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Abstract

Large language models (LLMs) have shown001
remarkable success across a wide range of nat-002
ural language generation tasks, where proper003
prompt designs make great impacts. While004
existing prompting methods are normally re-005
stricted to providing correct information, in this006
paper, we encourage the model to deliberate007
by proposing a novel Deliberate then Gener-008
ate (DTG) prompting framework, which con-009
sists of error detection instructions and candi-010
dates that may contain errors. DTG is a sim-011
ple yet effective technique that can be applied012
to various text generation tasks with minimal013
modifications. We conduct extensive experi-014
ments on 20+ datasets across 7 text generation015
tasks, including summarization, translation, di-016
alogue, and more. We show that DTG consis-017
tently outperforms existing prompting methods018
and achieves state-of-the-art performance on019
multiple text generation tasks. We also pro-020
vide in-depth analyses to reveal the underlying021
mechanisms of DTG, which may inspire future022
research on prompting for LLMs.023

1 Introduction024

Large language models (LLMs) (Brown et al.,025

2020; OpenAI, 2023; Touvron et al., 2023) are026

revolutionizing the area of natural language genera-027

tion, which have demonstrated exceptional abilities028

in generating coherent and fluent text as well as029

exhibited a remarkable aptitude in performing a030

diverse range of text generation tasks with high031

accuracy (Hendy et al., 2023; Nori et al., 2023).032

When adapting to downstream tasks, traditional033

fine-tuning methods require access to the param-034

eters of LLMs, which hinder their application on035

powerful black-box LLMs (e.g., ChatGPT) that036

only provide APIs to interact with. Therefore,037

prompting methods that guide the generation re-038

sults by providing several task-specific instructions039

and demonstrations have attracted lots of attention040

in recent works (Schick and Schütze, 2020; Sanh041

et al., 2021), which show that the prompt can sig- 042

nificantly influence the resulting outcomes and thus 043

require careful design. 044

While prompting is itself a general approach, 045

the current use of this approach is a bit rigid, say, 046

an LLM only operates on the basis of what is cor- 047

rect (Brown et al., 2020; Hendy et al., 2023; Wei 048

et al., 2022b). This is not the case for language 049

acquisition where a human can learn from both 050

positive and negative feedback and improve the 051

ability of language use through corrections. In this 052

work, we examine whether and how the delibera- 053

tion ability emerges by asking the LLMs to rethink 054

and learn to detect potential errors in their output. 055

To do this, we develop a new prompting template 056

termed Deliberate then Generate (DTG) that con- 057

tains instructions and candidate outputs to enable 058

an error detection process before generation, i.e., 059

adding “Please detect the error type firstly, and 060

provide the refined results then” in the prompt. 061

A key design aspect of DTG is how to determine 062

the candidate. One straightforward choice is uti- 063

lizing the results from an extra baseline system, 064

which typically exhibits high quality and requires 065

only minor adjustments. Accordingly, it cannot 066

well facilitate the deliberation ability. In this work, 067

we propose to utilize the text that is irrelevant from 068

the reference (e.g., such as a randomly sampled 069

text or even an empty string) as the candidate. In 070

this way, the method successfully triggers the delib- 071

eration ability of LLMs, without having to resort to 072

other text generation systems to create correction 073

examples, which enables DTG to be easily applied 074

to a wide range of text generation tasks only with 075

minimal modifications in prompts. This work is 076

in part motivated from a psychological perspective 077

by considering negative evidence in developing 078

language abilities, which is a canonical case for 079

language learning (Marcus, 1993). 080

We conduct extensive experiments on 7 text 081

generation tasks and more than 20 datasets on 082
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Demonstration

Test

Standard Prompting

Text Summarization
Given the English paragraph:
[SRC]

Please provide the
summarization of the main
content: [TGT]

Given the English paragraph:
[Input]

Please provide the
summarization of the main
content:

DTG

Text Summarization
Given the English paragraph: [SRC]

the already generated abstractive summarization is: [INCORRECT SYS]

Please detect the error type firstly, and provide the refined summarization then.

Error type: incorrect summarization, the refined summarization is: [TGT]

Given the English paragraph: [Input]

the already generated abstractive summarization is: [INCORRECT SYS]

Please detect the error type firstly, and provide the refined summarization then.

Error type:

Figure 1: Comparison of standard GPT prompting and our DTG prompt desgin for summarization task. Note that
prompt in blue denotes the demonstration, and that in red denotes the test input. [SRC] and [Input] means the source
input, TGT means the target reference and [INCORRECT SYS] means the irrelevant system output (e.g., such as a
randomly sampled text or even an empty string).

