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Abstract
Partial point cloud registration is a challenging
problem, especially when the robot undergoes a
large transformation, causing a significant initial
pose error and a low overlap. This work pro-
poses exploiting equivariant learning from 3D
point clouds to improve registration robustness.
We propose SE3ET, an SE(3)-equivariant regis-
tration framework that employs equivariant point
convolution and equivariant transformer design
to learn expressive and robust geometric features.
We tested the proposed registration method on
indoor and outdoor benchmarks where the point
clouds are under arbitrary transformations and
low overlapping ratios. We also provide general-
ization tests and run-time performance.

1. Introduction
Point cloud registration is a fundamental problem in com-
puter vision and robotics. It aims to find the optimal trans-
formation estimation between two point clouds. Recent
works such as Predator (Huang et al., 2021) and GeoTrans-
former (Qin et al., 2022) look into point cloud registration
with partial-to-partial situations, especially when two point
clouds have a low overlap rate.

However, these methods are not optimized for cases where
the point clouds are under significant initial pose error,
which is common in robotic scenarios. The current state-of-
the-art works’ limitations are demonstrated in Figure 1.

YOHO (Wang et al., 2022a) applies equivariant feature learn-
ing in the point cloud registration task by using icosahedral-
group convolution to learn rotation-equivariant point de-
scriptors. However, the framework is not optimized for
low-overlap registration.

Few existing learning-based methods consider arbitrary
transformation situations in the network architecture. For
example, YOHO (Wang et al., 2022a) applies equivariant
feature learning in the point cloud registration task by using
icosahedral-group convolution to learn rotation-equivariant
point descriptors. However, the framework can be further

Figure 1. SE3ET can register two low-overlap point clouds with
significant rotations and translations. This qualitative result is
performed on rotated 3DLoMatch, where the first row is an easy
example (28.72 % overlapping ratio with multiple overlapping
surfaces), the middle row is a moderate example (10.51 % overlap-
ping ratio with multiple overlapping surfaces), and the last row is
a challenging example (26.75 % overlapping ratio with only one
overlapping surface).

optimized for low-overlap registration.

In this work, we propose SE3ET, a more robust and effi-
cient SE(3)-equivariant low-overlap point cloud registration
framework. The main contributions are summarized as fol-
lows:

• Our feature learning based on equivariant convolutions
and transformers improves the robustness against point
clouds with low overlap and large pose changes.

• We propose four designs of equivariant transformers,
each offering unique properties and potential uses.

2. Related Work
Correspondence-based point cloud registration methods (Yu
et al., 2021; Qin et al., 2022; Fu et al., 2021; Wang &
Solomon, 2019; Cao et al., 2021; Yew & Lee, 2020), gen-
erally follow a two-step procedure consisting of correspon-
dence matching and finding the optimal transformation that
aligns the pairs. While correspondence-based methods have
been widely used for point cloud registration, they are sus-
ceptible to incorrect correspondence pairs. We propose
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that using equivariant features can determine more accu-
rate correspondence pairs within our correspondence-based
method.

A common challenge in the point cloud registration task
is the partial overlap situation, where the overlapping ra-
tio between the two point clouds is low, especially when
dealing with noisy data, occlusions, or outliers. While vari-
ous research (Huang et al., 2021; Wang et al., 2022b; Mei
et al., 2023; Vaswani et al., 2017; Wang et al., 2022b; Qin
et al., 2022; Zhu et al., 2021; Yew & Lee, 2022; Yu et al.,
2021; Qin et al., 2022; Huang et al., 2022; Yu et al., 2023)
progress in tackling the partial overlap challenge, when it
comes to substantial rotational-wise transformation, most
of the above methods rely on data augmentation during
training to increase robustness to arbitrary transformation.

