
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MLPS FOR NLP: TOWARDS DISCOVERING INDUCTIVE
BIAS FROM SCRATCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent rise of large language models has been fueled by scale. More data, more
compute, and bigger models have consistently led to better performance. This
scaling paradigm has been applied most notably to the transformer architecture,
which is especially conducive to training parallelization and sequence modeling.
In this work, we ask what happens if we apply the power of scale to the simplest
possible class of neural network: the multi-layer perceptron (MLP). Specifically, we
train MLPs to perform next-token prediction on billions of tokens of text. Indeed,
their performance consistently improves with scale, though vanilla MLPs are still
clearly inferior to transformers for this task, especially because their parameter
count grows with the length of the input sequences. We then perform a mechanistic
analysis of the trained models, and identify a consistent emergent structure: most
neurons in the first hidden layer either perform arbitrary linear functions over a
small look-back window, or low-frequency functions over the entire context. These
neuron types recall n-gram and bag-of-words techniques from classical statistical
language modeling. Using the discrete cosine transform, we define a unified way
of reparameterizing these neuron types such that the number of parameters per
neuron does not depend on the sequence length.

1 INTRODUCTION

It has been almost a quarter-century since neural language models were introduced in the seminal work
of Bengio et al. (2000). The authors trained multi-layer perceptrons (MLPs) to perform next-word
prediction on large text corpora, and found that the resulting models outperformed leading n-gram
based models, which had been state-of-the-art since Shannon first introduced language modeling a
half-century earlier (Shannon, 1951). MLPs, consisting of fully-connected layers of neurons, are the
prototypical basic deep learning architecture (Rumelhart et al., 1986). In their largest experiment,
Bengio et al. trained a width-120 MLP with a context length of 8 on a training set of 32 million
words.

In this work, we train simple MLPs on language modeling, just like Bengio et al. (2000), but at a much
larger scale—ReLU MLPs with up to 900 million parameters and 128 tokens of context, supervised
on 10 billion tokens. As observed in other contexts (Hestness et al., 2017; Kaplan et al., 2020;
Hoffmann et al., 2022; Bachmann et al., 2023), increases in scale lead to consistent improvements
in performance. See Figure 1 for empirical scaling results and comparisons to the transformer
architecture (Vaswani et al., 2017).

Recently, Bachmann et al. (2023) performed an extensive study of scaling MLPs in the vision domain,
and some of our motivations parallel theirs. Much theoretical research in deep learning studies MLPs
because of their simplicity, and we are interested in how much relevance this literature has for the
large-scale language modeling setting. We also see our MLP experiments as a test of the limits of
scaling: can an extremely generic architecture, given enough parameters and data, perform arbitrarily
well at language modeling? Of course, there are reasons vanilla MLPs are not actually a practical
architecture for language modeling. Most importantly, a given MLP can only support a fixed context
length, and scaling the context length requires increasing the number of parameters.

But training MLPs also provides an opportunity. Because the architecture is so generic, we can
think of it (informally) as a “blank slate” on which the learning process builds circuits for language
modeling unconstrained by human-imposed inductive biases. If we are lucky, we might identify

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

50M 100M 200M 400M 800M
Parameters

4.0

4.5

5.0

5.5

Lo
ss

MLP
Transformer

1e16

1e17

1e18

3e18

Tr
ai

ni
ng

 F
LO

Ps
 (l

og
-s

ca
le

)

1e16 1e17 1e18 3e18
Training FLOPs

50M

100M

200M

Pa
ra

m
et

er
s

MLP
GPT

1e16 1e17 1e18 3e18
Training FLOPs

3e7

1e8

1e9

3e9

Tr
ai

ni
ng

 To
ke

ns

Figure 1: Following Method 2 from Hoffmann et al. (2022), we fix five compute budgets and vary
the amount of parameters and the amount of training tokens within each compute budget. We then fit
a parabola to each compute budget curve (left). We then take the minimum of each parabola and plot
training FLOP vs optimal parameter count (center), training FLOP vs optimal token count (center).

emergent regularities that could be hard-coded into new architectures, potentially improving their
language modeling inductive bias, computational efficiency, or interpretability.

We thus perform a mechanistic analysis of the neurons in the first hidden layer of our models. The
results are striking: most neurons can be assigned to one of two types (see Figure 4). “n-gram”
neurons perform an arbitrary linear function over the most recent n− 1 tokens for some small value
of n, ignoring all of the preceding context. “Bag-of-words” neurons, meanwhile, apply a linear
map to the average of all the input token embeddings; in fact, this linear map typically picks out a
semantically coherent direction in token embedding space. This emergent structure echoes non-neural
language modeling techniques which combine n-gram and bag-of-words statistics (Wallach, 2006).
Although the proportion of neurons that fit neatly into these two categories increases during the
course of training, at the end of training there remain other “hybrid” neurons which can be expressed
as a linear combination of n-gram and bag-of-words neurons.

Directly inspired by this empirical finding, we introduce a new type of neuron, the DCT (discrete
cosine transform) neuron, which is rich enough to express n-gram neurons and bag-of-words neurons
as special cases, and has a number of parameters that does not depend on the sequence length.
Specifically, we leverage the fact that both types of neurons have weight matrices that are restricted
to some look-back window, and (for each embedding coordinate) are low-frequency functions (in
comparison to the total context length) over that window.

In summary: We begin by studying the scaling behavior of vanilla MLPs in a simple language
modeling setting in Section 2. We then perform an analysis of the neurons of the resulting model
in Section 4, in which we introduce the n-gram and bag-of-words neuron types. We conclude by
proposing a method of reparameterizing the MLP language model using the DCT, such that the
number of parameters does not depend on sequence length (Section 5). We conclude with an overview
of related work (Section 6 and a high-level discussion 7).

2 VANILLA MLP FOR SHORT-SEQUENCE LAST-TOKEN PREDICTION

While transformers have dominated the landscape of language modeling, we take a step back and
ask: With enough compute, can an MLP achieve comparable performance in language modeling to
architectures with more inductive bias? To study this, we simplify the language modeling task to a
setting in which it is feasible to train and scale MLP models, as a case study in how neural networks
model language when removing the impact of architectural biases.

We train a vanilla MLP architecture on short sequence language modeling. Specifically, our MLP
architecture consists of an input embedding layer, three hidden layers, and output unembedding.
We use LayerNorm (Ba et al., 2016) after linear layers for training stability, ReLU activations, and
residual connections (He et al., 2015). To further simplify the language modeling task, we have the
model predict only the last token of each input sequence. For our main experiments, we train on
sequences of length 16 where the network sees the first 15 tokens and is tasked with predicting the
last token; we count tokens by the number of supervised output tokens. An illustration of the MLP
architecture is shown in Figure 2 where T represents the sequence length, d represents the embedding

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

dimension, and w represents the width of the MLP. We choose this design of the MLP Block in order
to allow residual connections between layers.