GPT3.5 (text-davinci-003) and GPT4, where083

the proposed DTG prompting consistently im-084

proves model performance compared to conven-085

tional prompts. GPT with DTG prompting achieves086

state-of-the-art performance on multiple datasets087

across different text generation tasks, including ma-088

chine translation, simplification and commonsense089

generation. Extensive ablation studies and error090

statistical analysis illustrate that the proposed DTG091

prompting does enable deliberation ability and er-092

ror avoidance before generation.093

The main contributions of this work are summa-094

rized as follows:095

• We propose a novel prompting framework named096

DTG for LLMs, which eliminates the need for097

extra resources or costs and can be efforlessly ap-098

plied to various text generation tasks. DTG can099

also be combined with other advanced prompt-100

ing strategy (e.g., CoT) to further improve the101

performance.102

• We conduct experiments on 20+ datasets across103

7 text generation tasks, where DTG prompting104

brings consistent improvements and achieves105

SoTA performance on several benchmarks.106

• To the best of our knowledge, we are the first to107

evaluate the performance of GPT3.5 and GPT4108

on multiple benchmark text generation tasks. We109

hope the experimental results help deepen our110

understanding of SoTA LLMs.111

2 Related Work112

Large Language Models. With the scaling of113

model and corpus sizes, Large Language Mod-114

els (LLMs) (Devlin et al., 2018; Radford et al.,115

2019; Lewis et al., 2019) have achieved remark- 116

able success in various areas of natural language 117

processing. To tailor a model for particular tasks, 118

one approach is to fine-tune it with task-specific 119

datasets (Jiao et al., 2023; Li and Liang, 2021; Hu 120

et al., 2021). Jiao et al. (2023) introduce data with 121

error annotations in fine-tuning to improve the ma- 122

chine translation abilities of open-source LLMs. 123

The fine-tuning approach poses a challenge when 124

applied to powerful black-box LLMs that only of- 125

fer APIs for interaction, as it requires access to the 126

underlying parameters. With the help of instruction 127

tuning (Wei et al., 2021) and reinforcement learn- 128

ing from human feedback (Ouyang et al., 2022), 129

recent LLMs can achieve gradient-free adaptation 130

to various downstream tasks by prompting with 131

natural language instructions, and some powerful 132

capacities such as in-context learning (Brown et al., 133

2020) have also emerged. 134

Prompting Methods. Prompting is a general 135

method for humans to interact with LLMs, which 136

is usually designed as an instruction for a task 137

that guides LLMs toward intended outputs (Schick 138

and Schütze, 2020; Sanh et al., 2021). To 139

make the most of LLMs on downstream tasks, 140

the prompts need to be carefully designed, ei- 141

ther manually (Hendy et al., 2023) or automat- 142

ically (Gao et al., 2020; Zhou et al., 2022). 143

Prompting also provides a way to interact with 144

LLMs in natural language, such as letting them 145

utilize external tools (Schick et al., 2023), re- 146

sources (Ghazvininejad et al., 2023) and mod- 147

els (Wu et al., 2023; Shen et al., 2023), or con- 148

ducting Chain-of-Thought (CoT) reasoning in gen- 149

eration (Wei et al., 2022a; Kojima et al., 2022). 150

A concurrent work incorporates answers in pre- 151
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Translation
Given the [src] sentence: [SRC]

the [tgt] translation is: [SYS]

Please detect the error type
firstly, and refine the
translation then.

Error type: incorrect translation,
the refined [tgt] translation is:
[TGT]
...

Style Transfer
Given the English sentence in
formal style: [SRC]

the already transferred informal
style sentence is: [SYS]

Please detect the error type
firstly, and provide the refined
informal sentence then.

Error type: incorrect transfer,
the refined transfer is: [TGT]
...

Simplification
Given the English paragraph: [SRC]

the already generated
simplification is: [SYS]

Please detect the error type
firstly, and provide the refined
simplification then.

Error type: incorrect
simplification, the refined
simplification is: [TGT]

...

Figure 2: Illustration of DTG demonstration design for machine translation, style transfer and text simplification
tasks. Due to the limited page, please refer to the Appendix for the remained 3 generation tasks, including dialogue
summarization, paraphrase and commonsense generation.

vious rounds into prompts in an iterative process152

to improve the accuracy of LLMs on reasoning153

tasks (Zheng et al., 2023). Besides multi-step154

reasoning, basic prompts are still widely utilized155

in general text generation tasks such as machine156

translation and summarization, where previous ad-157

vanced methods such as CoT have been shown158

ineffective (Peng et al., 2023). In this paper, we pro-159

pose a simple and general prompting method that160

consistently improves model performance across161

various text generation tasks, without any addi-162

tional resources or costs.163

3 Deliberate then Generate164

Language acquisition by a human is normally based165

on both positive and negative feedback and im-166

proves the ability of language use through correc-167

tions. Inspired by this, unlike the conventional168

prompts only with correct information, we intro-169

duce a more deliberate approach termed Deliber-170

ate then Generate (DTG) prompting by facilitat-171

ing LLMs to detect errors on a synthesized text172

that may contain errors. Specifically, the proposed173

DTG method unfolds in the following manner: 1)174

It begins with a concise and explicit instruction of175

the desired task, providing guidance on generating176

an intended text based on a given input text; 2) A177

synthesized text is then provided as a candidate178

output; 3) Finally, DTG encourages the model to179

detect potential errors, and subsequently generate180

an improved output after thorough deliberation.181

Figure 1 illustrates a comparison between stan-182

dard prompting and our proposed DTG prompting183

for the summarization task in the one-shot scenario.184

A distinctive feature of DTG is its emphasis on185

error detection other than immediate response. In-186

stead of generating the outcome directly from the187
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Figure 3: BLEU scores against the similarity (Edit Dis-
tance) on ZH-EN task.

given input text, DTG steers the model to make de- 188

liberate decisions by detecting the error type firstly 189

based on both the input text, denoted as “[SRC]”, 190

and a pre-defined candidate, denoted as “[SYS]”, 191

before the final decisions. This deliberative process 192

forms the bedrock of the DTG approach and will be 193

further elaborated upon in the analysis section (i.e., 194

Section 6). Besides, a few demonstrations can be 195

provided, imbuing LLMs with an awareness of the 196

expected output (highlighted in blue), and the test 197

input (marked in red). DTG is a general prompt- 198

ing method that could be easily applied to any text 199

generation task with minimal modifications to the 200

prompt. Figure 2 illustrates the particular prompts 201

used for 3 generation tasks we considered, indicat- 202

ing that minimal customization is required across 203

different tasks as highlighted in yellow. 204

The determination of the synthesized text is an- 205

other key part of DTG. Straightforwardly, using 206

the output of a baseline system, which can either 207

be LLMs themselves or any other models, is a nat- 208

ural choice. However, such baseline text just re- 209

quires minor modifications, and thus cannot well 210

trigger the deliberation ability of LLMs. Moreover, 211

we find that the lower the similarity between the 212

candidate and the reference, the better the qual- 213

ity of the generated text. As shown in Figure 3, 214

we select sentences that have various similarities 215
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System COMET-22↑ BLEU↑ COMET-22↑ BLEU↑ COMET-22↑ BLEU↑ COMET-22↑ BLEU↑
DE-EN ZH-EN CS-EN RU-EN

WMT-Best† 85.0 33.4 81.0 33.5 89.0 64.2 86.0 45.1
MS-Translator† 84.7 33.5 80.4 27.9 87.4 54.9 85.2 43.9
GPT 1-shot 84.7 30.4 81.0 23.7 86.2 44.8 84.8 39.7

+ DTG 85.0 32.3 81.4 25.3 86.7 45.6 85.0 40.0
GPT 5-shot 85.3 32.3 81.1 23.6 86.9 47.2 84.9 39.9

+ DTG 85.4 33.2 81.7 25.2 87.0 47.4 85.1 40.3
GPT4 1-shot 85.6 33.5 82.4 26.0 87.3 48.1 86.1 43.1

+ DTG 85.8 33.8 83.0 26.4 87.7 49.4 86.3 43.7
JA-EN UK-EN IS-EN HA-EN

WMT-Best† 81.6 24.8 86.0 44.6 87.0 41.7 80.0 21.0
MS-Translator† 81.5 24.5 83.5 42.4 85.9 40.5 73.3 16.2
GPT 1-shot 81.3 21.5 83.5 36.8 83.5 33.6 78.0 18.6

