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ABSTRACT

Characterizing noisy n-qubit states and processes is vital yet lacks scalability with
conventional methods. Considering the circuit under unital or non-unital indepen-
dent and identically distributed (i.i.d) single-qubit noise where each local gate fol-
lows the local 2-design assumption, we propose a structure-free learning algorithm
that reconstructs any noisy process or state from measurement data. The proposed
algorithm yields poly(n,1/e) sample complexity and classical post-processing
running time for target accuracy € in the average case scenario over the random
circuit ensemble. We numerically benchmark the algorithm on both unital and
non-unital i.i.d single-qubit noise channels, and our results indicate that the al-
gorithm remains highly effective and accurate even for specific quantum circuits,
such as noisy Hamiltonian dynamics, suggesting its broader practical utility. This
work offers a new approach to practical quantum-process learning, and suggests a
potential path for scalable process characterization in near-term quantum devices.

1 INTRODUCTION

Quantum computers are entering regimes beyond the reach of classical computational power (Arute
let all} 2019; Morvan et al 2024; [Zhong et al [2020). Coherent manipulation of complex quantum
states with hundreds of physical qubits has been demonstrated across multiple platforms, including
trapped ions 2016), neutral atom arrays (Evered et al.l 2023)), and superconducting
qubit circuits (Arute et al., [2019; [Morvan et al, 2024; [Acharya et al.| [2024). As quantum hardware
continues to scale in size and complexity, the ability to characterize quantum states and quantum pro-
cesses becomes critical for advancing quantum error correction code (Bravyi et al., Acharya
2024), quantum error mitigation 20230} [0’ Brien et al.,[2023)), and quantum algo-
rithms (Kim et al} 2023a; Morvan et al.,2024). This drive for advancing quantum utility is coupled
with an increasing demand for verifiable results, as emphasized in recent literature arguing that the
ultimate success of quantum systems hinges on robust certification and system validation (Babbush
2025). Consequently, the comprehensive characterization of quantum states and processes is
paramount to meet this demand.Among various approaches for characterizing quantum states and
processes, quantum state tomography (QST) (Banaszek et all, 2013}, [Blume-Kohout, [2010; [Eisert

et al, 2020; [Gross et al., 2010}, [Hradil, auro D’Ariano et al. 2003) and quantum process
tomography (QPT) (Chuang & Nielsen) [1997}, D’ Ariano & Lo Prestil, [2001; Mohseni et al., 2008))

stand as fundamental methods to reconstruct target quantum processes (states) by leveraging quan-
tum measurement results.

Due to the quantum process and quantum state being defined in exponentially high-dimensional
Hilbert space, the challenge is fundamental for both QST and QPT tasks. It is proven that both
approaches rely on extensive measurements of many observables and incur exponential resource
scaling with system size in the worst-case scenario (Chen et al [2022b; [Haah et al., 2023} 2017;
[O’Donnell & Wright, 2016}, [Oufkir, 2023). However, the above “no-go” results do not rule out
efficient algorithms for QPT (QST) tasks in the average-case scenario. Actually, assuming specific
structures or relaxed learning objectives, QPT (QST) tasks would be efficient (Aaronson & Grewal,
2023; [Anshu et all 2020} [Arunachalam et al., 2023} Bairey et al. 2019} [Che et al.| 2021} Chen
et al.,[2022a; |Cramer et al, 2010} [Flammia & Wallman, 2020; Flammia & O&apos;Donnell, 2021}
Gebhart et al., [2023; |Granade et al., 2012 |Grewal et al., 20242023}, |Gross et al., [2021; Gu et al.
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2024; |Haah et al., [2022; Hangleiter et al.| 2024} Huang et al., 2023b; 2020; [Lai & Cheng, 2022
Lanyon et al., 2017 |L1 et al.l |2020; | Montanarol 2017; |Rouzé & Franca, 2024; Stilck Franca et al.}
2024; Van Den Berg et al., 2023; Yu et al.} [2023; Zubida et al.| 2021;|Wu et al.,|2025b)) in sample or
classical post-processing complexity. To the best of our knowledge, current results are not efficient
when the target quantum process (state) is given by a general Noisy Quantum Computer which has
a certain level of noise channels before and after each quantum gate, and the quantum noise could
be either unital or non-unital channels.

