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ABSTRACT

The recent rise of large language models has been fueled by scale. More data, more
compute, and bigger models have consistently led to better performance. This
scaling paradigm has been applied most notably to the transformer architecture,
which is especially conducive to training parallelization and sequence modeling.
In this work, we ask what happens if we apply the power of scale to the simplest
possible class of neural network: the multi-layer perceptron (MLP). Specifically, we
train MLPs to perform next-token prediction on billions of tokens of text. Indeed,
their performance consistently improves with scale, though vanilla MLPs are still
clearly inferior to transformers for this task, especially because their parameter
count grows with the length of the input sequences. We then perform a mechanistic
analysis of the trained models, and identify a consistent emergent structure: most
neurons in the first hidden layer either perform arbitrary linear functions over a
small look-back window, or low-frequency functions over the entire context. These
neuron types recall n-gram and bag-of-words techniques from classical statistical
language modeling. Using the discrete cosine transform, we define a unified way
of reparameterizing these neuron types such that the number of parameters per
neuron does not depend on the sequence length.

1 INTRODUCTION

It has been almost a quarter-century since neural language models were introduced in the seminal work
of Bengio et al. (2000). The authors trained multi-layer perceptrons (MLPs) to perform next-word
prediction on large text corpora, and found that the resulting models outperformed leading n-gram
based models, which had been state-of-the-art since Shannon first introduced language modeling a
half-century earlier (Shannon, 1951). MLPs, consisting of fully-connected layers of neurons, are the
prototypical basic deep learning architecture (Rumelhart et al., 1986). In their largest experiment,
Bengio et al. trained a width-120 MLP with a context length of 8 on a training set of 32 million
words.

In this work, we train simple MLPs on language modeling, just like Bengio et al. (2000), but at a much
larger scale—ReLU MLPs with up to 900 million parameters and 128 tokens of context, supervised
on 10 billion tokens. As observed in other contexts (Hestness et al., 2017; Kaplan et al., 2020;
Hoffmann et al., 2022; Bachmann et al., 2023), increases in scale lead to consistent improvements
in performance. See Figure 1 for empirical scaling results and comparisons to the transformer
architecture (Vaswani et al., 2017).

Recently, Bachmann et al. (2023) performed an extensive study of scaling MLPs in the vision domain,
and some of our motivations parallel theirs. Much theoretical research in deep learning studies MLPs
because of their simplicity, and we are interested in how much relevance this literature has for the
large-scale language modeling setting. We also see our MLP experiments as a test of the limits of
scaling: can an extremely generic architecture, given enough parameters and data, perform arbitrarily
well at language modeling? Of course, there are reasons vanilla MLPs are not actually a practical
architecture for language modeling. Most importantly, a given MLP can only support a fixed context
length, and scaling the context length requires increasing the number of parameters.

But training MLPs also provides an opportunity. Because the architecture is so generic, we can
think of it (informally) as a “blank slate” on which the learning process builds circuits for language
modeling unconstrained by human-imposed inductive biases. If we are lucky, we might identify
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Figure 1: Following Method 2 from Hoffmann et al. (2022), we fix five compute budgets and vary
the amount of parameters and the amount of training tokens within each compute budget. We then fit
a parabola to each compute budget curve (left). We then take the minimum of each parabola and plot
training FLOP vs optimal parameter count (center), training FLOP vs optimal token count (center).

emergent regularities that could be hard-coded into new architectures, potentially improving their
language modeling inductive bias, computational efficiency, or interpretability.

We thus perform a mechanistic analysis of the neurons in the first hidden layer of our models. The
results are striking: most neurons can be assigned to one of two types (see Figure 4). “n-gram”
neurons perform an arbitrary linear function over the most recent n− 1 tokens for some small value
of n, ignoring all of the preceding context. “Bag-of-words” neurons, meanwhile, apply a linear
map to the average of all the input token embeddings; in fact, this linear map typically picks out a
semantically coherent direction in token embedding space. This emergent structure echoes non-neural
language modeling techniques which combine n-gram and bag-of-words statistics (Wallach, 2006).
Although the proportion of neurons that fit neatly into these two categories increases during the
course of training, at the end of training there remain other “hybrid” neurons which can be expressed
as a linear combination of n-gram and bag-of-words neurons.

Directly inspired by this empirical finding, we introduce a new type of neuron, the DCT (discrete
cosine transform) neuron, which is rich enough to express n-gram neurons and bag-of-words neurons
as special cases, and has a number of parameters that does not depend on the sequence length.
Specifically, we leverage the fact that both types of neurons have weight matrices that are restricted
to some look-back window, and (for each embedding coordinate) are low-frequency functions (in
comparison to the total context length) over that window.

In summary: We begin by studying the scaling behavior of vanilla MLPs in a simple language
modeling setting in Section 2. We then perform an analysis of the neurons of the resulting model
in Section 4, in which we introduce the n-gram and bag-of-words neuron types. We conclude by
proposing a method of reparameterizing the MLP language model using the DCT, such that the
number of parameters does not depend on sequence length (Section 5). We conclude with an overview
of related work (Section 6 and a high-level discussion 7).

