for training.

4.3 ABLATION STUDY

We conduct ablation on: (a) remove fine model, (b) remove expression augmentation, (c) use only
two sampling scales, i.e., the first two rows in Fig. 2, (d) our full model.
Table 2 tabulates the ablation results using bilinear model and 3DMM respectively, where both of
them use VoxResNet as backbone. It shows the advantage of bilinear model. Our full pipeline (d)
achieves better performance than others, especially for the mouth region and exaggerated expres-
sions. Ablation results using VGG as backbone can be found in Section 5 of our supplementary
material.

5 APPLICATIONS

There has been no representative work on 3D facial NeRF landmarks detection that enables NeRF
landmark-based applications, such as face swapping and expression editing, while producing real-
istic 3D results on par with ours. In this section, we will show how the landmarks estimated by
FLNeRF can directly benefit MoFaNeRF (Zhuang et al., 2022).
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Table 2: Since train/test data for coarse model only contains 20 basic expressions, we calculate the average
Wing loss on these expressions for (a). For (b), (c) and (d), whole face losses are calculated on the test data
set with 110 different expressions. Mouth and Eyes losses measure the corresponding landmarks’ accuracy
based on Wing loss. The last column shows results on basic mouth stretching expression and 10 augmented
exaggerated expressions by method described in Section 4.2. All values are multiplied by 10.

Average Wing Loss Using Bilinear Model Average Wing Loss Using 3DMM
All Expressions Exaggerated Average Wing Loss of All Expressions Exaggerated

Whole Face Mouth Eyes Expressions Whole Face Mouth Eyes Expressions
(a) 2.50±1.19 - - - 2.55±0.94 - - -
(b) 0.74±0.23 0.88±0.50 0.60±0.12 0.76±0.34 1.19±0.31 1.25±0.65 1.09±0.19 1.70±0.51
(c) 0.68±0.21 0.87±0.45 0.57±0.1 0.61±0.10 0.94±0.17 0.96±0.17 0.88±0.07 0.91±0.07
(d) 0.64±0.21 0.74±0.44 0.57±0.13 0.54±0.10 0.92±0.21 0.94±0.46 0.83±0.09 0.90±0.16

While MoFaNeRF generates SOTA results, we believe the range of expressive emotions is limited
by its shape and expression code. 3D NeRF facial landmarks on the other hand provides explicit
controls on facial expressions including fine and subtle details from exaggerated facial emotions. To
directly benefit MoFaNeRF, we simply replace their shape and expression code with our 3D face
landmarks location, which allows us to directly control NeRF’s facial features and thus produce
impressive results on morphable faces, face swapping and face editing. Please refer to Section 6.1
of the supplementary material for the model architecture of our modified MoFaNeRF, and Section
6.2 for ablation study.

5.1 FACE SWAPPING

We can swap the expressions of two identities by swapping their 3D landmarks. Two identities
I1 and I2 may have different ways to perform the same expression. Feeding I2’s landmarks on a
given facial expression with I1’s texture map to our modified MoFaNeRF enables I1 to perform
the corresponding expression in I2’s way, the essence of face swapping. We show our modified
MoFaNeRF can perform face swapping in Fig. 7, where the man takes on the woman’s landmarks
to produce the corresponding expression faithful to the woman’s, and vice versa.
By simply appending the modified MoFaNeRF to FLNeRF, so as to perform downstream face swap-
ping task after obtaining accurate prediction of 3D face landmarks, Fig. 1 shows that given two face
NeRFs and their respective face landmarks, we can swap their expressions by simply swapping their
face landmarks on NeRF.

Figure 7: Demonstration of face swapping by swapping landmarks. (a1)(b1) consist of rendered images
from two different views by respectively feeding I1’s and I2’s texture map with ground truth landmarks to
generate the pertinent NeRFs using our modified MoFaNeRF. (a2)(b2) show images generated by respectively
feeding to the network I1’s landmarks with I2’s texture map, and I2’s landmarks with I1’s texture map.

5.2 FACE EDITING

We can produce an identity’s face with any expression given the corresponding landmarks and tex-
ture. Fig. 8 shows that our model can morph face by directly manipulating landmarks, where im-
ages on each row are rendered from NeRFs synthesized by linearly interpolating between the two
corresponding NeRFs with landmarks of the leftmost expression and landmarks of the rightmost
expression. Fig. 8 clearly demonstrates that our model can produce complex expressions even not
included in our dataset. For example, middle images in the fifth row demonstrate our model’s ability
to represent a face with simultaneous chin raising and eye closing. Fig. 8 also shows that we can
independently control eyes, eyebrows, mouth, and even some subtle facial muscles, with better dis-
entanglement ability over MoFaNeRF (Zhuang et al., 2022) using shape and expression code. An
extension of Fig. 8 could be found in the supplementary material.
We append our modified MoFaNeRF to FLNeRF, so as to perform downstream face editing after
obtaining accurate prediction of 3D face landmarks. Fig. 9 shows that we can transfer one person’s
expression to another. In detail, we first obtain a face NeRF with the desired expression by feeding
the corresponding landmarks into the modified MoFaNeRF. Then we apply our FLNeRF on the gen-
erated face NeRF to obtain accurate landmarks prediction. Finally, we use the predicted landmarks
as input to the modified MoFaNeRF, together with texture map of another person, so that we obtain

8
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Figure 8: Demonstration of face editing via direct landmark control. For each row, images are rendered by
interpolating landmarks of the left most expression and the right most expression. Figure 8 in the supplementary
material is an entension of this figure.

Figure 9: Demonstration of expression transfer by connecting the modified MoFaNeRF to FLNeRF as a
downstream task. For each pair of images, the left face is the driver face, where landmarks on its NeRF are
estimated by our FLNeRF and fed to our modified MoFaNeRF to drive the right face’s expression.

face NeRF of another person with our desired expression. Refer to the supplemental video where
face images are rendered from many viewpoints.

6 CONCLUDING REMARKS

We propose the first 3D coarse-to-fine face landmarks detector (FLNeRF) with multi-scale sampling
that directly predicts accurate 3D landmarks on NeRF. Our FLNeRF is trained on augmented dataset
with 110 discrete expressions generated by local and non-linear NeRF warp, which enables FLNeRF
to give accurate landmarks prediction on a large number of complex expressions. We perform ex-
tensive quantitative and qualitative comparison, and demonstrate 3D landmark-based face swapping
and editing applications. We hope FLNeRF will enable future works on more accurate and general
3D face landmarks detection on NeRF.
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