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Abstract
We study the problem of optimizing biologi-
cal sequences, e.g., proteins, DNA, and RNA,
to maximize a black-box score function that is
only evaluated in an offline dataset. We pro-
pose a novel solution, bootstrapped training of
score-conditioned generator (BOOTGEN) algo-
rithm. Our algorithm repeats a two-stage pro-
cess. In the first stage, our algorithm trains the
biological sequence generator with rank-based
weights to enhance the accuracy of sequence
generation based on high scores. The subsequent
stage involves bootstrapping, which augments
the training dataset with self-generated data la-
beled by a proxy score function. Our key idea is
to align the score-based generation with a proxy
score function, which distills the knowledge of
the proxy score function to the generator. Af-
ter training, we aggregate samples from multiple
bootstrapped generators and proxies to produce
a diverse design. Extensive experiments show
that our method outperforms competitive base-
lines on biological sequential design tasks.

1. Introduction
The automatic design of biological sequences, e.g., DNA,
RNA, and proteins, with a specific property, e.g., high bind-
ing affinity, is a vital task within the field of biotechnol-
ogy (Barrera et al., 2016; Zimmer, 2002; Sample et al.,
2019; Lorenz et al., 2011). To solve this problem, re-
searchers have developed algorithms to optimize a biolog-
ical sequence to maximize a score function (Ren et al.,
2022; Brookes et al., 2019; Brookes & Listgarten, 2018;
Angermueller et al., 2019; Jain et al., 2022). Here, the main
challenge is the expensive evaluation of the score function
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that requires experiments in a laboratory setting or clinical
trials.

To resolve this issue, recent works have investigated offline
model-based optimization (Kumar & Levine, 2020; Fu &
Levine, 2021; Trabucco et al., 2021; Yu et al., 2021; Chen
et al., 2022; Trabucco et al., 2022, MBO). Given an offline
dataset of biological sequences paired with scores, offline
MBO algorithms train a proxy for the score function, e.g., a
deep neural network (DNN), and maximize the proxy func-
tion without querying the true score function. Therefore,
such offline MBO algorithms bypass the expense of itera-
tively querying the true score function whenever a new so-
lution is proposed. However, even optimizing such a proxy
function is challenging due to the vast search space over the
biological sequences.

Related works. On one hand, several works (Fu & Levine,
2021; Trabucco et al., 2021; Yu et al., 2021; Chen et al.,
2022) considered applying gradient-based maximization of
the proxy function. However, when the proxy function is
parameterized using a DNN, these methods often gener-
ate solutions where the true score is low despite the high
proxy score. This is due to the fragility of DNNs against
adversarial optimization of inputs (Yu et al., 2021; Tra-
bucco et al., 2021; Fu & Levine, 2021). Furthermore, the
gradient-based methods additionally require reformulating
biological sequence optimization as a continuous optimiza-
tion, e.g., continuous relaxation (Fu & Levine, 2021; Tra-
bucco et al., 2021; Chen et al., 2022) or mapping discrete
designs to a continuous latent space (Yu et al., 2021).

On the other hand, one may consider training deep genera-
tive models to learn a distribution over high-scoring designs
(Kumar & Levine, 2020; Jain et al., 2022). They learn to
generate solutions from scratch, which amortizes optimiza-
tion over the design space.

Contribution In this paper, we propose a novel algo-
rithm, coined bootstrapped training of score conditioned
generator (BOOTGEN), for the offline design of biolog-
ical sequences. Our key idea is to enhance the score-
conditioned generator by suggesting a novel variation of
the classical ensemble strategy of bootstrapping and ag-
gregating. We train multiple generators using bootstrapped
datasets from training and combine them with proxy mod-
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Figure 1: Illustration of the bootstrapped training process for learning score-conditioned generator.

els to create a reliable and diverse sampling solution.

In the bootstrapped training, we aim to align a score-
conditioned generator with a proxy function by bootstrap-
ping the training dataset of the generator. To be specific,
we repeat multiple stages of (1) training the conditional
generator on the training dataset with a focus on high-
scoring sequences and (2) augmenting the training dataset
using sequences that are sampled from the generator and
labeled using the proxy function. Intuitively, our frame-
work improves the score-to-sequence mapping (generator)
to be consistent with the sequence-to-score mapping (proxy
function), which is typically more accurate.

