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Abstract

3D semantic segmentation using an adapting model trained from a source domain
with or without accessing unlabeled target-domain data is the fundamental task in
computer vision, containing domain adaptation and domain generalization. The
essence of simultaneously solving cross-domain tasks is to enhance the general-
izability of the encoder. In light of this, we propose a groundbreaking universal
method with the help of off-the-shelf Visual Foundation Models (VFMs) to boost
the adaptability and generalizability of cross-domain 3D semantic segmentation,
dubbed UniDSeg. Our method explores the VFMs prior and how to harness them,
aiming to inherit the recognition ability of VFMs. Specifically, this method in-
troduces layer-wise learnable blocks to the VFMs, which hinges on alternately
learning two representations during training: (i) Learning visual prompt. The
3D-to-2D transitional prior and task-shared knowledge is captured from the prompt
space, and then (ii) Learning deep query. Spatial Tunability is constructed to the
representation of distinct instances driven by prompts in the query space. Integrat-
ing these representations into a cross-modal learning framework, UniDSeg effi-
ciently mitigates the domain gap between 2D and 3D modalities, achieving unified
cross-domain 3D semantic segmentation. Extensive experiments demonstrate the
effectiveness of our method across widely recognized tasks and datasets, all achiev-
ing superior performance over state-of-the-art methods. Remarkably, UniDSeg
achieves 57.5%/54.4% mIoU on “A2D2/sKITTI” for domain adaptive/generalized
tasks. Code is available at https://github.com/Barcaaaa/UniDSeg.

1 Introduction

As deep learning technology develops by leaps and bounds [47, 57, 59], 3D scene understanding has
become the foundation for many real-world applications, including autonomous driving, robotics,
augmented reality, smart cities, etc. Based on the LiDAR sensor, 3D semantic segmentation is a
critical task that provides an accurate and robust semantic prediction of the surrounding scenarios.
However, annotating large-scale datasets for training every new scenario is labor-intensive and time-
consuming, especially for the tasks demanding point-wise annotations. These limitations hinder their
practical applicability in real-world scenarios where acquiring high-quality labeled data.

Currently, domain adaptive 3D semantic segmentation (DA3SS) [19, 32, 38, 45, 48, 51] and domain
generalized 3D semantic segmentation (DG3SS) [21, 27, 49, 60] have been widely explored in
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autonomous driving scenes. Their difference lies in that the former seeks to narrow the domain gap
between the source and target domain data without assigning 3D semantic labels, while the latter
aims to learn a generic and robust model before being exposed to the target domain. Albeit successful,
their applications in 3D semantic segmentation have primarily focused on generalizing or adapting
between synthetic and real scenes or across different scene layouts. This leaves a gap in exploring a
universal framework, enabling the generalization and adaptation of 3SS models across datasets.

With the above considerations, this paper focuses on studying a universal framework for cross-domain
3D semantic segmentation. The essence of simultaneously solving cross-domain tasks is to enhance
the generalizability of the encoder. Therefore, a generalizable 3D model with source-domain data
discrimination power to the target domain is necessary. It is performed solely with access to source
domain data, enabling the model to develop the ability to discriminate domain-agnostic and domain-
specific features. Unfortunately, one limitation has arisen, the scarcity of 3D pre-training datasets
hinders this endeavor. More recently, Visual Foundation Models (VFMs) [23, 34, 36] have emerged
as the de-facto visual backbone in 2D image classification and segmentation. Such VFMs are trained
on massive raw web-curated images, achieving promising open-vocabulary recognition. Hence,
two natural questions are thrown up: (i) How to borrow 2D prior knowledge from VFMs? and (ii)
How to harness 2D prior knowledge to boost 3D performance? To begin with, for issue (i), visual
prompt tuning [16, 20] is a parameter-efficient strategy to exploit the representational potential of
VFMs. We consider freezing the whole VFMs and only learn several trainable lightweight blocks as
supplementary input, which inherit parameters of VFMs trained at scale to the maximum extent. After
that, for issue (ii), we consider a more effective prompt tuning that introduces an extra depth-guided
prompt space and extends the model input with the prompt, which could guide the generalization of
powerful representations to achieve desirable performances.

Accordingly, in this paper, we introduce UniDSeg, dig deeper into prompt tuning in the VFM-based
encoder, and introduce a Learnable-parameter-inspired Mechanism to the off-the-shelf VFMs with
frozen parameters. Our VFM-based encoder is designed to learn alternately between two lightweight
modules: i.e., Modal Transitional Prompting (MTP) and Learnable Spatial Tunability (LST). The
former depends on the transitional guidance from 3D-to-2D unnatural images, i.e., sparse depth,
which exists in the prompt space before being fed into the encoder layer. The latter depends on the
customized context length of vectors, which exists in the query space for seeking matched prompting
after encoding in the layer. Hereby, depending on the number of VFM-based encoder layers involved,
we place layer-wise MTP and LST blocks to take full advantage of semantic understanding of
diverse levels and modalities. The proposed mechanism not only avoids any unnecessary attempts to
manipulate the original visual space but also inherits the pre-existing target awareness from the VFMs
to the maximum extent. Ultimately, by integrating the proposed two modules into a cross-modal
learning framework, our method efficiently mitigates the domain gap and enables 2D and 3D models
to learn domain-invariant representations.

The key contributions of our work are summarized as follows: 1) Our method is groundbreaking
in introducing the prompt-tuning concept into the universal model for DG3SS and DA3SS tasks.
2) We propose a novel learnable-parameter-inspired mechanism to the off-the-shelf VFMs, which
maximally preserves pre-existing target awareness in VFMs to further enhance its generalizability. 3)
Extensive experimental results demonstrate the effectiveness of our method across widely recognized
tasks and datasets, all achieving superior performance for DG3SS and DA3SS.

2 Related Works

2.1 Domain Adaptive 3D Semantic Segmentation

In general, DA3SS seeks to narrow the domain gap between the source and target domain data, which
can be grouped as uni-modal [61, 54, 48, 38, 56, 55, 24, 32] and multi-modal [19, 30, 35, 28, 58,
50, 45, 6, 5, 51, 13, 46] conditions. For uni-modality, early methods [48, 61] exploit the generative
adversarial network to mitigate domain shift caused by appearance and sparsity differences. Later
on, Yuan et al. [55, 56] propose the adversarial network based on category-level and prototype-level
alignments to address the mismatch of sampling patterns. CosMix [38] and ConDA [24] construct an
intermediate domain by utilizing joint supervision signals from both the source and target domains for
self-training. 3D surface representation is also considered an effective method. Complete&Label [54]
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transforms domain adaptive task into a 3D surface completion task. SALUDA [32] learns an implicit
underlying surface representation simultaneously on source and target data.