2 VANILLA MLP FOR SHORT-SEQUENCE LAST-TOKEN PREDICTION

While transformers have dominated the landscape of language modeling, we take a step back and
ask: With enough compute, can an MLP achieve comparable performance in language modeling to
architectures with more inductive bias? To study this, we simplify the language modeling task to a
setting in which it is feasible to train and scale MLP models, as a case study in how neural networks
model language when removing the impact of architectural biases.

We train a vanilla MLP architecture on short sequence language modeling. Specifically, our MLP
architecture consists of an input embedding layer, three hidden layers, and output unembedding.
We use LayerNorm (Ba et al., 2016) after linear layers for training stability, ReLU activations, and
residual connections (He et al., 2015). To further simplify the language modeling task, we have the
model predict only the last token of each input sequence. For our main experiments, we train on
sequences of length 16 where the network sees the first 15 tokens and is tasked with predicting the
last token; we count tokens by the number of supervised output tokens. An illustration of the MLP
architecture is shown in Figure 2 where T represents the sequence length, d represents the embedding
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dimension, and w represents the width of the MLP. We choose this design of the MLP Block in order
to allow residual connections between layers.

Embedding
T → T×d

Linear
T×d → d

LayerNorm

ReLU

MLP Block

Add & Norm

MLP Block

Add & Norm

Embedding
d → vocab_size

Input

Linear
d → w

ReLU

LayerNorm

Linear
w → d

MLP Block

Figure 2: Illustration of the MLP architecture.
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Figure 3: Training FLOPs vs optimal loss
corresponding with Figure 1.

We compare our MLP architecture with a non-causal version of the GPT-2 architecture (Radford
et al., 2019) where only the last token is supervised. Our GPT model is depth 2 with 16 attention
heads. Both models have an embedding dimension of 512 and use AdamW (Loshchilov & Hutter,
2019) as the optimizer. Full training details are listed in Appendix B.

We train on the C4 (Raffel et al., 2023) split of the Dolma dataset (Soldaini et al., 2024) and we use
disjoint sequences as training samples. The C4 dataset contains roughly 200 billion tokens of web
content. We evaluate over a validation set containing a held-out set of data from the C4 corpus.

3 SCALING LAWS

We study how MLP models scale with increasing compute as compared to the transformer architecture
on our language modeling task (Figure 1). Specifically, we follow Method 2 from Hoffmann et al.
(2022) to examine the trade-off between increasing parameters and increasing training tokens within
a fixed compute budget. We train models over a range of 50M to 900M parameters (including all
embedding parameters) for five compute budgets between 1e16 and 3e18. We measure compute
budget in terms of training FLOPs using the approximation C = 6ND (Kaplan et al., 2020) for a
compute budget C, number of parameters N and number of supervised training tokens D. We set the
cosine schedule to match the number of training steps for each run. We plot number of parameters
(on a log scale) versus loss and fit a quadratic curve through the data points of each compute budget.
We find that increasing depth does not make a large difference as compared to scaling width for
the MLP models, so for simplicity we fix the models to have three hidden layers and scale only the
width. We also fix depth for the transformer models, noting the finding from Kaplan et al. (2020) that
scaling trends are reasonably consistent for depths of at least 2. We note that the MLP curves display
a “bump”—a local maximum in the compute budget curves; this plausibly could be resolved with
optimal hyperparameter tuning, but due to resource constraints we leave this to future investigation.

The minima of the fitted parabolas correspond to estimates of the compute-optimal parameter count
Nopt for each compute budget. We use these estimates to plot training FLOPs vs compute-optimal
parameter count and training FLOPs vs compute-optimal token count Dopt (Figure 1), as well as
training FLOPs vs compute-optimal loss (Figure 3). While the transformers achieve consistently
lower loss at the same compute level, the scaling trends are strikingly similar between architectures.
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Figure 4: We train a width-16,384 vanilla MLP to predict the last token of 10 billion length-16
sequences of text. Left: Over training, increasingly many neurons can be categorized as n-gram
neurons or bag-of-words neurons (see Section 4.1). Right: Weight matrices of an example n-gram
neuron and a bag-of-words neuron, with corresponding keywords (see Section 4.2. The x axis is the
time dimension and the y axis is a size-40 slice (for compactness) of the embedding dimension.

We fit power laws to obtain exponents a and b for Nopt ∝ Ca and Dopt ∝ Cb. Even though the two
architectures are very different, their exponents are essentially the same: for the MLP, a = 0.24 and
b = 0.76, and for the Transformer, a = 0.24 and b = 0.76. We note that the true curves do not seem
to be perfectly captured by a power law fit. We also note the difference from the exponents found
in Hoffmann et al. (2022) (a = 0.49 and b = 0.51); the differences in behavior of the transformer
model from our setting and Hoffmann et al. (2022) likely arises from our short-sequence last-token
prediction setting, rather than the more standard longer-sequence next-token prediction setting.

These results suggest that despite being less computationally and data efficient, the MLP can become
a successful language model when trained with sufficient compute, and indeed its qualitative scaling
behavior is very similar to that of the GPT reference architecture.

