
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING CONTROLLABLE MODELING VIA SELF-
EVOLVING FEATURE ENGINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning faces a fundamental dilemma: models that achieve high
predictive performance are typically opaque, while models that provide control,
the ability to understand and guide their outcomes, often sacrifice accuracy for
transparency. This performance-control trade-off constrains ML adoption in critical
domains where both capabilities are essential. Practitioners have historically
addressed this challenge through manual feature engineering, embedding domain
expertise into models to achieve reasonable accuracy while retaining some degree
of control. However, this process is costly, time-consuming and limited by human
expertise, restricting scalability. We present FEST (Feature Engineering with
Self-evolving Trees), a framework for automated controllable modeling that
replaces manual feature design with an iterative, self-evolving process. FEST
leverages large language models (LLMs) as feature discovery engines to generate
plausible features from observational data by analyzing contrasting samples. Next,
these features are semantically clustered, deduplicated and validated for predictive
performance using interpretable decision trees. The evolving trees refine feature
sets over iterations, producing human-readable decision rules that practitioners
can inspect, modify and intervene upon, thus providing both accuracy and control.
To demonstrate FEST’s effectiveness in bridging the performance-control gap,
we evaluate it against traditional interpretable models, neural networks, and LLM
classifiers across diverse real-world tasks in social science, NLP, and marketing
domains. We also introduce GLoRE, a controlled synthetic benchmark, designed
to test to test a model’s ability to deduce outcomes from complex logical rule re-
lationships embedded in natural language, with true features and their relationships
unknown to LLMs. FEST recovers all of the target features. These results show
that automated, self-evolving feature engineering can make controllable modeling
practical at scale, reducing reliance on costly manual design while narrowing the
long-standing divide between performance and control in machine learning.

1 INTRODUCTION

Machine learning faces a fundamental dilemma that has persisted since its inception: models that
achieve high predictive performance are often opaque, while models that provide control, the ability
to understand and guide their outcomes, tend to underperform. Here, performance means a model’s
ability to make accurate, generalisable predictions, whereas control refers to the ability to understand
and guide a model’s outcomes. For instance, consider rocket trajectory modeling in aerospace engi-
neering: scientists achieve both precise predictions (performance) and complete understanding of how
thrust, launch angle, and atmospheric drag affect outcomes (control). In contrast, machine learning
practitioners must choose between high-performing but opaque neural networks and interpretable
but underperforming traditional models, creating a persistent challenge that constrains ML adoption
in critical applications, such as healthcare diagnostics, financial lending, and policy decisions. This
tension is particularly pronounced in domains where both performance and control are essential, such
as healthcare diagnostics, financial lending, and policy decisions.

Why does control matter so fundamentally in machine learning systems? Beyond regulatory require-
ments and ethical considerations, control enables practitioners to understand which features drive
predictions, modify model behavior predictably and ensure reliable operation in new scenarios Lipton
(2018); Rudin (2019). Real-world deployments demonstrate this critical need: credit risk scorecards
remain the industry standard at major banks precisely because regulators require transparent decision
processes that can be audited and explained Baesens et al. (2003). Similarly, the Framingham Risk
Score continues as the global standard for cardiovascular risk assessment because clinicians can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Examples of features and decision rules discovered by FEST for checking alignment of images to
brand’s visual identity. This produces human-readable decision rules that practitioners can inspect and modify.

understand and trust its additive structure Lloyd-Jones et al. (2004). These systems deliberately
sacrifice some predictive power to maintain the control that practitioners require for high-stakes
decisions.

Historically, practitioners achieved this essential control through manual feature engineering, the
painstaking process of designing input variables that embed domain expertise directly into models.
Early systems from the late 1950s onward illustrated this approach: Samuel’s checkers program
Samuel (1959) used carefully crafted board evaluation features like piece advantage and mobility that
human experts could understand and validate, while the MYCIN medical diagnosis system Shortliffe
(1976) relied on interpretable clinical features that physicians could trace through logical decision
rules. This philosophy extended to practical applications like spam email classification, where models
used transparent features such as suspicious word frequencies ("free", "urgent", "click here") and
sender metadata (domain reputation, header inconsistencies) to achieve both explainable decisions
and reasonable accuracy Sahami et al. (1998). These features served as a bridge between raw signals
and human understanding, allowing model decisions to be inspected. This approach provided the
control that practitioners needed while delivering acceptable performance.

As machine learning matured, feature engineering remained central. Support Vector Machines Cortes
& Vapnik (1995) mapped features into high-dimensional spaces to improve separability through
sophisticated kernel methods, yet their performance remained critically dependent on appropriate
feature selection and kernel choice, requiring deep domain expertise to achieve optimal results.
Decision trees Breiman et al. (1984) offered transparent hierarchical decision rules that could be
directly interpreted by domain experts, with each internal node representing a simple threshold test on
a single feature, making the entire decision process traceable and modifiable. This property made them
particularly valuable in domains requiring regulatory compliance such as medical diagnosis and credit
scoring Quinlan (1986). Ensemble methods like Random Forests Breiman (2001) and XGBoost Chen
& Guestrin (2016) improved robustness while preserving interpretability through feature importance
measures. However, all these algorithmic advances shared a fundamental limitation: their success
remained contingent on the quality of manually engineered features.

However, manual feature engineering faces inherent limitations that increasingly constrain perfor-
mance as machine learning tackles more complex problems. Domain experts are bounded by cognitive
limitations, finite knowledge, cultural context and economic constraints Kahneman (2011), creating
bottlenecks that become more severe as data complexity increases. As datasets grew from hundreds
of features in early applications to thousands in text classification and millions of pixels in computer
vision, the cost of hiring domain experts for each new task became economically prohibitive. Even
when experts were available, their handcrafted features frequently proved insufficient for competitive
performance on complex real-world problems, creating a fundamental tension between the control
offered by manual feature engineering and the performance demanded by practical applications.

The deep learning revolution addressed these performance limitations by fundamentally abandoning
manual feature engineering in favor of automatic representation learning from raw data. Human
expertise was redirected from feature design to architectural innovation. Convolutional neural
networks LeCun et al. (2002) learned hierarchical feature detectors directly from pixels, eliminating
the need for hand-crafted visual features, while transformer architectures Vaswani et al. (2017)
automatically extracted semantic representations from text without requiring linguistic expertise.
This architectural revolution achieved dramatic performance gains across vision, language and audio
domains by trading control for performance. Thus, practitioners could no longer directly influence

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which features models emphasized, understand the reasoning behind predictions, or predict how
models would behave in new situations.

Recognizing the critical loss of control in deep learning systems, post-hoc explainability methods were
developed to explain model behavior after training. Techniques such as LIME Ribeiro et al. (2016),
SHAP Lundberg & Lee (2017), and gradient-based attribution methods Selvaraju et al. (2017) emerged
to attribute importance to input features or concepts. However, these approaches face limitations that
prevent them from truly restoring control: they can produce misleading results when models rely on
spurious correlations Adebayo et al. (2018), lack ground-truth references for verification, and most
critically, provide explanation without genuine control. Practitioners can obtain plausible explanations
of model behavior without gaining the ability to predict or systematically modify how models will
respond to new inputs or scenarios. As Rudin (2019) argues, such explanations can be misleading and
should not be relied upon in high-stakes settings. This gap between explanation and control means that
explainability research, while valuable for model auditing and retrospective analysis, has not resolved
the core challenge of building simultaneously powerful and controllable machine learning systems.

Similarly, reasoning techniques in Large Language Models, while appearing to offer a bridge between
performance and explainability, suffer from analogous limitations. Chain-of-Thought (CoT) prompt-
ing Wei et al. (2022) and related techniques demonstrate impressive performance improvements
on reasoning benchmarks while appearing transparent through step-by-step explanations. However,
systematic investigation reveals fundamental faithfulness problems: CoT can generate different rea-
soning paths for identical inputs across multiple runs Wang et al. (2022), and explanations frequently
diverge from the true computations driving predictions, instead rationalizing predetermined answers
through seemingly logical but unfaithful post-hoc narratives Barez et al. (2025). Thus, while LLM
reasoning appears explainable, it does not provide verifiable control.

We argue that LLMs are more promising in a different role: not as black-box predictors or unreliable
explainers, but as feature discovery engines. LLMs possess capabilities that could address the
fundamental limitations of manual feature engineering. Unlike human experts who are constrained by
domain knowledge, cognitive limitations, and economic costs, LLMs are trained on vast amounts of
knowledge across diverse domains and demonstrate remarkable pattern recognition abilities that span
multiple tasks and domains within a single system Brown et al. (2020). This suggests a path toward
scalable automated feature discovery that could overcome the expertise bottlenecks and economic
limitations that have constrained manual approaches.