Compared to uni-modality, multi-modality exploits the exclusive information of paired images and
point clouds to complement each other. xMUDA [19] is a pioneering method of cross-modal mutual
learning for DA3SS. To facilitate learning domain-robust dependencies, several methods extend 2D
techniques to learn the 3D domain-invariant representations, such as adversarial learning [30, 35, 58],
style transfer [28], and contrastive learning [50]. Based on these dependencies, SSE [58] presents a
self-supervised learning mechanism from plane-to-spatial and discrete-to-textured representations.
BFtD [45] presents cross-modal fusion-then-distillation to mitigate imbalanced modality adaptability.
Recently, Segment Anything Model (SAM) [23] has presented its strong capability in generating
semantics-aware regions, making it a suitable option for cross-modal interaction. MoPA [5] and
VFMSeg [51] harness the knowledge priors learned from SAM to produce more accurate pseudo-
labels for unlabeled target domains.

In contrast to DA3SS, where the inputs in the target domain, although without 3D labels, are accessible
during the training process, DG3SS is evaluated on data from totally unseen target domains.

2.2 Domain Generalized 3D Semantic Segmentation

The goal of DG3SS is to first learn as generic and robust representations as possible before being
exposed to any target-domain data during training. Research on DG3SS has recently witnessed a
surge, as highlighted in several studies, including uni-modal condition [21, 37, 39, 40, 49, 60] and
multi-modal condition [27, 14]. Kim et al. [21] leverage sparsity invariant feature consistency at the
feature level and semantic correlation consistency at the output level to constrain the model. Ryu et
al. [37] and Sanchez et al. [40] incorporate multi-frame aggregation with 6-DoF ego-motions via
randomized LiDAR configurations augmentation and label propagation, respectively. However, these
methods are limited when 6-DoF ego-motion is unknown, and they need to be estimated using the
off-the-shelf LiDAR SLAM method [2]. Recently, 3D representation under Bird’s-Eye-View (BEV)
has also been considered an effective method for learning domain-invariant features. LiDOG [39]
introduces a dense top-down prediction auxiliary task and supervises it by employing BEV-view of
semantic labels, while BEV-DG [27] introduces a BEV-view of cross-modal representation fusion to
alleviate the domain gap. Particularly, 3D scenes also exist in several adverse weather conditions
including fog, snow, and rain [49]. UniMix [60] leverages physically valid adverse weather simulation
to construct a bridge domain and then blends it with samples of normal weather conditions.

Our endeavor is tailored to designing a universal cross-domain multi-modal learning framework that
enhances the performance of both DG3SS and DA3SS.

3 Method

3.1 Preliminary

Problem Definition. Given a source domain DS = {(X2D,S
i , X3D,S

i , Y 3D,S
i )}ns

i=1 with ns labeled
data and a target domain DT = {(X2D,T

i , X3D,T
i )}nt

i=1 with nt unlabeled data under the condition
that the source and target data distributions are not equal. For DA3SS, the task seeks to adapt models
trained on the source domain DS to a target domain DT without labels. For DG3SS, the task aims to
exploit the knowledge from the source domain to achieve generalization to the target domain, while
the model remains unexposed to the target domain during training, i.e., DT is unseen. Both tasks
are framed with the expectation of having paired images and point clouds and learning a mapping
function f : X2D,T , X3D,T → Y 3D,T that could predict the target-domain 3D labels.

Revisiting ViT. Given a pre-trained Vision Transformer (ViT) [10] model with L layers, an input is
divided into M = HW

P 2 fixed-size patches xm ∈ RH
P ×W

P ×D,m = 1, 2, ...,M , where H and W are
the height and width of the original input, P is the patch size, and D is the constant latent vector size
through all of its layers. Each patch is then embedded into D-dimensional latent space:

em0 = Embed(xm), em0 ∈ RD. (1)
We indicate the collection of 2D patch embeddings, El−1 = {eml−1 ∈ RD|1 ≤ m ≤ M}, as input
to the l-th ViT encoder layer Ll(·). Specially, Epre

0 ∈ RM×D learns beforehand together with class
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encoding Ecls ∈ R1×D and positional encoding Epos ∈ R(1+M)×D to create initial patch embedding
E0. Hence, the whole ViT encoder is formulated as:

E0 = (Ecls ⊎ Epre
0 ) + Epos, (2)

El = Ll(El−1), l = 1, 2, ..., L, (3)

where El ∈ R(1+M)×D is the patch embedding output from Ll(·), ⊎ denotes concatenation on the
sequence length dimension. Each layer Ll consists of several multi-head self-attention modules and
feed-forward networks together with skip connection [17] and LayerNorm [1].

3.2 Learnable-parameter-inspired Mechanism

VFM-based Encoder
2D Decoder

3D Decoder3D Encoder

Image from Camera

LiDAR Point Cloud

Proj.

Sparse Depth

Samp.

Cross-modal 

Learning

Learnable

Prompts

Learnable

Prompts

Figure 1: Overall framework of UniDSeg for DG3SS
and DA3SS. The backbone of the VFM-based Encoder is
frozen and only trains several learnable modules. “Samp.”
means sampling of 2D features. Only the points falling
into the intersected field of view are geometrically associ-
ated with multi-modal data.

Overall Framework. As depicted in
Fig. 1, the overall framework of UniD-
Seg is decomposed to a 2D network
F2D = E2D ◦ G2D ◦ H2D and a 3D
network F3D = E3D ◦ G3D ◦ H3D,
where E(·), G(·), and H(·) denote en-
coder, decoder, and classifier, respec-
tively. The main insight of UniDSeg is
to provide a universal framework that en-
hances the generalizability and adaptabil-
ity of cross-domain 3D semantic segmen-
tation. Thereby, we introduce a novel
task-specific VFM-based encoder, which
is guided by point-level prompts from
3D information. Formally, point cloud
X3D

i is input to 3D network F3D to gen-
erate 3D prediction, while image X2D

i

and sparse depth XDep
i are input to 2D

network F2D to generate 2D prediction
with the help of VFMs priors. XDep

i is
derived from the LiDAR sensor via per-
spective projection. Afterward, we employ cross-modal learning on the source/target predictions via
auxiliary classifier H(·)

aux. In summary, we place layer-wise learnable blocks to take full advantage of
semantic understanding of diverse levels and modalities, which inherits potential target information
of VFMs into the current training model. Our method is parameter-efficient and could be directly
deployed to various pre-trained transformer-based architectures without modifying the basic units.