4 ANALYSIS OF THE UNDERLYING ARCHITECTURE

We have shown that an MLP can be a non-trivial language model; now, we investigate what this
model has learned. Since the MLP architecture has minimal built-in inductive bias, we are interested
to see what structures emerge in the trained language model, as such structures can potentially inspire
some “natural” inductive bias. In other words, can what the MLP model learns inform how we build
a more scalable architecture? In particular, we wish to find a parameterization or sub-architecture of
the MLP model with a number of parameters that does not depend on sequence length.

In this section, we analyze what structures emerge at the neuron level, and introduce a unifying view
of these structures. In Section 4, we discuss a potential implementation of this unifying view such
that the resulting model does not depend on sequence length in its number of parameters.

4.1 NEURON-TYPES ANALYSIS

To better understand the MLP language model, we analyze the individual neurons of the trained
MLP model. In particular, we analyze the neurons of the first linear layer of the MLP mapping
(T · d) 7→ d, where T is the input sequence length and d is the embedding dimension. We reshape the
(T · d)× d weight matrix to shape (d, T, d). This allows us to look at neuron weights across both the
time (sequence) and embedding dimensions. We focus on this first layer due to the fact that it retains
the time dimension, which is lost in future layers of the network. We observe that each neuron either
computes an arbitrary linear function over a small, consecutive span of tokens or a “smooth” function
over all of the tokens. This is a surprising finding: even though we do not limit the expressive power
of the neurons explicitly, they learn to compute functions that are restricted in their complexity. We
call these two main groups of neurons n-gram neurons and bag-of-words neurons respectively. We
choose these names due to the connection to the two corresponding classical NLP methods. It is
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Figure 5: ℓ1
ℓ2

measured of a 16384-width MLP trained on 10b tokens at initialization (right), halfway
through training (center), and at the end of training (left).

interesting to note that the MLP “discovered” these two unique methods for language processing:
this recalls prior works such as Wallach (2006) which explicitly combine the power of n-gram and
bag-of-words models. We qualitatively define each of these types as follows:

• n-gram neurons: Neurons that contain non-zero weights only in a small, consecutive span
across the time dimension. Within this span, an arbitrary linear function is computed over
the embedding dimension. Most of the neurons in this category focus on the most recent
tokens.

• Bag-of-words neurons: Neurons that share weights over the time dimension, i.e. apply the
same function to each token regardless of position.

We show examples of each type of neuron in Figure 4 and additional examples in Appendix F. In
addition, we observe “hybrid” neurons that combine these two components, having an arbitrary
function of the last few tokens and a shared weight for the earlier tokens.

Following these observations, we classify neurons to n-gram or bag-of-words using simple heuristics.
For the n-gram neurons, we check that a high proportion of rows of the time dimension are close to
zero and for the existence of a row of the time dimension with high norm, which indicates that the
neuron has large weights only on a subsequence of the input context. For the bag-of-words neurons,
we check for low variance across the time dimension. The exact formulations and thresholds are
specified in Appendix H.

Using these heuristics, we plot the proportion of n-gram, bag-of-words, and other neurons over the
course of training for a 16,384 width MLP trained on ten billion tokens (Figure 4). We observe that
n-gram neurons emerge first, early in training, while the bag-of-words neurons evolve more gradually.
We also study how the proportion of neuron types changes with model width, and we find that the
proportions appear to converge for large enough models (Appendix E).

We further corroborate the existence of n-gram and bag-of-words neurons by measuring the ratio of
the ℓ1 and ℓ2 norms over the time dimension. For each neuron w ∈ RT×d, we compute

ℓ1
ℓ2

:=
1

d

d∑
i=1

∥w:,i∥1
∥w:,i∥2

In an idealized setting, note that a unigram neuron with non-zero weights only across a single index
t of time has ℓ1

ℓ2
= 1, and a bag-of-words neuron with equal weight for each index of time has

ℓ1
ℓ2

=
√
T . Figure 5 shows this quantity for neurons of the 16384-width MLP trained on 10b tokens

over three checkpoints. For this model, we have T = 15 and therefore
√
T ≈ 3.87. In line with the

idealized setting, we observe peaks at the extrema of the range of ℓ1
ℓ2

values, suggestive of n-gram
neurons and bag-of-words neurons. We also observe how the categories as suggested by the ℓ1

ℓ2
measure disambiguate over the course of training; at initialization, the values are highly concentrated,
while at the end of training we see a bimodal distribution emerge.
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Figure 6: Examples weight matrices of individual neurons, paired with these matrices after application
of DCT across the time dimension. The x axis is the time dimension and the y axis is the embedding
dimension. The bag-of-words and DCT-sparse neurons use only the first few frequencies to represent
the weights over the entire context. For the n-gram neuron, the first middle column shows the DCT
over the entire context length, and the rightmost column shows the DCT over only the last three
columns of the neuron weights.