+ DTG 81.7 21.4 84.0 37.1 84.0 35.2 78.3 18.6
GPT 5-shot 81.2 20.5 84.0 38.0 84.1 35.0 78.3 18.8

+ DTG 82.2 22.4 84.2 39.0 84.6 36.0 78.6 19.2
GPT4 1-shot 83.4 24.7 85.7 39.9 86.9 39.9 77.5 18.3

+ DTG 83.6 25.2 85.9 40.6 87.0 40.9 77.9 18.9

Table 1: Evaluation results of GPT and GPT4 on six high-resource and two-low resource machine translation tasks
from WMT Testsets. The best scores across different systems are marked in bold.

with the reference (using edit distance) as the syn-216

thesized sentence, and the performance decreases217

monotonically in general when the similarity in-218

creases. Therefore, we seek to choose a sentence219

that does not contain any correct information as220

the synthesized text. Potential candidates include221

a randomly sampled sentence or more extremely,222

an empty string, i.e., setting “[SYS]” as “ ”. Both223

choices successfully facilitate deliberation and con-224

sistently improve the outcomes across multiple text225

generation tasks. We use an empty string in our226

experiments as it is more general and elegant.227

DTG has the following exceptional properties to228

steer LLMs on various text generation tasks:229

• Simple: The final results can be obtained through230

a single-step inference of the LLM, without any231

additional resources or costs.232

• General: It can be effortlessly applied to a broad233

range of text generation tasks only with minimal234

adjustments in the prompt.235

4 Datasets and Evaluation236

In experiments, we are devoted to evaluating the237

generation ability of LLMs and the proposed DTG238

prompting. We select 7 representative generation239

tasks, including machine translation, abstractive240

summarization, dialogue summarization, text sim-241

plification, style transfer, paraphrase and common-242

sense generation. Also, we expand the exploration243

to mathematical reasoning task, namely GSM8K.244

We summarize the details of each dataset for 245

each task, including the test sets, the selection of 246

demonstrations (mostly from validation sets) and 247

the corresponding prompts we have used. For more 248

details please refer to the attached Appendix. With- 249

out meticulous parameter tuning, we set the tem- 250

perature to 0 and top_p to 1 when calling the API. 251

5 Experiments 252

In this section, we assess the efficacy of the 253

text-davinci-003 (also known as GPT3.5, 254

which is denoted as GPT in the following for sim- 255

plicity) across 7 sequence generation tasks. The 256

chosen baseline comparisons consist of 1-shot, and 257

few-shot (mostly 5-shot) learning scenarios. To 258

demonstrate the versatility of DTG method, we 259

conduct further experiments with GPT4, a cutting- 260

edge LLM API. Due to the considerable computa- 261

tional cost and API request constraints associated 262

with the GPT4, it is challenging to perform exten- 263

sive experiments. In the current manuscript, we 264

only report the results on machine translation and 265

text simplification. 266

5.1 Results on Machine Translation 267

We compare the performance of GPT standard 268

prompting and our deliberate then generate method 269

(DTG) with that of a commercial system (Microsoft 270

Translator) in addition to WMT SoTA systems. Ta- 271

ble 1 presents the results in both 1-shot and 5-shot 272

scenarios. The findings here indicate that our re- 273

implementation aligns with the trends observed in 274
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System CNN/DailyMail GigaWord SamSum DialogSum
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

Transformer (Vaswani et al., 2017) 40.47 17.73 37.29 37.57 18.90 34.69 37.20 10.86 34.69 35.91 8.74 33.50
BART (Lewis et al., 2020) 44.16 21.28 40.90 39.29 20.09 35.65 53.12 27.95 49.15 47.28 21.18 44.83
UniLMv2 (Bao et al., 2020) 43.16 20.42 40.14 - - - 50.53 26.62 48.81 47.04 21.13 45.04
GPT 1-shot 38.87 15.36 35.11 31.24 11.61 27.99 44.52 19.92 39.60 36.84 14.23 32.20

+ DTG 40.17 15.60 36.04 31.50 12.00 28.50 45.50 20.58 40.13 39.01 15.50 34.13
GPT 5-shot - - - 33.04 12.78 29.86 46.44 20.69 41.10 40.86 17.10 35.78

+ DTG - - - 33.54 13.63 30.36 48.72 23.16 43.23 42.64 18.12 37.57
GPT 10-shot - - - 33.24 13.26 30.46 47.37 22.08 42.20 41.28 17.48 36.69

+ DTG - - - 34.02 14.21 31.04 50.48 24.88 45.31 45.11 19.50 39.71

Table 2: Experimental results on four summarization tasks.

System GYAFC & EM GYAFC & FR Amazon Yelp
BLEU BLEURT BLEU BLEURT BLEU BLEURT BLEU BLEURT

Transformer†(Vaswani et al., 2017) 40.3 - 47.7 - - - - -
BART†(Lewis et al., 2020) 76.9 75.38 79.3 75.11 - - - -
GPT 1-shot 52.9 73.42 44.6 70.73 36.1 64.56 30.9 64.03

+ DTG 66.8 75.20 65.9 74.60 35.4 63.60 31.3 64.19
GPT 5-shot 61.3 75.40 63.9 74.35 39.3 64.76 31.4 64.16

+ DTG 69.9 76.36 74.1 75.43 40.9 65.42 32.2 64.87

Table 3: Comparisons of 1-shot and 5-shot on four style transfer tasks, including Entertainment Music, Family
Relationships, Amazon and Yelp. †denotes results borrowed from (Lai et al., 2021).