VFM-based Encoder. Since the feature extraction of VFMs still lacks task-specific information,
freezing parameters may lose some domain-agnostic contextual semantic information from source-
domain data or fine-tuning parameters may alter some pre-existing target representation from large-
scale pre-trained data. To provide a remedy, we reconsider the role of pre-trained models, balancing
the capture of contextual information and the overfitting issue of source-domain data. As illustrated in
Fig. 2, we introduce a Learnable-parameter-inspired Mechanism, which provides a set of continuous
embedding, i.e., 3D-to-2D transitional prompts and tunable deep queries. The former not only
learns spatial distance perception prompts from point clouds but also learns invariance to sample
perturbations. The latter ensures that the feature distribution of Ẽl will not be modified drastically,
thus making better use of the pre-trained knowledge from VFMs. Only these prompts and queries are
updated during fine-tuning, while parameters of other layers Ll of the ViT encoder are kept frozen.

Depending on the number of ViT layers involved, our VFM-based encoder is designed to learn
alternately between two lightweight modules: Modal Transitional Prompting PGl(·, ·) and Learnable
Spatial Tunability TBl(·). The former depends on the transitional guidance from 3D-to-2D unnatural
images, which exists in the prompt space before being fed into layer Ll, while the latter depends
on the customized context length of vectors, which exists in the query space for seeking matched
prompting after encoding in layer Ll. With deliberate design, the newer task-specific ViT encoder
can be decomposed into:

Ẽl = Ll(Ẽl−1) + TBl(Ll(Ẽl−1)), l = 1, 2, ..., L, (4)
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(a) Modal Transitional Prompting (b) Learnable Spatial Tunability
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Figure 2: The architecture of VFM-based Encoder. We explore two layer-wise learnable blocks:
(a) Modal Transitional Prompting and (b) Learnable Spatial Tunability. During training, only the
parameters of two modules are updated while the whole ViT encoder layer is frozen.

Ẽl−1[1 :, :] = El−1[1 :, :] + PGl(X
2D, XDep), (5)

where ẼL is the final refined patch embedding output from our proposed VFM-based encoder.
According to the DG or DA task, X2D ∈ RH×W×3 means source or target image and XDep ∈
RH×W×1 means source or target sparse depth. Note that as Eq. (5) shows, the prompt output from
PGl is aligned to the patch embedding without contacting Ecls.

Modal Transitional Prompting. Previous methods [16, 20] have proved that visual prompt-tuning
brings flexibility to the pre-trained VFMs for downstream tasks. However, their prompts like pixel-
level perturbations or learnable vectors are black boxes with limited learning capacity, which cannot
reliably explore convincing knowledge beneficial for cross-domain 3D semantic segmentation. Lee
et al. [26] have proved that source data internally know much more about the world and how the
scene is formed, called Privileged Information. Therefore, PGl is designed to capture 3D-to-2D
transitional prior and task-shared knowledge of this information from the prompt space, which might
be useful for cross-domain learning.

To achieve this goal, following Eq. (1), a patch embed module borrowed from the plain ViT is
re-initialized and applied to obtain a sequence of flattened patch embeddings E2D

0 , EDep
0 ∈ RM×D.

Particularly, sparse depth XDep as a point cloud representation via perspective projection, presents
an unnatural image. From the view of modal characteristics, it is easy to access and contains the prior
spatial distance information that is lacking in 2D representation. From the view of deep encoding, it
focuses on the scope of scenes at different receptive fields, tightly coupled with semantic information,
so that their corresponding features have different contents when constructed. Note that XDep only
has the 1-channel to show the depth value in camera coordinates, we repeat the depth channel to
make it equal to the number of RGB channels. In addition, considering that low-frequency bands of
the amplitude spectrum tend to capture style information (or low-level statistics) [53], we provide a
simple way to perturb the amplitude spectra of the source image to ensure that the VFM is exposed
to more variations in low-frequency components during training. The perturbed images can be
obtained by using a low-frequency filter, and then Eq. (1) is also employed to generate corresponding
flattened patch embedding ELF

0 ∈ RM×D. After that, to effectively integrate prompt-tuning to
visual embedding output from each frozen layer, we flexibly build a lightweight layer that contains
exclusive MLP ϕl(·) for adapting l-th encoder layer and shared MLP Φ(·) across whole ViT. This
implementation is written as:

EPG
l = Φ(ϕl(E

2D
0 ⊎ ELF

0 ⊎ EDep
0 )), (6)

where EPG
l ∈ RM×D is the 3D-to-2D transitional prompt output from PGl. MLP is built with

a two-layer bottleneck structure (Linear-GELU-Linear) with the hidden layer reducing the input
dimension by 3×.
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Learnable Spatial Tunability. To progressively improve feature generalization via 3D-to-2D
transitional prompt, inspired by [31, 44], TBl is introduced to bridge the discrepancy between the
pre-training dataset and the target scene. To achieve this goal, after the l-th layer, TBl starts with a
set of learnable tokens Ol ∈ RK×D, where K is the length of the token and each token is initialized
randomly. Considering the essential need in 3D semantic segmentation to discern multiple instances
within a framed scene, TBl exploits an attention mechanism, which enables VFMs to seek matched
prompting to the features of distinct instances, thereby assisting VFMs in adapting to the differences
between pre-training and cross-domain data. Concretely, TBl adopts a dot-product operation to
generate the affinity matrix Jl, which captures the associations between prompted patch embedding
Ll(Ẽl−1) and learnable tokens Ol. Then, a SoftMax function is applied to align each patch with a
unique instance. This implementation is written as:

Jl = SoftMax(
Ll(Ẽl−1)[1 :, :]×O⊤

l√
D

), Jl ∈ RM×K , (7)

Ol = Ol,a ×Ol,b, (8)

where Ol,a ∈ RK×Dm and Ol,b ∈ RDm×D are constructed as low-rank matrices [18], reducing
the trainable parameters by learning pairs of rank-decomposition matrices. Note that the low-rank
dimension Dm ≪ D (Dm = 32 in our case). Besides, we further process the embeddings through a
down-projection layer with parameters Wdown ∈ RK×Dm followed by an up-projection layer with
parameters Wup ∈ RDm×D, which is then element-wise added via the residual connection. After
that, to enhance the flexibility in feature adjustment, TBl employs several layers to produce:

ETB
l = δ2(Ll(Ẽl−1)[1 :, :] +W⊤

up × (W⊤
down × Ll(Ẽl−1)[1 :, :]) + Jl × δ1(Ol)), (9)

where ETB
l ∈ RM×D is the tunable deep query output from TBl, δ1(·) and δ2(·) are linear layers.

3.3 Cross-modal Learning

The point-wise supervised segmentation loss of the source domain is formulated as follows:

Lseg = − 1

N × C

N∑
n=1

C∑
c=1

Y 3D,S
(n,c) logPS

(n,c), (10)

where main prediction PS is either P2D,S or P3D,S , N and C being the number of points of the
source point cloud and the number of classes, respectively.