4.2 A NOTE ON INTERPRETABILITY

Given that the neurons in this first layer operate directly on the embeddings of the input sequence, we
are interested in exploring whether we can interpret what these neurons are doing at a semantic level,
as has been done by prior work such as Elhage et al. (2021) for simple transformer language models.
For the bag-of-words neurons, nearly the same vector of weights is applied to each unit of the time
dimension. Given that this vector is of size Rd, we study whether this vector has an interpretable
meaning once unembedded. We take the average of the weights across time to obtain a single vector
of dimension d. We then look at the top-5 closest words to this vector in token embedding space to
understand the concepts associated with each bag-of-words neuron. We observe that the keywords
associated with a given bag-of-words vector are often related concepts.

For the n-gram neurons, we take the weights of the most active row as measured by the ℓ2-norm
and project it back into token space. We then run inference on our model with an input of all zeros
besides the last token (which is the projected column). We then observe how the model completes
this 2-gram. When unembedding the last column of the n-gram to get the 5-closest words as we do
in the bag-of-words case, we find that these keywords themselves tend to be less correlated from a
human-centered interpretability lens. However, these neurons often appear to be n-grams with n ¿ 1,
so it is possible that a single unit of the n-gram cannot be interpreted in isolation. An example of each
neuron type is given in Figure 4, and additional examples are listed in Appendix G. We encourage
future work in the interpretability of both the n-gram and bag-of-words neuron categories.

4.3 DCT ANALYSIS OF NEURONS

Besides the dominant structures of n-gram and bag-of-words neurons, we additionally look at the
remaining neurons to see if more minor structures emerge. In doing so, we observe a third type of
neuron that resembles low frequency cosine waves across the time dimension. Thus, we apply the
Discrete Cosine Transform as an empirical analysis tool in understanding structures that emerge in
the frequency domain.

The Discrete Cosine Transform (DCT), closely related to the Discrete Fourier Transform but pro-
ducing only real outputs, expresses a sequence as a sum of cosine waves of different frequencies.
For a sequence x1, . . . , xT−1, the DCT Type II is defined as DCT(T )

i = 2
∑T−1

j=0 xj cos
(

πi(2j+1)
2T

)
,

up to a scaling factor depending on the normalization mode. The output DCT(T )
i denotes the ith

DCT coefficient of a length-T sequence. The first T functions of the DCT form a basis for arbitary
sequences of length T .

We filter for neurons that are sparse in the DCT basis by checking that a high proportion of rows of
the time dimension are close to zero and for the existence of a row of the time dimension with high
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Figure 7: Row norms of each neuron sorted by number of rows of large weights in the standard basis.
Each column depicts the row norm of a neuron. The top shows the row norms of the neurons in the
standard basis and the bottom shows the row norms of the neurons in the same order after DCT is
applied.

norm on the DCT of the neuron. We refer to this neuron type as the DCT-sparse neuron (Figure 6).
Figure 6 shows the DCT for an example of each type of neuron. The bag-of-words neurons can be
represented using essentially only the lowest frequency, which serves as an average over the time
dimension. The DCT-Sparse neuron, which resembles a low frequency cosine wave, can similarly be
represented using only the first few frequencies. The n-gram neuron, while not sparse if computing
the frequency over the entire sequence length, can be restricted to a short sequence length to obtain a
low-dimensional DCT representation. The “hybrid” neurons can be easily represented as a sum of
its n-gram and bag-of-words components. Note that the bag-of-words neuron is a special case of
the DCT-Sparse neuron that uses only the lowest frequency. When filtering for DCT-sparse neurons,
we exclude previously categorized neuron types to keep these categories distinct for visualization
purposes.

We empirically verify the emergence of DCT-sparse neurons. Figure 7 shows the row norm of each
neuron, sorted by the number of rows with large weights in the standard basis (we define large weights
as having a norm exceeding 0.01). This allows us to visualize the n-gram and bag-of-words neurons
alongside their weights in the DCT basis. As shown in Figure 7, the bag-of-words neurons (at the
right end of the plot) in general use only the lowest few frequencies in the DCT basis. The n-gram
neurons, while using the higher frequencies, only use a small “look-back” window in the standard
representation. Therefore we can restrict the n-gram window to a small look-back window to achieve
a DCT representation with a small number of frequencies. The middle of the figure captures the
“hybrid” neurons that interpolate between bag-of-words and n-gram neurons, with large weight values
over a small window and a constant value over a wider range in the standard space, and a large value
of the low frequency with some additional higher frequency information in the DCT space. We also
consider the evolution of row norms in the standard vs DCT basis over time to track the emergence of
sparse-DCT neurons (See Appendix J).

5 DCT-PARAMETERIZED LONG-CONTEXT MLP

In Section 2 we showed that MLPs can be trained for next-token prediction on short context lengths,
but are hard to train with long context windows. However, when we study the weights of the neurons
learned by the network, we observe that these neurons converge to particular low-complexity weights:
high-frequency local functions (n-gram neurons) or low-frequency global functions (bag-of-words
neurons). In this section we leverage these observations to construct a reparameterization of the MLP
that satisfies two properties: 1) the number of parameters does not grow with the sequence length and
2) this module can still express the neuron types discovered in the previous section. To achieve this,
we will replace the linear layer of the MLP by a linear network, with some learned parameters and
some fixed linear computations.