Embedding
T → T×d

Linear
T×d → d

LayerNorm

ReLU

MLP Block

Add & Norm

MLP Block

Add & Norm

Embedding
d → vocab_size

Input

Linear
d → w

ReLU

LayerNorm

Linear
w → d

MLP Block

Figure 2: Illustration of the MLP architecture.

1e16 1e17 1e18 3e18
Training FLOPs

3.5

4.0

4.5

5.0

5.5

Lo
ss

MLP
GPT

Figure 3: Training FLOPs vs optimal loss
corresponding with Figure 1.

We compare our MLP architecture with a non-causal version of the GPT-2 architecture (Radford
et al., 2019) where only the last token is supervised. Our GPT model is depth 2 with 16 attention
heads. Both models have an embedding dimension of 512 and use AdamW (Loshchilov & Hutter,
2019) as the optimizer. Full training details are listed in Appendix B.

We train on the C4 (Raffel et al., 2023) split of the Dolma dataset (Soldaini et al., 2024) and we use
disjoint sequences as training samples. The C4 dataset contains roughly 200 billion tokens of web
content. We evaluate over a validation set containing a held-out set of data from the C4 corpus.

3 SCALING LAWS

We study how MLP models scale with increasing compute as compared to the transformer architecture
on our language modeling task (Figure 1). Specifically, we follow Method 2 from Hoffmann et al.
(2022) to examine the trade-off between increasing parameters and increasing training tokens within
a fixed compute budget. We train models over a range of 50M to 900M parameters (including all
embedding parameters) for five compute budgets between 1e16 and 3e18. We measure compute
budget in terms of training FLOPs using the approximation C = 6ND (Kaplan et al., 2020) for a
compute budget C, number of parameters N and number of supervised training tokens D. We set the
cosine schedule to match the number of training steps for each run. We plot number of parameters
(on a log scale) versus loss and fit a quadratic curve through the data points of each compute budget.
We find that increasing depth does not make a large difference as compared to scaling width for
the MLP models, so for simplicity we fix the models to have three hidden layers and scale only the
width. We also fix depth for the transformer models, noting the finding from Kaplan et al. (2020) that
scaling trends are reasonably consistent for depths of at least 2. We note that the MLP curves display
a “bump”—a local maximum in the compute budget curves; this plausibly could be resolved with
optimal hyperparameter tuning, but due to resource constraints we leave this to future investigation.

The minima of the fitted parabolas correspond to estimates of the compute-optimal parameter count
Nopt for each compute budget. We use these estimates to plot training FLOPs vs compute-optimal
parameter count and training FLOPs vs compute-optimal token count Dopt (Figure 1), as well as
training FLOPs vs compute-optimal loss (Figure 3). While the transformers achieve consistently
lower loss at the same compute level, the scaling trends are strikingly similar between architectures.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

in
it

0.
5M 1M

1.
5M 2M fin
al

Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 n
eu

ro
ns

Neuron types over training checkpoints
N-gram
Bag-of-words
Other

first
token

last
token

0

10

20

30

40 N-gram neuron

Last
Col. Unembed

 neurode

 vul

 recom

 Une

 Been

Network
Prediction

generation, gen, le

g, kan, can

end, bin, ended

qual, art, ven

in, a, with

first
token

last
token

0

10

20

30

40 Bag-of-words neuron
 capacitor

 transistors

 capacitance

 capacitors

 resistor

Row
Avg. Unembed

Figure 4: We train a width-16,384 vanilla MLP to predict the last token of 10 billion length-16
sequences of text. Left: Over training, increasingly many neurons can be categorized as n-gram
neurons or bag-of-words neurons (see Section 4.1). Right: Weight matrices of an example n-gram
neuron and a bag-of-words neuron, with corresponding keywords (see Section 4.2. The x axis is the
time dimension and the y axis is a size-40 slice (for compactness) of the embedding dimension.

We fit power laws to obtain exponents a and b for Nopt ∝ Ca and Dopt ∝ Cb. Even though the two
architectures are very different, their exponents are essentially the same: for the MLP, a = 0.24 and
b = 0.76, and for the Transformer, a = 0.24 and b = 0.76. We note that the true curves do not seem
to be perfectly captured by a power law fit. We also note the difference from the exponents found
in Hoffmann et al. (2022) (a = 0.49 and b = 0.51); the differences in behavior of the transformer
model from our setting and Hoffmann et al. (2022) likely arises from our short-sequence last-token
prediction setting, rather than the more standard longer-sequence next-token prediction setting.

These results suggest that despite being less computationally and data efficient, the MLP can become
a successful language model when trained with sufficient compute, and indeed its qualitative scaling
behavior is very similar to that of the GPT reference architecture.

4 ANALYSIS OF THE UNDERLYING ARCHITECTURE

We have shown that an MLP can be a non-trivial language model; now, we investigate what this
model has learned. Since the MLP architecture has minimal built-in inductive bias, we are interested
to see what structures emerge in the trained language model, as such structures can potentially inspire
some “natural” inductive bias. In other words, can what the MLP model learns inform how we build
a more scalable architecture? In particular, we wish to find a parameterization or sub-architecture of
the MLP model with a number of parameters that does not depend on sequence length.

In this section, we analyze what structures emerge at the neuron level, and introduce a unifying view
of these structures. In Section 4, we discuss a potential implementation of this unifying view such
that the resulting model does not depend on sequence length in its number of parameters.

4.1 NEURON-TYPES ANALYSIS

To better understand the MLP language model, we analyze the individual neurons of the trained
MLP model. In particular, we analyze the neurons of the first linear layer of the MLP mapping
(T · d) 7→ d, where T is the input sequence length and d is the embedding dimension. We reshape the
(T · d)× d weight matrix to shape (d, T, d). This allows us to look at neuron weights across both the
time (sequence) and embedding dimensions. We focus on this first layer due to the fact that it retains
the time dimension, which is lost in future layers of the network. We observe that each neuron either
computes an arbitrary linear function over a small, consecutive span of tokens or a “smooth” function
over all of the tokens. This is a surprising finding: even though we do not limit the expressive power
of the neurons explicitly, they learn to compute functions that are restricted in their complexity. We
call these two main groups of neurons n-gram neurons and bag-of-words neurons respectively. We
choose these names due to the connection to the two corresponding classical NLP methods. It is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.00 2.25 2.50 2.75 3.00 3.25 3.50
0

10

20

30

40

50

60

70

Nu
m

be
r o

f n
eu

ro
ns

Beginning (Step 300k)

2.00 2.25 2.50 2.75 3.00 3.25 3.50
1/ 2 (Standard)

0

10

20

30

40

50

60

70
Halfway (Step 1.2M)

2.00 2.25 2.50 2.75 3.00 3.25 3.50
0

10

20

30

40

50

60

70
Final (Step 2.4M)

Figure 5: ℓ1
ℓ2

measured of a 16384-width MLP trained on 10b tokens at initialization (right), halfway
through training (center), and at the end of training (left).

interesting to note that the MLP “discovered” these two unique methods for language processing:
this recalls prior works such as Wallach (2006) which explicitly combine the power of n-gram and
bag-of-words models. We qualitatively define each of these types as follows:

• n-gram neurons: Neurons that contain non-zero weights only in a small, consecutive span
across the time dimension. Within this span, an arbitrary linear function is computed over
the embedding dimension. Most of the neurons in this category focus on the most recent
tokens.