When training the score-conditioned generator, we assign
high rank-based weights (Tripp et al., 2020) to high-scoring
sequences. Sequences that are highly ranked among the
training dataset are more frequently sampled to train the
generator. This leads to shifting the training distribution
towards an accurate generation of high-scoring samples.
Compared with the value-based weighting scheme previ-
ously proposed by Kumar & Levine (2020), the rank-based
weighting scheme is more robust to the change of training
dataset from bootstrapping.

To further boost the performance of our algorithm, we pro-
pose two post-processing processes after the training: fil-
tering and diversity aggregation (DA). The filtering process
aims to filter samples from generators using the proxy func-
tion to gather samples with cross-agreement between the
proxy and generator. On the other hand, DA collects sub-
samples from multiple generators and combines them into
complete samples. DA enables diverse decision-making
with reduced variance in generating quality, as it collects
samples from multiple bootstrapped generators.

2. BOOTGEN

Problem definition We are interested in optimizing a bi-
ological sequence x to maximize a given score function
f(x). We consider an offline setting where, during opti-
mization, we do not have access to the score function f(x).
Instead, we optimize the biological sequences using a static
dataset D = {(xn, yn)}Nn=1 consisting of offline queries
yn = f(xn) to the score function. Finally, we consider
evaluating a set of sequences {xm}Mm=1 as an output of of-
fline design algorithms.

Overview of BOOTGEN We first provide a high-
level description of our bootstrapped training of score-
conditioned generator, coined BOOTGEN. Our key idea
is to align the score-conditioned generation with a proxy
model via bootstrapped training (i.e., we train the genera-
tor on sequences labeled using the proxy model) and ag-
gregate the decisions over multiple generators and proxies
for reliable and diverse sampling of solutions.

Our BOOTGEN first initializes a training dataset Dtr as the
offline dataset D and then repeats the following steps:

A. BootGen optimizes the score-conditioned generator
pθ(x|y) using the training dataset Dtr. During train-
ing, it assigns rank-based weights to each sequence
for the generator to focus on high scores samples.

B. BOOTGEN bootstraps the training dataset Dtr using
samples from the generator pθ(x|y†) conditioned on
the desired score y†. It uses a proxy fϕ(x) ≈ f(x) of
the score function to label the new samples.

After BOOTGEN training for multiple score-conditioned
generators pθ1(x|y), ..., pθn(x|y), we aggregate samples
from the generators with filtering of proxy score func-
tion fϕ to generate diverse and reliable samples (see Al-
gorithm 1 and Algorithm 2 for psuedo code).

2.1. Rank-based Weighted Training

Here, we introduce our framework to train the score-
conditioned generator. Our algorithm aims to train the
score-conditioned generator with more focus on generating
high-scoring designs. Such a goal is helpful for bootstrap-
ping and evaluation of our framework, where we query the
generator conditioned on a high score.

Given a training dataset Dtr, our BOOTGEN minimizes the
following loss function:

L(θ) := −
∑

(x,y)∈Dtr

w(y,Dtr) log pθ(x|y),

w(y,Dtr) =
(k|Dtr|+ rank(y,Dtr))

−1∑
(x,y)∈Dtr

(k|Dtr|+ rank(y,Dtr))−1
.

where w(y,Dtr) is the score-wise rank-based weight (Tripp
et al., 2020). Here, k is a weight-shifting factor, and
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rank(y,Dtr) denotes the relative ranking of a score y with
respect to the set of scores in the dataset Dtr. We note
that a small weight-shifting factor k assigns high weights
to high-scoring samples. For mini-batch training of the
score-conditioned generator, we approximate the loss func-
tion L(θ) via sampling with probability w(y,Dtr) for each
sample (x, y).

We note that Tripp et al. (2020) proposed the rank-based
weighting scheme for training unconditional generators to
solve online design problems. At a high level, the weight-
ing scheme guides the generator to focus more on gener-
ating high-scoring samples. Compared to weights that are
proportional to scores (Kumar & Levine, 2020), using the
rank-based weights promotes the training to be more ro-
bust against outliers, e.g., samples with abnormally high
weights. To be specific, the weighting factor w(y,D) is less
affected by outliers due to its upper bound that is achieved
when rank(y,D) = 1.