System Asset Wiki-auto
MUSS (Martin et al., 2022) 44.15 42.59
Control Prefix (Clive et al., 2022) 43.58 -
TST-Final (Omelianchuk et al., 2021) 41.46 -
GPT 1-shot 46.12 44.97

+ DTG 47.23 47.15
GPT 5-shot 45.95 45.12

+ DTG 47.05 47.54
GPT4 5-shot 47.10 45.96

+ DTG 47.67 47.89

Table 4: Comparisons of 1-shot, 5-shot with and without
our DTG method on two text simplification tasks.

previous study (Hendy et al., 2023), that 5-shot275

beats 1-shot in most language pairs. Benefiting276

from the deliberation, DTG effectively pushes the277

boundaries and leads to enhanced results across278

all to-English language pairs in both 1-shot and 5-279

shot settings based on GPT3.5 model. For instance,280

DTG method exhibits substantial BLEU score in-281

creases in DE-EN, ZH-EN, and UK-EN language282

pairs in 5-shot scenarios. More concretely, DTG283

even beats WMT-Best system in terms of COMET-284

22, which is a more recognized metric recently285

in the machine translation literature. Moreover,286

the consistent improvements on IS-EN and HA-287

EN demonstrate the effectiveness of DTG in low-288

resource settings.289

Benefiting the strong comprehending ability of290

GPT4, we find there is no significant difference291

between 1-shot and 5-shot scenarios. Meanwhile,292

System BLEU-3/4 ROUGE-2/L
BART (Lewis et al., 2020) 36.3/26.4 22.23/41.98
T5-Large (Raffel et al., 2020) 39.0/28.6 22.01/42.97
GPT 5-shot 39.7/30.0 25.28/46.55

+ DTG 43.2/33.5 27.02/48.47

Table 5: Results on the CommonGen benchmark.

System Accuracy
GPT 8-shot 55.1
CoT 8-shot (Wei et al., 2022b) 59.8

+ DTG 64.5

Table 6: Results of GSM8K on DTG prompting.

DTG is still effective on GPT4, showing consistent 293

and indeed improvements in terms of COMET and 294

BLEU. This finding demonstrates much stronger 295

LLMs can still benefit from deliberation. 296

5.2 Results on Summarization 297

For abstractive summarization, we assess GPT 298

models on CNN/DailyMail1 and GigaWord, two 299

benchmark datasets in the field. Additionally, we 300

explore their efficacy in dialogue summarization, 301

including SamSum and DialogSum2, two hybrid 302

tasks combining aspects of both dialogue and sum- 303

1Due to the limit of max length for GPT models (4097)
and the long input length of CNN/DailyMail, we only evaluate
the performance in 1-shot scenario.

2It is important to note that the results for DialogSum are
averaged over three individual scores, each calculated using
unique references spanning a range of topics.
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Figure 4: BLEU and ROUGE-L scores against the num-
ber of demonstrations on the paraphrase task.

marization. As shown in Table 2, GPT models304

show comparative performance with Transformer305

which is specially tuned on the downstream training306

set, e.g., Transformer. Our DTG delivers further307

improvements in terms of three ROUGE metrics,308

which demonstrate the effectiveness of DTG on309

long-term modeling task. Beyond this, DTG sub-310

stantially incites GPT models to generate more311

precise summaries derived from extensive multi-312

turn dialogues. An upward trend in performance is313

observed with the introduction of additional demon-314

strations, further underscoring the effectiveness315

of the DTG method. However, DTG still lags316

behind of large-scale pretrained models, such as317

BART (Lewis et al., 2020) and UniLMv2 (Bao318

et al., 2020) in automatic evaluations. We will add319

more human-alignment judgment in Section 6.320

5.3 Results on Style Transfer321

Table 3 displays performance across style trans-322

fer tasks from the GYAFC dataset: Entertainment323

Music (EM) and Family Relationships (FR), both324

involving informal to formal transformations. Evi-325

dently, the Deliberate then Generate (DTG) method326

prompts the GPT model to correct inaccuracies and327

generate more precise informal sentences. Specifi-328

cally, DTG achieves an 8-point and 10.04-point in-329

crease in BLEU score for EM and FR tasks, respec-330

tively, compared to standard prompting. Although331

DTG trails BART (Lewis et al., 2020) in BLEU332

scores, it surpasses BART in BLEURT scores, ob-333

taining gains of 0.98 and 0.32 for EM and FR tasks,334

respectively. These results highlight the potential335

of LLMs and DTG method in style transfer tasks.336

5.4 Results on Text Simplification337

Experiments were conducted on two text simplifi-338

cation benchmarks, Asset and Wiki-Auto, where339

the primary goal is to create a simplified rendi-340

tion of the given text input. The main evalua-341

# System BLEU COMET

1 GPT 5-shot 23.6 81.12
2 + DTG 25.2 81.70
3 + w/o error detection 23.3 81.05
4 + wrong error type 25.3 81.74
5 + fixed error type 24.1 81.35
6 + task-specific error type 25.5 81.77

7 + fixed incorrect candidate 25.0 81.72
8 + irrelevant languages 25.1 81.81
9 + correct candidate 23.0 81.17

Table 7: Ablations on error types and candidae types.

tion metric is the SARI score. Our findings il- 342

lustrate that GPT models demonstrate robust per- 343

formance across both simplification benchmarks, 344

even surpassing the existing state-of-the-art models 345

(MUSS) built based on BART. Furthermore, the in- 346

corporation of DTG method significantly enhances 347

GPT model performance, leading to improvements 348

in both BLEU and SARI scores. Specifically, DTG 349

establishes a new benchmark for state-of-the-art 350

results on these two simplification tasks. 351

5.5 Results on Commonsense Generation 352

Table 5 summarizes the comparison between GPT 353

models with and without DTG method on an open 354

Commonsense generation benchmark. This task 355

is more flexible than the aforementioned, mean- 356

while raising the evaluation difficulty. We see 357

that GPT models with standard prompting even 358

surpass large-scale pretrained generation models, 359

such as BART (Lewis et al., 2019) and T5 (Raf- 360

fel et al., 2020). DTG achieves further improve- 361

ments in terms of BLEU-3/BLEU-4 and ROUGE- 362

2/ROUGE-L, resulting in an average of 3.50 BLEU 363

and almost 2.00 ROUGE improvements. This also 364

establishes a new SoTA on this benchmark. 365

5.6 Results on Paraphrase 366

Figure 4 plots the BLEU and ROUGE-L scores for 367

GPT and DTG in relation to various few-shot sce- 368

narios. We find that DTG outperforms GPT mod- 369

els in terms of both BLEU and ROUGE-L metrics 370

across all scenarios. However, only 5-shot demon- 371

strations cannot enable LLMs to clearly capture 372

the underlying mapping rule between the source 373

and the the target. Interestingly, a significant en- 374

hancement in DTG performance is observed with 375

the increase in the number of demonstrations. This 376

improvement can be attributed to the model’s en- 377

hanced ability to comprehend the underlying map- 378

ping rules with the expanded demonstration set. 379
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System ZH-EN Asset
BLEU Human SARI Human

GPT 5-shot 22.8 4.16 45.95 11.6%
DTG 5-shot 24.9 4.39 47.05 67.4%

Table 8: Human evaluation on DTG prompting.