• Bag-of-words neurons: Neurons that share weights over the time dimension, i.e. apply the
same function to each token regardless of position.

We show examples of each type of neuron in Figure 4 and additional examples in Appendix F. In
addition, we observe “hybrid” neurons that combine these two components, having an arbitrary
function of the last few tokens and a shared weight for the earlier tokens.

Following these observations, we classify neurons to n-gram or bag-of-words using simple heuristics.
For the n-gram neurons, we check that a high proportion of rows of the time dimension are close to
zero and for the existence of a row of the time dimension with high norm, which indicates that the
neuron has large weights only on a subsequence of the input context. For the bag-of-words neurons,
we check for low variance across the time dimension. The exact formulations and thresholds are
specified in Appendix H.

Using these heuristics, we plot the proportion of n-gram, bag-of-words, and other neurons over the
course of training for a 16,384 width MLP trained on ten billion tokens (Figure 4). We observe that
n-gram neurons emerge first, early in training, while the bag-of-words neurons evolve more gradually.
We also study how the proportion of neuron types changes with model width, and we find that the
proportions appear to converge for large enough models (Appendix E).

We further corroborate the existence of n-gram and bag-of-words neurons by measuring the ratio of
the ℓ1 and ℓ2 norms over the time dimension. For each neuron w ∈ RT×d, we compute

ℓ1
ℓ2

:=
1

d

d∑
i=1

∥w:,i∥1
∥w:,i∥2

In an idealized setting, note that a unigram neuron with non-zero weights only across a single index
t of time has ℓ1

ℓ2
= 1, and a bag-of-words neuron with equal weight for each index of time has

ℓ1
ℓ2

=
√
T . Figure 5 shows this quantity for neurons of the 16384-width MLP trained on 10b tokens

over three checkpoints. For this model, we have T = 15 and therefore
√
T ≈ 3.87. In line with the

idealized setting, we observe peaks at the extrema of the range of ℓ1
ℓ2

values, suggestive of n-gram
neurons and bag-of-words neurons. We also observe how the categories as suggested by the ℓ1

ℓ2
measure disambiguate over the course of training; at initialization, the values are highly concentrated,
while at the end of training we see a bimodal distribution emerge.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

first
token

last
token

low
 freq

high
freq

0

20

40

60

80

100 Standard DCT

first
token

last
token

low
 freq

high
freq

0

20

40

60

80

100 Standard DCT

first
token

last
token

low
 freq

high
freq

l.fh.f
0

20

40

60

80

100 Standard DCT

first
token

last
token

low
 freq

high
freq

0

20

40

60

80

100 Standard DCT
Example Bag-of-words Neuron Example DCT-Sparse Neuron Example N-Gram Neuron Example Hybrid Neuron

Figure 6: Examples weight matrices of individual neurons, paired with these matrices after application
of DCT across the time dimension. The x axis is the time dimension and the y axis is the embedding
dimension. The bag-of-words and DCT-sparse neurons use only the first few frequencies to represent
the weights over the entire context. For the n-gram neuron, the first middle column shows the DCT
over the entire context length, and the rightmost column shows the DCT over only the last three
columns of the neuron weights.

4.2 A NOTE ON INTERPRETABILITY

Given that the neurons in this first layer operate directly on the embeddings of the input sequence, we
are interested in exploring whether we can interpret what these neurons are doing at a semantic level,
as has been done by prior work such as Elhage et al. (2021) for simple transformer language models.
For the bag-of-words neurons, nearly the same vector of weights is applied to each unit of the time
dimension. Given that this vector is of size Rd, we study whether this vector has an interpretable
meaning once unembedded. We take the average of the weights across time to obtain a single vector
of dimension d. We then look at the top-5 closest words to this vector in token embedding space to
understand the concepts associated with each bag-of-words neuron. We observe that the keywords
associated with a given bag-of-words vector are often related concepts.

For the n-gram neurons, we take the weights of the most active row as measured by the ℓ2-norm
and project it back into token space. We then run inference on our model with an input of all zeros
besides the last token (which is the projected column). We then observe how the model completes
this 2-gram. When unembedding the last column of the n-gram to get the 5-closest words as we do
in the bag-of-words case, we find that these keywords themselves tend to be less correlated from a
human-centered interpretability lens. However, these neurons often appear to be n-grams with n ¿ 1,
so it is possible that a single unit of the n-gram cannot be interpreted in isolation. An example of each
neuron type is given in Figure 4, and additional examples are listed in Appendix G. We encourage
future work in the interpretability of both the n-gram and bag-of-words neuron categories.

4.3 DCT ANALYSIS OF NEURONS

Besides the dominant structures of n-gram and bag-of-words neurons, we additionally look at the
remaining neurons to see if more minor structures emerge. In doing so, we observe a third type of
neuron that resembles low frequency cosine waves across the time dimension. Thus, we apply the
Discrete Cosine Transform as an empirical analysis tool in understanding structures that emerge in
the frequency domain.

The Discrete Cosine Transform (DCT), closely related to the Discrete Fourier Transform but pro-
ducing only real outputs, expresses a sequence as a sum of cosine waves of different frequencies.
For a sequence x1, . . . , xT−1, the DCT Type II is defined as DCT(T)

i = 2
∑T−1

j=0 xj cos
(

πi(2j+1)
2T

)
,

up to a scaling factor depending on the normalization mode. The output DCT(T)
i denotes the ith

DCT coefficient of a length-T sequence. The first T functions of the DCT form a basis for arbitary
sequences of length T .