The goal of unsupervised learning across modalities is two-fold. Firstly, we want to transfer knowl-
edge from 2D modality to 3D modality on the source-domain and target-domain dataset. Secondly,
we devise mutual learning on the output level, where the task is to transfer the pre-existing target
information of VFMs to a 3D model. Same to xMUDA [19], we choose the Kullback-Leibler
divergence DKL(·||·) for the cross-modal loss LxM and define it as follows:

LS
xM = DKL(P2D,S ||P3D,S 7→2D,S) +DKL(P3D,S ||P2D,S 7→3D,S), (11)

LT
xM = DKL(P2D,T ||P3D,T 7→2D,T ) +DKL(P3D,T ||P2D,T 7→3D,T ), (12)

where P2D,S and P3D,S is to be estimated by mimicking predictions P3D,S 7→2D,S and P2D,S 7→3D,S

from the respective auxiliary classifiers H2D
aux and H3D

aux. The same goes for target predictions.
Ultimately, the overall loss function LDG of DG3SS and LDA of DA3SS are defined as:

LDG = Lseg + λSLS
xM , (13)

LDA = Lseg + λSLS
xM + λTLT

xM , (14)
where λS and λT are the weights trading off cross-modal loss on source and target domain inputs.

4 Experiments

4.1 Datasets

For evaluation, we use four public autonomous driving benchmarks, including three real datasets:
nuScenes [4], SemanticKITTI [3], A2D2 [12] and one synthetic dataset: VirtualKITTI [11]. For all
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Table 1: Performance comparison of multi-modal domain adaptive and domain generalized 3D
semantic segmentation methods in four typical scenarios. We report the mIoU results (with best
and 2nd best) on the target testing set for each network as well as the ensemble result (i.e., xM ) by
averaging the predicted probabilities from the 2D and 3D networks.

S:Source / T:Target nuScenes:USA/Sing. nuScenes:Day/Night vKITTI/sKITTI A2D2/sKITTI

Task Method 2D 3D xM 2D 3D xM 2D 3D xM 2D 3D xM

Source-only 58.4 62.8 68.2 47.8 68.8 63.3 26.8 42.0 42.2 34.2 35.9 40.4

DA

logCORAL [33] 64.4 63.2 69.4 47.7 68.7 63.7 41.4 36.8 47.0 35.1 41.0 42.2
MinEnt [43] 57.6 61.5 66.0 47.1 68.8 63.6 39.2 43.3 47.1 37.8 39.6 42.6
BDL [29] 62.0 64.8 70.4 47.0 69.6 63.0 21.5 44.3 35.6 34.7 41.7 45.2

xMUDA [19] 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
AUDA [30] 64.0 64.0 69.2 55.6 69.8 64.8 35.8 37.8 41.3 43.0 43.6 46.8
DsCML [35] 65.6 56.2 66.1 50.9 49.3 53.2 38.4 38.4 45.5 39.6 45.1 44.5
Dual-Cross [28] 64.7 58.1 66.5 58.5 69.7 68.0 40.7 35.1 44.2 45.9 40.0 48.6
SSE [58] 64.9 63.9 69.2 62.8 69.0 68.9 45.9 40.0 49.6 44.5 46.8 48.4
BFtD [45] 63.7 62.2 69.4 57.1 70.4 68.3 41.5 45.5 51.5 40.5 44.4 48.7
MM2D3D [6] 71.7 66.8 72.4 70.5 70.2 72.1 53.4 50.3 56.5 42.3 46.1 46.2
VFMSeg [51] 70.0 65.6 72.3 60.6 70.5 66.5 57.2 52.0 61.0 45.0 52.3 50.0
UniDSeg 67.2 67.6 72.9 63.2 71.2 71.2 60.5 50.9 62.0 50.7 55.4 57.5

DG
xMUDA [19] 58.7 62.3 68.6 43.0 68.9 59.6 25.7 37.4 39.0 34.9 36.7 41.6
MM2D3D [6] 69.7 62.3 70.9 65.3 63.2 68.3 37.7 40.2 44.2 39.6 35.9 43.6
UniDSeg 66.5 64.5 72.3 57.0 70.5 70.0 57.6 44.7 60.0 48.8 46.3 54.4

real datasets, LiDAR sensor and RGB cameras are synchronized and calibrated, allowing 2D-to-3D
projection, and for the synthetic dataset, VirtualKITTI provides depth maps so we simulate LiDAR
scanning via uniform point sampling. Following DA3SS settings [19], we exclusively utilize the front
camera image and the corresponding LiDAR points that are projected onto it.

Our experimental scenarios cover typical real-to-real single domain adaptation and generalization chal-
lenges like lighting changes (nuScenes: Day/Night), scene layout of country (nuScenes: USA/Sing.;
nuScenes: Sing./USA), and sensor setups (A2D2/sKITTI; A2D2/nuScenes). Note that, the source
and target classes are coincident. For the first three scenarios, we choose 6 merged classes while
for the last two scenarios, we select 10 and 8 shared classes between two datasets. In addition, the
synthetic-to-real domain adaptation and generalization challenges are also considered (vKITTI/sKITTI,
simulated depth, and RGB to real LiDAR and camera, with 6 merged classes). Details of the class
partition are provided in supplementary materials.

4.2 Implementation Details

For the 2D backbone, we use the visual encoders of CLIP [36] and SAM [23], a large-scale pre-
training model. Our selection of Vision Transformer [10] includes ViT-Base (ViT-B) and ViT-Large
(ViT-L) architectures. Then, we utilize the MMSegmentation [8] codebase for the decoder head,
SemanticFPN [22], a widely-used segmentation head, is integrated with the visual encoder that serves
as the 2D backbone. Meanwhile, depth information is a 3D attribute derived from LiDAR sensors,
without the need to introduce additional datasets, thus ensuring fairness under equal experimental
conditions. For the 3D backbone, we employ SparseConvNet [15] with a U-Net architecture in Sparse
Convolution Library [9]. The voxel size is set to 5cm in the 3D network. This voxel size ensures that
each voxel contains only one 3D point, maintaining a level of granularity suitable for the task.