2.2. Bootstrapping

Next, we introduce our bootstrapping strategy to augment
a training dataset with high-scoring samples that are col-
lected from the score-conditioned generator and labeled us-
ing a proxy model. Our key idea is to enlarge the dataset
so that the score-conditioned generation is consistent with
predictions of the proxy model, in particular for the high-
scoring samples. This enables self-training by utilizing
the extrapolation capabilities of the generator and allows
the proxy model to transfer its knowledge to the score-
conditioned generation process.

We first generate a set of samples x∗
1, . . . ,x

∗
L from the gen-

erator pθ(x|y†) conditioned on the desired score y† 1 Then
we compute the corresponding labels y∗1 , . . . , y

∗
L using the

proxy model, i.e., we set yℓ = fϕ(xℓ) for ℓ = 1, . . . , L.
Finally, we augment the training dataset using the set of
top-K samples Daug with respect to the proxy model, i.e.,
we set Dtr ∪ Daug as the new training dataset Dtr.

2.3. Aggregation Strategy for Sample Generation

Here, we introduce additional post-hoc aggregation strate-
gies that can be used to further boost the quality of samples
from our generator. See Algorithm 2 for a detailed process.

Filtering. We follow Kumar & Levine (2020) to exploit the
knowledge of the proxy function for filtering high-scoring
samples from the generator. To be specific, when evaluat-
ing our model, we sample a set of candidate solutions and
select the top samples with respect to the proxy function.

Diverse aggregation. To enhance the diversity of

1Following (Chen et al., 2022), we assume that we know the
maximum score of the task.

candidate samples while maintaining reliable generat-
ing performances with low variance, we gather cross-
aggregated samples from multiple score-conditioned gen-
erators. These generators are independently trained using
our proposed bootstrapped training approach. Since each
bootstrapped training process introduces high randomness
due to varying training datasets, combining the generative
spaces of multiple generators yields a more diverse space
compared to a single generator.

Moreover, this process helps reduce the variance in gen-
erating quality. By creating ensemble candidate samples
from multiple generators, we ensure stability and mitigate
the risk of potential failure cases caused by adversarial
samples. These samples may receive high scores from the
proxy function but have low actual scores. This approach
resembles the classical ensemble strategy known as “bag-
ging,” which aggregates noisy bootstrapped samples from
decision trees to reduce variances.

3. Experiments
We present experimental results on six representative bio-
logical sequence design tasks to verify the effectiveness of
the proposed method. We also conduct ablation studies to
verify the effectiveness of each component in our method.
For training, we use a single GPU of NVIDIA A100, where
the training time of one generator spends approximately 10
minutes. See Appendix A for detailed settings and imple-
mentations.

3.1. Experimental Setting

Tasks. We evaluate an offline design algorithm by (1) train-
ing it on an offline dataset and (2) using it to generate 128
samples for high scores. We measure the 50th percentile
and 100th percentile scores of the generated samples. All
the results are measured using eight independent random
seeds.

We consider six biological sequence design tasks: green
fluorescent protein (GFP), DNA optimization for expres-
sion level on untranslated region (UTR), DNA optimization
tasks for transcription factor binding (TFBind8), and three
RNA optimization tasks for transcription factor binding
(RNA-Binding-A, RNA-Binding-B, and RNA-Binding-C).
The scores of the biological sequences range in [0, 1]. We
report the statistics of the offline datasets used for each task
in Table 2. We also provide a detailed description of the
tasks in Appendix A.1.

Baselines We compare our BOOTGEN with the follow-
ing baselines: gradient ascent with respect to a proxy
score model (Trabucco et al., 2022, Grad.), REINFORCE
(Williams, 1992), Bayesian optimization quasi-expected-
improvement (Wilson et al., 2017, BO-qEI), covariance
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Table 1: Experimental results on 100th percentile scores. The mean value is reported for 8 independent solution generations. The 50th
stands for the 50th percentile score. The 100th stands for the 100th percentile score. The best-scored value is marked in bold.

Method RNA-A RNA-B RNA-C TFBind8 GFP UTR Avg.

50th. 100th. 50th. 100th. 50th. 100th. 50th. 100th. 50th. 100th. 50th. 100th. 50th. 100th.