We filter for neurons that are sparse in the DCT basis by checking that a high proportion of rows of
the time dimension are close to zero and for the existence of a row of the time dimension with high

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 7: Row norms of each neuron sorted by number of rows of large weights in the standard basis.
Each column depicts the row norm of a neuron. The top shows the row norms of the neurons in the
standard basis and the bottom shows the row norms of the neurons in the same order after DCT is
applied.

norm on the DCT of the neuron. We refer to this neuron type as the DCT-sparse neuron (Figure 6).
Figure 6 shows the DCT for an example of each type of neuron. The bag-of-words neurons can be
represented using essentially only the lowest frequency, which serves as an average over the time
dimension. The DCT-Sparse neuron, which resembles a low frequency cosine wave, can similarly be
represented using only the first few frequencies. The n-gram neuron, while not sparse if computing
the frequency over the entire sequence length, can be restricted to a short sequence length to obtain a
low-dimensional DCT representation. The “hybrid” neurons can be easily represented as a sum of
its n-gram and bag-of-words components. Note that the bag-of-words neuron is a special case of
the DCT-Sparse neuron that uses only the lowest frequency. When filtering for DCT-sparse neurons,
we exclude previously categorized neuron types to keep these categories distinct for visualization
purposes.

We empirically verify the emergence of DCT-sparse neurons. Figure 7 shows the row norm of each
neuron, sorted by the number of rows with large weights in the standard basis (we define large weights
as having a norm exceeding 0.01). This allows us to visualize the n-gram and bag-of-words neurons
alongside their weights in the DCT basis. As shown in Figure 7, the bag-of-words neurons (at the
right end of the plot) in general use only the lowest few frequencies in the DCT basis. The n-gram
neurons, while using the higher frequencies, only use a small “look-back” window in the standard
representation. Therefore we can restrict the n-gram window to a small look-back window to achieve
a DCT representation with a small number of frequencies. The middle of the figure captures the
“hybrid” neurons that interpolate between bag-of-words and n-gram neurons, with large weight values
over a small window and a constant value over a wider range in the standard space, and a large value
of the low frequency with some additional higher frequency information in the DCT space. We also
consider the evolution of row norms in the standard vs DCT basis over time to track the emergence of
sparse-DCT neurons (See Appendix J).

5 DCT-PARAMETERIZED LONG-CONTEXT MLP

In Section 2 we showed that MLPs can be trained for next-token prediction on short context lengths,
but are hard to train with long context windows. However, when we study the weights of the neurons
learned by the network, we observe that these neurons converge to particular low-complexity weights:
high-frequency local functions (n-gram neurons) or low-frequency global functions (bag-of-words
neurons). In this section we leverage these observations to construct a reparameterization of the MLP
that satisfies two properties: 1) the number of parameters does not grow with the sequence length and
2) this module can still express the neuron types discovered in the previous section. To achieve this,
we will replace the linear layer of the MLP by a linear network, with some learned parameters and
some fixed linear computations.

We begin by describing DCT-Parameterized Neurons, a unification of both the n-gram and the
bag-of-words neurons. Then, we will show how these can be used to construct a transformer-like
causal language model, where we replace the attention blocks with the DCT-parameterized MLPs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 8: Illustration of DCT-MLP architecture

5.1 DCT-PARAMETERIZED NEURONS

Recall that, as observed in Section 4, the neurons in the trained MLP learn to either ignore most of
the context length, computing a function over the last few tokens, or integrate information from all
tokens but compute a low-frequency function. In other words, each neurons can “choose” a look-back
window-size t, that indicates how many tokens into the past can it depend on, but it is forced to use
only k frequencies. With this in mind, we define the DCT-Parameterized Neuron, which has two
hyper-parameters k, t, satisfying 1 ≤ k ≤ t ≤ T , and learned parameters w1, . . . ,wk ∈ Rd:

DCT-Neuronk,t(x1, . . . ,xT ;w1, . . . ,wk) =

k∑
i=1

w⊤
i DCT(t)

i (xT−t, . . . ,xT) (1)

where DCT(t)
i indicates the ith frequency of the DCT operator applied over a sequence of length

t (where the operator is applied independently to each coordinate in Rd). Observe that the DCT
Neuron is simply a re-parameterization of the “standard” neuron and the number of parameters does
not depend on the sequence length T ; more notes on the DCT-Neuron are provided in Appendix C.

5.2 CAUSAL LANGUAGE MODELING WITH DCT-PARAMETERIZATION

10 20 30 40 50
Number of Parameters (Millions)

40

42

44

46

48

50

52

54

Pe
rp

le
xi

ty

DCT-MLP (2B Tokens)
DCT-MLP (6B Tokens)
Transformer (2B Tokens)
Transformer (6B Tokens)

Figure 9: Comparison between the perplexity of
DCT-MLP and a small transformer on C4.

Our goal now is to define a causal language mod-
eling architecture using DCT-neurons. Specifi-
cally, we will replace the causal attention heads
of the transformer architecture by a causal DCT-
head. Each head has two fixed hyper-parameters:
the number of frequencies k and the look-back
window size t.

We then, similarly to the transformer, alternate
between DCT layers and tokenwise MLP layers.
The full architecture is described and illustrated
in Appendix C..

Results We train the DCT-Parameterized
MLP (DCT-MLP) on the C4 dataset (Raffel
et al., 2023) on sequences of length 2,048. (Full
experimental details are provided in Appendix
C). Evidently, the Transformer is still more efficient in various aspects: it requires less depth, less
data and less parameters to achieve the same performance. However, we note that, at least at this
scale, by scaling the number of parameters and depth by around 3x, our MLP is able to match the
performance of a small transformer. By letting the MLP train on 3x more data, this gap shrinks, where
an MLP requires only 1.5x more parameters to achieve competitive performance. All in all, while
the MLP is admittedly inferior to the transformer, we view these results as a positive evidence that a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

reparameterized MLP can be scaled to perform language modeling on a long context lengths. We
leave this as a preliminary study and encourage future work in designing new architectures leveraging
these findings.

6 RELATED WORK

Scaling laws Scaling laws for transformers are well-studied and demonstrate that transformers
exhibit a power law in which performance increases with increasing compute (Kaplan et al. (2020),
Hoffmann et al. (2022)). Additionally, Tay et al. (2022) studies the impact of inductive bias on scaling
behavior and finds scaling laws vary from model to model. Bachmann et al. (2023) introduces scaling
laws for MLPs on vision tasks. We extend this study to a simple language modeling setting.

MLP-inspired architectures Several past works study the question of how to best encode token-
mixing as an inductive bias, and in particular how self-attention can be replaced with simpler modules.
Tolstikhin et al. (2021) introduce MLP-Mixer and Touvron et al. (2023) introduce ResMLP, both
methods of applying alternating channel-mixing and token-mixing MLPs, primarily focusing on
the image domain. Melas-Kyriazi (2021) conducts a similar study. In addition, Liu et al. (2021)
introduces the gMLP architecture, which uses gating as an alternative to self-attention. All four works
indicate that self-attention is sufficient but not necessary when given enough compute. Our work
addresses a similar question, but we offer the novel approach of searching for this inductive bias by
attempting to encode what the vanilla MLP learns.