Recent studies (Deng et al., 2021; Chen et al., 2021; Zhu
et al., 2023) focus on learning equivariant features from
3D point clouds offer valuable insights into the relevance
of network architecture for point cloud registration across
various transformation scenarios. Moreover, (Fuchs et al.,
2020) and (Chatzipantazis et al., 2022) research into the
integration of equivariant learning within the transformer
mechanism demonstrates its applicability to tasks such as
classification and reconstruction. However, despite these
advancements, there remains a scarcity of learning-based
methods for point cloud registration that adequately ad-
dress arbitrary transformation situations within the network
architecture. YOHO ((Wang et al., 2022a)), a notable exam-
ple, employs rotation-equivariant feature learning and has
been extended to RoReg ((Wang et al., 2023)). While these
methods effectively leverage equivariant feature learning for
point cloud registration, further optimization is needed to
bolster processing robustness, particularly in scenarios with
low overlap.

Building upon these varied algorithmic approaches, this
paper proposes a novel framework that potentially and ef-
fectively resolves issues of low overlapping point clouds
in registration procedures robust to arbitrary transforma-
tion. In this paper, the optimal performance of E2PN (Zhu
et al., 2023) in learning SE(3)-equivariant features has been
harnessed by incorporating it in our feature learning pro-
cess. Improvements in feature capabilities are achieved
via the transformer mechanism’s implicit learning of the
overlapping points. By leveraging equivariant and invariant
features, a more robust registration of point clouds makes
arbitrary transformation possible.

3. Methodology
Point cloud registration aims to compute an optimal rigid
transformation T = {(R, t) | R ∈ SO(3), t ∈ R3} ∈
SE(3) that aligns two given partially overlapped point

Figure 2. The proposed point cloud registration framework in-
cludes a SE(3)-equivariant feature encoder and decoder and an
equivariant transformer design for learning the point correspon-
dences of superpoints.

Figure 3. The geometric (octahedron shape) and algebraic (color
bricks) illustration of using permutation to recover discretized
rotation group. Each color represents the feature of one anchor
(vertex), and the different order of the combination of features
represents the discretized rotation defined in the network. If the
octahedron is rotated 90 degrees along the arrow direction, the
order of the features changes accordingly. The discretization of
the rotation groups is derived from the permutation of the discrete
anchors. For A = 6, the rotation group contains 24 rotations.

clouds P̂ = {pi ∈ R3 | i = 1, . . . , N} and Q̂ = {qj ∈
R3 | j = 1, . . . ,M}.

The proposed framework is shown in Figure 2, we will
introduce each components in the following subsections.

3.1. Equivariant Feature Encoder and Decoder

We adopt GeoTransformer’s multi-stage encoder-decoder
structure (Qin et al., 2022), following a Feature Pyramid
Network (Lin et al., 2017) to extract multi-scale features
from downsampled point clouds. Diverging from conven-
tional approaches, we employ E2PN (Zhu et al., 2023), an
SE(3)-equivariant point convolutional network, for SE(3)-
equivariant convolution. E2PN discretizes the 3D rotation
group SO(3) into a polyhedral rotation group G, approx-
imating SE(3) as R3 × G, where feature maps reside on
R3 × V , with V representing polyhedral vertices. These
maps, equivariant to SE(3) transformations, are computed
efficiently via quotient-space convolution. We refer to poly-
hedron vertices as anchors for equivariant feature learning.
Point clouds downscaled to the coarsest level (termed “super-
points”) are denoted as P ∈ RN ′×3, Q ∈ RM ′×3, with their
equivariant features XP ∈ RN ′×A×C , XQ ∈ RM ′×A×C ,
where N ′,M ′ denote the downsampled points, C represents
the feature channels, and A = |V | denotes the anchor size.

By design, we can express each rotation in the discretized
rotation group G using a permutation of the vertices V . A
geometric illustration is in Figure 3.
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3.2. Equivariant Transformer Design

We propose equivariant self-attention and cross-attention
modules to enhance features of superpoints by gathering
information across various spatial locations and orientations.
Self-attention modules facilitate feature interaction within a
point cloud, while cross-attention modules enable feature
communication between pairs of point clouds.

3.2.1. EQUIVARIANT SELF-ATTENTION (ESA) MODULE

We introduce an equivariant self-attention module, extend-
ing self-attention methods in (Qin et al., 2022) while en-
suring equivariance to SE(3) transformations. This module
allows consistent behavior under rigid body transformations.