Our model is trained on “nuScenes:Day/Night”, “A2D2/sKITTI”, and “A2D2/nuScenes” for 100k
iterations. We utilize an iteration-based learning schedule where the initial learning rate is set to 1e-3
except for the 2D encoder which is 1e-4, and then it is divided by 10 at 80k and 90k iterations. For
“nuScenes:USA/Sing.” and “nuScenes:Sing./USA”, the training is performed for 60k iterations, and
the learning rate is divided by 10 at the 40k and 50k iterations. For vKITTI/sKITTI, the training is
performed for 30k iterations, and the learning rate is divided by 10 at the 25k and 28k iterations. The
batch size is set to 8. As regards the hyper-parameters, following [19], λS and λT in cross-modal loss
are set to 1.0 and 0.1 on “nuScenes:Day/Night”, “nuScenes:USA/Sing.”, and “nuScenes:Sing./USA”,
0.1 and 0.01 on “vKITTI/sKITTI”, “A2D2/sKITTI”, and ‘A2D2/nuScenes” respectively, without
performing any fine-tuning on these values. All experiments are conducted on NVIDIA RTX 3090.
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Figure 3: Qualitative results of DG3SS. We showcase the ensembling result of four scenarios.

4.3 Quantitative and Qualitative Comparison

We compare the proposed method with three classic 2D domain adaptive methods, which can be
easily extended to multi-modal conditions. Moreover, eight multi-modal DA3SS and two multi-modal
DG3SS are discussed. As shown in Tab. 1, we tabulate the comparison results in mean Intersection
over Union (mIoU, %) on the target testing data. Note that not all datasets provide image labels.
Thus the quantitative evaluation of 2D semantic segmentation depends on the 3D-2D corresponding
point-wise prediction. Overall, our method achieves the best performance on all scenarios against
the competitors, w.r.t. ensemble result “xM”, except for DA3SS on “nuScenes:Day/Night” gets the
second best. As shown in Fig. 3, we visualize the DG3SS results of four settings. By the merit of the
visual foundation models, our method can segment detailed objects very well. From top to bottom,
the focused areas are the sidewalk near the drivable surface, the trunk of a tree, the profile of the road,
and most importantly, bicycles safely riding on the road.

Comparison of DG3SS. In terms of DG task, compared with baseline (xMUDA) and MM2D3D,
our method still achieves remarkable results, exhibiting 3.7%/1.4%, 10.4%/1.7%, 21.0%/15.8%,
and 12.8%/10.8% mIoU improvement. It is worth noting that our method, without exposure to
any target-domain data, shows performance that is close to or even surpasses that of most DA3SS
methods (e.g., the result of Ours-DG is comparable to VFMSeg on “nuScenes:USA/Sing.”). All
results demonstrate that utilizing the powerful open-vocabulary recognition capability of VFMs is
beneficial for addressing generalization problems in domains with significant discrepancies.

Comparison of DA3SS. The source-only model is the lower bound, which is not domain adaptive
as it is only trained on the source-domain data. It is observed that our method brings a significant
adaptation effect on all scenarios compared to the source-only model, with the gains of 4.7%, 7.9%,
19.8%, and 17.1% in mIoU, respectively. Compared with baseline (xMUDA) for all DA competitors,
our method exceeds it by large margins with gains of 3.5%, 3.8%, 13.8%, and 13.5% in mIoU.
Particularly, on the “A2D2/sKITTI” scenario, our method typically yields a higher score compared to
the best “xM” in VFMSeg (57.5% vs. 50.0%).

4.4 Ablation Study

Evaluation of Different VFMs Training Strategies. Our analysis of various training strategies
for VFMs in six experimental scenarios within and across datasets can be found in Tab. 2. Note
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Table 2: Ablation study on VFM-based encoder with different training strategies for DG3SS. This
setup is based on the same LiDAR-Camera configuration but different environments (top-3 scenarios),
and different LiDAR-Camera configurations (bottom-3 scenarios). Of note, “Params” denote trainable
parameters in the encoder.

S:Source / T:Target nuScenes:USA/Sing. nuScenes:Day/Night nuScenes:Sing./USA

Strategy Visual Backbone Params 2D 3D xM 2D 3D xM 2D 3D xM

Finetune
CLIP:ViT-B

86.9M 62.4 64.1 69.6 53.3 70.7 68.8 65.7 67.9 72.9
Frozen 0.0M 59.7 64.5 69.7 46.8 71.0 69.8 58.3 67.9 71.2
Ours 1.82M 63.8 64.7 71.5 55.9 70.7 70.0 68.2 68.0 74.0
Finetune

CLIP:ViT-L
305M 65.5 64.5 70.4 54.9 70.7 67.3 69.9 67.8 74.5

Frozen 0.0M 60.4 64.2 70.1 50.2 70.5 69.5 62.2 67.8 73.3
Ours 4.70M 66.5 64.5 72.3 57.0 70.5 70.0 70.6 68.0 75.1

S:Source / T:Target vKITTI/sKITTI A2D2/sKITTI A2D2/nuScenes

Strategy Visual Backbone Params 2D 3D xM 2D 3D xM 2D 3D xM

Finetune
CLIP:ViT-B

86.9M 54.9 41.5 55.8 43.0 43.8 51.5 55.4 50.1 60.2
Frozen 0.0M 49.1 42.0 54.4 35.3 43.8 48.7 51.2 49.4 58.1
Ours 1.82M 55.6 43.6 58.0 43.2 44.6 52.0 56.3 50.3 61.0
Finetune

CLIP:ViT-L
305M 57.4 43.5 58.7 46.9 44.3 53.0 57.2 50.8 61.3

Frozen 0.0M 54.0 42.9 58.4 41.8 44.4 51.4 53.7 50.0 59.6
Ours 4.70M 57.6 44.7 60.0 48.8 46.3 54.4 58.0 50.7 61.9

Table 3: Ablation study on the effectiveness of signifi-
cant components in UniDSeg with the ViT-B backbone
for DG3SS task.

MTP LST nuScenes:Sing./USA A2D2/sKITTI

2D 3D xM 2D 3D xM

Frozen VFM 58.3 67.9 71.2 35.3 43.8 48.7

✓ 63.9 67.8 72.5 40.4 44.0 50.5
✓ 65.7 67.8 73.3 41.8 44.2 51.1

✓ ✓ 68.2 68.0 74.0 43.2 44.6 52.0
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Figure 4: Effect of the learnable token length.

that due to the fixed and relatively small number of trainable parameters in the decode head, the
count of trainable parameters presented in the tables is focused solely on the visual architecture. In
this setup, we separately select CLIP:ViT-B and CLIP:ViT-L backbone with fine-tuning, freezing,
and our proposed Learnable-parameter-inspired Mechanism for analysis. The results indicate that
frozen VFMs outperform previous DA3SS methods without specialized design. In addition to
“nuScenes:Day/Night”, VFMs with full parameter fine-tuning exhibit enhanced performance relative
to their frozen counterparts because the 3D modality is less sensitive to light, thus dominating
in ensemble prediction direction. Remarkably, our method achieves even superior generalization
capabilities, surpassing the full parameter fine-tuning 0.5∼2.7% mIoU with merely ∼2% trainable
parameters compared to the original backbone. This ablation experiment demonstrates that our
method can inherit the pre-existing target awareness from the VFMs to the maximum extent.