To this end, we present FEST (Feature Engineering with Self-evolving Trees), a novel framework
for automated and scalable controllable modeling. FEST couples the pattern recognition capabilities
of LLMs with the control of traditional tree-based models through an iterative generate-and-filter
process. Given observational data with varying outcomes, FEST prompts LLMs to generate plausible
features that distinguish contrasting samples, deduplicates and clusters similar features using semantic
embeddings, then trains decision trees to evaluate feature relevance. Trees evolve iteratively, selecting
predictive features while discarding weak ones, producing models whose decision logic is expressed
as explicit, human-readable rules. This process continues until convergence, building a refined bank
of validated features that enable both high performance and control. By combining LLM-based
feature discovery with interpretable model validation, FEST reduces reliance on costly manual
engineering while narrowing the performance gap between interpretable and black-box models. Our
key contributions are summarised below:
• Scalable feature engineering: We introduce FEST, a framework that automates and scales feature

engineering via a generate–deduplicate–validate cycle, coupling LLM-based feature discovery with
self-evolving decision trees.

• Verifiable control: We demonstrate that FEST enables controllable modeling: Since FEST
leverages interpretable decision tree models, predictions can be traced through a series of simple
feature-based decisions, providing reproducible and controllable explanations.

• Maintained performance: We provide extensive empirical evaluation. FEST achieves competitive
performance across real-world tasks across across social science, NLP, marketing domains, and
outperforms baselines on majority of the tasks.

• Synthetic Benchmark: We synthesise GLoRE, a controlled dataset to test model’s ability to
deduce outcomes from complex logical rule relationships embedded in natural language. We show
that FEST recovers the true features in this setting, validating its capability for not just feature
discovery but also relationships between features.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Paired Batch Data

(Xipos, Xineg)
Num pairs : B

Make Pairwise
Comparisons

Convert to paired data
to discover discriminant

features from

Xipos

Xineg

B

B

Num samples = 2B

Stage 1- Plausible Feature Discovery

To Mine Discriminating Patterns from Data

Plausible
Discriminating

Features

Paired Data

(Xipos, Xineg)
Size : N

Xipos = (xi
pos

, yi
pos

)

Xineg = (xi
neg

, yi
neg

)

n-Clusters of
Plausible Features

Obtain Deduplicated
Features

and merge with feature bank

Summarize
Clusters

Stage 2- Feature De-Duplication

For Feature Space Dimensionality reduction

Generate
Semantic

Embeddings on
K-Means

iter++

Individual
Xi from

Batch[i]

Decision

Tree (M)

To Remove Low Impact and Noisy Features

Stage 3- Feature Relevance Assessment

LLM encodes
presence/absence

of features

Encode

Encoded
Data

Remove low importance
features and

update feature bank

 1 ... 0 1
 0 ... 0 1
 ...
 1 ... 1 0

Train

Decision
Tree (M)

Acc ≥ τ?
No Yes

Test

Importance
Scores

0.30

0.20

0.05

0.15

Summarize
Clusters

Life's good when we
connect authentically
with our community

xipos

yi
pos (On Brand)

Compare on-brand
and off-brand
Tweet pairs

1. Use inclusive language and avoid formal tones

2. Incorporate humor and light-heartedness

3. Avoid technical jargon

4. Connect warmly with the audience

5. Evoke emotional appeal and inspiration

6. Express urgency, emphasize limited time deals
...

Plausible discriminating Features

1. Tone
- Use inclusive language and avoid formal
tones
- Avoid technical jargon

2. Engagement
- Incorporate humor and light-heartedness
- Connect warmly with audience

3. Emotion
- Evoke emotional appeal and inspiration

4. Urgency

- Invoke urgency, emphasize limited time deals

1. Use inclusive language and avoid formal,
technical, or overly serious tones

2. Incorporate humor, light-heartedness for
community engagement

3. Evoke emotional appeal and inspiration

4. Invoke urgency, emphasize limited time
deals

Semantic Clustering Obtain Deduplicated Features
and combine with feature bank

Combined De-duplicated
Tweet Features

Decision Tree (M)

 1 ... 0 1
 0 ... 0 1
 ...
 1 ... 1 0

LLM encodes the
presence or absence

of features in Tweets

Train

Remove low
importance
features

- Incorporate humor, light-heartedness
for community engagement

- Use inclusive language and avoid formal,
technical, or overly serious tones

- Evoke emotional appeal and inspiration0.25

0.32

0.40

- Invoke urgency, emphasize limited

time deals

Individual Tweet Samples
Xi from Batch [i]

Organize and consolidate
similar tweet features to

avoid redundancy

1. Use inclusive language and avoid formal,
technical, or overly serious tones

2. Incorporate humor, light-heartedness to
for community engagement

3. Evoke emotional appeal and inspiration

4. Invoke urgency, emphasize limited time
deals

0.04

Brand

Validation

for LG

Get refined feature bank
for classifying tweets as on-brand or off-brand

Advanced Technical
specifications for

optimal performance

xineg

yi
neg (Off Brand)

x B

batch size

Figure 2: FEST: Feature Engineering with Self-evolving Trees

2 METHODOLOGY

FEST operates through an iterative process that extracts interpretable decision features in natural
language from raw observational data. The algorithm processes data in expanding batches, continu-
ously refining a feature bank through three core stages: plausible feature discovery, deduplication,
and feature relevance assessment, each of which we discuss in detail below. The entire end-to-end
pipeline is illustrated in Figure 2. The detailed pseudocode is provided in Algorithm 1.

2.1 PAIRWISE COMPARISON FRAMEWORK

Motivation – From Absolute Assessment to Relative Discrimination: The central challenge in
automated feature engineering is discovering characteristics that distinguish between different types
of instances in a dataset. Traditional approaches analyze individual samples in isolation, but this
absolute assessment suffers from two fundamental limitations: (1) inability to distinguish between
universally present attributes and discriminative features, and (2) dependence on subjective absolute
thresholds.

We adopt a relative discrimination approach through pairwise comparisons for two key reasons.
First, this approach naturally filters out common attributes and focuses on discriminative features.
Consider news headline analysis: absolute assessment might identify "contains numbers" as a relevant
feature without considering that numbers appear almost equally in both successful and unsuccessful
headlines. Pairwise comparison focuses discovery on features that actually differentiate between
contrasting samples, for example, identifying that successful headlines use specific question formats
while unsuccessful ones rely on generic statements. Second, Psychology research demonstrates that
humans make more consistent judgments when comparing alternatives rather than providing absolute
ratings Thurstone (1927). Inspired from this, we hypothesise that pairwise comparisons align better
with LLM capabilities for feature discovery. We formally design the pairwise comparison framework
as follows:

• Consider a dataset D = {(xi, yi)}Ni=1 where xi represents the input sample (e.g., text, structured
data) and yi represents the associated outcome measure. The outcome yi can take different forms
depending on the task – (1) Regression: Continuous values (e.g., engagement scores, click rates)
(2) Classification: Binary labels (e.g., genuine vs. fake reviews)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• We transform this dataset into pairwise comparisons by constructing comparison pairs P =
{(xpos

i , xneg
i)} where: (1) xpos

i = sample with higher desirability and (2) xneg
i = sample with

lower desirability.
• The notion of "higher desirability" is task-dependent – (1) Regression: ypos > yneg (e.g., higher

engagement score) (2) Binary Classification: xpos from positive class, xneg from negative class

• For a dataset of size N , we can construct up to
(
N
2

)
comparison pairs, though in practice we may

sample a subset for computational efficiency.

Advantages of Pairwise Formulation: The pairwise framework offers two key advantages for
automated feature discovery: (1) Discriminative Focus: By examining differences between xpos and
xneg , LLMs naturally focus on distinguishing characteristics rather than universally present attributes.
This eliminates noise from features that appear equally in both successful and unsuccessful samples.
(2) Simplified Learning: Each comparison (xpos

i , xneg
i) reduces complex preference learning to a

focused binary discrimination problem: "What makes xpos
i better than xneg

i ?" This simplification
enables clearer feature discovery compared to analyzing samples in isolation.

2.2 ALGORITHM INITIALIZATION

Before beginning the iterative process, FEST requires several initialization steps:

• Data Preparation: The input dataset D is transformed into pairwise comparisons P and split into
training and test sets (Dtrain, Dtest).

• Feature Bank: An empty feature bank F = ∅ is initialized to store discovered features.
• Feature Importance History: A history tracker Himportance = ∅ is initialized to maintain feature

importance scores across iterations for pruning decisions.
• Batch Parameters: Initial batch size K0 and maximum batch size Kmax are set.
• Convergence Criteria: Accuracy threshold τaccuracy for convergence and minimum importance

threshold τimportance for feature pruning are defined.
• Optional Seed Features: If domain knowledge is available, seed features can be provided to

initialize the feature bank, otherwise the algorithm starts from scratch.