REINFORCE 0.159 0.462 0.162 0.437 0.177 0.463 0.450 0.936 0.845 0.865 0.575 0.685 0.395 0.643
CMA-ES 0.558 0.841 0.531 0.822 0.535 0.803 0.526 0.904 0.047 0.055 0.497 0.737 0.449 0.694
BO-qEI 0.389 0.724 0.397 0.729 0.391 0.707 0.439 0.798 0.246 0.254 0.571 0.684 0.406 0.649
CbAS 0.246 0.541 0.267 0.647 0.281 0.644 0.467 0.913 0.852 0.865 0.566 0.692 0.447 0.717
Auto. CbAS 0.241 0.524 0.237 0.562 0.193 0.495 0.413 0.890 0.847 0.865 0.563 0.693 0.420 0.672
MIN 0.146 0.376 0.143 0.374 0.174 0.404 0.417 0.892 0.830 0.865 0.586 0.691 0.383 0.600
Grad 0.473 0.821 0.462 0.720 0.393 0.688 0.513 0.965 0.763 0.862 0.611 0.682 0.531 0.792
COMs 0.172 0.403 0.184 0.393 0.228 0.494 0.512 0.945 0.737 0.861 0.608 0.699 0.407 0.633
GFN-AL 0.312 0.630 0.300 0.677 0.324 0.623 0.538 0.956 0.051 0.059 0.597 0.695 0.354 0.607
BDI 0.411 0.700 0.308 0.560 0.345 0.632 0.595 0.973 0.837 0.864 0.527 0.667 0.504 0.733

BOOTGEN 0.707 0.902 0.717 0.931 0.596 0.831 0.833 0.979 0.853 0.865 0.701 0.865 0.731 0.895
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Figure 2: Evaluation-performance graph to compare with representative offline biological design baselines. The number of evaluations
K ∈ [1, 128] stands for the number of candidate designs to be evaluated by the Oracle score function. The average value and standard
deviation error bar for 8 independent runs are reported. Our method outperforms other baselines at every task for almost all K.

matrix adaptation evolution strategy (Hansen, 2006, CMA-
ES), conditioning by adaptative sampling (Brookes et al.,
2019, CbAS), autofocused CbAS (Fannjiang & Listgarten,
2020, Auto. CbAS), model inversion network (Kumar &
Levine, 2020, MIN), where these are in the official design
bench (Trabucco et al., 2022). We compare with additional
baselines of conservative objective models (Trabucco et al.,
2021, COMs), generative flow network for active learn-
ing (Jain et al., 2022, GFN-AL) and bidirectional learning
(Chen et al., 2022, BDI).

3.2. Performance Evaluation

In Table 1, we report the performance of our BOOTGEN
along with other baselines. One can observe how our
BOOTGEN consistently outperforms the considered base-
lines across all six tasks.

For TFbind8, which has a relatively small search space
(48), having high performances on the 100th percentile is
relatively easy. Indeed, the classical method of CMA-ES
and Grad. gave pretty good performances. However, for
the 50th percentile score, which is a metric for measuring
the method’s reliability, BDI outperformed previous base-
lines by a large margin. Our method outperformed even
BDI and achieved an overwhelming score.

For higher dimensional tasks of UTR, even the 50th per-
centile score of BOOTGEN outperforms the 100th per-
centile score of other baselines by a large margin. We note
that our bootstrapping strategies and aggregation strategy
greatly contributed to improving performances on UTR.
For additional tasks of RNA, we achieved the best score
for both the 50th percentile and the 100th percentile. This
result verifies that our method is task-expandable.

3.3. Additional Results

Varying the evaluation budget. We validate BOOTGEN
across multiple evaluation budgets by sampling diverse
datasets. As depicted in Fig. 3, BOOTGEN consistently out-
performs all other baselines, as demonstrated by its Pareto
frontier. For complete results, refer to Appendix C.

Diversity and novelty. We validate multi-objectivity of di-
versity and novelty of generated samples; see Appendix D

Ablation studies. We provide ablation studies; see Ap-
pendix E for overall ablations, and Appendix G for ablation
of rank-based weighting.

Calibration model. We suggest experiments of hyperpa-
rameter tuning without the score function f(x); see Ap-
pendix F.
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A. Additional Experimental Settings

Table 2: Details of the offline datasets. We let |X | and |D| denote the sizes of the search space and the offline dataset, respectively.