We begin by describing DCT-Parameterized Neurons, a unification of both the n-gram and the
bag-of-words neurons. Then, we will show how these can be used to construct a transformer-like
causal language model, where we replace the attention blocks with the DCT-parameterized MLPs.
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Figure 8: Illustration of DCT-MLP architecture

5.1 DCT-PARAMETERIZED NEURONS

Recall that, as observed in Section 4, the neurons in the trained MLP learn to either ignore most of
the context length, computing a function over the last few tokens, or integrate information from all
tokens but compute a low-frequency function. In other words, each neurons can “choose” a look-back
window-size t, that indicates how many tokens into the past can it depend on, but it is forced to use
only k frequencies. With this in mind, we define the DCT-Parameterized Neuron, which has two
hyper-parameters k, t, satisfying 1 ≤ k ≤ t ≤ T , and learned parameters w1, . . . ,wk ∈ Rd:

DCT-Neuronk,t(x1, . . . ,xT ;w1, . . . ,wk) =

k∑
i=1

w⊤
i DCT(t)

i (xT−t, . . . ,xT ) (1)

where DCT(t)
i indicates the ith frequency of the DCT operator applied over a sequence of length

t (where the operator is applied independently to each coordinate in Rd). Observe that the DCT
Neuron is simply a re-parameterization of the “standard” neuron and the number of parameters does
not depend on the sequence length T ; more notes on the DCT-Neuron are provided in Appendix C.

5.2 CAUSAL LANGUAGE MODELING WITH DCT-PARAMETERIZATION
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Figure 9: Comparison between the perplexity of
DCT-MLP and a small transformer on C4.

Our goal now is to define a causal language mod-
eling architecture using DCT-neurons. Specifi-
cally, we will replace the causal attention heads
of the transformer architecture by a causal DCT-
head. Each head has two fixed hyper-parameters:
the number of frequencies k and the look-back
window size t.

We then, similarly to the transformer, alternate
between DCT layers and tokenwise MLP layers.
The full architecture is described and illustrated
in Appendix C..

Results We train the DCT-Parameterized
MLP (DCT-MLP) on the C4 dataset (Raffel
et al., 2023) on sequences of length 2,048. (Full
experimental details are provided in Appendix
C). Evidently, the Transformer is still more efficient in various aspects: it requires less depth, less
data and less parameters to achieve the same performance. However, we note that, at least at this
scale, by scaling the number of parameters and depth by around 3x, our MLP is able to match the
performance of a small transformer. By letting the MLP train on 3x more data, this gap shrinks, where
an MLP requires only 1.5x more parameters to achieve competitive performance. All in all, while
the MLP is admittedly inferior to the transformer, we view these results as a positive evidence that a
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reparameterized MLP can be scaled to perform language modeling on a long context lengths. We
leave this as a preliminary study and encourage future work in designing new architectures leveraging
these findings.

6 RELATED WORK

Scaling laws Scaling laws for transformers are well-studied and demonstrate that transformers
exhibit a power law in which performance increases with increasing compute (Kaplan et al. (2020),
Hoffmann et al. (2022)). Additionally, Tay et al. (2022) studies the impact of inductive bias on scaling
behavior and finds scaling laws vary from model to model. Bachmann et al. (2023) introduces scaling
laws for MLPs on vision tasks. We extend this study to a simple language modeling setting.

MLP-inspired architectures Several past works study the question of how to best encode token-
mixing as an inductive bias, and in particular how self-attention can be replaced with simpler modules.
Tolstikhin et al. (2021) introduce MLP-Mixer and Touvron et al. (2023) introduce ResMLP, both
methods of applying alternating channel-mixing and token-mixing MLPs, primarily focusing on
the image domain. Melas-Kyriazi (2021) conducts a similar study. In addition, Liu et al. (2021)
introduces the gMLP architecture, which uses gating as an alternative to self-attention. All four works
indicate that self-attention is sufficient but not necessary when given enough compute. Our work
addresses a similar question, but we offer the novel approach of searching for this inductive bias by
attempting to encode what the vanilla MLP learns.

Fourier transform-based networks Several works study how to incorporate spectral information
as an architectural bias. Rippel et al. (2015) and Chi et al. (2020) discuss Fourier-based methods for
convolutional networks. Most similar to our architecture is FNet (Lee-Thorp et al., 2022), which
replaces self-attention with a standard Fourier transform and achieves competitive performance with
the transformer encoder. Rao et al. (2021) introduces GFNet, which similarly replaces self-attention
with spectral operations but focuses on the vision domain. Patro et al. (2023) propose Spectformer, a
vision transformer architecture that incorporates both spectral and attention layers. Other works use
Fourier analysis to understand what functions neural networks learn, noting a preference for functions
with low sensitivity (Rahaman et al. (2019), Xu et al. (2019), Xu (2020), Vasudeva et al. (2024)). Our
work provides another justification for applying operations in the frequency domain, as MLPs trained
on language modeling appear to develop a strong bias towards low-frequency computations.