FEST processes comparison pairs in expanding batches to balance computational efficiency with
feature quality. We begin with small batches (typically 50 pairs) and double the batch size each
iteration until reaching a maximum threshold. This progressive expansion allows early iterations
to discover fundamental patterns while later iterations capture more nuanced relationships. The
expanding batch strategy serves two purposes: (1) it enables rapid initial discovery of high-impact
features from limited data, and (2) it prevents computational bottlenecks that would arise from
processing all pairs simultaneously in large datasets.

2.3 STAGE 1: PLAUSIBLE FEATURE DISCOVERY

For each comparison pair (xpositive, xnegative) in the current batch, we prompt large language
models to generate plausible features explaining what differentiates the positive sample from the
negative sample. We employ multiple prompt templates to encourage diverse feature discovery. This
multi-perspective approach captures different aspects of the underlying patterns. Each pair generates
M plausible features per prompt template, creating a rich pool of potential features. The complete
prompt templates are provided in Appendix G. The use of LLMs for plausible feature discovery
leverages their natural language understanding to articulate human-interpretable explanations. Unlike
traditional feature engineering, this approach automatically discovers relevant attributes without
relying on scarce domain-specific expertise.

2.4 STAGE 2: FEATURE DEDUPLICATION

Stage 1 can produce thousands of plausible features, many expressing identical concepts through
varied linguistic formulations. Left unchecked, this inflates the feature space and dilutes discriminative
signal. We therefore perform semantic deduplication to group near-duplicates and consolidate
them into representative summaries. We compute semantic embeddings of the plausible features
conditioned on the task description using GritLM-7B Muennighoff et al. (2024). Unlike generic

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

text embeddings, these representations enable more accurate identification of conceptual similarity
within the domain context. We then apply K-means to cluster semantically similar features and
prompt an LLM to summarize each cluster into a single representative feature that preserves the core
concept while filtering noise. This consolidation reduces dimensionality and computational cost in
subsequent stages, and it amplifies true signal by unifying semantically equivalent features into a
single representation.

2.5 STAGE 3: FEATURE RELEVANCE ASSESSMENT

This stage comprises of three steps: feature inference process where LLMs evaluate the presence
or absence of each feature in (xpos

i and xneg
i) samples, training a decision tree model on encoded

features, and finally obtaining feature importance scores through the trained model for assessing their
relevance.

Feature Inference: We split each comparison pair (xpos
i , xneg

i) into two individual samples and
evaluate feature presence independently. For each individual sample x and each feature fk, the LLM
evaluates whether feature fk is present or absent in sample x. This transforms our batch of |B|
comparison pairs into 2|B| individual samples (|B| positive samples and |B| negative samples). We
define the feature inference function as:

g(fk, x) =

{
1 if feature fk is present in sample x

0 if feature fk is absent in sample x
(1)

This feature inference process creates a feature matrix X ∈ {0, 1}2|B|×|F | where rows represent the
2|B| individual samples (obtained by splitting |B| comparison pairs) and columns represent features.
Each element Xij = g(fj , xi) contains the binary presence indicator for feature fj in sample xi. The
corresponding label vector is y ∈ {0, 1}2|B| where yi = 1 for positive samples (xpos) and yi = 0 for
negative samples (xneg).

Decision Tree Classification: Next, we train a decision tree classifier on the binary feature matrix to
perform classification and evaluate feature relevance. The decision tree serves two critical purposes
in our algorithm: (1) it learns discriminative patterns to for downstream classification tasks, and
(2) it provides feature importance scores that guide feature bank evolution and pruning. We adopt
decision trees for their interpretability, automatic feature selection, and ability to handle non-linear
relationships between features. Once trained, the model is evaluated on the test set to measure
classification accuracy, which determines algorithm convergence.

Rule Bank Evolution and Pruning: The feature bank evolves iteratively as new features are
discovered and validated for predictive power. After each iteration, we extract feature importance
scores from the trained decision tree and update the importance history Himportance for each feature.
This history tracker maintains importance scores across multiple iterations, enabling robust pruning
decisions. Features with consistently low importance over the last three iterations (mean importance
below τimportance) are removed from the feature bank. This pruning mechanism prevents unbounded
growth while retaining only the most discriminative features, ensuring the model focuses on genuinely
predictive patterns rather than noise.

The algorithm converges when either: (1) test accuracy exceeds a predefined threshold, indicating
sufficient feature quality, or (2) all training data has been processed, ensuring comprehensive coverage.
The detailed pseudocode is provided in Appendix ??.

3 RESULTS AND DISCUSSIONS

3.1 DATASETS

We evaluate FEST across four categories of tasks to demonstrate its versatility and effectiveness in dis-
covering interpretable features from observational data. We cover each of these four categories below:

1. Social Science Tasks:

• Headline Popularity (Zhou et al. (2024)): Predict which headline from a pair received the most
clicks by users.

• Tweet Popularity (Tan et al. (2014)): Predict which tweet from a pair received more retweets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• Deceptive Review Detection (Ott et al. (2013)): Predict if a given hotel review is genuine or
deceptive.

• AI-Generated Content Detection (Liu et al. (2024)): Predict is a given story is human-written of
AI-generated.

• Persuasive Argument Prediction (Pauli et al.): Predict which text from a pair is more persuasive.
• Mental Stress Detection(Turcan & McKeown (2019)): Predict if a given Reddit post indicates a

state of stress.

2. Language Understanding Tasks: We adapt standard NLP benchmarks from GLUE (Wang et al.
(2018)) to evaluate feature discovery on linguistic patterns:

• SST (Stanford Sentiment Treebank): Sentiment Analysis
• MRPC (Microsoft Research Paraphrase Corpus): Semantic Equivalence
• RTE (Recognizing Textual Entailment): Textual Entailment
• WNLI (Winograd NLI): Textual Entailment/reasoning

3. Marketing Tasks: We evaluate FEST on marketing data by extracting features that capture a
brand’s identity and using them to classify social media posts as on-brand or off-brand. A brand’s
identity is important for maintaining visibility, customer loyalty, and to stand out from competition
Acar et al. (2024). We use a dataset of promotional social media posts of 12 brands (Khurana et al.
(2025)) for this task. Results are averaged over all the brands. Evaluation is done per target brand,
with posts labeled "on brand" if from the brand and "off brand" if from other brands in the same
industry. The task (brand validation) is performed on both text and images.

4. Synthetic Tasks: To systematically evaluate the ability of models to perform compositional logical
reasoning from text, we developed the Galactic Logical Reasoning (GLoRE) benchmark. GLoRE
is a synthetic, text-based environment designed to test a model’s ability to deduce outcomes from
complex logical rule relationships embedded in natural language. Each data point is a natural
language description of a fictional alien species. The core of the benchmark lies in the eight
ground truth logical rules that map the determinative features to galaxy preferences.
These rules include simple predicates (e.g., h1, ¬h2) and complex compositional operators (e.g.,
h1 ∧ h2, h1 ∨ h2, h1 ⊕ h2). The benchmark has eight balanced sub-datasets, one per logical rule,
with positive samples satisfying the rule and negatives violating it (Table 2). Outcomes depend on
logical feature combinations, not superficial cues (Appendix E). We evaluate binary classification:
given an alien description and galaxy assignment, the model predicts True or False. Performance
is measured with three key metrics. Detailed discussion for synthetic task is in E.5.

3.2 METRICS

We employ multiple evaluation metrics to assess different aspects of FEST’s automated feature
engineering performance. Different combinations of metrics are utilised for different experiments.

1. Accuracy: We first report accuracy as a primary measure of overall predictive performance
across all tasks.

2. Logical Consistency Score: This metric evaluates if a model’s predictions are internally
consistent with the task’s ground truth logic (e.g., AND, OR, XOR). The process first uses sentence
embeddings (Qwen/Qwen3-Embedding-4B) to automatically identify the indices (i∗, j∗) of the
model-generated features that best align with our core hypotheses (h1, h2). For each sample k, we
then use the boolean flags (vk,i∗ , vk,j∗) associated with these features as inputs to the ground truth
logical operator R. The score is the fraction of samples where the operator’s output matches the
model’s final prediction pk. A high score indicates the model has learned the correct compositional
structure of the problem as shown in 4.