5.7 Results on Mathematical Reasoning380

While our primary focus is on evaluating LLMs381

for text generation, we extend our analysis to rea-382

soning tasks, such as GSM8K (Cobbe et al., 2021).383

Table 6 compares the accuracy of standard prompt-384

ing, CoT, and DTG. Our results show that DTG,385

when combined with CoT, achieves an accuracy386

of 64.5 in 8-shot scenarios, indicating its utility387

beyond text generation.388

6 Analysis389

In this section, we delve into a series of in-390

triguing questions to elucidate the circumstances391

and reasons underpinning the robust performance392

of DTG. Unless specified otherwise, the base393

engine utilized throughout this investigation is394

text-davinci-003.395

Ablations on Error Types Prior research under-396

scores the significant impact of both the quality397

and quantity of demonstrations (Zhang et al., 2023;398

Vilar et al., 2022; Agrawal et al., 2022) . Thus, we399

would like to discern whether the improvements400

are attributable to template modifications or the401

deliberate capability inherent to the LLMs. Table402

7 summarizes the comparisons on WMT ZH-EN.403

Firstly, DTG experiences a significant degradation404

in BLEU score when removing the explicitly er-405

ror detection prompt3, suggesting that the excised406

segment may contain crucial triggers stimulating407

the deliberate capability of the LLM. Along this408

line, by comparing #44, #55 and # 6 with #2, we409

can conclude 1) LLMs can rethink by themselves410

and make “correct” decisions though the demon-411

stration is incorrect. 2) Restricting the thought of412

LLMs would hinder the performance. 3) Adding413

task-specific error type results in better generation.414

Ablations on Candidates Here, we aim to ex-415

plore if other candidates rather than empty string416

may also prove effective in DTG. The last two417

3eliminating the phrase “Please detect the error type firstly,
and refine the translation then”

4replacing “incorrect translation” with “good/correct trans-
lation” in the demonstration only

5replacing “incorrect translation” with “good/correct trans-
lation” in the demonstration only

lines in Table 7 shows the comparison. Specifically, 418

the term “fixed incorrect candidate” (#7) refers to 419

the use of a fixed yet incorrect (irrelevant) English 420

translation as the candidate.6 Likewise, system #8 421

indicates that the candidates neither belong to the 422

target language nor conform to the correct struc- 423

ture or grammar.7 Interestingly, both 2 systems 424

deliver comparable performance with our default 425

setting, with system #8 even achieving a higher 426

COMET score. However, when shifting to a cor- 427

rect candidate, LLMs seem to underperform. This 428

observation suggests that LLMs can effectively de- 429

liberate when the candidate is incorrect - whether 430

it is an empty string or other incorrect translations - 431

and subsequently generate a substantially improved 432

translation. 433

Evaluation by GPT Models As previously dis- 434

cussed, despite DTG’s impressive performance, 435

it falls short of BART in some scenarios—most 436

notably, it exhibits a significant gap in terms of 437

ROUGE scores in summarization tasks. However, 438

Liu et al. (2023) suggested that ROUGE may not 439

accurately represent the true performance of sum- 440

marization tasks, given its poor alignment with hu- 441

man evaluations. In contrast, GPT models achieve 442

optimal alignment with human justification and 443

substantially outperform all previous state-of-the- 444

art evaluators on the SummEval benchmark. This 445

observation prompts an investigation into whether 446

the generation output by DTG can surpass that 447

of BART. Following their suggestion, we conduct 448

reference-based evaluation and design a prompt as 449

shown in Figure 10. We extract 500 test sets and 450

compared DTG with the best result using GPT3.5 451

and GPT4 to select a better candidate. Results in 452

Figure 5 reveal that DTG significantly beats the 453

best system within GPT evaluation. 454

Human Evaluation We further conducted hu- 455

man evaluation with human assessments on trans- 456

lation (randomly selected 500 cases) and simplifi- 457

cation tasks to mitigate potential bias in GPT mod- 458

els favoring their own outputs. Annotators scored 459

ZH-EN translations on a 1-5 scale and indicated 460

preferences for the Asset task. It’s worth noting 461

that for the Asset task, some cases showed no sig- 462

6We random sample an English sentence: [SYS]: EBA
Education Team together with Accace Ukraine invite you to
join the EBA Education Update: Performance Audit.

7Similarly, we random sample an Ukraine sentence: [SYS]:
З впевненiстю можете довiряти нам i будь ласка,
звертайтеся до нас, якщо у вас є якi-небудь питання
чи коментарi.
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nificant difference in performance between the two463

methods (neutral). Detailed scoring guidelines are464

provided in the Appendix. As shown in Table 8,465

DTG outperforms the standard prompt in human466

evaluations across both tasks.467

Error Statistical Analysis To evaluate whether468

the proposed DTG prompting can facilitate error469

avoidance in GPT, we conduct error statistics on470

machine translation, where two frequently occur-471

ring error types are considered (i.e., under transla-472

tion and incorrect entity translation) (Hassan et al.,473

2018). Figure 6 provides a comparison of the error474

rates between GPT models with and without the475

application of the DTG method. It is obvious to see476

that DTG reduces both error rates compared with477

the direct generation manner.478

DTG Can Serve as A Good Refiner To explore479

how DTG performs relative to the quality of input480

candidates, we experimented on the ZH-EN trans-481

lation task. Candidates of varying quality were482

generated by selectively omitting words from MS-483

Translator outputs. Figure 7 plots COMET scores484

against word drop rates, comparing MS-Translator485

(blue line) with DTG-augmented candidates (red486

line). GPT improves MS-Translator’s COMET487

score from 80.4 to 81.65. While DTG underper-488

forms when refining its own correct translations489

(see Table 7), it excels with candidates from other490
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80.0
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81.5

82.0 81.7081.65

C
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Figure 7: COMET v.s. word drop rate of MS-Translator
candidate.