Evaluation of Different Components. As shown in Tab. 3, we train four models on two scenarios
for DG3SS, including (1) Frozen parameter of ViT backbone; (2) only performing MTP in the frozen
ViT by using prompt tuning, leading to a significant mIoU boost (1.3% and 1.8%). This highlights
the robustness of the 3D-to-2D transitional prompts in cross-domain learning; (3) only performing
LST in the frozen ViT by customizing a learnable token, demonstrating that learnable tokens can
encourage the model to learn domain-invariant representations (increasing 2.1% and 2.4% mIoU); (4)
combining two proposed components to reach peak value.

Evaluation of Learnable Token Length. We illustrate the impact of learnable token length K
on the overall 2D performance of UniDSeg with the ViT-B backbone for DG3SS. As shown in
Fig. 4, the results demonstrate a consistent upward trend. When K is set to 100, the relatively small
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Table 4: Effect of using Segment
Anything Model (SAM) as the
2D backbone.

Task 2D Backbone USA/Sing.

2D 3D xM

DG CLIP:ViT-L 66.5 64.5 72.3
SAM:ViT-L 66.8 64.7 72.6

DA CLIP:ViT-L 67.2 67.6 72.9
SAM:ViT-L 67.8 68.8 73.3

Table 5: Effect of applying
different training strategies
to the SAM-based model.

Task Strategy USA/Sing.

2D 3D xM

DG Finetune 65.9 64.3 70.8
Ours 66.8 64.7 72.6

DA Finetune 66.5 67.9 71.4
Ours 67.8 68.8 73.3

Table 6: Effect of using different 3D
backbones on the DA3SS methods.

3D Backbone DA3SS USA/Sing.

2D 3D xM

SparseConvNet xMUDA 64.4 63.2 69.4
UniDSeg 67.2 67.6 72.9

MinkowskiNet xMUDA 65.9 64.0 69.7
UniDSeg 67.5 68.6 73.1

training parameters and high performance make it the preferred choice for subsequent experiments.
Meanwhile, this observation suggests that the model benefits from incorporating visual information
from multiple layers, enabling it to capture more nuanced and discriminative features.

Evaluation of Different 2D and 3D Backbones. The motivation of this work is to study a
universal framework based on VFMs to enhance the generalizability and adaptability of cross-domain
3D semantic segmentation, demonstrating the effectiveness of the visual foundation model priors.
However, CLIP is not designed for common surveillance-relevant tasks like semantic segmentation.
Hereby, we dedicate ourselves to verifying its effectiveness on VFMs designed for segmentation
tasks such as SAM [23]. Firstly, in Tab. 4, we evaluate the effect of SAM as the 2D backbone. It is
observed that SAM-based UniDSeg exhibits better performance on “USA/Sing” scenario, with a “xM”
gain of 0.3% on DG and 0.4% on DA. Then, in Tab. 5, we evaluate the effect of applying different
training strategies to the SAM-based model. It is observed that our Learnable-parameter-inspired
Mechanism for tuning the SAM-based encoder can achieve 1.8% and 1.9% “xM” gain compared to
fine-tuning strategy. In addition, we evaluate UniDSeg on another 3D backbone, i.e., MinkowskiNet,
making it more convincing as a “universal” framework for cross-domain 3D semantic segmentation.

Table 7: The parameters and computational costs of CLIP-based and SAM-based 2D backbones.
“Cost” means the percentage of trainable parameters in MTP and LST compared to fine-tuning the
whole encoder consumed.

2D Backbone Full Params Trainable Params Cost MTP LST

CLIP:ViT-B 86.9M 1.82M 2.09% 0.48M 1.34M
CLIP:ViT-L 305M 4.70M 1.54% 1.78M 2.92M
SAM:ViT-L 307M 4.34M 1.41% 1.42M 2.92M

Evaluation of Computation Cost. In Tab. 7, we have reported model parameters of CLIP: ViT-B,
CLIP: ViT-L, and SAM: ViT-L for the VFM-based encoder along with all trainable parameters. Note
that, the entire ViT backbone in our VFM-based encoder is frozen during downstream training for
DA3SS and DG3SS. Only two layer-wise learnable blocks, MTP and LST, are trainable. It is obvious
that our method requires only 1-2% parameters optimization to exceed the fine-tuning results.

5 Conclusion

In this work, we delve into a universal method that can enhance the adaptability and generalizability of
cross-domain 3D semantic segmentation, dubbed UniDSeg. For this purpose, we introduce a learnable-
parameter-inspired mechanism to the off-the-shelf VFMs with frozen parameters, which maximally
preserves pre-existing target awareness in VFMs, further enhancing the generalizability of VFMs.
Our method achieves state-of-the-art performance in both DA3SS and DG3SS, as demonstrated
by extensive experiments on different scenarios. We believe that our work will inspire a deeper
investigation of cross-domain 3D semantic segmentation in autonomous driving.
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China under Grant No.62176224, No.62306165; Natural Science Foundation of Chongqing under
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A Appendix / supplemental material

This section starts with more information on UniDSeg, including dataset split, extensible tasks, more
ablation studies, and additional visualization results.

A.1 Dataset Split of Cross-domain Learning

To compose our domain adaptive and generalized scenarios, following [19], we exploit public datasets,
including nuScenes [4], VirtualKITTI [11], SemanticKITTI [3], and A2D2 [12]. The split details are
tabulated in Tab. 8.

Table 8: Size of the splits in frames for all proposed cross-domain learning scenarios.

Scenarios
Source Target

Categories
Train Train Val/Test

nuScenes:Day/Night 24745 2779 606/602
Vehicle: [bicycle, bus, car, construction_vehicle, motorcycle, trailer, truck];

Driveable Surface; Sidewalk; Terrain; Manmade; VegetationnuScenes:USA/Sing. 15695 9665 2770/2929
nuScenes:Sing./USA 9665 15695 -/3090

vKITTI/sKITTI 2126 18029 1101/4071

vKITTI: Car; Truck; Road; Object: [traffic sign, traffic light, pole, misc];
Building; Vegetation: [terrain, tree, vegetation]

sKITTI: Car; Truck; Road; Object: [fence, pole, traffic-sign, other-object];
Building; Vegetation: [vegetation, trunk, terrain]

A2D2/sKITTI 27695 18029 1101/4071

A2D2: Car; Truck; Bike: [bicycle, small vehicle]; Person; Road; Parking;
Sidewalk: [sidewalk, curbstone]; Object; Building; Vegetation

sKITTI: Car; Truck; Bike: [bicycle, motorcycle, bicyclist, motorcyclist]; Person; Road;
Parking; Sidewalk; Object; Building; Vegetation: [terrain, trunk, vegetation]