On the other hand, given the power of classical artificial-intelligence methods, it is natural to con-
sider their application to complex QPT and QST tasks, such as neural-network models (Melko et al.,
2019; |Acharya et al., [2019; [Wanner et al., 2024} Tang et al.| [2024), tensor networks (Torlai et al.,
2023)), diffusion models (Yehui et al [2025), and other approaches (Wu et al., 2025a; Du et al.,
2025)). However, these heuristic methods generally lack theoretical guarantees or may not handle
QPT and QST in a noisy environment. These advances, together with the fundamental limitations
discussed above, naturally raise a question:

“Can we efficiently learn a general noisy quantum process and quantum state when the underlying
noise channel may be unital or non-unital?”

In this paper, we answer this question by proposing a unified learning framework for both QPT and
QST. The key idea relies on a unified representation of noisy quantum processes and states (Lem-
mas [2]and[3). Specifically, let C denote the target noisy quantum circuit. We show theoretically that
any noisy quantum process Tr (OC(+)) accompanied by an unknown measurement O, and quantum
state p = C(]0™)(0™]), regardless of whether the underlying noise channel is unital or non-unital,
their related tomography tasks can be reduced to learning an unknown observable with the decom-
position M = Z|P‘<O(1)7PE{I7X7Y7Z}®” apP, where the coefficients ap € R. This observation
reduces the learning space from 4™ to poly(n), yielding an efficient learning algorithm when the
quantum circuit suffers from a constant-strength noise channel after each quantum gate. The fun-
damental idea is illustrated in Figure[I} Finally, we numerically benchmark our algorithm on noisy
Hamiltonian dynamics driven by a two-dimensional lattice model (Kim et al., 2023a) and apply it
to the quantum error mitigation with an agnostic input state. The results demonstrate high accuracy
for both QST and QPT tasks.

2 PRELIMINARY KNOWLEDGE

To motivate and contextualize our contribution, we briefly review the requisite background on noisy
quantum channels and circuits.

Definition 1 (Single-Qubit Pauli Channel). Let Ep,yy; denote the single-qubit Pauli channel, which
is

Epaui(p) = Mp + 12X pXT + 73V pY T+ ZpZT, )
where real parameters v1 + Y2 + 73 + v4 = 1, and v; € [0, 1] fori € [4].

As a standard unital quantum channel, the Pauli noise has the property Epawi(1) = I, Epauii(X) =
(1 — 2(’}’3 + ’74))X, g(Y) = (1 — 2(’72 + ’}/4))Y and 5Pauli(Z) = (1 — 2(’}’2 + ’73))Z. Note that
if 7o = 3 = 4, £ degenerates to an i.i.d single-qubit depolarizing noise, which is Egepo(P) =
(1 —+)P for P € {X,Y,Z}. Techniques like Pauli twirling are employed to transform complex
unital channels into diagonal forms on the Pauli basis (Chen et al,, |2023; Wallman & Emerson,
20164a)). In the following, we utilize the Pauli noise channel to represent the unital channel.

Another widely studied class of quantum channels is the non-unital channel, which describes chan-
nels that do not map the identity operator to itself. This kind of noise often reflects complicated
environmental disturbances on the quantum system, where a canonical example is the amplitude
damping. Ref. (Angrisani et al., 2025) decompose the normal form of a non-unital single-qubit
noise channel £ as

E=¢&]

depo

o0&, 2

where £’ is a suitable (non-physical) linear map and Egcpo is a depolarizing noise with the effective

depolarizing rate v. Given this observation, we define a unified noise parameter across unital and
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Figure 1: (a) Illustration of the noisy quantum state learning, wherein a trained model p is generated
by leveraging the adaptive measurement result from the target noisy quantum state p. (b) Depiction
of the noisy quantum process learning. Here, the noisy quantum process C(~y) represents a d-depth
quantum circuit with noise strength -y, and O represents an unknown local measurement operator.
The task is to learn a function f such that |f(-) — Tr[OC(~, -)]| < e for all input quantum states p,.
(c) The proposed learning algorithm can be applied to the quantum error mitigation task. (d) Outline
of the fundamental principle underlying our learning algorithm.