systems. This confirms DTG’s versatility in im- 491

proving even high-quality candidates. Interestingly, 492

DTG’s performance dips with increased word omis- 493

sions but improves when the candidate is nearly an 494

empty string. Using an empty string as a candi- 495

date offers a resource-efficient way to boost perfor- 496

mance without specialized demonstration crafting. 497

498

7 Conclusions 499

In this paper, we propose DTG prompting, which 500

encourages LLMs to deliberate before generating 501

the final results by letting the model detect the er- 502

ror type on a synthetic text that may contain errors. 503

Using an empty string as the synthetic text success- 504

fully gets rid of an extra baseline system and im- 505

proves the quality of the generated text. The DTG 506

prompting can be easily applied to various text 507

generation tasks with minimal adjustments in the 508

prompt. Extensive experiments conducted on over 509

20 datasets across 7 text generation tasks demon- 510

strate the effectiveness and broad applicability of 511

the DTG prompting. One potential avenue for fur- 512

ther enhancing the efficacy of DTG prompting in- 513

volves leveraging task-specific domain knowledge. 514

(e.g., explicitly listing the potential error types in 515

the prompts to provide guidance for deliberation), 516

which is worth future investigation. 517
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Limitation518

Due to restricted access to GPT4, we have evalu-519

ated our Deliberate then Generate (DTG) method520

on just two generation tasks: machine translation521

(across 8 language pairs) and simplification. There522

exists a necessity for more expansive experimen-523

tation across other tasks. Additionally, the effec-524

tiveness of DTG is contingent on model capacity.525

Models such as LLaMa-7B might not fully compre-526

hend the instructions provided, resulting in weaker527

performance on downstream tasks. In our future528

work, we aim to ascertain the required scale of a529

language model to successfully facilitate delibera-530

tive generation.531

Our work inherits the biases from pre-trained lan-532

guage models. For example, we only conduct ex-533

periments on English generation that GPT models534

are most powerful at. We provide results and analy-535

sis on English-to-Others translation in Appendix D.536

Future works could investigate the performance of537

DTG on multilingual pre-trained models.538

Ethical Statement539

All experiments in our work were conducted on540

existing datasets commonly employed in prior pub-541

licly available research publications. We keep fair542

and honest in our analysis of experimental results,543

and our work does not harm anyone. Addition-544

ally, we will make our code accessible for future545

investigations.546
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A Datasets and Evaluation822

In experiments, we are devoted to evaluating the823

generation ability of LLMs and the proposed DTG824

prompting. We select 7 representative generation825

tasks, including machine translation, abstractive826

summarization, dialogue summarization, text sim-827

plification, style transfer, paraphrase and common-828

sense generation.829

Machine Translation For the machine transla-830

tion task, we aligned with Hendy et al. (2023)’s831

work and experimented on both high-resource and832

low-resource scenarios. For the high-resource833

setting, we include German, Czech, Chinese,834

Japanese, Russian, and Ukrainian paired with En-835

glish. In the low-resource context, we examine836

Icelandic and Hausa. The performance is evaluated837

in terms of SacreBLEU8 (Post, 2018), ChrF, TER838

(translation error rate) and COMET-22 (Rei et al.,839

2022).840

Abstractive Summarization We also evaluate841

LLM’s ability to process long sequence on CNN-842

DailyMail and Gigaword, two widely used abstrac-843

tive summarization datasets. The evaluation metric844

is F1-ROUGE (Lin, 2004), consisting of ROUGE-845

1, ROUGE-2 and ROUGE-L.846

Dialog Summarization Dialogue summarization847

presents greater challenges than traditional text848

summarization due to the intricate conversation849

contexts that models need to comprehend, though850

their contexts are relatively shorter. This attribute851

enables us to test few-shot abilities due to the re-852

stricted input length. To investigate this, we select853

SamSum9 (Gliwa et al., 2019) and DialogSum10854

(Chen et al., 2021), two benchmark datasets for855

dialogue summarization. The evaluation metric is856

the same as abstractive summarization.857

Text Simplification The purpose of text simpli-858

fication is to revise complex text into sequences859

with simplified grammar and word choice. In this860

work, we mainly report the performance on two861

benchmarks, namely Asset (Alva-Manchego et al.,862

2020) and Wiki-auto (Jiang et al., 2020). Asset is863

a multi-reference dataset for the evaluation of sen-864

tence simplification in English. The dataset uses865

the same 2,359 sentences from TurkCorpus (Xu866

8BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.2.3.1

9https://huggingface.co/datasets/samsum
10https://github.com/cylnlp/DialogSum

et al., 2016) and each sentence is associated with 867

10 crowdsourced simplifications. Similarly, each 868

test set in Wiki-auto owns 8 references. We use 869

SacreBLEU and BLEURT as the metric. 870

Style Transfer We used three widely-used 871

English transfer learning datasets, namely 872

Grammarly’s Yahoo Answers Formality Corpus 873

(GYAFC), Amazon and Yelp reviews. The GYAFC 874

dataset (Rao and Tetreault, 2018) was originally a 875

question-and-answer dataset on an online forum, 876

consisting of informal and formal sentences 877

from the two categories: Entertainment & Music 878

(EM) and Family & Relationships (FR). Both 879

FR and EM provide 4 references to evaluate 880

the fidelity. The Amazon dataset is a product 881

review dataset, labeled as either a positive or 882

negative sentiment. Similarly, the Yelp dataset 883

is a restaurant and business review dataset with 884

positive and negative sentiments. Both Amazon 885

and Yelp are single-reference. The evaluation 886

metrics contain BLEU and BLEURT (Sellam et al., 887

2020). 888

Paraphrase We endeavor to evaluate the para- 889

phrase ability of LLMs upon the well-known Quora 890

Question Pairs (QQP) dataset, which requires gen- 891

erating an alternative surface form in the same lan- 892

guage expressing the same semantic content. We 893

utilize the preprocessed data from (Gong et al., 894

2022). The evaluation metrics covers BLEU and 895

ROUGE-L for a comprehensive comparison. 896

Common Sense Generation We choose Com- 897

monGen (Lin et al., 2020), a novel constrained 898

generation task that requires models to generate a 899

coherent sentence with the providing key concepts. 900

We report both BLEU-3/4 and ROUGE-2/L to keep 901

a fair comparison with results in prior work (Lin 902

et al., 2020). 903

Reasoning For the reasoning task, we evalu- 904

ate our method on a widely used benchmark, 905

GSM8K (Cobbe et al., 2021), a challenging dataset 906

consisting of high-quality linguistically diverse 907

grade school math word problems. We report the 908

accuracy of the 8-shot demonstration on the test set 909

including 1,319 mathematical questions. 910

B Details of Datasets 911

In this section, we offer more detailed statistics con- 912

cerning the test sets utilized in this study, encom- 913

passing 8 machine translation, 4 summarization, 914
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Dataset Num. Total Words Ave. Words Dataset Num. Total Words Ave. Words