A2D2/nuScenes 27695 25330 2800/6019

A2D2: Car; Truck; Bike: [bicycle, small vehicle]; Person; Road;
Sidewalk: [sidewalk, curbstone]; Building; Vegetation

nuScenes: Car; Truck; Bike: [bicycle, motorcycle]; Person; Road: [driveable_surface];
Sidewalk; Building: [manmade]; Vegetation: [terrain, vegetation]

nuScenes. It contains 1,000 scenes, each of 20 seconds, corresponding to 40k annotated keyframes
taken at 2Hz. The original scenes are split into 28,130 training frames and 6,019 validation frames.
Each frame contains a 32-beam LiDAR point cloud with point-wise annotations and six RGB images
captured by six cameras from different views of LiDAR. For nuScenes:Day/Night, we choose 602
night scenes for testing data, while for nuScenes:USA/Sing. and nuScenes:Sing./USA, we choose
2,929 Singapore and 3,090 USA scenes for testing data, respectively. Both of them merge the objects
into 6 categories: Vehicle, Driveable Surface, Sidewalk, Terrain, Manmade, and Vegetation.

VirtualKITTI. It consists of 5 driving scenes which are created with the Unity game engine by
real-to-virtual cloning of the scenes 1, 2, 6, 18, and 20 of the real KITTI dataset. Different from real
KITTI, VirtualKITTI does not simulate LiDAR, but rather provides a dense depth map, alongside
semantic, instance, and flow ground truth. Each of the 5 scenes contains between 233 and 837 frames,
i.e., in total 2126 for the 5 scenes. Each frame is rendered with 6 different weather/lighting variants
(clone, morning, sunset, overcast, fog, rain) which we use all.

SemanticKITTI. It is a large-scale dataset based on the KITTI Odometry Benchmark captured in
Germany. The original scenes are split into 19,130 training scans and 4,071 validation scans. Unlike
nuScenes, SemanticKITTI only provides the front-view images and a 64-layer front LiDAR. 19
categories are used for segmentation.

A2D2. It consists of 20 drives, which corresponds to 28,637 frames. The point cloud comes from
three 16-layer front LiDARs (center, left, and right), where the left and right LiDARs are inclined.
By projecting 3D point clouds onto 2D images, corresponding 2D semantic labels are regarded as 3D
point-wise labels, which contain 38 categories.

Note that, we select 6 merged categories between the VirtualKITTI and SemanticKITTI, including
Car, Truck, Road, Object, Building, and Vegetation. Between A2D2 and nuScenes, we select 8
merged categories, including Car, Truck, Bike, Person, Road, Sidewalk, Building, and Vegetation.
Between A2D2 and SemanticKITTI, 2 additional merged categories are considered, which are Object,
and Parking.
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Figure 5: Qualitative results of our method on the validation set of SemanticKITTI. The misclassifi-
cation points are signed in red.

A.2 Fully-supervised 3D Semantic Segmentation

The proposed method can also work reliably in handling fully-supervised large-scale 3D semantic
segmentation. As shown in Tab. 9, we simply compare the results of some typical uni-modal and multi-
modal methods, including MinkowskiNet [7], SPVCNN [42], Cylinder3D [62], and 2DPASS [52],
on the publicly available SemanticKITTI validation set. According to the official setting in 00-10
sequences, sequence 08 is the validation set, while the remaining sequences are the training set.

In this experimental setup, we make some slight modifications to the training strategy. Considering
that fully-supervised learning assumes the training and validation/testing sets are independent identi-
cally distribution, without involving domain shift problems in cross-domain learning. (i.e., avoid
overfitting the source-domain data distribution). Therefore, when training our model, we replace
the 2D backbone in 2DPASS with our VFMs backbone and fine-tune its parameters in the same
way. Moreover, we reduce the learning rate of the 2D backbone to lr = 0.024 while keeping the
learning rates of the other modules lr = 0.24 and the number of training epochs ep = 64 unchanged
to ensure the fairness of the experiment. Similar to 2DPASS, we tabulate the validation results with
and without Test-Time Augmentation (TTA) and set the number of views to 12 as the default. Some
visualization results are shown in Fig. 5. 2DPASS has a higher error recognizing small objects and
region boundaries, while our method recognizes small objects better thanks to the knowledge prior of
visual foundation models.

A.3 Source-Free Domain Adaptive 3D Semantic Segmentation

Source-free domain adaptation (SFDA) seeks to learn models where the vendor can trade only the
source model and the client can perform target adaptation without accessing source-domain data.
Drawing inspiration from Jogendra et al. [25], SFDA enables partition into two tasks: (a) source-only
domain generalization and (b) source-free target adaptation. Hereby, towards the former, we utilize
UniDSeg to achieve models with generalization capability. Towards the latter, we utilize target
3D pseudo-labels (PL) obtained from the source model for self-training. When selecting PL from
the target-domain data, we consider the ensemble result “xM” as the fusion PL to supervise both
the 2D and 3D branches. As shown in Tab. 10, we adopt conventional consistency learning and
pseudo-label self-training to address the source-free domain adaptive 3D semantic segmentation
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Table 9: Fully-supervised 3D semantic segmentation results on the SemanticKITTI validation set. We
report per-class IoU. “†” denotes the reproduced result referring to the official codebase. “w/ TTA”
means using test-time augmentation in the inference stage.
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MinkowskiNet [7] - - - - - - - - - - - - - - - - - - - 61.1
SPVCNN [42] - - - - - - - - - - - - - - - - - - - 63.8
Cylinder3D [62] - - - - - - - - - - - - - - - - - - - 65.9
2DPASS† [52] 95.3 47.1 73.7 81.8 56.0 73.5 87.6 2.1 92.4 45.2 78.6 1.0 90.8 61.8 88.4 69.5 75.5 58.1 51.8 64.7
2DPASS† [52] w/ TTA 96.6 52.2 77.9 91.1 68.2 77.9 92.0 0.2 94.0 50.6 81.4 1.2 91.8 66.3 89.6 72.0 77.3 63.0 53.5 68.2

Ours 96.2 47.2 70.1 84.3 64.5 74.1 89.5 2.1 92.6 46.6 79.1 3.2 90.9 62.8 88.3 69.9 75.1 58.6 52.1 65.6+0.9

Ours w/ TTA 97.0 52.3 73.4 92.6 71.1 78.3 92.3 0.0 94.1 51.3 81.8 3.3 92.1 67.4 89.5 72.0 77.0 63.8 54.6 68.6+0.4

Table 10: Performance comparison of SFDA3SS methods in three typical scenarios. “†” denotes the
reproduced result referring to the official codebase, as the different category splits applied in the same
adaptation scenario.