Seq. Length Vocab size |X | |D|
GFP 20 237 20237 5,000
UTR 50 4 504 140,000
TFBind8 8 8 48 32,898
RNA-Binding 14 4 414 5,000

A.1. Datasets

• GFP (Sample et al., 2019) is a task to optimize a protein sequence of length 237 consisting of one of 20 amino acids,
i.e., the search space is 20237. Its objective is to find a protein with high fluorescence. Following Trabucco et al.
(2022), we prepare the offline dataset using 5000 samples with 50 to 60 percentile scores in the original data.

• UTR (Sample et al., 2019) is a task to optimize a DNA sequence of length 50 consisting of one of four nucleobases:
adenine (A), guanine (G), cytosine (C), thymine (T). Its objective is to maximize the expression level of the corre-
sponding 5’UTR region. For the construction of the offline dataset D, following Trabucco et al. (2022), we provide
samples with scores under the 50th percentile data of 140, 000 examples.

• TFBind8 (Barrera et al., 2016) is a task that optimizes DNA similar to the UTR. The objective is to find a length 8
sequence to maximize the binding activity with human transcription factors. For the offline dataset D, we provide
under 50th percentile data of 32,898 examples following Trabucco et al. (2022).

• RNA-Binding (Lorenz et al., 2011) is a task that optimizes RNA, a sequence that contains four vocab words of
nucleobases: adenine (A), uracil (U), cytosine (C), and guanine (G). The objective is to find a length 14 sequence to
maximize the binding activity with the target transcription factor. We present three target transcriptions of RNA termed
RNA-Binding-A (for L14 RNA1), RNA-Binding-B (for L14 RNA2), and RNA-Binding-C (for L14 RNA3). We
provide under 0.12 scored data for the offline datasetD among randomly generated 5,000 sequences using opensource
code 2.

A.2. Implementation of Baselines

This section provides a detailed implementation of baselines of offline biological sequence design.

Baselines from Design Bench (Trabucco et al., 2022). Most baselines are from the offline model-based optimization
(MBO) benchmark called design-bench (Trabucco et al., 2022). The design bench contains biological sequence tasks of
the GFP, UTR, and TFbind8, where it contains baselines of REINFORCE, CMA-ES (Hansen, 2006), BO-qEI (Wilson
et al., 2017), CbAS (Brookes et al., 2019), Auto. Cbas (Fannjiang & Listgarten, 2020), MIN (Kumar & Levine, 2020),
gradient ascent (Grad.), and COMS (Trabucco et al., 2021). We reproduce them by following the official source code 3.
For the RNA tasks, we follow hyperparameters of TFBind8 as the number of vocab are same as 4 and the sequence length
is similar where the TFBind8 has length 8 and RNA tasks have length 14 as our method follows the same.

BDI (Chen et al., 2022). For BDI, we follow hyperparameter setting at the paper (Chen et al., 2022) and implementation
at the opensource code 4. For RNA tasks, we follow the hyperparameter for TFBind8 tasks, as our method follows the
same.

GFN-AL (Jain et al., 2022). For GFN-AL we follow hyperparameters setting at the paper (Jain et al., 2022) and imple-
mentation on open-source code5. Because they only reported the TFbind8 and the GFP tasks, we use the hyperparameter
of the GFP for the UTR tasks hyperparameter of the TFBind8 for RNA tasks, as our method follows the same.

2https://github.com/samsinai/FLEXS
3https://github.com/brandontrabucco/design-baselines
4https://github.com/GGchen1997/BDI
5https://github.com/MJ10/BioSeq-GFN-AL

https://github.com/samsinai/FLEXS
https://github.com/brandontrabucco/design-baselines
https://github.com/GGchen1997/BDI
https://github.com/MJ10/BioSeq-GFN-AL
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A.3. Implementation of BOOTGEN

We parameterize the conditional distribution pθ(xt|x1:t−1, y) using a 2-layer long short-term memory (Hochreiter &
Schmidhuber, 1997, LSTM) network with 512 hidden dimensions. The condition y is injected into the LSTM using a
linear projection layer. We parameterize the proxy model using a multi-layer perceptron (MLP) with 2048 hidden dimen-
sions and a sigmoid activation function. Our parameterization is consistent across all the tasks. We also note the importance
of the desired score y† to condition during bootstrapping and evaluation. In this regard, we set it as the maximum score
that is achievable for the given problem, i.e., we set y† = 1. We assume that such a value is known following (Chen et al.,
2022).