Equivariant superpoint features XP serve as query, key, and
value inputs. We follow (Qin et al., 2022) to use geomet-
ric information to provide geometric structure embedding
PP ∈ RN ′×N ′×C .

For a point indexed i in P at anchor coordinate r, attention
between such elements is computed using trainable weight
matrices WQ,WK , and WP ∈ RC×C . Output features
xP
SA,ir are obtained via weighted summation over points. A

subsequent feed-forward layer, as in (Vaswani et al., 2017),
refines learned features, resulting in XP

SA ∈ RN ′×A×C .

aSA,ir,jr =
(xirW

Q)(xjrW
K + pi,jW

P )T√
C

, (1)

xP
SA,ir =

N ′∑
j=1

Softmaxj(aSA,ir,jr)xjrW
V , (2)

Compared with conventional self-attention among the point
features, our equivariant self-attention module allows differ-
ent attention values at different anchor coordinates for the
same pair of points, similar to multi-head self-attention, but
with the equivariant property.

3.2.2. INVARIANT CROSS-ATTENTION MODULE

The cross-attention mechanism integrates two separate in-
puts, typically observed in point cloud registration tasks
with paired point clouds P and Q. We focus on operations
within P; analogous operations apply to Q.

Invariant Cross-Attention (ICA). In this module, at-
tention is conducted on SE(3)-invariant features derived
from equivariant self-attention features XP

SA and XQ
SA for

P and Q, respectively. Pooling on the anchor dimension
yields invariant features XP

SA-inv ∈ RN ′×C and XQ
SA-inv ∈

RM ′×C .

Features XP
SA-inv serve as queries, and XQ

SA-inv as keys.
The attention value between point i in P and point j in Q is

Figure 4. An illustration of the proposed equivariant self-attention,
equivariant anchor-based, and rotation-based cross-attention mod-
ules.

computed using trainable weight matrices.

aICA,i,j =
(xP

SA-inv,iW
Q)(xQ

SA-inv,jW
K)T

√
C

(3)

Depending on the desired output—equivariant or invari-
ant—the values Q can be equivariant features XQ

SA or invari-
ant features XQ

SA-inv. The collection of equivariant output
features is denoted as XP

ICA ∈ RN ′×A×C , while invariant
output features are denoted as XP

ICA-inv ∈ RN ′×C . Take
XP

ICA,i for point i in P as an example,

xP
ICA,i =

M ′∑
j=1

Softmaxj(aICA,i,j)xQ
SA,jW

V (4)

3.2.3. EQUIVARIANT CROSS-ATTENTION MODULES

The two types of Equivariant Cross-Attention modules are
featured to learn equivariant attention over the rotation an-
chor dimension and the point dimension to enable equivari-
ant learning for various equivariant features.

Equivariant Anchor-Based Cross-Attention (ACA). In
this module, we learn cross-attention scores for each anchor
dimension. Operating on equivariant self-attention features
XP

SA and XQ
SA, for P and Q respectively, XP

SA serves as
query and XQ

SA as key and value. Attention computation
between two points in P and Q is performed via trainable
weight matrices.

aACA raw,ir,js =
(xP

SA,irW
Q)(xQ

SA,jsW
K)T

√
C

(5)

Normalization is applied on both anchor and spatial dimen-
sions to stabilize feature learning. Softplus ensures the non-
negativity of raw attention, preventing false point-matching
from distracting the anchor-wise attention between two
point clouds. Average pooling on the point dimension fo-
cuses on anchor features from both inputs. Global anchor-
based attention, denoted as aACA anchor, captures correla-
tions between anchors across all points, normalized over the
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anchor dimension. Softmax normalization is applied to the
spatial dimension.

aACA anchor,r,s =
1

N ′M ′

N ′∑
i=1

M ′∑
j=1

Softplus(aACA raw,ir,js)

(6)
aACA norm anchor,r,s =

aACA anchor,r,s∑A
s=1 aACA anchor,r,s

(7)

aACA norm spatial,ir,js = Softmaxj(aACA raw,ir,js) (8)

aACA,ir,js = aACA norm spatial,ir,jsaACA norm anchor,r,s

(9)

Output features for each point in P are obtained through
weighted summation over points in Q, followed by a feed-
forward layer.

xP
ACA,ir =

M ′∑
j=1

A∑
s=1

aACA,ir,jsx
Q
SA,jsW

V , (10)

ACA preserves equivariance, as the attention value depends
solely on feature contents, regardless of anchor indices. This
design ensures equivariant preservation, which is crucial for
consistent behavior under rotations.