WMT DE-EN 1984 33540 16.9 CNN/DailyMail 11490 9017116 784.8
WMT CS-EN 1448 26050 17.9 GigaWord 1951 72171 37.0
WMT JA-EN 2008 36731 18.3 SamSum 819 104492 127.6
WMT ZH-EN 1875 14353 7.7 DialogSum 500 96385 192.7
WMT RU-EN 2016 32992 16.3 EM 1416 17279 12.2
WMT UK-EN 2018 29273 14.5 FR 1332 16799 12.6
WMT IS-EN 1000 19930 19.9 Amazon 500 6055 12.1
WMT HA-EN 997 30955 31.0 Yelp 500 5432 10.9
CommonGen 1497 6465 6.5 Asset 359 8115 22.6
QQP 2500 27543 11.0 Wiki-auto 2000 43860 21.9

Table 9: Statistics of the dataset we used on over 20 benchmarks. Note that “Num.” represents the number of
test sets for each benchmark. “Total Words” and “Ave. Words” denote the total word count and average lengths,
respectively. These statistics are based on tokenization sequences.

System Score2 Score3 Score4 Score5
GPT 5-shot 16 88 196 200
DTG 5-shot 5 45 200 250

Table 10: Detailed score distribution of human evalua-
tion on ZH-EN.

4 style transfer, 2 simplification, 1 commonsense915

generation, and 1 paraphrase benchmarks. Table 9916

provides a summary of the number of test sets, total917

words, and the average length. We will release the918

test sets and the corresponding demonstrations in919

the future. Note that the statistic is conducted based920

on tokenization sequences, which would be further921

segmented by BPE before feeding into LLMs. Con-922

sequently, the average length of summarization in-923

puts would appear significantly larger, leading to924

an elevated risk in the context of few-shot requests.925

C Design of Prompts926

Figure 8 presents the DTG demonstration design927

across the other three text generation tasks. It can928

be observed that DTG does not necessitate task-929

specific designs; instead, a clear instruction outlin-930

ing the main task for each work suffices. For the931

ease of replication of our results, we also furnish all932

baseline prompts, as depicted in Figure 9. Also, we933

provide the prompting design for GPT evaluation934

in Figure 10, which follows a zero-shot fashion.935

To facilitate a more comprehensive understand-936

ing of the prompt ablations conducted in Section937

6, we provide the corresponding design of prompts938

in Figure 11. Please note that prompts in blue939

represent the pre-designed demonstration, while940

those in red represent the test input. As observed,941

firstly, removing the error detection leads to the942

prompting in 11 (a). Additionally, the term “wrong943

error type” implies that we fed an empty string into944

LLMs, presenting it as a good translation. How- 945

ever, LLMs can autonomously detect the correct 946

error type as an “incorrect translation” and subse- 947

quently generate an accurate response following 948

careful deliberation (Figure 11 (b)). Conversely, if 949

we constrain the error type detection process and 950

solely allow LLMs to generate the translation, a 951

considerable performance gap emerges (See Figure 952

11 (c)). 953

D More Analyses 954

Results on Machine Translation from English 955

Table 11 summarizes the results of standard prompt- 956

ing and our DTG method in 5-shot scenarios, along- 957

side results from WMT-Best and MS-Translator. 958

When compared to results from to-English direc- 959

tional language pairs, such as DE-EN, the improve- 960

ments provided by DTG over the standard prompt- 961

ing strategy appear somewhat marginal. Further- 962

more, DTG may yield results inferior to standard 963

prompting in EN-ZH and EN-UK scenarios. This 964

can likely be ascribed to the disparities in the bal- 965

ance of training sets across different languages. 966

Details for Human Evaluation We have further 967

conducted human evaluations to obtain more con- 968

vincing results. Given the constraints of human 969

effort, we have focused our evaluation solely on 970

ZH-EN translation and Asset simplification. It’s 971

important to note that, specifically for the ZH-EN 972

translation, we have devised the following rules for 973

human evaluators: 974

• 1 point - No translation or only isolated words 975

translated. 976

• 2 points - 50% errors in translation; meaning 977

distorted. 978
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Dialogue Summarization
Given the English dialogue: [SRC]

the already generated dialogue
summarization is: [SYS]

Please detect the error type
firstly, and provide the refined
summarization then.

Error type: incorrect
summarization, the refined
summarization is: [TGT]
...

Paraphrase
Given the English sentence: [SRC]

the already generated paraphrase
is: [SYS]

Please detect the error type
firstly, and provide the refined
paraphrase then.

Error type: incorrect paraphrase,
the refined paraphrase is: [TGT]

...

Commonsense Generation
Given several key words: [SRC]

the already generated sentence
using background commonsense
knowledge is: [SYS]

Please detect the error type
firstly, and provide the refined
sentence then.

Error type: incorrect generation,
the refined sentence is: [TGT]
...

Figure 8: Illustration of DTG demonstration design for dialogue summarization, paraphrase and commonsense
generation tasks within minimal modifications.

Translation
Given the [src] sentence: [SRC]

the [tgt] translation of the
sentence is: [TGT]

Given the [src] sentence: [Input]

the [tgt] translation of the
sentence is:

Dialogue Summarization
Given the English dialogue: [SRC]

please summarize the main context:
[TGT]

Given the English dialogue:
[Input]

please summarize the main context:

Simplification
Given the English sentence: [SRC]

the simplification of the sentence
is: [TGT]

Given the English sentence:
[Input]

the simplification of the sentence
is:

Style Transfer
Given the English sentence: [SRC]

please transfer the style of the
sentence into formal: [TGT]

Given the English sentence:
[Input]

please transfer the style of the
sentence into formal:

Paraphrase
Given the English sentence: [SRC]

the paraphrase of the sentence is:
[TGT]

Given the English sentence:
[Input]

the paraphrase of the sentence is:

Commonsense Generation
Given several key words: [SRC]

Please generate a coherent
sentence using background
commonsense knowledge with the
providing key words: [TGT]

Given several key words: [Input]

Please generate a coherent
sentence using background
commonsense knowledge with the
providing key words:

Figure 9: Illustration of the standard GPT prompting involving both demonstration and test input on six generation
tasks, including machine translation, dialogue summarization, text simplification, style transfer, paraphrase and
commonsense generation.

Test

Prompt template of GPT evaluation

Given the [src] sentence: [SRC]

Your task is to score the following two candidates translated by two systems,
Candidate1: [sys1] Candidate2: [sys2].