Fourier transform-based networks Several works study how to incorporate spectral information
as an architectural bias. Rippel et al. (2015) and Chi et al. (2020) discuss Fourier-based methods for
convolutional networks. Most similar to our architecture is FNet (Lee-Thorp et al., 2022), which
replaces self-attention with a standard Fourier transform and achieves competitive performance with
the transformer encoder. Rao et al. (2021) introduces GFNet, which similarly replaces self-attention
with spectral operations but focuses on the vision domain. Patro et al. (2023) propose Spectformer, a
vision transformer architecture that incorporates both spectral and attention layers. Other works use
Fourier analysis to understand what functions neural networks learn, noting a preference for functions
with low sensitivity (Rahaman et al. (2019), Xu et al. (2019), Xu (2020), Vasudeva et al. (2024)). Our
work provides another justification for applying operations in the frequency domain, as MLPs trained
on language modeling appear to develop a strong bias towards low-frequency computations.

Training models to find implicit bias Closely related to our work is Bachmann et al. (2023),
which investigates how lack of inductive bias can be compensated with increased scale and compute.
However, Bachmann et al. (2023) focuses on scaling laws for MLPs on vision tasks, whereas we
scale MLPs as a basis for studying what structures emerge as natural biases for language modeling.
Also similar to our work is Neyshabur (2020), which explores how to use a learning algorithm with
bias for sparse connectivity to replace the inductive bias of convolutions in vision tasks. Additionally,
Fernando et al. (2016) proposes an evolution-based algorithm to learn convolutions. Towards
understanding the impact of architectural bias, d'Ascoli et al. (2019) compare the bias of a CNN to a
fully connected network through the lens of training dynamics and show the benefits of the CNN
prior in achieving good generalization.

7 DISCUSSION

The deep learning community has increasingly aimed to train versatile models at the largest possible
scale. We have pushed this effort to the extreme by training simple MLPs on large scale language
modeling datasets. We demonstrate that MLPs perform nontrivially as language models when
provided with enough data and compute. They learn to exploit structure in the data through local
“n-gram” neurons and global “bag-of-words” neurons. We find that the Discrete Cosine Transform
can be used to unify these neuron types, and leverage this finding to develop an architecture that is
not dependent on sequence length in its number of parameters. We leave this work as a first step in
understanding and leveraging emergent structures to develop scalable and efficient architectures for
language modeling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling mlps: A tale of induc-
tive bias. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 60821–60840. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/bf2a5ce85aea9ff40d9bf8b2c2561cae-Paper-Conference.pdf.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.

Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolution. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 4479–4488. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf.

Stéphane d'Ascoli, Levent Sagun, Giulio Biroli, and Joan Bruna. Finding the needle
in the haystack with convolutions: on the benefits of architectural bias. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/124c3e4ada4a529aa0fedece80bb42ab-Paper.pdf.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Chrisantha Fernando, Dylan Banarse, Malcolm Reynolds, Frederic Besse, David Pfau, Max Jaderberg,
Marc Lanctot, and Daan Wierstra. Convolution by evolution: Differentiable pattern producing
networks, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. FNet: Mixing tokens with
Fourier transforms. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 4296–4313, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.319.
URL https://aclanthology.org/2022.naacl-main.319.

10

https://arxiv.org/abs/1607.06450
https://proceedings.neurips.cc/paper_files/paper/2023/file/bf2a5ce85aea9ff40d9bf8b2c2561cae-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bf2a5ce85aea9ff40d9bf8b2c2561cae-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/124c3e4ada4a529aa0fedece80bb42ab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/124c3e4ada4a529aa0fedece80bb42ab-Paper.pdf
https://arxiv.org/abs/1512.03385
https://aclanthology.org/2022.naacl-main.319

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, volume 34, pp. 9204–9215. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/4cc05b35c2f937c5bd9e7d41d3686fff-Paper.pdf.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Luke Melas-Kyriazi. Do you even need attention? a stack of feed-forward layers does surprisingly
well on imagenet, 2021.

Behnam Neyshabur. Towards learning convolutions from scratch. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 8078–8088. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/5c528e25e1fdeaf9d8160dc24dbf4d60-Paper.pdf.

Badri N. Patro, Vinay P. Namboodiri, and Vijay Srinivas Agneeswaran. Spectformer: Frequency and
attention is what you need in a vision transformer, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.
org/CorpusID:160025533.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks, 2019.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for image
classification. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 980–993. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/07e87c2f4fc7f7c96116d8e2a92790f5-Paper.pdf.

Oren Rippel, Jasper Snoek, and Ryan P Adams. Spectral representations for convolutional
neural networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/536a76f94cf7535158f66cfbd4b113b6-Paper.pdf.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):
50–64, 1951.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and
Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research,
2024.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q. Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling?, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/4cc05b35c2f937c5bd9e7d41d3686fff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4cc05b35c2f937c5bd9e7d41d3686fff-Paper.pdf
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://proceedings.neurips.cc/paper_files/paper/2020/file/5c528e25e1fdeaf9d8160dc24dbf4d60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/5c528e25e1fdeaf9d8160dc24dbf4d60-Paper.pdf
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/1910.10683
https://proceedings.neurips.cc/paper_files/paper/2021/file/07e87c2f4fc7f7c96116d8e2a92790f5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/07e87c2f4fc7f7c96116d8e2a92790f5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/536a76f94cf7535158f66cfbd4b113b6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/536a76f94cf7535158f66cfbd4b113b6-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lu-
cic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 24261–24272. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou.
Resmlp: Feedforward networks for image classification with data-efficient training. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(4):5314–5321, 2023. doi:
10.1109/TPAMI.2022.3206148.

Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliott Kau, Youqi Huang, and Vatsal Sharan. Simplicity
bias of transformers to learn low sensitivity functions, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd international
conference on Machine learning, pp. 977–984, 2006.

Zhi-Qin John Xu. Frequency principle: Fourier analysis sheds light on deep neural networks. Com-
munications in Computational Physics, 28(5):1746–1767, June 2020. ISSN 1991-7120. doi: 10.
4208/cicp.oa-2020-0085. URL http://dx.doi.org/10.4208/cicp.OA-2020-0085.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain, 2019.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.4208/cicp.OA-2020-0085

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXAMPLE LANGUAGE MODEL GENERATIONS

Below we list example generations from three models for qualitative comparison. The last four
prompts are meant to probe the model’s ability to use the context beyond the immediate last word in
predicting the next token. All three models are trained on 10 billion tokens. We limit the generation
to 64 tokens for each response. Each generation is sampled with temperature 0.5.