A.4. Hyperparameters

Training. We give consistency hyperparameters for all tasks except the learning rate. We set the generator’s learning rate
to 10−5 for short-length tasks (lengths 8 and 14) of TFBind and RNA tasks and 5× 10−5 for longer-length tasks (lengths
50 and 237) of UTR and GFP. We trained the generator with 12,500 steps before bootstrapping. Bootstrapping is applied
with 2, 500 in additional steps. The batch size of training is 256. We set the weighting parameter k = 10−2. Note that
we early stopped the generator iteration of GFP with the 3, 000 step based on monitoring the calibration model of ??. For
bootstrapping, the generator samples a 2 candidates every 5 steps. For Top-K sampling at the bootstrapping, we sample
with L = 1, 000 and select the Top 2 samples to augment the training dataset.

Testing. For filtering, we generated M = 1, 280 candidate samples and collected the Top-K samples where K = 128 based
on the proxy score. For diverse aggregation, we collect K = 16 samples from 8 generators, making total 128 samples.

Proxy model. For the proxy model, we applied a weight regularization of 10−4, set the learning rate to 10−4, and used
a dropout rate of 0.1. We used early stopping with a tolerance of 5 and a train/validate ratio of 9:1 following Jain et al.
(2022). We used the Adam optimizer (Kingma & Ba, 2014) for the training generator, proxy, and calibration model.
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B. Algorithm for BOOTGEN

This section provides algorithmic pseudo code for BOOTGEN This has a training process of multiple generators and a
sampling process to obtain candidate samples from the trained multiple generators.

Algorithm 1 Bootrapped Training of Score-conditioned generators

1: Input: Offline dataset D = {xn, yn}Nn=1.
2: Update ϕ to minimize

∑
(x,y)∈D(fϕ(x)− y)2.

3: for j = 1, . . . , Ngen do ▷ Training multiple generaters
4: Initialize Dtr ← D.
5: for i = 1, . . . , I do ▷ Rank-based weighted training
6: Update θn to maximize

∑
(x,y)∈Dtr

w(y,Dtr) log pθj (x|y).
7: Sample x∗

ℓ ∼ pθn(x|y†) for ℓ = 1, . . . , L. ▷ Bootstrapping
8: Set y∗ℓ ← fϕ(x

∗
ℓ ) for ℓ = 1, . . . , L.

9: Set Daug as top-K scoring samples in {x∗
ℓ , y

∗
ℓ }Lℓ=1.

10: Set Dtr ← Dtr ∪ Daug.
11: end for
12: end for
13: Output: trained score-conditioned generators pθ1(x|y), ..., pθN (x|y).

Algorithm 2 Aggregation Strategy for Sample Generation

1: Input: Trained score-conditioned generators pθ1(x|y), ..., pθNgen
(x|y), and trained proxy function fϕ(x).

2: Initialize Dsamples ← ∅.
3: for i = 1, . . . , Ngen do
4: Sample x∗

m ∼ pθi(x|y†) for m ∈ [M ].
5: Set y∗m ← fϕ(x

∗
m) for m ∈ [M ].

6: Set Dsub-samples as Top-K scoring samples in {x∗
m, y∗m}Mm=1. ▷ Filtering

7: Set Dsamples ← Dsamples ∪ Dsub-samples ▷ Diversity Aggregation
8: end for
9: Output: Dsamples.
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C. Varying the evaluation budget
In real-world scenarios, there may be situations where only a few samples can be evaluated due to the expensive score
function. For example, in an extreme scenario, for the clinical trial of a new protein drug, there may be only one or two
chances to be evaluated. As we measure the 50th percentile and 100th percentile score among 128 samples following the
design-bench (Trabucco et al., 2022) at Table 1, we also provide a 100th percentile score report at the fewer samples from
1 sample to the 128 samples to evaluate the model’s robustness on the low-budget evaluation scenarios.

To account for this, we also provide a budget-performance graph that compares the performance of our model to the
baselines using different numbers of evaluations. This allows us to observe the trade-off between performance and the
number of samples generated. Note that we select baselines as the Top 5 methods in terms of average percentile 100 scores
reported at Table 1.