Equivariant Rotation-Based Cross-Attention (RCA).
In this version of cross-attention, we learn the cross-
attention scores for each discretized rotation in the rotation
group.

First, we use the permutation layer from E2PN (Zhu et al.,
2023), which is mentioned in Section 3.1, to reconstruct
feature maps defined on the discretized rotation group G
from the features defined on anchors V . We denote the
permuted feature corresponding to the rotation g ∈ G as:

xQ
Permute,jg = Permuteg({xQ

SA,js}s=1,...,A) (11)

After obtaining the feature corresponding to the rotation
groups, the raw attention between two input features can be
computed as:

aRCA raw,i,jg =
(xP

SA,iW
Q)(xQ

Permute,jgW
K)T

√
C

(12)

We carry out normalization in both the rotation and spatial
dimensions for consistent feature learning. Rotation-wise,
we calculate the normalized global rotation attention:

aRCA rot,g =
1

N ′M ′

N ′∑
i=1

M ′∑
j=1

Softplus(aRCA raw,i,jg) (13)

aRCA norm rot,g =
aRCA rot,g∑|P |
g=1 aRCA rot,g

(14)

Table 1. Evaluation on the rotated 3DLoMatch benchmark with
5000 sample points and 1k iterations when performing RANSAC.
RR, IR, and FMR represent Registration Recall, Inlier Ratio, and
Feature Matching Recall. The best is shown in bold font. ∗ results
are from (Wang et al., 2022a).

RR (%) ↑ IR (%) ↑ FMR (%) ↑
Predator (Huang et al., 2021)∗ 57.7 26.2 75.7
GeoTransformer (Qin et al., 2022) 62.4 34.5 84.0
YOHO (Wang et al., 2022a)∗ 65.9 26.4 79.2
Ours 69.0 43.0 87.1

Spatial-wise, we use the softmax function on the j dimen-
sion to normalize across the spatial dimension.

aRCA norm spatial,i,jg = Softmaxj(aRCA raw,i,jg) (15)

We multiply Equation (14) and Equation (15) to obtain
attention for both the spatial and rotation dimensions.

aRCA,i,jg = aRCA norm spatial,i,jg aRCA norm rot,g (16)

The output feature for the i’th point in P , denoted as
xP
RCA,i ∈ RA×C , can be written as:

xP
RCA,i =

|P |∑
g=1

M ′∑
j=1

aRCA,i,jg(x
Q
Permute,jgW

V ) (17)

After passing through the feed-forward layer, we denote the
collection of the output features as XP

RCA ∈ RN ′×A×C .

In this section, we proposed different equivariant self-
attention and cross-attention modules. Each model aims
to enhance its respective features, fortifying the robustness
of point cloud registration tasks. We believe such an inclu-
sion leverages the full potential of the equivariant features,
thereby optimizing the overall performance of our proposed
framework.

4. Experimental Results
We conducted experiments on rotated 3DLoMatch (Huang
et al., 2021; Wang et al., 2022a) benchmark, which contains
point cloud pairs with 10% to 30% overlap and arbitrary
rotations. As shown in Table 1, our method performs the
best among all the baselines, showing superior robustness
to low overlap and arbitrary rotations.

5. Conclusion
We have designed SE3ET, a low-overlap point cloud reg-
istration framework that exploits SE(3)-equivariant feature
learning. We show that SE(3)-equivariant features improve
robustness to large transformations in the low-overlap sit-
uation. Our experimental results on Rotated 3DLoMatch
show that the proposed method achieves promising results
in challenging scenarios.
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