Logical Consistency =
1

|D|
∑
k∈D

I(pk = R(vk,i∗ , vk,j∗))

3. IoU Score: This metric assesses the quality of the generated feature set (G) against the ground
truth set (T), rewarding both correctness and conciseness. The intersection, |Tdiscovered|, is the number
of ground truth features with a semantically similar counterpart in G, determined via an embedding

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

similarity threshold (τ = 0.7). The IoU is the ratio of this intersection to the union of the two sets. A
high score signifies a more accurate and efficient explanation from the model as shown in 3.

IoU =
|Tdiscovered|

|T |+ |G| − |Tdiscovered|

3.3 BASELINE METHODS

We compare FEST against the following baseline methods:

• Zero-shot LLM: Direct classification by an LLM with task description only, no examples provided.
• Few-shot LLM: LLM classification with task description and a few labeled examples in the prompt.
• Features (Zero Shot) + LLM: LLM discovers features from task description in zero-shot setting,

then performs zero shot classification using these features.
• Features (Few Shot) + LLM: LLM discovers features from task description with few examples,

then performs zero shot classification based on these features.
• Features (Zero Shot) + Decision Tree: LLM discovers features from task description in zero-shot,

followed by decision tree classification. For classification, binary feature vectors are created for
each sample. For a given sample’s feature vector, the entry at the ith index indicates if the ith feature
is present in that sample. This presence/absence is determined using LLMs.

• Features (Few Shot) + Decision Tree: LLM discovers features from task description with few
examples, followed by decision tree classification.

• Features (Zero Shot) + XGBoost: LLM discovers features from task description in zero-shot,
followed by XGBoost classification.

• Features (Few shot) + XGBoost: LLM discovers features from task description with few examples,
followed by XGBoost classification.

• Encoder: BERT-based model (RoBerta (Liu et al. (2019))) fine-tuned for classification on each
text-based task. For the image task, embeddings were extracted from BLIP 2’s Qformer (Li et al.
(2023)) and a classification head was attached on top.

3.4 RESULTS

1. Classification Performance: Standard classification task for all the datasets. Performance
assessed using accuracy. We report results using GPT-4o-mini (OpenAI (2023)) in table 1.
Table 1: Comparison of results obtained using GPT-4o-Mini. Best performing config is highlighted in bold, for
each dataset. We treat the encoder as an oracle, and do not consider it while determining the best performing
config, since it is very different from the broader theme of the rest of the approaches.

Dataset Name Model Name LLM Features+LLM Features+DT Features+XGB Encoder FEST
Zero Shot Few shot Zero Shot Few shot Zero Shot Few shot Zero Shot Few shot

Social Science Tasks
Deceptive Reviews GPT 0.514 0.656 0.604 0.612 0.676 0.634 0.680 0.642 0.920 0.696
Headline Pairs GPT 0.593 0.587 0.550 0.589 0.535 0.552 0.520 0.533 0.490 0.612
Retweet Pairs GPT 0.589 0.554 0.578 0.628 0.593 0.572 0.578 0.586 0.508 0.598
GPT-generated content GPT 0.493 0.490 0.490 0.450 0.660 0.736 0.660 0.673 0.990 0.785
LLama-generated content GPT 0.530 0.543 0.530 0.536 0.613 0.573 0.630 0.580 0.976 0.735
Dreaddit GPT 0.626 0.704 0.662 0.650 0.688 0.720 0.716 0.720 0.722 0.745
Persuasive Pairs GPT 0.718 0.662 0.760 0.722 0.738 0.738 0.724 0.744 0.518 0.875

Language Understanding Tasks
SST2 GPT 0.942 0.956 0.922 0.942 0.889 0.920 0.899 0.928 0.926 0.964
RTE GPT 0.880 0.890 0.891 0.877 0.844 0.833 0.855 0.851 0.472 0.885
MRPC GPT 0.698 0.718 0.703 0.699 0.788 0.759 0.792 0.759 0.869 0.844
WNLI GPT 0.845 0.859 0.788 0.774 0.830 0.859 0.830 0.859 0.436 0.818

Marketing Tasks
Brand Validation (text) GPT 0.524 0.714 0.556 0.593 0.620 0.694 0.624 0.696 0.964 0.778
Brand Validation (images) GPT 0.505 0.673 0.501 0.535 0.599 0.650 0.604 0.629 .673 0.713

Synthetic Tasks
H1 GPT 0.530 0.595 0.500 0.500 0.580 1.000 0.570 1.000 1.000 1.000
H2 GPT 0.510 0.645 0.500 0.500 0.620 0.995 0.610 0.995 1.000 0.955
H1 and H2 GPT 0.555 0.705 0.500 0.500 0.515 0.935 0.510 0.940 1.000 0.928
H1 or H2 GPT 0.505 0.620 0.500 0.500 0.555 0.865 0.555 0.880 1.000 0.903
H1 xor H2 GPT 0.470 0.495 0.500 0.500 0.500 0.540 0.505 0.540 1.000 0.583
not H1 GPT 0.480 0.475 0.500 0.500 0.505 0.775 0.530 0.810 1.000 0.982
not H2 GPT 0.490 0.575 0.500 0.500 0.640 0.755 0.640 0.755 1.000 0.925
neither GPT 0.500 0.440 0.500 0.500 0.560 0.945 0.565 0.950 1.000 0.902

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2. Relationship Prediction and fidelity of discovered features: We conduct this experiment using
our synthetic environment. We use IoU to assess the intersection of generated features with ground
truth features, and logical accuracy to measure correctness of the discovered relationship among
features.
3. Feature bank stability: We measure feature bank stability via additions and deletions between
iterations. EVOLVE (an adaptation of our Features (Few-shot) + XGBoost approach) iteratively
updates the feature bank using 50 few-shot examples and the previous features, while FEST follows a
similar procedure. As shown in 3, FEST’s additions decrease and deletions increase over iterations,
indicating pruning and a move towards convergence of features.

Figure 3: Comparison of additions and deletions for FEST and EVOLVE for Dreaddit and Persuasive Pairs.

3.5 DISCUSSION

From the results displayed in the previous section, we observe the advantages of FEST. In particular,
FEST outperforms all other baselines (not accounting for the encoder) on most tasks, suggesting that
it discovers high quality rules which enable accurate classification. Additionally, FEST outperforms
all other methods in recovering ground truth features as well as their logical relationships on our
synthetic benchmark. Finally, We observe that FEST provides more stable feature banks, with the
features gradually converging. To show the interpretable nature of the features and decision rules
discovered by FEST, we visualize the decision paths for two different samples of brand images, one
on-brand and the other off-brand (1).

4 CONCLUSION

This paper addressed the long-standing trade-off between predictive performance and control in
machine learning. We introduced FEST (Feature Engineering with Self-evolving Trees), a framework
that automates feature engineering using large language models in combination with interpretable deci-
sion trees. FEST operationalizes a generate–deduplicate–validate loop that produces human-readable
features, enabling practitioners to inspect and adjust decision rules while maintaining competitive
accuracy. Empirical results across social science, NLP, marketing, and synthetic benchmarks show
that FEST narrows the performance gap between interpretable and black-box models, while also
providing feature sets that are stable, verifiable, and aligned with domain knowledge. These findings
suggest that automated feature engineering can reduce reliance on manual expertise, scale more
effectively across domains, and improve the practical usability of interpretable models. Future work
should focus on improving scalability and integrating causal reasoning, as well as exploring FEST’s
potential in applications where actionable feedback or post-hoc explanations of black-box models are
valuable. Key takeaway: FEST demonstrates that automated feature engineering can advance both
accuracy and control, moving toward interpretable models that are practical at scale.