MLP 38M PARAMETERS (WIDTH 16384, CONTEXT LENGTH 15)

• The capital of France is Paris. The capital of Italy is Rome. The capital of Germany
is Berlin. The capital of Spain is the capital of the world, with the city of the capital, the
capital, and the people of the city. The city was built in the 15th century and was built in the
18th century. It is also the home of the famous Pondicherry Castle, which is home to the
famous Alps.

• It was the best of times, it was the worst of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch of the great apocalypse, and the fact that it was a
terrible occasion. It was a night of pure joy. It was a family event. It was a beautiful day for
us. We were lucky to have been able to visit the most beautiful and beautiful villages in the
world. The beautiful city of Khar

• The baseball player stepped up to the plate, ready to hit a home run. The pitcher threw
the ball, and the batters hit the ground. Spencer has been a valuable tool in the game for a
long time. The game is simple, and you can play it with your friends, family, or any other
family. This is a great place to look for a new home that is ready to move in.

• These nocturnal creatures are adept hunters, using echolocation to locate prey and
navigate in the darkness. A bathtub can also be used to make the house look more
appealing. If you would like to see more of the bathroom designs, you can check out our
gallery. The Bajaj Designs Gallery is a collection of photographs, texts, and photographs.
The exhibition will provide an overview of the exhibition,

• The robber pointed his gun at the cashier and demanded money. It was a bank robbery,
and the police had to pay the police. The couple was arrested in the case, and the police
were called to the scene. The victim was struck by a car in the back of the head, a man who
had been hiding in the room, was about to die. They were not a threat but

• The river flowed gently through the forest, its waters sparkling in the sunlight. Along
the river bank, the lake, and the sea, the lake, and the lake. The lake is the birthplace of
the lake, and the lake is the lake of the lake. The lake is the largest lake in the world, and is
home to one of the world’s largest and oldest golf clubs, and

MLP 20M PARAMETERS (WIDTH 8192, CONTEXT LENGTH 15)

• The capital of France is Paris. The capital of Italy is Rome. The capital of Germany is
Berlin. The capital of Spain is located in the south-east of the city of Rome. The city was
designated as a city of the city of Pellica. It was the first of its kind in the world to be added
to the list of the best Westerners. The ”The Secret of the Dragon” was a family drama about
the

• It was the best of times, it was the worst of times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of the world.”
”I can’t believe that.”
”No, sir,” said the old gentleman. ”Yes.”

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

”I am sorry, I don’t know. I have a very bad feeling about the situation, but this is not the
case. I’m not sure how I can

• The baseball player stepped up to the plate, ready to hit a home run. The pitcher threw
the ball, and the bat struck the bat. When the game was finished, the team was able to
make a second-half impact, and the team did not have a chance to make the playoffs. The
only thing that is more interesting is that the season is going to be a lot of fun. The next step
is to get

• These nocturnal creatures are adept hunters, using echolocation to locate prey and
navigate in the darkness. A baton is a snake, and the scorpion is a symbol of the world
that has been told to do. The most important thing to remember is that the work is done in a
way that is not a good thing. This is a good way to start your business. You can use your
own customer service

• The robber pointed his gun at the cashier and demanded money. It was a bank robbery.
The bank’s general manager, who has been in the market for a long time. He also has a keen
interest in the sport, including his career as a former manager and manager of the club, will
be looking to add another player to the roster. The club is the only player in the

• The river flowed gently through the forest, its waters sparkling in the sunlight. Along
the river bank, the island is a great place to take a dip in the water. It is a very popular
tourist attraction. The city is famous for its unique architecture and its abundant history, and
its interesting history, its history, and its history. The Italian Renaissance: A new history of
the city, the city of

GPT2 20M PARAMETERS (WIDTH 8192, CONTEXT LENGTH 15)

• The capital of France is Paris. The capital of Italy is Rome. The capital of Germany is
Berlin. The capital of Spain is the capital of the Swiss city of Leipzig. The city of Geneva
is home to several famous landmarks and attractions. The museum047 is a great place to
visit. The city is the largest in the world, with a population of about 2,000,000. I am looking
at the number of people who

• It was the best of times, it was the worst of times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of the great plague. It was the day of the year that
the earth was filled with its water, and the sun was shining. The sun was shining, the sun
was shining, the sun was shining, the sky was shining. autocrossing over the hill, a small
red-headed man was killed

• The baseball player stepped up to the plate, ready to hit a home run. The pitcher threw
the ball, and the batters walked in the second and third, and then they walked in the second.
They had the ball and they were playing their very own game. The game was played on the
same day, but the game was played on the same day, so I knew it was going to be a good
match for the game

• These nocturnal creatures are adept hunters, using echolocation to locate prey and
navigate in the darkness. A bat is a small creature with a small body, which is a small
creature. The Annie’s face was completely red. She turned around and looked around.
”What’s the matter?” she asked. ”You’re going to be fine. I’m going to have to get back to
the drawing board.

• The robber pointed his gun at the cashier and demanded money. It was a bank robbery,
and he refused to leave. In addition to the allegations, the court denied the allegations. The
case was dismissed by the Supreme Court of the United States, which found that the state of
Florida had a significant influence on the state of Florida’s economy. The state of Florida
has been known for its

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• The river flowed gently through the forest, its waters sparkling in the sunlight. Along
the river bank, you’ll find a large pool of water and an abundance of sunscreen to keep your
skin dry and free of any harmful UV rays. The sun protection is also important to protecting
your eyes. It also helps in keeping your eyes healthy. More than that, you can use a lot of
natural ingredients

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B TRAINING DETAILS

We use a learning rate of 0.001 with a cosine learning rate schedule, 10% warmup, and minimum
learning rate 1e-5. We also use gradient clipping and 0.1 weight decay. We use 1 or 4 Nvidia H100
GPUs to train our models, with runtime varying between 1 and 4 GPU days. We use a batch size of
16,384 samples.

C ADDITIONAL DETAILS ON DCT-PARAMETERIZATION

C.1 NOTES ON THE DCT-NEURON

Observe that since the DCT operation is linear, the DCT Neuron is a linear function of the input, i.e.
this is just a re-parameterization of the “standard” neuron. Additionally, each neuron has k · d learned
parameters (in our experiments we choose k to be a small constant, e.g. k = 4), so the number of
parameters does not depend on the sequence length T . Finally, we note that the DCT Neuron can
express both the n-gram and the bag-of-words neurons: if we choose t = k, then DCT(k) operation
only changes the basis of the linear space, but the neuron can express any linear function over the last
k tokens; alternatively, if t = T , then the neuron can express a low-frequency function (with only k
frequencies) over the entire sequence (for k = 1 the neuron computes a linear function of the average
of sequence length). A linear combinations of such neurons (which still gives a linear function of
the input) gives “hybrid” neurons, and choosing other values of t (e.g., t = T/2) allows different
“trade-offs” between sequence length and complexity.