As shown in Fig. 3, our method outperforms every baseline for almost every evaluation budget. For the UTR task, our
performance on a single evaluation budget gives a better score than the other baselines’ scores when they have a budget of
128 evaluations. For RNA tasks, our method with an approximate budget of 30 achieves superior performance compared
to other methods with a budget of 128. These results show that our method is the most reliable as its performance is most
robust when the evaluation budget is limited.
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Figure 3: Evaluation-performance graph to compare with representative offline biological design baselines. The number of evaluations
K ∈ [1, 128] stands for the number of candidate designs to be evaluated by the Oracle score function. The average value and standard
deviation error bar for 8 independent runs are reported. Our method outperforms other baselines at every task for almost all K.
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D. Average Score with Diversity

Table 3: Experimental results on 100th percentile scores (100th Per.), 50th percentile scores (50th Per.), average score (Avg. Score),
diversity, and novelty, among 128 samples of UTR task. The mean and standard deviation of 8 independent runs for producing 128
samples is reported. The best-scored value is marked in bold. The lowest standard deviation is marked as the underline. The DA stands
for the diverse aggregation strategy.

Methods 100th Per. 50th Per. Avg. Score Diversity Novelty

MIN (Kumar & Levine, 2020) 0.691 ± 0.011 0.587 ± 0.012 0.554 ± 0.010 28.53 ± 0.095 18.32 ± 0.091
CMA-ES (Hansen, 2006) 0.746 ± 0.018 0.498 ± 0.012 0.520 ± 0.013 24.69 ± 0.150 19.95 ± 0.925
Grad. (Trabucco et al., 2022) 0.682 ± 0.013 0.513 ± 0.007 0.521 ± 0.006 25.63 ± 0.615 16.89 ± 0.426
GFN-AL (Jain et al., 2022) 0.700 ± 0.015 0.602 ± 0.014 0.580 ± 0.014 30.89 ± 1.220 20.25 ± 2.272

BOOTGEN w/o DA. 0.729 ± 0.074 0.672 ± 0.082 0.652 ± 0.081 17.83 ± 5.378 20.49 ± 1.904
BOOTGEN w/ DA. (ours) 0.858 ± 0.003 0.701 ± 0.004 0.698 ± 0.001 31.57 ± 0.073 21.40 ± 0.057
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Figure 4: Multi-objectivity comparison of diversity and novelty on the average score for the UTR task. Each datapoint for 8 independent
runs is depicted.
For biological sequence design, measuring the diversity and novelty of the generated sequence is also crucial (Jain et al.,
2022). Following the evaluation metric of (Jain et al., 2022) we compare the performance of models in terms of diversity
and novelty.

Here is measurement of diversity for sampled design dataset D = {x1, ...,xM} from generator which is average of
Levenshtein distance (Haldar & Mukhopadhyay, 2011), denoted by d (xi,xj), between arbitrary two biological sequences
xi,xj from the generated design candidates D:

Diversity(D) := 1

|D|(|D| − 1)

∑
x∈D

∑
s∈D\{x}

d (x, s) .

Next, we measure the minimum distance from the offline dataset Doffline which measures the novelty of generated design
candidates D as:

Novelty(D,Doffline) =
1

|D|
∑
x∈D

min
s∈Doffline

d (x, s) .

Our method surpasses all baselines, including GFN-AL (Jain et al., 2022), in the UTR task, as evidenced by the Pareto
frontier depicted in Table 3 and Fig. 4. Given the highly dimensional nature of the UTR task and its expansive search
space, the discovery of novel and diverse candidates appears to be directly related to their average score. This implies that
extensive exploration of the high-dimensional space is crucial for improving scores in the UTR task.

It is worth noting that GFN-AL, which is specifically designed to generate diverse, high-quality samples through an ex-
plorative policy, secures a second place for diversity. Although GFN-AL occasionally exhibits better diversity than our
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method and achieves a second-place average score, it consistently delivers poor average scores in the GFP and RNA tasks
Table 1. This drawback can be attributed to its high explorative policy, which necessitates focused exploration in narrow
regions. In contrast, BOOTGEN consistently produces reliable scores across all tasks Table 1.

Diverse aggregation strategy Our diverse aggregation (DA) strategy significantly enhances diversity, novelty, and score
variance, as demonstrated in Table 3. This is especially beneficial for the UTR task, which necessitates extensive explo-
ration of a vast solution space, posing a substantial risk to the bootstrapped training process. In this context, certain boot-
strapped generators may yield exceedingly high scores, while others may produce low scores due to random exploration
scenarios. By employing DA, we combine multiple generators to generate candidate samples, thereby greatly stabilizing
the quality of the bootstrapped generator.