REFERENCES

Nikhil Abhyankar, Parshin Shojaee, and Chandan K Reddy. Llm-fe: Automated feature engineering
for tabular data with llms as evolutionary optimizers. arXiv preprint arXiv:2503.14434, 2025. 14

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ayşegül Acar, Naci Büyükdağ, Burak Türten, Ersin Diker, and Gülsüm Çalışır. The role of brand
identity, brand lifestyle congruence, and brand satisfaction on repurchase intention: a multi-group
structural equation model. Humanities and Social Sciences Communications, 11(1):1–13, 2024. 7

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity
checks for saliency maps. Advances in neural information processing systems, 31, 2018. 3, 13

Bart Baesens, Tony Van Gestel, Stijn Viaene, Maria Stepanova, Johan Suykens, and Jan Vanthienen.
Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the opera-
tional research society, 54(6):627–635, 2003. 1

Fazl Barez, Tung-Yu Wu, Iván Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas
Collignon, Clement Neo, Isabelle Lee, Alasdair Paren, Adel Bibi, Robert Trager, Damiano
Fornasiere, John Yan, Yanai Elazar, and Yoshua Bengio. Chain-of-thought is not explainability,
2025. 3, 14

João Eduardo Batista. Embedding domain-specific knowledge from llms into the feature engineering
pipeline. arXiv preprint arXiv:2503.21155, 2025. 14

L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees. Taylor
& Francis, 1984. ISBN 9780412048418. URL https://books.google.co.in/books?
id=JwQx-WOmSyQC. 2, 13

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001. 2, 13

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Saxena, Shibani Santurkar, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 3

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. pp. 785–794, 2016. 2,
13

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297,
1995. 2, 12

Pedro Domingos. A few useful things to know about machine learning. Communications of the ACM,
55(10):78–87, 2012. 13

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
Statistics, 29(5):1189–1232, 2001. doi: 10.1214/aos/1013203451. 13

Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
automatically engineer features for few-shot tabular learning. arXiv preprint arXiv:2404.09491,
2024. 14

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011. 2

Varun Khurana, Yaman Kumar Singla, Jayakumar Subramanian, Changyou Chen, Rajiv Ratn Shah,
zhiqiang xu, and Balaji Krishnamurthy. Measuring and improving engagement of text-to-image
generation models. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=TmCcNuo03f. 7

Jeonghyun Ko, Gyeongyun Park, Donghoon Lee, and Kyunam Lee. Ferg-llm: Feature engineering
by reason generation large language models. arXiv preprint arXiv:2503.23371, 2025. 14

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002. 2, 13

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023. 8

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018. 1

10

https://books.google.co.in/books?id=JwQx-WOmSyQC
https://books.google.co.in/books?id=JwQx-WOmSyQC
https://openreview.net/forum?id=TmCcNuo03f

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haokun Liu, Yangqiaoyu Zhou, Mingxuan Li, Chenfei Yuan, and Chenhao Tan. Literature meets
data: A synergistic approach to hypothesis generation. arXiv preprint arXiv:2410.17309, 2024. 7

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=w0H2xGHlkw. 13

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019. 8

Donald M Lloyd-Jones, Peter WF Wilson, Martin G Larson, Alexa Beiser, Eric P Leip, Ralph B
D’Agostino, and Daniel Levy. Framingham risk score and prediction of lifetime risk for coronary
heart disease. The American journal of cardiology, 94(1):20–24, 2004. 2

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017. 3, 13

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language Process-
ing. MIT Press, 1999. 12

Niklas Muennighoff, Hongjin SU, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning. In ICLR 2024 Workshop: How Far
Are We From AGI, 2024. URL https://openreview.net/forum?id=8cQrRO9iFe. 5

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5):1, 2023. 8

Myle Ott, Claire Cardie, and Jeffrey T Hancock. Negative deceptive opinion spam. In Proceedings of
the 2013 conference of the north american chapter of the association for computational linguistics:
human language technologies, pp. 497–501, 2013. 7

Amalie Brogaard Pauli, Isabelle Augenstein, and Ira Assent. Measuring and benchmarking large
language models’ capabilities to generate persuasive language. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics.
7

J. R. Quinlan. Induction of decision trees. In Machine Learning, pp. 81–106, 1986. doi: 10.1007/
BF00116251. 2, 13

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining the
predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 1135–1144, 2016. 3, 13

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019. 1, 3, 13

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian approach to filtering
junk e-mail. In Learning for Text Categorization: Papers from the 1998 Workshop, held at ML ’98,
Madison, Wisconsin, pp. 98–105, 1998. 2, 12

Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
research and development, 3(3):210–229, 1959. 2, 12

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion. Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017. 3,
13

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025. 14

Edward H. Shortliffe. Mycin: A rule-based computer program for advising physicians regarding an-
timicrobial therapy selection. In Proceedings of the Third International Conference on Cybernetics
and Society, pp. 174–189. IEEE, 1976. 2, 12

11

https://openreview.net/forum?id=w0H2xGHlkw
https://openreview.net/forum?id=w0H2xGHlkw
https://openreview.net/forum?id=8cQrRO9iFe

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chenhao Tan, Lillian Lee, and Bo Pang. The effect of wording on message propagation: Topic-and
author-controlled natural experiments on twitter. arXiv preprint arXiv:1405.1438, 2014. 6

Louis Leon Thurstone. A law of comparative judgment. Psychological Review, 34(4):273–286, 1927.
4

Elsbeth Turcan and Kathy McKeown. Dreaddit: A Reddit dataset for stress analysis in social media.
In Proceedings of the Tenth International Workshop on Health Text Mining and Information
Analysis (LOUHI 2019), 2019. 7

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 2, 13

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, 2018. 7

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Nazneen Sharan, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022. 3, 14

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022. 3, 14

Michael Weiss. An exploration of pattern mining with chatgpt. In Proceedings of the 29th European
Conference on Pattern Languages of Programs, People, and Practices, pp. 1–11, 2024. 14

Yangqiaoyu Zhou, Haokun Liu, Tejes Srivastava, Hongyuan Mei, and Chenhao Tan. Hypothesis
generation with large language models. arXiv preprint arXiv:2404.04326, 2024. 6, 14

A RELATED WORK

A.1 EARLY RULE-BASED AND MACHINE LEARNING SYSTEMS

The foundations of controllable machine learning can be traced to early rule-based systems and
traditional ML approaches that prioritized interpretability. Samuel’s checkers program Samuel (1959)
exemplified this philosophy by using handcrafted board evaluation features like piece advantage
and mobility that human experts could understand and validate. Similarly, expert systems like
MYCIN Shortliffe (1976) relied on interpretable clinical features that physicians could trace through
logical decision rules, achieving both reasonable performance and complete transparency in medical
diagnosis tasks.

This feature-centric paradigm extended to practical applications throughout the 1980s and 1990s.
Spam email classification systems used transparent features such as suspicious word frequencies
("free", "urgent", "click here") and sender metadata (domain reputation, header inconsistencies) to
achieve both explainable decisions and reasonable accuracy Sahami et al. (1998). Text classification
models relied on expert-designed features such as part-of-speech tags, n-gram statistics, and syntactic
patterns Manning & Schütze (1999), providing clear pathways from input to prediction that domain
experts could inspect and modify.

A.2 TRADITIONAL MACHINE LEARNING MODELS

As machine learning matured, successive generations of algorithms maintained dependence on manual
feature engineering while addressing specific algorithmic limitations. Support Vector Machines Cortes
& Vapnik (1995) addressed the curse of dimensionality by mapping features into high-dimensional
spaces where linear separation became possible, enabling effective classification even with limited
training data. However, SVMs’ performance remained critically dependent on appropriate feature
selection and kernel choice, requiring domain expertise to achieve optimal results.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Decision trees Breiman et al. (1984) offered a fundamentally different approach, providing transparent
hierarchical decision rules that could be directly interpreted by domain experts. Each internal node
represented a simple threshold test on a single feature, making the entire decision process traceable
and modifiable. This interpretability made decision trees particularly valuable in domains requiring
regulatory compliance or expert validation, such as medical diagnosis and credit scoring Quinlan
(1986). However, decision trees suffered from high variance and tendency to overfit, particularly with
complex datasets containing many features or noise.

Ensemble methods emerged to address these limitations while preserving interpretability. Random
Forests Breiman (2001) reduced overfitting by training multiple decision trees on bootstrap samples
of the data and random subsets of features, then averaging their predictions. This approach main-
tained interpretability through feature importance measures while significantly improving predictive
accuracy. Gradient boosting methods Friedman (2001) took a different approach, iteratively training
weak learners to correct the errors of previous models. XGBoost Chen & Guestrin (2016) refined
this concept with optimized implementations and regularization techniques, becoming dominant
in structured data competitions while maintaining some degree of interpretability through feature
importance scores.

Despite these algorithmic advances, all traditional ML methods shared a fundamental limitation: their
success remained contingent on the quality of manually engineered features. As Domingos (2012)
emphasizes, "Feature engineering is the key"—poor feature selection could render even sophisticated
algorithms ineffective, while well-designed features could make simple models highly competitive.

A.3 DEEP LEARNING AND ARCHITECTURAL REVOLUTION

The deep learning era (2012-present) fundamentally transformed machine learning by abandoning
manual feature engineering in favor of automatically learning feature representations from raw
data. Human expertise was redirected from feature design to architectural innovation, incorporating
intelligent biases through model structure rather than explicit feature selection.

Convolutional neural networks LeCun et al. (2002) revolutionized image processing by learning
hierarchical feature detectors directly from pixels, while recurrent neural networks and later trans-
former architectures Vaswani et al. (2017) achieved breakthrough performance in natural language
processing by automatically extracting semantic representations from text. Attention mechanisms ?
mimicked human selective attention by allowing models to focus on relevant input regions, while
gated recurrent units ? incorporated memory mechanisms inspired by human cognition.