S:Source / T:Target nuScenes:USA/Sing. nuScenes:Day/Night A2D2/sKITTI

Task Method Source-free 2D 3D xM 2D 3D xM 2D 3D xM

DA

Baseline ✓ 58.4 62.8 68.2 47.8 68.8 63.3 34.2 35.9 40.4
Consistency ✓ 58.7 63.2 68.1 50.4 66.8 63.6 37.1 36.5 41.8
Pseudo-Label ✓ 58.9 62.7 68.5 48.3 69.0 63.2 37.6 36.6 41.5
SUMMIT† [41] ✓ 61.6 66.2 68.4 53.8 68.9 68.2 42.9 43.7 46.8

UniDSeg × 67.2 67.6 72.9 63.2 71.2 71.2 50.7 55.4 57.5
UniDSeg ✓ 69.3 71.7 73.5 62.6 70.7 68.7 49.6 59.1 58.6

(SFDA3SS). Moreover, we compare UniDSeg under the source-free condition with the pioneering
method SUMMIT [41]. Experimental results demonstrate that our method achieves superior perfor-
mance, remarkably on “USA/Sing.” and “A2D2/sKITTI”. Note that we do not adopt any source-free
adaptive learning methods, but only extend the DG3SS model to SFDA3SS tasks, to prove that a
good generalization model is conducive to the execution of SFDA3SS. We have reason to believe that
well-designed source-free adaptive learning can bring even more performance improvements.

A.4 Re-training DA3SS with Pseudo-Label

In general, cross-modal learning and self-training with pseudo-labels are complementary in their
combination. As shown in Tab. 11, when re-train the DA3SS model with PL, our method still achieves
competitive performance. Similar to SFDA3SS, when selecting PL from the target-domain data, we
consider the ensemble result “xM” as the fusion PL to supervise both the 2D and 3D branches.

Limitation. Nevertheless, compared to other methods that achieve performance improvements of
1∼2% mIoU in 2D prediction with the help of target PL, our method only improves via the 3D pseudo
supervision of the target domain, with almost no impact on the 2D prediction. We speculate that
the proposed learnable-parameter-inspired mechanism is more effective in unleashing the potential
of VFMs, providing more pre-existing target information. With the increase in reliable target label
information, the limited learnable parameters cannot bear more contextual information, which hinders
the “1+1=2” effect. This is the problem that our unified cross-domain 3D semantic segmentation
model needs to be improved in the future.

A.5 Evaluation on the Roles of Sparse Depth

MM2D3D [6] provides an effective approach to solving the DA3SS task by utilizing depth as an
auxiliary input. By adding a parallel reinitialized encoder to the 2D backbone to process the sparse
depth obtained from the point cloud. Therefore, we consider analyzing whether the sparse depth needs
to be deeply encoded or employed as a prompt. As shown in Fig. 6, we illustrate the architecture of
two learning manners: (a) Depth Deep Encoding and (b) Depth as Point-level Prompts.
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Table 11: Performance comparison of multi-modal domain adaptive 3D semantic segmentation
methods with pseudo-label (“PL”) re-training on four typical scenarios.

S:Source / T:Target nuScenes:USA/Sing. nuScenes:Day/Night vKITTI/sKITTI A2D2/sKITTI

Task Method 2D 3D xM 2D 3D xM 2D 3D xM 2D 3D xM

DA

xMUDAPL [19] 67.0 65.4 71.2 57.6 69.6 64.4 45.8 51.4 52.0 41.2 49.8 47.5
AUDAPL [30] 65.9 65.3 70.6 54.3 69.6 61.1 35.9 45.5 45.9 46.8 48.1 50.6
DsCMLPL [35] 65.6 57.5 66.9 51.4 49.8 53.8 39.6 41.8 42.2 46.8 51.8 52.4
Dual-CrossPL [28] 66.5 59.8 68.8 59.1 69.8 68.2 43.1 39.4 47.6 44.9 52.8 52.3
SSEPL [58] 66.9 64.4 70.6 59.1 67.0 66.3 47.2 53.5 55.2 45.9 51.5 52.5
BFtDPL [45] 65.9 66.0 71.3 60.6 70.0 66.6 48.6 55.4 57.5 42.6 53.7 52.7
MM2D3DPL [6] 74.3 68.3 74.9 71.3 69.6 72.2 55.4 55.0 59.7 46.4 48.7 50.7
UniDSegPL 67.4 70.0 73.0 64.5 71.9 71.7 60.5 52.7 62.7 50.4 57.3 58.6

For (a), similar to MM2D3D, we replace the 2D backbones with two ViT-B models. The sparse depth
is fed into the ViT-B that trains from scratch, while the image is fed into the ViT-B pre-trained on
large-scale datasets. After that, we can obtain encoded output by concatenating two representations.
For (b), that is the simple architecture of only sparse depth as prompt for fine-tuning. Tab. 12 shows
the comparison results of the aforementioned learning manners. Compared to (a), (b) not only requires
0.6% fine-tuning parameters of the 2D backbone but also achieves superior segmentation performance,
making it flexible to expand to various 3D semantic segmentation tasks with multi-modal learning.
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Figure 6: Role of Depth with brief diagram.

Table 12: Performance comparison of two sparse depth learning roles for DG3SS.

Role of Depth Params nuScenes:Sing./USA

2D 3D xM

Deep Encoding 86.9M 66.1 67.7 73.0
Point-level Prompts 0.48M 67.8 67.9 73.8

A.6 Additional Visualization Results

In this part, we demonstrate more qualitative results of our proposed UniDSeg to illustrate the
effectiveness of our DA3SS framework. The corresponding qualitative results from 2D and 3D
predictions will also be provided (See Figs 7, 8, 9, and 10). Note that the prediction differences are
signed in the red rectangle.
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Figure 7: Additional qualitative results of nuScenes:Day/Night scenario for DA3SS.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim our contribution, that is, a universal framework to enhance the
adaptability and generalizability of cross-domain 3D semantic segmentation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the appendix A.4, we point out the limitation of re-training DA3SS with
pseudo-label (PL), with almost no impact on the 2D prediction.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results with proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Tab. 1 shows the comparison result of DA3SS and DG3SS. Tab. 8 shows the
detailed data and category splits. Tabs. 9, 10, and 11 tabulate the expansibility of UniDSeg
in other 3D semantic segmentation tasks. All results are evaluated on the public 3D datasets.
Code is available at https://github.com/Barcaaaa/UniDSeg.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is available at https://github.com/Barcaaaa/UniDSeg.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In sec.4.2, we illustrate the training details, including networks, learning rates,
loss weights, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our experimental results do not contain statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Tab. 2, we compare the trainable parameters of 2D visual backbone. All
experiments are conducted on NVIDIA RTX 3090 with 24GB RAM.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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