C.2 DCT-PARAMETERIZED ARCHITECTURE DESCRIPTION

We propose a DCT-Parameterization architecture by replacing the causal attention heads of the
transformer with a causal DCT-head with hyperparameters k (number of frequencies) and t (look-
back window size). The input to the DCT-head is a sequence of vectors x1, . . . ,xT ∈ Rd. As
in the transformer attention head, for efficiency reasons we begin by projecting each vector to a
lower dimensional space, from dimension d to dimension dh, using the matrix Wproj ∈ Rd×dh .
Denote the projection of the i-th vector by x′

i = W⊤
projxi. Then, we define for every frequency

a linear map, denoted W1, . . . ,Wk ∈ Rdh×dh . The output at position i of the DCT-head is given
by: oi =

∑k
j=1 W

⊤
j DCT(t)

j (x′
i−t, . . . ,x

′
i), where DCT(t)

j denotes the j-th frequency in the DCT
operator over a signal of length t. So, each head has two hyperparameters k, t and learned parameter
matrices Wproj,W1, . . . ,Wk. Note that the number of parameters does not grow with the sequence
length. As in the transformer architecture, we let dh = d/h, where h is the number of heads, and
concatenate the outputs of all heads back to dimension d, followed by a linear layer, normalization
and non-linearity.

C.3 EXPERIMENTAL SETTING

We train the DCT-Parameterized MLP (DCT-MLP) on the C4 dataset (?). As the number of parameters
of our MLP no longer depends on the context length, we train with a full context window size of
2048. We train DCT-MLPs of depth 6, 12, 18, with 2− 6 Billion Tokens, and report the results on
the evaluation data. We use 16 heads, using k = 4 for each head, and varying t from 4 to 2048 (the
maximal seqeunce length). We compare the performance to a GPT2-based transformer, with depth
varying from 2 to 6. The results are shown in Figure 9. For each experiment we train the model on a
single Nvidia-H100 GPU. Each training run takes between 5 to 38 hours, depending on the model
size and number of tokens.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D CONTEXT LENGTH SCALING FOR MLP MODEL

Below we plot how perplexity and number of parameters scales with context length in the MLP
model, to highlight the impracticality of the MLP model for long context lengths as discussed in
Section 2

16 32 64 128
Context Length

38

40

42

44

46

48

Pe
rp

le
xi

ty

MLP

16 32 64 128
Context Length

40

50

60

M
illi

on
s o

f P
ar

am
et

er
s

MLP

Figure 10: Context length scaling for a 16384-width MLP trained on 10b tokens. Left: Context
length vs perplexity Right: Context length vs number of parameters

E ADDITIONAL SETTINGS FOR NEURON TYPE CLASSIFICATION

We measure the proportion of neuron types over context length and model width. We find that the
proportions are relatively consistent in these different settings, though large context length seems to
have the greatest effect on the proportions.

15 31 63 127
Context length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Pr
op

or
tio

n
of

 n
eu

ro
ns

N-gram
Bag-of-words
Other

210211 212 213 214

Model width

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Figure 11: Proportion of neuron types over context length (Left) and model width (right), grouped
into n-gram neurons, bag-of-words neurons, and other neurons for a 16384-width MLP trained on
10b tokens.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

F ADDITIONAL EXAMPLES OF NEURONS

Bag-of-words N-gram Hybrid DCT-Sparse Other

first
token

last
token

first
token

last
token

first
token

last
token

first
token

last
token

first
token

last
token

Figure 12: Examples of each type of neuron discussed. Neuron types are classified using the heuristics
discussed in Section 4.1 and chosen at random. The neurons in the other category are chosen at
random from the remaining neurons. For ease of visualization, we show the first 100 indices of the
embedding dimension. All neurons are from a width 16384 MLP trained on 10b tokens.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

G ADDITIONAL EXAMPLES OF KEYWORD ANALYSIS

first
token

last
token

0

20

40

60

80

100

 Theorem

 conformational

 magnetization

 microtub

 Eqs

 microtubule

 microM

 monolayer

 ynaptic

 antifer

Unembed

first
token

last
token

0

20

40

60

80

100

 ventilation

 spray

 litres

 formaldehyde

 smell

 fertilizer

 chlorine

 gallon

 algae

 gallons

Unembed

first
token

last
token

0

20

40

60

80

100

 Plug

 resistor

 GHz

 duino

 GPU

 resize

 cpu

 firmware

 CPU

 RGB

Unembed

first
token

last
token

0

20

40

60

80

100

 docker

 unnable

 iterator

 xmlns

 gcc

 ClCompile

 namespace

 libc

 syscall

 npmjs

Unembed

first
token

last
token

0

20

40

60

80

100

 payroll

 tenants

 tenant

 lender

 leases

 buyer

 lords

 lease

 landlord

 dealership

Unembed

first
token

last
token

0

20

40

60

80

100

 acrylamide

 Crus

 mill

 grinding

 mills

 crus

 separator

 workpiece

 conveyor

 crushing

Unembed

Bag-of-words neurons with keywords

0

20

40

60

80

100

 summ

]."

 había

 "],

 emergence

 >/

 (!(

 {(

 "]

 [(

Unembed

0

20

40

60

80

100

 Chief

 Wait

 Logger

 protobuf

 <-

 await

 fmt

 §

 Wait

Unembed

0

20

40

60

80

100

 *\

 tgz

 ulsive

 artifact

 Given

 Suppose

 &#

 constraint

 %>%

 ISBN

Unembed

0

20

40

60

80

100

 consists

 pren

 /-/

 curric

 buck

 Posted

 pon

Unembed

0

20

40

60

80

100

 [(

 [<

 (?