More recent innovations include debiasing techniques to remove societal stereotypes ?, reinforcement
learning from human feedback (RLHF) to align model behavior with human preferences ?, and
vision-language projection layers to bridge modalities Liu et al. (2023). This architectural revolution
achieved dramatic performance gains across vision, language, and audio domains by trading control
for performance—practitioners could no longer directly influence which features models emphasized
or understand the reasoning behind predictions.

A.4 POST-HOC EXPLAINABILITY METHODS

Recognizing the opacity of deep learning systems, the field developed post-hoc interpretability
methods to explain model behavior after training. Techniques such as LIME Ribeiro et al. (2016),
SHAP Lundberg & Lee (2017), and gradient-based attribution methods Selvaraju et al. (2017)
emerged to provide insights into complex model decisions by attributing importance to input features
or generating saliency maps.

However, these approaches face fundamental limitations that prevent them from restoring true
control. They can produce misleading results when models exhibit poor generalization, when input
features are highly correlated, or when complex feature interactions determine outcomes through
non-linear relationships Adebayo et al. (2018). The problem of verifying explanations remains
unresolved—there is no generally accepted methodology to establish whether these explanations
faithfully capture the internal reasoning of a model Rudin (2019). Critically, post-hoc methods
provide explanation without control: practitioners can obtain plausible explanations without gaining
the ability to predict or systematically modify model behavior.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.5 LLM REASONING TECHNIQUES

Large Language Models introduced reasoning techniques that appeared to bridge performance and
interpretability. Chain-of-Thought (CoT) prompting Wei et al. (2022) demonstrated impressive
performance improvements on reasoning benchmarks while appearing transparent through step-by-
step explanations. Related techniques like self-consistency Wang et al. (2022) and tree-of-thoughts
further enhanced reasoning capabilities.

However, systematic investigation reveals fundamental faithfulness problems with LLM reasoning.
CoT can generate different reasoning paths for identical inputs across multiple runs, and explanations
frequently diverge from the true computations driving predictions ?. Recent analysis has fundamen-
tally challenged the assumption that CoT provides genuine explainability, showing it is "neither
necessary nor sufficient for trustworthy interpretability" Barez et al. (2025). Under complexity stress,
reasoning models face "complete accuracy collapse beyond certain complexities" and "fail to use
explicit algorithms" Shojaee et al. (2025), exposing CoT as sophisticated pattern matching rather than
genuine reasoning.

A.6 LLMS FOR FEATURE ENGINEERING AND PATTERN MINING

Recent work has begun exploring how large language models can be used not just for prediction, but
as engines for feature construction or pattern discovery. This is closely aligned with FEST’s goal
of using LLMs to generate interpretable, human-readable features. Below we summarize several
representative approaches.

• HypoGenic: Zhou et al. (2024) introduced HypoGenic, which uses LLMs with multi-armed bandit
approaches to generate and test hypotheses for social science applications.

• FeatLLM: LLMs for Tabular Feature Engineering. Han et al. (2024) introduce FeatLLM, which
uses LLMs as feature engineers in few-shot learning settings with tabular data. FeatLLM generates
candidate features through prompts and uses simple downstream models (e.g., linear regression) to
select features. It significantly outperforms alternative LLM-based feature engineering methods,
especially when training samples are limited.

• LLM-FE: Abhyankar et al. (2025) propose LLM-FE for tabular prediction tasks. In this framework,
LLMs are combined with evolutionary search to generate feature transformation programs, guided
by empirical performance feedback. This method incorporates domain knowledge and iteration,
enabling discovery of novel transformations that improve performance over standard baselines.

• Embedding Domain-Specific Knowledge into Feature Pipelines: Batista (2025) explore using
LLMs at the start of feature engineering pipelines to embed domain-specific knowledge. The idea is
to seed the feature space with LLM-constructed feature combinations before applying evolutionary
or symbolic methods. The approach tends to accelerate convergence and reduce computational
load, though in many datasets it improves performance only modestly.

• FeRG-LLM: Ko et al. (2025) automates feature engineering via an LLM (fine-tuned) that generates
features guided by reasoning and feedback loops. It demonstrates competitive or better performance
than larger LLMs in classification settings while using fewer resources. FeRG-LLM is interesting
because it emphasizes local interpretability (via the features it proposes) and deployability.

• Pattern Mining with ChatGPT: Weiss (2024) presents “An Exploration of Pattern Mining with
ChatGPT”, wherein the author describes an eight-step process combining human insight and
LLM capabilities to discover patterns in data sources. Though not always focused on generating
predictive features per se, this work illustrates how LLMs can help in extracting structured patterns
and “rules” from data, which is relevant to FEST’s goal of interpretable feature discovery.

Comparison with FEST. While these works offer valuable insights into LLM-driven feature con-
struction, they often differ from FEST in important ways: many operate in fixed or narrow domains
(e.g. tabular data only), rely heavily on downstream model performance without explicit “control”
over feature semantics or thresholds, or limit themselves to generating features without iterative
refinement or pruning. FEST aims to combine generation, deduplication, validation, and self-evolving
decision trees to provide a more general, controllable, and scalable feature engineering solution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B LIMITATIONS

While FEST demonstrates promising results for scalable, controllable modeling, it is important to
acknowledge its limitations. We discuss them below:

Dependence on LLM generations: The quality of features proposed by FEST is bounded by the
underlying LLM. Although LLMs capture broad domain knowledge, they may generate spurious,
redundant, or semantically incoherent features. We mitigate this through deduplication and validation,
but the framework inherits biases and blind spots present in the base model.

Control is partial, not absolute: FEST improves controllability relative to black-box models by
producing human-readable features and decision rules. However, this control is limited to the space
of features proposed and validated. Practitioners may still lack full guarantees of interpretability or
complete transparency into why certain features were generated or selected.

Correlation vs causation: Features discovered by FEST should not be interpreted as causal without
further analysis. Although our synthetic benchmark illustrates recovery of ground-truth rules, in
real-world data the system may surface predictive correlations that do not correspond to causal
mechanisms. Causal inference requires complementary methods beyond the scope of this work.

Computational overhead: FEST involves iterative feature generation, deduplication, and model
retraining, which can be more computationally expensive than training a single predictive model.
While these costs are amortized by reducing human labor in feature design, scaling to very large
datasets or repeated runs may present challenges.

Domain generalisation: Our evaluation spans social science, NLP, and marketing datasets, along
with synthetic benchmarks. While this demonstrates generality, we have not yet validated FEST in
critical domains such as healthcare, finance, or scientific discovery, where requirements for reliability,
causality and safety are higher.

Overall, these limitations point to directions for future work, including bias mitigation in LLM feature
generation, integration with causal discovery methods and optimization for large-scale deployment.

C FUTURE WORK AND BROADER IMPACT

Beyond improving the scalability and causal grounding of FEST, we envision several exciting
directions where the framework could extend its impact.

Content optimization through actionable feedback: FEST does not merely classify; it generates
explicit, human-readable features that form the decision path for each prediction. This opens the
door to applications such as optimizing headlines, tweets, or advertisements. For example, when
distinguishing between engaging and non-engaging content, FEST can surface the exact linguistic
or structural attributes that influence predicted engagement. Practitioners can then receive concrete
feedback such as “headline length too short" or “absence of emotional keywords", allowing them
to modify content in ways directly aligned with model logic. This shifts predictive modeling from
passive forecasting toward active guidance.

Post-hoc explainability of black-box models: Another intriguing direction is to repurpose FEST as
an explanation layer for opaque models. Suppose a neural network achieves state-of-the-art accuracy
on a classification task. By labeling data with the network’s predictions and then running FEST on
top, one can extract interpretable features and decision rules that approximate the network’s learned
representations. This would combine the high performance of black-box models with FEST’s ability
to articulate insights in natural language, offering practitioners a window into otherwise inscrutable
models.

Scalability and causal discovery: On the methodological side, future work should push FEST
toward more efficient large-scale deployment and explore causal discovery. Enhancing the efficiency
of the generate–deduplicate–validate loop will make FEST practical for massive datasets and near
real-time applications. Integrating causal reasoning into the feature refinement process could help
distinguish predictive correlations from genuine drivers of outcomes, a particularly critical need in
scientific and policy domains.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Taken together, these directions suggest that FEST is not only a framework for automating feature
engineering but also a step toward rethinking the role of models in human decision-making: from
opaque predictors to transparent copilots that explain, advise and guide.

D ALGORITHM PSEUDOCODE

Please take a look at the next page.