non-unital noise channels:

_ [ 20vi+;) (6,5) €{2,3,4}, & is unital 3)
TV 1=xp(), £ is non-unital

where yp(€) denotes the mean squared contraction coefficient of £ with respect to the locally
unbiased distribution D. The details of the non-unital noise are in Appendix [C.1.3]

Definition 2 (Schatten 7—Norm). The Schatten T—norm of a matrix A is defined as || A|; =
>, vT)7, where v; is the singular value of A and T is a positive integer. Note that ||Al|; =
Tr[VAAT), and ||A||3 coincides with the Frobenius norm|| A|| p.

Definition 3 (The Squared Normalized Frobenius Norm). Suppose the matrix A = %, apP,
with P € {X/\f Y/V2,Z/\2,1)\/2}%", its squared normalized Frobenius norm is defined by
A% =3 p ob.

Definition 4 (Hamming Weight of Pauli Operators). Suppose P represents an n-qubit (normalized)

Pauli operator, then its Hamming weight | P| is defined as the number of qubits that are non-trivially
acted by P.

3 PROBLEM STATEMENT

Here, we consider an n-qubit noisy quantum process

C=E%"CyEP"Cyy---EP"Cy 4)
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in which a v-strength local noise channel £ (unital or non-unital) is applied uniformly throughout
the circuit. The quantum circuit depth is d, and each layer of the circuit consists of two-qubit gates
acting between every pair of qubits, where each gate is uniformly sampled from a local 2-design
unitary group. In other words,

This architecture, which interleafs high-fidelity unitary operations with i.i.d single-qubit noise,
serves as a standard model for benchmarking computational hardness (e.g., in quantum supremacy
(Arute et al.l |2019)) and is the theoretical basis for characterizing device fidelity via Randomized
Benchmarking (RB) (Magesan et al.l [2011). For a complete and rigorous understanding of the
model’s topological structure, its graph-theoretic definitions, and its high generality, see Appendix [B]

Here, a natural step toward fully understanding the power of noisy quantum computation is to learn
the behavior of the noise process. Specifically, we focus on learning the quantum mean value
Tr(OC(py)), where O is an unknown observable and p, is the input state of C. In the worst-
case scenario, learning the output of a general quantum process is even quantumly hard; however,
we argue that the noisy quantum process can be efficiently characterized when the noise parameter
v = Q(1). We first consider a warm-up task that inspires us to design a highly efficient learning
algorithm for general noisy quantum processes.

Problem 1 (Noisy Quantum State Learning). Let p = C(|0™)(0"|) be an unknown quantum state
prepared by C. The target is to learn an approximation p, which is a classical representation of p.
such that their trace distance T (p, p) < € for any € € (0, 1).

Here, the trace distance T'(c, p) = 3 Tr ( (0 —p)t(oc — p)) is used as the maximum bias derived
by quantum states p and o. In the following section, we will demonstrate that learning a noisy
quantum state representation may inspire a quantum process characterization learning algorithm.

Problem 2 (Noisy Quantum Process learning). Given an unknown noisy quantum process C and an
unknown observable O, the task is to learn a classical function f, such that for any € € (0,1) and
input quantum state py, | f(pz) — Tr(OC(py))| < €.

4 QUANTUM LEARNING ALGORITHM FOR NOISY QUANTUM STATE

We first present an efficient method for learning a classical representation of a noisy quantum state.

Lemma 1 (Unified Representation of Noisy Quantum State). Let the noisy quantum state be p =
C(]0™)(0™]), with C = E®MCHEP™Cq_1 - - - EP™Cy represent a d-depth noisy quantum circuit, where

Ci(-) = Cj (-)C; is a unitary channel consisting of a layer of two-qubit Haar random gates. The
noisy quantum state

p= > (1=7)"1(C, s)sa, (5)

sep®UHD
where the n(d+1)-qubit operator is s = (551 - - - 54) and Py, = {1 /32, X/V/2,Y/\/2, Z//2}®™
The related coefficient
B(C,s) = Tr(saCa(sa—1)) - - - Tr(s1C1(s0)) Tr(s0]0™)(0™]), £ is unital,
PIT Tr(s4€7 %" Ca(sa-1)) - - Tr(s1E"®Cy (s0)) Tr(s0]0™)(0"), & is non-unital
where the channel £’ is defined as Eq.