Please select the better one in terms of both coherence and fidelity. Note that
C1 for Candidate1, C2 for Candidate2.

Output:

Figure 10: Illustration of the prompting design of GPT evaluation for Figure 5. We adhere to the recommendation
proposed in (Liu et al., 2023)’s work, implementing a zero-shot GPT evaluation approach to identifying superior
candidate translations through the adjudication of LLMs.
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Demonstration

Test

Demonstration

Test

Demonstration

Test

(a) Prompt template of “w/o error detection”

Given the [src] sentence: [SRC]

the [tgt] translation is: [SYS]

The refined [tgt] translation is: [TGT]

Given the [src] sentence: [SRC]

the [tgt] translation is: [SYS]

The refined [tgt] translation is:

(b) Prompt template of “wrong error type”

Given the [src] sentence: [SRC]

the [tgt] translation is: [SYS]

Please detect the error type firstly, and refine the translation then.

Error type: good/correct translation, the refined [tgt] translation is: [TGT]

Given the [src] sentence: [SRC]

the [tgt] translation is: [SYS]

Please detect the error type firstly, and refine the translation then.

Error type:

(c) Prompt template of “fixed error type”

Given the [src] sentence: [SRC]

the [tgt] translation is: [SYS]

Please detect the error type firstly, and refine the translation then.

Error type: under translation, the refined [tgt] translation is: [TGT]

Given the [src] sentence: [SRC]

the [tgt] translation is: [SYS]

Please detect the error type firstly, and refine the translation then.

Error type: under translation, the refined [tgt] translation is:

Figure 11: Illustration of the prompting design of the ablation study in Table 7. Note that all [SYS] here is empty
string. The purpose here is to evaluate the deliberation ability of LLMs.
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Table 11: Evaluation results of GPT on six high-resource and two-low resource machine translation tasks from
WMT Testsets in from English directions. The best scores are marked in bold.

System COMET-22↑ TER↓ ChrF↑ BLEU↑ COMET-22↑ TER↓ ChrF↑ BLEU↑
EN-DE EN-ZH

WMT-Best† 87.2 49.9 64.6 38.4 86.7 102.3 41.1 44.8
MS-Translator† 86.8 50.5 64.2 37.3 86.1 94.2 43.1 48.1
GPT 5-shot 86.3 54.6 61.3 33.3 86.7 97.4 40.0 43.7

+ DTG 86.3 54.1 61.6 33.4 86.6 98.6 39.4 43.5
EN-CS EN-RU

WMT-Best† 91.9 43.7 68.2 45.8 89.5 56.8 58.3 32.4
MS-Translator† 90.6 45.7 65.6 42.1 87.4 56.7 58.1 33.1
GPT 5-shot 88.9 54.6 58.9 32.7 87.0 61.3 54.4 28.2

+ DTG 88.8 54.5 59.0 32.9 85.7 63.0 52.1 28.1
EN-JA EN-UK

WMT-Best† 89.3 105.9 36.8 27.6 88.8 57.5 59.3 32.5
MS-Translator† 88.0 106.0 34.9 25.1 86.1 63.2 56.1 28.2
GPT 5-shot 88.1 111.8 31.0 21.4 85.4 70.2 50.6 21.8

+ DTG 88.0 111.8 31.0 21.7 83.8 71.6 47.8 20.8
EN-IS EN-HA

WMT-Best† 86.8 55.0 59.6 33.3 79.8 65.6 51.1 20.1
MS-Translator† 84.3 57.2 56.8 28.7 72.5 75.6 38.4 10.3
GPT 5-shot 76.1 70.8 44.1 16.2 72.8 87.4 38.5 9.9

+ DTG 76.7 70.9 44.2 16.3 73.2 77.7 39.3 10.1

Source 味道赞，肉类好，服务热情
Reference Nice taste, great meat, enthusiastic service.
GPT 1-shot The taste is great, the meat is good, and the service is enthusiastic.
+ Refine The flavors are amazing, the meat is excellent, and the service is warm and welcoming.
+ DTG Great taste, good meat, enthusiastic service.

Source 目前已经购买了这个系列3款机器！
Reference I have bought three laptops of this series!
GPT 1-shot So far, 3 machines from this series have been purchased!
+ Refine Up until now, 3 machines from this series have been purchased!
+ DTG I have already purchased 3 models from this series!

Table 12: Case study on refining from the previous candidate (Refine) and the proposed DTG method.

• 3 points - Mostly accurate; minor errors and979

inconsistencies.980

• 4 points - Generally correct; some language981

and spacing issues.982

• 5 points - Smooth, accurate, and fully conveys983

the original meaning.984

Note that the 500 sentences were randomly se-985

lected from the test set. We also provide the de-986

tailed score distribution:987

Case Study We provide a case study based on988

GPT4 model in Table 12, where “Refine” indicates989

utilizing the 5-shot baseline results as the synthe-990

sized sentences, i.e., “[INCORRECT SYS]” in Fig-991

ure 1, and DTG is our method that uses an empty992

string instead. The conclusions are two-fold. 1) 993

Using the baseline results will cause the model to 994

avoid generating the same segmentations in it al- 995

though they may be correct already, e.g., “taste” to 996

“flavors”, “so far” to “up until now”, as well as oth- 997

ers in red. As a result, the fluency and accuracy of 998

the final results may be affected. 2) Equipped with 999

DTG, fluency, coherence and grammatical correct- 1000

ness of generated results are all promoted. In the 1001

first case, the DTG result is more faithful not only 1002

in semantics but also in structure than the baseline. 1003

In the second case, DTG is able to complete the 1004

subject “I” which does not appear in the source 1005

sentence. 1006
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E Details of Error Statistical1007

In Figure 6, two types of error are considered (i.e.,1008

under translation and entity translation error). In1009

this section, we provide the details of the method1010

to conduct the error statistics.1011

Under Translation We first use awesome-1012

align11 to get the alignment between the source1013

and target sentences. Then, a word in the source1014

sentence is regarded as under translation, when it1015

is aligned to a word in the reference target sentence1016

but failed to be aligned in the generated target sen-1017

tence.1018

Entity Translation We first use spaCy12 to rec-1019

ognize the named entities in the reference target1020

sentence, where person names, organizations and1021

locations are considered. Then, an entity in the ref-1022

erence is considered an error if it cannot be found1023

in the generated target sentence.1024

11https://github.com/neulab/awesome-align
12https://github.com/explosion/spaCy
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