E GALACTIC LOGICAL REASONING (GLORE)

To rigorously evaluate the compositional reasoning capabilities of language models, we introduce the
Galactic Logical Reasoning (GLoRE) benchmark. GLoRE is a synthetic, text-based environment
designed to test a model’s ability to deduce outcomes from complex logical rules embedded in natural
language, while remaining robust to spurious correlations from irrelevant distractor attributes.

E.1 DESIGN PRINCIPLES

The GLoRE benchmark is built upon the following core principles:

1. Grounded determinative Factors: The classification labels (galaxy preferences) are deter-
ministically generated from a small set of underlying binary determinative features, rather
than superficial textual patterns.

2. Compositional Logic: The benchmark is structured around a set of fundamental logical
operations (AND, OR, XOR, NOT) applied to the determinative features, requiring models
to perform multi-step, compositional reasoning.

3. Controlled Distractors: Alien descriptions contain several randomly sampled “distractor”
features that have no determinative relationship with the outcome. This tests a model’s
ability to identify and isolate the true determinative variables.

4. Natural Language Abstraction: The underlying logical rules are not presented in a formal
language but are abstracted away within varied, descriptive text, forcing models to reason
over semantic content.

5. Logically Constrained Negatives: For each logical rule, negative samples are not cho-
sen randomly. Instead, they are systematically generated from the precise set of feature
combinations that falsify the rule, creating a challenging decision boundary.

Generative Process Each data point in GLoRE consists of a textual description of a fictional alien
species and a corresponding galaxy for which it has a preference.

Alien Features. We define two primary binary determinative features:

• Telepathic Abilities (h1): A species is either telepathic (h1 = 1) or non-telepathic (h1 = 0).

• Body Temperature Regulation (h2): A species is either warm-blooded (h2 = 1) or
cold-blooded (h2 = 0).

To simulate a more realistic scenario where not all information is relevant, we introduce several
distractor features, which are sampled uniformly at random:

• Respiratory System: e.g., “oxygen-based”, “methane-based”, “radiation-processing”,
“silicon-based”.

• Physical Structure: e.g., “exoskeleton”, “gaseous form”, “crystalline structure”.

• Lifespan: e.g., “short lifespan”, “quasi-immortal”, “cyclical life pattern”.

Textual Embedding. The assigned determinative and distractor features are embedded into a narrative
description using a set of diverse sentence templates. This ensures that the same underlying features
can be presented with significant lexical and syntactic variation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 FEST: Feature Engineering with Self-evolving Trees

1: Input: Dataset D of N samples with target scores
2: Output: Feature bank F of validated features
3:
4: Initialize:
5: F ← ∅ ▷ Empty feature bank
6: K ← K0 ▷ Initial batch size
7: Dpaired ← ConstructPairs(D) ▷ Create

(
N
2

)
comparison pairs

8: Dtrain, Dtest ← Split(Dpaired) ▷ Train-test split
9: Himportance ← ∅ ▷ Feature importance history

10: idxcurrent ← 0 ▷ Current batch index
11:
12: while not converged do
13: B ← SequentialBatch(Dtrain, K, idxcurrent) ▷ Sequential batch processing
14:
15: // Stage 1: Plausible Feature Discovery
16: Fraw ← ∅
17: for each pair (xpos

i , xneg
i) ∈ B do

18: for each prompt template t do
19: f ← LLM.PairwiseComparison(xpos

i , xneg
i) ▷ Generate M plausible features

20: Fraw ← Fraw ∪ f
21: end for
22: end for
23:
24: // Stage 2: Deduplication
25: Cclusters ← Cluster(Fraw, nclusters) ▷ Group similar features
26: Fbatch ← Summarize(Cclusters) ▷ Create cluster representatives
27: Fcurrent ← F ∪ Fbatch ▷ Merge new features with existing feature bank
28:
29: // Stage 3: Feature Relevance Assessment
30: X← LLM.EncodeFeaturePresence(B, Fcurrent) ▷ X ∈ {0, 1}2|B|×|Fcurrent| (|B| xpos +
|B| xneg samples)

31: y← SetTrueLabels(B) ▷ y ∈ {0, 1}2|B|: 1 for xpos, 0 for xneg

32:
33: // Model Training and Evaluation
34: M← DecisionTree.Train(X,y)
35: acc← DecisionTree.Evaluate(Dtest, Fcurrent)
36:
37: if acc ≥ τaccuracy then
38: break ▷ Convergence achieved
39: end if
40:
41: // Feature Pruning and Batch Update
42: I← DecisionTree.GetFeatureImportance()
43: Himportance ← UpdateHistory(Himportance, I) ▷ Maintain feature importance history
44: F ← PruneFeatures(Fcurrent, Himportance, τimportance) ▷ Remove low importance features
45: K ← min(2K,Kmax) ▷ Double batch size
46: idxcurrent ← idxcurrent +K ▷ Update batch index
47: end while
48:
49: return F ,M

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Task Formulation and Dataset Structure The core task in GLoRE is a set of binary classification
problems. For each logical rule, the model is given an alien’s description and must predict whether
the species prefers the galaxy associated with that rule. The benchmark is organized into 8 distinct
sub-datasets, each corresponding to a specific ground truth rule (Table 2). Each sub-dataset contains
1,000 examples, perfectly balanced with 500 positive and 500 negative instances.

• Positive Samples: An alien description whose features satisfy the logical ruleR.

• Negative Samples: An alien description whose features explicitly satisfy ¬R. For instance,
for the rule h1∧h2, negative samples are constructed from the feature sets {h1 = 1, h2 = 0},
{h1 = 0, h2 = 1}, and {h1 = 0, h2 = 0}.

Figure 4: The plot shows logical consistency score between the strongest baseline Rules + Decision
Tree (R + DT) and FEST. The zeros in the plot depicts the baseline rules were not able to exceed
similarity score threshold.

Example Data Point (Category C4: XOR) Consider the task for rule h1 ⊕ h2.

Positive Example (label: 1):

• Determinative Features: h1 = 1 (telepathic), h2 = 0 (cold-blooded).

• Description: “The Xan’konar is a crystalline structure... It exchanges information through
mental connection... this organism relies on external heat sources to regulate tempera-
ture.”

• Reasoning: The species satisfies the XOR condition.

Negative Example (label: 0):

• Determinative Features: h1 = 1 (telepathic), h2 = 1 (warm-blooded).

• Description: “Known for its distinctive amorphous structure, the Mev’orian communi-
cates directly through thoughts... This species... maintains constant internal body
temperature.”

• Reasoning: The species violates the XOR condition as both features are true.

This controlled setup allows for a precise evaluation of a model’s ability to learn and apply composi-
tional logical rules from textual data.

E.2 SYNTHETIC EXPERIMENTS AND EVALUATION

To assess the logical reasoning capabilities of the models, we conduct a series of experiments on our
synthetic GLoRE benchmark. We first reformulate the task into a binary classification problem and
then evaluate the models using a suite of metrics designed to measure both predictive accuracy and
the internal logical consistency of their reasoning.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: The 8 ground truth rules for Alien Species’ Galaxy Preferences governing the GLoRE sub-
datasets. Each rule maps a specific set of determinative features to a preferred galactic environment.

Logical RuleR Description Galaxy Preference
H1 Aliens with telepathic abilities. Low stellar density.

H2 Aliens that are warm-blooded. High radiation.

H1 ∧ H2 Aliens that are both telepathic and warm-blooded. Low stellar density + High radiation.

H1 ∨ H2 Aliens that are telepathic or warm-blooded. Variable/adaptive environments.

H1 ⊕ H2 Aliens exclusively telepathic or warm-blooded, not both. Specialized/targeted environments.

¬H1 Aliens that are not telepathic. High stellar density.

¬H2 Aliens that are cold-blooded. Low radiation.

¬H1 ∧ ¬H2 Aliens that are neither telepathic nor warm-blooded. High density + Low radiation.

E.3 TASK FORMULATION

We re-model the dataset as a validation task. For each data point, the alien description and a potential
galaxy assignment are combined into a single input sentence. The model’s task is to perform binary
classification, predicting whether the assignment is True (i.e., the alien’s features are logically
consistent with the galaxy’s requirements) or False (i.e., the assignment is logically inconsistent).

Justification. This binary classification setup is crucial for a rigorous evaluation. It transforms the
problem from a potentially ambiguous generative task into a well-defined discriminative one. This
allows for direct and quantifiable measurement of the model’s ability to apply the underlying logical
rules, providing a clearer signal of its reasoning fidelity compared to open-ended generation.

E.4 EVALUATION METRICS

We evaluate model performance on our synthetic tasks using three distinct metrics.