(6)

See Appendix [C1] for the proof. Although an arbitrary n-qubit density operator requires 4" Pauli
operators, our result theoretically demonstrates the intrinsic simplicity of a noisy quantum state.
It is observed that most of Pauli paths s; will be exponentially decayed when the noise channel
strength v = (1), which implies the low-weight Pauli paths dominate the noisy quantum state.
This observation enables a much more compact approximation to the noisy quantum state.

Lemma 2. Let the noisy quantum state p = C(|0™)(0"|) with C defined as Eq.[d|, where C; is a
layer of two-qubit Haar random quantum gates. With the success probability > 1 — 61, there exists
a density matrix p = Z\sd\q/ p, (s, Sd such that

llp = pllL < e, @
where coefficients as, € Randl' = O (% log( L )) .

,8d€

€101
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We note that Lemma [2] holds for both unital and non-unital noisy channels. Consider the trace
distance T'(p, p) = 3lp— pll1 and T(p, p) = maxp<; [Tr[P(p — p)]|, the foregoing approximation
result immediately yields a tight upper bound on quantum expectation values.

Proof Sketch. The fundamental idea is to obtain an efficient representation of a noisy quantum state
by leveraging Lemmal[I] The contribution of each Pauli path s, is determined by a related pre-factor
(1 — v)l*l®(C, s), which decays exponentially with the Pauli-path weight |s|. Since |s4| < |s|, we
truncate the noisy-state representation in Lemma [1|to terms with |sg| < I’. Tt therefore suffices to
show that the rest of the average-case error Ec [}, - ®(C, s)]? is a constant. If £ represents an
unital noise channel, the quantum local random gate property enables us to bound the contribution
of each truncated Pauli term (Aharonov et al., 2023). Specifically, if |sq4| > I, then there are at least

|s|/4 gates whose input and output are both non-identity Pauli operators, and consequently ®(C, s)
can be upper bounded by 1175|8|/ *. For non-unital noise channel £ , the local 1-design quantum gate
property enables E¢ [Z|5d|> » ®(C, s)]? upper bounded by the normalized Frobenius norm of the
input quantum state, that is |0)(0™] in our case (Angrisani et al., 2025). In both cases, the average-
case error has the upper bound ¢; with large probability by choosing I’ = v~ ! log (61_151_ 1). This
completes the proof. Details are provided in Appendix[C.2] O

The above observation implies that the number of non-trivial terms (those with a5, 7# 0) is bounded
by N, < 2°0) = O(1/e;). Hence, when the required accuracy is e; = 1/poly(n), all Pauli
terms s4 appearing in the ansatz p can be enumerated efficiently. Consequently, tomography of the
noisy state p is reduced to tomography of its approximation p, determining the unknown coefficients
o, for sq, then it suffices to perform the noisy-state tomography task. Since all ‘low-weight’
Pauli operators s4 can be enumerated in advance, the classical shadow method (Huang et al., [2020)
is a natural candidate for estimating the coefficients «,, yielding an O (log(l / 61)61_2) sample-
complexity guarantee.

Nevertheless, the classical shadow method may not extend directly to quantum process tomog-
raphy tasks. To implement a ‘unified’ learning approach for both quantum noisy state and
process tomography tasks, we provide another method for estimating coefficients «, from the
quantum randomized measurement results. We generate a dataset {|¢;) = ®I_; |9 ;) ,v; =
(5] p\qu)}é\[:df{"“ by drawing each single-qubit stabilizer [¢); ;) uniformly sampled from the set
Stab = {[0),|1),]+),]|=),|y+),|y—)}. Here, the quantum state overlap v; = (¢;|p|¢);) can
be efficiently obtained by using the SWAP-test method (Buhrman et al., [2001). Without loss of
generality, we assume each single-qubit stabilizer state can be prepared by |¢); ;) = U, ;|0);, where
U;,; is a random single-qubit Clifford gate. By leveraging the orthogonal property of single-qubit
Pauli operators (); in the context of the Clifford ensemble, that is

I®27 lsz = Qg = Iv
> (Qi®Q),fQi=Qi#1. (g)

Qie{X Y, Z}®2

W =

Ev, ;~ci2) |UTS2(Q ®Q§)U1%2} =

coefficients «,, are obtained as
ol 3lsal Naata
sy = 3PUEy  seaben Vi (Y] 54 [1) = No > vy (Wil saliy) - 9)

j=1
The in-depth explanation of the learning Algorithm is provided in Appendix [C.3] We note that the
above learning approach is efficient in both sample and computational complexity (classical post-
processing).