Training models to find implicit bias Closely related to our work is Bachmann et al. (2023),
which investigates how lack of inductive bias can be compensated with increased scale and compute.
However, Bachmann et al. (2023) focuses on scaling laws for MLPs on vision tasks, whereas we
scale MLPs as a basis for studying what structures emerge as natural biases for language modeling.
Also similar to our work is Neyshabur (2020), which explores how to use a learning algorithm with
bias for sparse connectivity to replace the inductive bias of convolutions in vision tasks. Additionally,
Fernando et al. (2016) proposes an evolution-based algorithm to learn convolutions. Towards
understanding the impact of architectural bias, d'Ascoli et al. (2019) compare the bias of a CNN to a
fully connected network through the lens of training dynamics and show the benefits of the CNN
prior in achieving good generalization.

7 DISCUSSION

The deep learning community has increasingly aimed to train versatile models at the largest possible
scale. We have pushed this effort to the extreme by training simple MLPs on large scale language
modeling datasets. We demonstrate that MLPs perform nontrivially as language models when
provided with enough data and compute. They learn to exploit structure in the data through local
“n-gram” neurons and global “bag-of-words” neurons. We find that the Discrete Cosine Transform
can be used to unify these neuron types, and leverage this finding to develop an architecture that is
not dependent on sequence length in its number of parameters. We leave this work as a first step in
understanding and leveraging emergent structures to develop scalable and efficient architectures for
language modeling.

9
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Stéphane d'Ascoli, Levent Sagun, Giulio Biroli, and Joan Bruna. Finding the needle
in the haystack with convolutions: on the benefits of architectural bias. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
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A EXAMPLE LANGUAGE MODEL GENERATIONS

Below we list example generations from three models for qualitative comparison. The last four
prompts are meant to probe the model’s ability to use the context beyond the immediate last word in
predicting the next token. All three models are trained on 10 billion tokens. We limit the generation
to 64 tokens for each response. Each generation is sampled with temperature 0.5.

MLP 38M PARAMETERS (WIDTH 16384, CONTEXT LENGTH 15)

• The capital of France is Paris. The capital of Italy is Rome. The capital of Germany
is Berlin. The capital of Spain is the capital of the world, with the city of the capital, the
capital, and the people of the city. The city was built in the 15th century and was built in the
18th century. It is also the home of the famous Pondicherry Castle, which is home to the
famous Alps.

• It was the best of times, it was the worst of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch of the great apocalypse, and the fact that it was a
terrible occasion. It was a night of pure joy. It was a family event. It was a beautiful day for
us. We were lucky to have been able to visit the most beautiful and beautiful villages in the
world. The beautiful city of Khar

• The baseball player stepped up to the plate, ready to hit a home run. The pitcher threw
the ball, and the batters hit the ground. Spencer has been a valuable tool in the game for a
long time. The game is simple, and you can play it with your friends, family, or any other
family. This is a great place to look for a new home that is ready to move in.

• These nocturnal creatures are adept hunters, using echolocation to locate prey and
navigate in the darkness. A bathtub can also be used to make the house look more
appealing. If you would like to see more of the bathroom designs, you can check out our
gallery. The Bajaj Designs Gallery is a collection of photographs, texts, and photographs.
The exhibition will provide an overview of the exhibition,

• The robber pointed his gun at the cashier and demanded money. It was a bank robbery,
and the police had to pay the police. The couple was arrested in the case, and the police
were called to the scene. The victim was struck by a car in the back of the head, a man who
had been hiding in the room, was about to die. They were not a threat but

• The river flowed gently through the forest, its waters sparkling in the sunlight. Along
the river bank, the lake, and the sea, the lake, and the lake. The lake is the birthplace of
the lake, and the lake is the lake of the lake. The lake is the largest lake in the world, and is
home to one of the world’s largest and oldest golf clubs, and

MLP 20M PARAMETERS (WIDTH 8192, CONTEXT LENGTH 15)

• The capital of France is Paris. The capital of Italy is Rome. The capital of Germany is
Berlin. The capital of Spain is located in the south-east of the city of Rome. The city was
designated as a city of the city of Pellica. It was the first of its kind in the world to be added
to the list of the best Westerners. The ”The Secret of the Dragon” was a family drama about
the

• It was the best of times, it was the worst of times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of the world.”
”I can’t believe that.”
”No, sir,” said the old gentleman. ”Yes.”
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”I am sorry, I don’t know. I have a very bad feeling about the situation, but this is not the
case. I’m not sure how I can

• The baseball player stepped up to the plate, ready to hit a home run. The pitcher threw
the ball, and the bat struck the bat. When the game was finished, the team was able to
make a second-half impact, and the team did not have a chance to make the playoffs. The
only thing that is more interesting is that the season is going to be a lot of fun. The next step
is to get

• These nocturnal creatures are adept hunters, using echolocation to locate prey and
navigate in the darkness. A baton is a snake, and the scorpion is a symbol of the world
that has been told to do. The most important thing to remember is that the work is done in a
way that is not a good thing. This is a good way to start your business. You can use your
own customer service