1. Standard Accuracy. This is the primary measure of predictive performance. It is calculated as
the proportion of all samples that are correctly classified as either True or False.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

2. Logical Consistency Score. This metric goes beyond surface-level accuracy to evaluate whether
the model’s predictions are consistent with the ground truth logical operations (e.g., AND, OR, XOR).
The evaluation is a two-step process designed to verify the model’s internal reasoning chain.

Step 1: Automated Rule Identification. For a given task (e.g., C2: h1 ∧ h2), the model under
evaluation generates a set of natural language rules, G = {g1, ..., gN}. We must first identify which
of these generated rules correspond to our ground truth hypotheses, h1 (telepathic) and h2 (warm-
blooded). To achieve this without manual intervention, we use a powerful sentence-embedding
model, Qwen/Qwen3-Embedding-4B, to encode both the generated rules and our ground truth
rule descriptions. We then compute the cosine similarity between the embeddings. The two generated
rules with the highest similarity to our ground truth descriptions for h1 and h2 are selected, provided
their similarity scores exceed a threshold of τ = 0.7. Let their indices be i∗ and j∗.

Step 2: Truth Table Verification. For each sample in the dataset, the model provides a boolean
vector v ∈ {0, 1}N , where each element vk indicates whether the sample satisfies the generated rule
gk. Using the indices i∗ and j∗ identified in Step 1, we extract the boolean values (vi∗ , vj∗). These
values serve as inputs to the ground truth logical truth table for the task. For example, for the XOR
task (C4), the expected output is vi∗ ⊕ vj∗ . The Logical Consistency Score is the accuracy of the
model’s final predictions when compared against this expected output from the truth table.

Logical Consistency =
1

|D|
∑
k∈D

I(pk = R(vk,i∗ , vk,j∗))

where pk is the model’s prediction for sample k,R is the ground truth logical operator (e.g., ∧,∨,⊕),
and I is the indicator function. This metric provides a strong signal of whether the model has learned
the correct compositional structure of the task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

3. IoU Score. While the Logical Consistency Score validates the model’s predictions against its
self-generated rules, it does not directly evaluate the quality of the rule set itself. To address this, we
introduce the Intersection over Union (IoU) score. This metric assesses a model’s ability to generate a
set of rules that is both correct (covering all ground truth principles) and concise (excluding irrelevant
or redundant statements).

Let T = {t1, ..., t|T |} be the set of ground truth rules for a task, and G = {g1, ..., g|G|} be the set of
rules generated by the model. We define the set of discovered ground truth rules, Tdiscovered, as the
subset of T where each rule ti has at least one matching rule gj ∈ G. A match is determined if the
cosine similarity of their sentence embeddings, sim(E(ti), E(gj)), exceeds a threshold of τ = 0.7.

The IoU score is then calculated as the size of the intersection (the number of discovered rules)
divided by the size of the union of the two sets:

IoU =
|Tdiscovered|

|T |+ |G| − |Tdiscovered|

A high IoU score indicates that the model has successfully recovered the complete set of ground
truth principles without generating many extraneous rules, signifying a more accurate and efficient
explanation of its reasoning.

E.5 RESULTS DISCUSSION

We evaluate our approach on a series of synthetic tasks designed to test the model’s ability to
handle fundamental logical compositions. The results demonstrate a clear advantage for our proposed
method, FEST, over baseline approaches and highlight specific weaknesses in standard large language
models.

First, we assessed the accuracy of a GPT-based model on tasks involving combinations of two
underlying hypotheses, H1 and H2. The model achieves near-perfect accuracy on identifying the
simple hypothesis H1 (1.000) and its negation ¬H1 (0.982). Performance remains strong for other
logical operations, including conjunction (H1 ∧H2, 0.940), disjunction (H1 ∨H2, 0.903), and the
neither case (¬(H1 ∨H2), 0.950). However, the model’s performance deteriorates dramatically for
the exclusive disjunction (H1 ⊕H2), where accuracy falls to 0.583, indicating a significant difficulty
in reasoning about this type of logical constraint, performing only slightly better than random chance.

When evaluating the logical consistency of generated explanations, FEST shows a substantial
improvement over the R + DT - FS baseline. For the conjunction task (H1∧H2), FEST achieves
a consistency score of 91, compared to the baseline’s 20.5. The baseline’s limitations are particularly
pronounced for disjunctive statements; it scores 0 for both inclusive (H1 ∨ H2) and exclusive
disjunction (H1 ⊕H2), signifying a complete failure to produce logically coherent outputs for these
cases. In contrast, FEST maintains respectable scores of 37 and 44.5, respectively.

We further measure the quality of feature attribution using Intersection over Union (IoU) and Cosine
Similarity against a stronger R + XGB - FS baseline. In the IoU evaluation, FEST consistently
identifies the correct feature set with perfect or near-perfect accuracy, achieving a score of 1.0 for H1,
H2, their conjunction, exclusive disjunction, and their individual negations. The baseline, however,
struggles immensely, with scores often at or near zero, such as 0.0 for H2 and H1 ⊕ H2. While
FEST’s IoU score for inclusive disjunction (H1 ∨H2) is lower at 0.25, it still provides a meaningful
signal compared to the baseline’s score of 0.

The results for cosine similarity reinforce this conclusion. FEST consistently yields higher similarity
scores, indicating that its generated explanations are more semantically aligned with the ground truth
concepts. For example, on the simple hypothesis H1, FEST achieves a similarity of 0.9, substantially
higher than the baseline’s 0.71. This advantage persists across all logical compositions. For instance,
in the case of ¬H2, FEST scores 0.842, demonstrating a more precise semantic understanding than
the baseline’s 0.786.

Collectively, these experiments on synthetic data underscore FEST’s superior ability to generate
explanations that are not only accurate but also logically consistent and semantically faithful to
complex logical concepts.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F LLM USAGE

Large Language Models were used solely as a writing assistance tool during the preparation of this
manuscript. Specifically, LLMs were employed to: (1) Polish and refine the language and clarity of
written sections (2) Assist with formatting and organization of content. LLMs were not involved
in any aspect of the research ideation, methodology design, experimental design, data analysis or
interpretation of results.

G PROMPT TEMPLATES

Please refer to the code provided in the supplementary materials.

H HYPERPARAMETERS

For reproducibility, we summarize the hyperparameters used in FEST below:

• Batch Processing: Initial batch size K0 = 50 pairs, maximum batch size Kmax = 200 pairs,
batch size doubles each iteration until reaching maximum.

• Feature Generation: M = 5 features generated per comparison pair per prompt template, using 2
prompt templates (positive and negative framing).

• Semantic Clustering: K-means with k = 30 clusters for feature deduplication, using GritLM-7B
embeddings with task-conditioned prompts.

• Feature Filtering: Minimum importance threshold τimportance = 0.05 for feature pruning,
importance history tracked over last 3 iterations.

• Convergence: Accuracy threshold τaccuracy = 0.8 for early stopping, maximum 10 iterations if
convergence not reached.

• Decision Trees: Scikit-learn DecisionTreeClassifier with default parameters, random state fixed
for reproducibility.

• LLM Configuration: Temperature = 0.1 for feature generation, temperature = 0.1 for feature
inference to ensure deterministic binary outputs.

I SAMPLE FEATURES

We present some features discovered by FEST for stress detection (Dreaddit);

• "Select the post that expresses overwhelming emotions because it indicates emotional
instability and significant stress due to lack of regulation.",

• "Select the post that expresses agency because it conveys personal control, choice, and a
sense of efficacy over circumstances.",

• "Select the post that references physiological issues like sleep disturbances, exhaustion, and
concerns about heart health."

• "Select the post that expresses urgency in seeking immediate help and support with phrases
like ’I need help’."

• "Select the post that lacks clear articulation because it indicates confusion and cognitive
disorganization, suggesting underlying distress."

•

21

	Introduction
	Methodology
	Pairwise Comparison Framework
	Algorithm Initialization
	Stage 1: Plausible Feature Discovery
	Stage 2: Feature Deduplication
	Stage 3: Feature Relevance Assessment

	Results and Discussions
	Datasets
	Metrics
	Baseline Methods
	Results
	Discussion

	Conclusion
	Related Work
	Early Rule-Based and Machine Learning Systems
	Traditional Machine Learning Models
	Deep Learning and Architectural Revolution
	Post-hoc Explainability Methods
	LLM Reasoning Techniques
	LLMs for Feature Engineering and Pattern Mining

	Limitations
	Future Work and Broader Impact
	Algorithm Pseudocode
	Galactic Logical Reasoning (GLoRE)
	Design Principles
	Synthetic Experiments and Evaluation
	Task Formulation
	Evaluation Metrics
	Results Discussion

	LLM Usage
	Prompt Templates
	Hyperparameters
	Sample Features