Theorem 1 (Noisy Quantum State Learning). For any noisy quantum state p prepared by a noisy
quantum circuit C (Eq. [), where C; is a layer of two-qubit random haar quantum gates, there
exists a learning algorithm that can efficiently solve Problem [I| with success probability > 1 — 4.
The learning algorithm requires sample complexity Nyata = 6O(v Hlog(c7171)) log(1/6)e=2 and

classical post-processing complexity O (n 940 (v log(e 107 Y)) 10g(1/5)e’2).
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When the required accuracy and failure probability €,0 = 1/poly(n), the proposed learning al-
gorithm is highly efficient to construct a density matrix p such that (a) T'(p,p) < € and (b)
|Tr(Op) — Tr(0Op)| < €||O||. In many noisy intermediate-scale quantum (NISQ) algorithms, one is
often interested in the expectation values of Pauli operators. Theorem|[I]supplies an efficient method
for benchmarking the output of NISQ algorithms.

5 LEARNING A QUANTUM PROCESS CHARACTERIZATION

Compared with the noisy quantum state tomography, QPT is a more challenging task, which re-
quires an exponential query complexity in the worst-case scenario (Haah et al., |2023), rendering
it infeasible for large-scale systems. Inspired by the noisy quantum state tomography method, we
proposed an efficient learning algorithm for the QPT task, particularly when the quantum process
is given by a noisy quantum circuit C (Eq. ) followed by an unknown quantum measurement O.
Without loss of generality, we assume the n-qubit observable O = 3 ¢ (1 x v, 7100 TH[OQ]Q/2"
is the linear combinations of local operators, where each local Pauli operator |Q| = O(1). In other
words, O is considered as a sum of few-body observables, where each qubit is acted on by a constant
number of the few-body observables.

Let the noisy quantum channel be given by the Kraus decomposition C = >, K ]()K; It is
observed that

Tr[C(pa)O) = Tr | Y Kjp, KIO| =Tr | > p. KIOK;| =Tr [p,C'(0)].  (10)
J J
Consequently, the key step is to learn the ‘dual’ representation CT(O). We demonstrate that this dual

operator also admits low-weight Pauli paths, allowing for a truncation-based approximation similar
to that employed for noisy states.

Lemma 3. Let the noisy quantum circuit C = EE"CyE®"Cy_y - - - E®¥"Cy represent a d-depth noisy
quantum circuit, where C; is a layer of two-qubit Haar random quantum gates and & represents an
i.i.d single-qubit noisy channel (unital or non-unital). With success probability > 1 — §, there exists

an operator C1)1(0) = >_|p|<v.pep, BpP such that
[c10)-cto), < e an
where coefficients Bp € Rand l' = O (v~ log(1/(d2€2))).

Similar to the noisy quantum state tomography task, reconstructing C @t (O) proceeds from the data

n N, ata 3 s s
set Dapr = {[¢)) = @iy [¥i5) &5 = Tr[OC(|v;) (v )]} 21, where |¢); ;) is a single-qubit
stabilizer randomly sampled from the set Stab, and ¢; denotes the output of the target quantum
process. According to the Eq.[8] coefficients Sp can be learned efficiently via

AR P 12
ﬁP — Ndata ; ¢J <"/}z| |/(/)7,> ( )

The complete QPT procedure is summarized in Algorithm [T}

From the above algorithm, it can be observed that the computational overhead primarily stems from
two sources: (1) the sampling complexity Nga,ta, (2) and the complexity of classical post-processing.
Both of these costs depend on the number of s, (Pauli operator P in the algorithm), which in turn is
governed by how many legal Pauli paths are retained, in other words, the number of Pauli operators
sq with non-zero parameter 35, contained in C (ll)T(O). According to Lemma the weight of s4
is given by I’ = O(y~! log(e’lé ’1)). Therefore, a rough estimate of the number of legal paths
is O(n'"). For ¢ = 1/n, the number of legal paths becomes O(n'°8™), incurring quasi-polynomial
sampling and post-processing complexity.