• The robber pointed his gun at the cashier and demanded money. It was a bank robbery.
The bank’s general manager, who has been in the market for a long time. He also has a keen
interest in the sport, including his career as a former manager and manager of the club, will
be looking to add another player to the roster. The club is the only player in the

• The river flowed gently through the forest, its waters sparkling in the sunlight. Along
the river bank, the island is a great place to take a dip in the water. It is a very popular
tourist attraction. The city is famous for its unique architecture and its abundant history, and
its interesting history, its history, and its history. The Italian Renaissance: A new history of
the city, the city of

GPT2 20M PARAMETERS (WIDTH 8192, CONTEXT LENGTH 15)

• The capital of France is Paris. The capital of Italy is Rome. The capital of Germany is
Berlin. The capital of Spain is the capital of the Swiss city of Leipzig. The city of Geneva
is home to several famous landmarks and attractions. The museum047 is a great place to
visit. The city is the largest in the world, with a population of about 2,000,000. I am looking
at the number of people who

• It was the best of times, it was the worst of times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of the great plague. It was the day of the year that
the earth was filled with its water, and the sun was shining. The sun was shining, the sun
was shining, the sun was shining, the sky was shining. autocrossing over the hill, a small
red-headed man was killed

• The baseball player stepped up to the plate, ready to hit a home run. The pitcher threw
the ball, and the batters walked in the second and third, and then they walked in the second.
They had the ball and they were playing their very own game. The game was played on the
same day, but the game was played on the same day, so I knew it was going to be a good
match for the game

• These nocturnal creatures are adept hunters, using echolocation to locate prey and
navigate in the darkness. A bat is a small creature with a small body, which is a small
creature. The Annie’s face was completely red. She turned around and looked around.
”What’s the matter?” she asked. ”You’re going to be fine. I’m going to have to get back to
the drawing board.

• The robber pointed his gun at the cashier and demanded money. It was a bank robbery,
and he refused to leave. In addition to the allegations, the court denied the allegations. The
case was dismissed by the Supreme Court of the United States, which found that the state of
Florida had a significant influence on the state of Florida’s economy. The state of Florida
has been known for its
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• The river flowed gently through the forest, its waters sparkling in the sunlight. Along
the river bank, you’ll find a large pool of water and an abundance of sunscreen to keep your
skin dry and free of any harmful UV rays. The sun protection is also important to protecting
your eyes. It also helps in keeping your eyes healthy. More than that, you can use a lot of
natural ingredients
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B TRAINING DETAILS

We use a learning rate of 0.001 with a cosine learning rate schedule, 10% warmup, and minimum
learning rate 1e-5. We also use gradient clipping and 0.1 weight decay. We use 1 or 4 Nvidia H100
GPUs to train our models, with runtime varying between 1 and 4 GPU days. We use a batch size of
16,384 samples.

C ADDITIONAL DETAILS ON DCT-PARAMETERIZATION

C.1 NOTES ON THE DCT-NEURON

Observe that since the DCT operation is linear, the DCT Neuron is a linear function of the input, i.e.
this is just a re-parameterization of the “standard” neuron. Additionally, each neuron has k · d learned
parameters (in our experiments we choose k to be a small constant, e.g. k = 4), so the number of
parameters does not depend on the sequence length T . Finally, we note that the DCT Neuron can
express both the n-gram and the bag-of-words neurons: if we choose t = k, then DCT(k) operation
only changes the basis of the linear space, but the neuron can express any linear function over the last
k tokens; alternatively, if t = T , then the neuron can express a low-frequency function (with only k
frequencies) over the entire sequence (for k = 1 the neuron computes a linear function of the average
of sequence length). A linear combinations of such neurons (which still gives a linear function of
the input) gives “hybrid” neurons, and choosing other values of t (e.g., t = T/2) allows different
“trade-offs” between sequence length and complexity.

C.2 DCT-PARAMETERIZED ARCHITECTURE DESCRIPTION

We propose a DCT-Parameterization architecture by replacing the causal attention heads of the
transformer with a causal DCT-head with hyperparameters k (number of frequencies) and t (look-
back window size). The input to the DCT-head is a sequence of vectors x1, . . . ,xT ∈ Rd. As
in the transformer attention head, for efficiency reasons we begin by projecting each vector to a
lower dimensional space, from dimension d to dimension dh, using the matrix Wproj ∈ Rd×dh .
Denote the projection of the i-th vector by x′

i = W⊤
projxi. Then, we define for every frequency

a linear map, denoted W1, . . . ,Wk ∈ Rdh×dh . The output at position i of the DCT-head is given
by: oi =

∑k
j=1 W

⊤
j DCT(t)

j (x′
i−t, . . . ,x

′
i), where DCT(t)

j denotes the j-th frequency in the DCT
operator over a signal of length t. So, each head has two hyperparameters k, t and learned parameter
matrices Wproj,W1, . . . ,Wk. Note that the number of parameters does not grow with the sequence
length. As in the transformer architecture, we let dh = d/h, where h is the number of heads, and
concatenate the outputs of all heads back to dimension d, followed by a linear layer, normalization
and non-linearity.