 -(

 =$(

 [(

 (((

 (((

 +(

 ="$(

Unembed

Random vectors with keywords

Figure 13: Top: Examples of associated keywords with bag-of-words neurons. The neurons illustrated
are the six neurons with lowest variance according to the heuristic described in Section 4.1. For each
neuron, we take the average across time and unembed the resulting vector to get the top-10 associated
keywords. Bottom: As a baseline, we unembed randomly generated vectors ∈ Rd (normalized such
that the entries sum to 1). For all neurons, only the first 100 rows of the embedding dimension are
displayed.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

first
token

last
token

0

20

40

60

80

100

Unembed

Network
Prediction

ero, lo, ely

iated, iate, hers

ized, ised, ization

ally, am, aught

xx, x, xxxx

 Cic

 unc

 McN

 xxxxxxxx

first
token

last
token

0

20

40

60

80

100

Unembed

Network
Prediction

inx, inct, ing

oc, ana, ok

zo, ste, st

len, alt, old

ana, oc, ok

 sph

 hav

 onder

 Kob

 Hav

first
token

last
token

0

20

40

60

80

100

Unembed

Network
Prediction

rick, ota, o

, ,

er, ering, r

ajo, aj, aho

it, ia, ian

 Kub

 flick

 trab

 Gamb

first
token

last
token

0

20

40

60

80

100

Unembed

Network
Prediction

ple, plify, ples

ver, vers, vez

agin, press, ped

ours, ored, ble

vers, ve, par

 exem

 cada

 unim

 rum

 irre

first
token

last
token

0

20

40

60

80

100

Unembed

Network
Prediction

ear, idden, und

um, et, ally

andez, and, s

cc, iten, kk

ne, d, ter

 unb

 dors

 Fern

 bu

 Wyn

first
token

last
token

0

20

40

60

80

100

Unembed

Network
Prediction

igent, bert, uted

na, ros, ist

ef, umb, um

, ,

it, ish, itor

 Dil

 Athe

 Scha

 redd

N-gram neurons with keywords

0

20

40

60

80

100

Unembed

Network
Prediction

1, 0, S

, and, The

s, 1, 1

), (, and

home, m, (

 [(

"]

 {(

 (!(

>/

0

20

40

60

80

100

Unembed

Network
Prediction

ing, ,, .

., 0, ,

1, 1, 2

., ,, and

the, ., to

Wait

 §

 fmt

 await

0

20

40

60

80

100

Unembed

Network
Prediction

:, 0, -

the, and, to

., ,, to

82, x, 39

that, you, the

ISBN

 %>%

constraint

 &#

Suppose

0

20

40

60

80

100

Unembed

Network
Prediction

dered, yt, zi

by, in, on

ling, ing, le

, ,

ula, ul, ulas

 pon

Posted

 buck

 curric

Random vectors with keywords

Figure 14: Top: Examples of associated keywords with n-gram neurons. The neurons illustrated are
the six neurons with the minimum norm across some index of time (as a modification of the heuristic
described in Section 4.1 to derive a score). For each neuron, we take the column of time with the
highest norm and unembed the resulting vector to get the top-5 associated keywords (first column of
words). We project each keyword back into token space and run inference on our model with an input
of all zeros besides the last token (which is the projected column). The second column of words for
each neuron lists how the model completes each n-gram. Bottom: The same process is applied to
four randomly generated vectors (normalized such that the entries sum to 1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H DETAILS ON HEURISTICS USED TO CLASSIFY NEURONS

For a neuron w we compute

ngram(w) :=

(
1

T

T∑
i=1

1
w̃i<t

(l)
ngram

)
> pngram and ∃i : w̃i > t(h)ngram

bag-of-words(w) :=
1

d

d∑
i=1

var

(
w

|w|

)
> tb-o-w

where w̃ denotes T -dimensional vector obtained by taking the norm across the embedding dimension
and the var denotes the variance taken across the time dimension. We choose the parameters for
the proportion of low norm time slices (pngram) and various thresholds (t(l)ngram, t(h)ngram, and tb-o-w)
based on visual inspection of the neurons and hold these values constant across models. For the
included plots, we use the values pngram = 0.6, t(l)ngram = 0.4, t(h)ngram = 0.9, and tb-o-w = 0.0003.
For hybrid neurons, we relax the thresholds to pngram = 0.5, t(l)ngram = 0.5, t(h)ngram = 0.8, and
tb-o-w = 0.0005 and count neurons that are classified as both categories. For DCT-Sparse neurons,
we use the same criteria as the n-gram neurons but on the neurons in the DCT-basis.

I ℓ1/ℓ2 MEASUREMENT IN FREQUENCY DOMAIN

2.25 2.50 2.75 3.00 3.25
0

10

20

30

40

50

60

70

Nu
m

be
r o

f n
eu

ro
ns

Beginning (Step 300k)

2.25 2.50 2.75 3.00 3.25
1/ 2 (DCT)

0

10

20

30

40

50

60

70

Halfway (Step 1.2M)

2.25 2.50 2.75 3.00 3.25
0

10

20

30

40

50

60

70

Final (Step 2.4M)

Figure 15: ℓ1
ℓ2

measured in the DCT representation of a 16384-width MLP trained on 10b tokens at
initialization (right), halfway through training (center), and at the end of training (left). Inverse to the
corresponding plot in the standard representation, the rightmost peak suggests n-gram neurons and
the gradual accumulation of neurons in the left of the range suggests the emergence of bag-of-words
neurons.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

J EVOLUTION OF ROW NORMS OVER TRAINING

0 100 200 300 400 500

0

5

10

To
ke

n

Standard Basis

0 100 200 300 400 500

0

5

10Fr
eq

ue
nc

y

DCT Basis

Row norms of each neuron sorted by number of active rows in standard basis

(a) Step 10,000

0 100 200 300 400 500

0

5

10

To
ke

n

Standard Basis

0 100 200 300 400 500

0

5

10Fr
eq

ue
nc

y

DCT Basis

Row norms of each neuron sorted by number of active rows in standard basis

(b) Step 250,000

0 100 200 300 400 500

0

5

10

To
ke

n

Standard Basis

0 100 200 300 400 500

0

5

10Fr
eq

ue
nc

y

DCT Basis

Row norms of each neuron sorted by number of active rows in standard basis

(c) Step 490,000 (Final)

Figure 16: Evolution of row norms of neurons over three checkpoints of a 16384-width MLP trained
on 1b tokens.

22

	Introduction
	Vanilla MLP for short-sequence last-token prediction
	Scaling laws
	Analysis of the underlying architecture
	Neuron-types analysis
	A note on interpretability
	DCT analysis of neurons

	DCT-Parameterized Long-Context MLP
	DCT-Parameterized Neurons
	Causal Language Modeling with DCT-Parameterization

	Related Work
	Discussion
	Example language model generations
	Training details
	Additional details on DCT-Parameterization
	Notes on the DCT-Neuron
	DCT-Parameterized Architecture Description
	Experimental Setting

	Context length scaling for MLP model
	Additional settings for neuron type classification
	Additional examples of neurons
	Additional examples of keyword analysis
	Details on heuristics used to classify neurons
	1/2 measurement in frequency domain
	Evolution of row norms over training