Bootstrapped Training of Score-Conditioned Generator

E. Ablation study
The effectiveness of our components, namely rank-based reweighting (RR), bootstrapping (B), and filtering (F), in im-
proving performance is evident in Table 4. Across all tasks, these components consistently contribute to performance
enhancements. The bootstrapping process is particularly more beneficial for high-dimensional tasks like UTR and GFP.
This correlation is intuitive since high-dimensional tasks require a larger amount of data for effective exploration. The
bootstrapped training dataset augmentation facilitates this search process by leveraging proxy knowledge. Additionally,
the filtering technique proves to be powerful in improving scores. As we observed from the diverse aggregation and
filtering, the ensemble strategy greatly enhances score-conditioned generators.

Table 4: Ablation study for BOOTGEN. The average score among 128 samples is reported. We make 8 independent runs to produce
128 samples where the mean and the standard deviation are reported. For every method, an aggregation strategy is applied by default.
The best-scored value is marked in bold. The lowest standard deviation is underlined. The RR stands for rank-based reweighting, the B
stands for bootstrapping, and the F stands for filtering.

Components RNA-A RNA-B RNA-C TFbind8 UTR GFP

∅ 0.388 ± 0.007 0.350 ± 0.008 0.394 ± 0.010 0.579 ± 0.010 0.549 ± 0.009 0.457 ± 0.044
{RR} 0.483 ± 0.006 0.468 ± 0.008 0.441 ± 0.010 0.662 ± 0.009 0.586 ± 0.008 0.281 ± 0.031
{RR, B} 0.408 ± 0.009 0.379 ± 0.009 0.417 ± 0.006 0.666 ± 0.009 0.689 ± 0.003 0.470 ± 0.034
{RR, F} 0.576 ± 0.005 0.586 ± 0.004 0.536 ± 0.007 0.833 ± 0.004 0.621 ± 0.003 0.783 ± 0.011
{RR,F,B} 0.607 ± 0.009 0.612 ± 0.005 0.554 ± 0.007 0.840 ± 0.004 0.698 ± 0.001 0.804 ± 0.002
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F. Calibration Model
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Figure 5: Calibration model’s tendency.

Tuning the hyperparameters of offline design algorithms is challenging due to the lack of access to the true score function.
Therefore, existing works have proposed various strategies to circumvent this issue, e.g., choosing a hyperparameter that is
transferrable between different tasks (Trabucco et al., 2022) or tuning the hyperparameter based on training statistics (Yu
et al., 2021).

In this work, we leverage the calibration function. Inspired by Wang et al. (2022), we train the calibration function on the
offline dataset to approximate the true score function similar to the proxy function. Then we use the calibration function
to select a score-conditioned model which achieves higher performance with respect to the calibration function. We also
choose the number of training steps and early stopping points using the same criterion.

As shown in Fig. 5, the calibration model accurately predicts early stopping points as the GFP task is unstable and has a
narrow high score region which gives a high chance to be overfitted into the low-scored region (Table 1 shows that score of
GFP is highly polarized). By using the calibration function, we can simply choose an early stopping point for GFP. Note
we simply leverage the proxy model as a calibration model with an exact sample training scheme and hyperparameters.
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G. Rank-based weighting vs. Value-based weighting
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Figure 6: Comparison of rank-based weighting (RW) and value-based weighting (VW) methods. The NW represents the case where no
weighting is applied to the training distribution. In the VW case, we explored different weighting temperatures, T ∈ {0.1, 0.3, 0.7, 1.0}.
The 50th percentile scores of TFBind8 are reported, and the results include a bootstrapping procedure applied from iteration 12,500 to
15,000.

We verify the contribution of the rank-based weighting (RW) scheme compared to ours with no weighting (NW) and the
existing value-based weighting (VW) proposed by Kumar & Levine (2020). To implement VW, we set the sample-wise
weight proportional to exp(|y−y∗|/T ), where y∗ is the maximum score in the training dataset and T ∈ {0.1, 0.3, 0.7, 1.0}
is a hyperparameter. As shown in Fig. 6, the results indicate that RW indeed outperforms both NW and VW. This validates
our design choice for BootGen.
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