C.3 EXPERIMENTAL SETTING

We train the DCT-Parameterized MLP (DCT-MLP) on the C4 dataset (?). As the number of parameters
of our MLP no longer depends on the context length, we train with a full context window size of
2048. We train DCT-MLPs of depth 6, 12, 18, with 2− 6 Billion Tokens, and report the results on
the evaluation data. We use 16 heads, using k = 4 for each head, and varying t from 4 to 2048 (the
maximal seqeunce length). We compare the performance to a GPT2-based transformer, with depth
varying from 2 to 6. The results are shown in Figure 9. For each experiment we train the model on a
single Nvidia-H100 GPU. Each training run takes between 5 to 38 hours, depending on the model
size and number of tokens.
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D CONTEXT LENGTH SCALING FOR MLP MODEL

Below we plot how perplexity and number of parameters scales with context length in the MLP
model, to highlight the impracticality of the MLP model for long context lengths as discussed in
Section 2
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Figure 10: Context length scaling for a 16384-width MLP trained on 10b tokens. Left: Context
length vs perplexity Right: Context length vs number of parameters

E ADDITIONAL SETTINGS FOR NEURON TYPE CLASSIFICATION

We measure the proportion of neuron types over context length and model width. We find that the
proportions are relatively consistent in these different settings, though large context length seems to
have the greatest effect on the proportions.
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Figure 11: Proportion of neuron types over context length (Left) and model width (right), grouped
into n-gram neurons, bag-of-words neurons, and other neurons for a 16384-width MLP trained on
10b tokens.
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F ADDITIONAL EXAMPLES OF NEURONS

Bag-of-words N-gram Hybrid DCT-Sparse Other

first
token

last
token

first
token

last
token

first
token

last
token

first
token

last
token

first
token

last
token

Figure 12: Examples of each type of neuron discussed. Neuron types are classified using the heuristics
discussed in Section 4.1 and chosen at random. The neurons in the other category are chosen at
random from the remaining neurons. For ease of visualization, we show the first 100 indices of the
embedding dimension. All neurons are from a width 16384 MLP trained on 10b tokens.
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G ADDITIONAL EXAMPLES OF KEYWORD ANALYSIS
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Figure 13: Top: Examples of associated keywords with bag-of-words neurons. The neurons illustrated
are the six neurons with lowest variance according to the heuristic described in Section 4.1. For each
neuron, we take the average across time and unembed the resulting vector to get the top-10 associated
keywords. Bottom: As a baseline, we unembed randomly generated vectors ∈ Rd (normalized such
that the entries sum to 1). For all neurons, only the first 100 rows of the embedding dimension are
displayed.
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Figure 14: Top: Examples of associated keywords with n-gram neurons. The neurons illustrated are
the six neurons with the minimum norm across some index of time (as a modification of the heuristic
described in Section 4.1 to derive a score). For each neuron, we take the column of time with the
highest norm and unembed the resulting vector to get the top-5 associated keywords (first column of
words). We project each keyword back into token space and run inference on our model with an input
of all zeros besides the last token (which is the projected column). The second column of words for
each neuron lists how the model completes each n-gram. Bottom: The same process is applied to
four randomly generated vectors (normalized such that the entries sum to 1).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H DETAILS ON HEURISTICS USED TO CLASSIFY NEURONS

For a neuron w we compute

ngram(w) :=

(
1

T

T∑
i=1

1
w̃i<t

(l)
ngram

)
> pngram and ∃i : w̃i > t(h)ngram

bag-of-words(w) :=
1

d

d∑
i=1

var

(
w

|w|

)
> tb-o-w

where w̃ denotes T -dimensional vector obtained by taking the norm across the embedding dimension
and the var denotes the variance taken across the time dimension. We choose the parameters for
the proportion of low norm time slices (pngram) and various thresholds (t(l)ngram, t(h)ngram, and tb-o-w)
based on visual inspection of the neurons and hold these values constant across models. For the
included plots, we use the values pngram = 0.6, t(l)ngram = 0.4, t(h)ngram = 0.9, and tb-o-w = 0.0003.
For hybrid neurons, we relax the thresholds to pngram = 0.5, t(l)ngram = 0.5, t(h)ngram = 0.8, and
tb-o-w = 0.0005 and count neurons that are classified as both categories. For DCT-Sparse neurons,
we use the same criteria as the n-gram neurons but on the neurons in the DCT-basis.

I ℓ1/ℓ2 MEASUREMENT IN FREQUENCY DOMAIN
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Figure 15: ℓ1
ℓ2

measured in the DCT representation of a 16384-width MLP trained on 10b tokens at
initialization (right), halfway through training (center), and at the end of training (left). Inverse to the
corresponding plot in the standard representation, the rightmost peak suggests n-gram neurons and
the gradual accumulation of neurons in the left of the range suggests the emergence of bag-of-words
neurons.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

J EVOLUTION OF ROW NORMS OVER TRAINING
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(a) Step 10,000
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(b) Step 250,000
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Figure 16: Evolution of row norms of neurons over three checkpoints of a 16384-width MLP trained
on 1b tokens.
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