However, we can tighten the bound to retain only @) legal paths. For unital noisy circuit, the
lower bound of E¢ |5<;®(C, )% is ils‘, when the input and the output of the each gate are non-

15

identity Pauli operators for a legal Pauli path. Consequently, the sum over all paths with weight up
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Algorithm 1 Quantum Process Learning Algorithm

Input: Data set Dgpr = {|¢;) = @, |1/)1-7j>};.v=‘"i‘“ and accuracy parameter €;
Output: A f(-)suchthat|f(-) — Tr [OC(-)]| < e with high success probability for all input quantum
states;
Let I’ = [log(1/€)], enumerate all the P € P,, with |P| <1’;
F()I‘j € [Ndata]:
Take the input state |¢;)(2;| into the target quantum process, and obtain the output ¢; =
TY[OC(4) ()
End For
For each P € P,, with |P| <"

Compute fp = 2 SN 6, (1] P [upy).
End For
Output: f(-) =3 p<p BpTr(P(-))

to !’ is given by O(1) = ZISdlél’ ]EC7|S‘§5<I>(C7S)2 > Nsl%l ,
paths. Thus N, = 15°1) € ¢©()) | For non-unital noisy circuits, IV, is bounded by maxgeo \Q|el/
for the enumeration that starts from a local term ) € O non-trivially acting on a constant number of
qubits. We conclude the main results in the following Theorem. The proof is given in Appendix[D.2}

where N is the number of legal Pauli

Theorem 2 (Noisy Quantum Process Learning). For any noisy quantum process C defined as
Eq. where C; is a layer of two-qubit Haar random quantum gates, and n-qubit observable
0= ZQE{I,X7Y7Z}®,L, 1Ql=0(1) Tr[OQ]Q/2", there exists a learning algorithm that can efficiently
solve Problem[2with success probability > 1 — 6. The learning algorithm requires sample complex-

iy

Naara = max(|Q[*)60C " tosllI0llr ™)) og (571) =2, (13)
€
. . . n-max Q3 24O(W_llog(HO”Fe_lé_l))10‘ 51t
and classical post-processing complexity O ( 2eo(lQF) - 2(0") .

. L. . o O(Wfllog(m)) 1 2
Moreover, if the noise is unital, the sample complexity is 6 © 10g(5 - )e_ and clas-

1 (l01R)
sical post-processing complexity is O <n - 249 (7 lot’( c )) log (6‘1)6_2).

6 NUMERICAL EXPERIMENTS

In this section, we present numerical results that employ the proposed learning algorithms to perform
noisy quantum process and state tomography, thereby substantiating the theoretical analysis. We fur-
ther illustrate that the same pipeline can be harnessed for quantum error mitigation. Although our
theoretical results rely on the randomness assumption, we numerically verify that our learning algo-
rithm remains highly efficient for a broader class of circuits, including those with specific structure,
such as noisy quantum dynamical processes. This demonstrates the broad practical applicability of
our approach.

6.1 EXPERIMENT SETTING

Benchmarks are performed on the two-dimensional transverse-field Ising model described by the

Hamiltonian
H=-JY Z,Z,+h» X, (14)
(a:p) q
where the notation (g, p) restricts the interaction to nearest-neighbor pairs. The positive coupling

strength J and the transverse field h fully parameterize the system. Evolving for total time 7" via

_ ) T/5t
> 010tJ Zq Zy Hq eﬂqu) with Trotter step

a first-order Trotter formula gives U(T') ~ (H (ap
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length 6t. Consequently, the quantum circuit reduces to an alternating sequence of RZZ(6 ) and
RX(0},) gates whose rotation angles are fixed by the physical parameters through 6 ; = —2.J§t and
0, = 2hdt (Kim et al.,[2023a). To simplify the subsequent gate decomposition—specifically, to min-
imize the CNOT count required for each RZZ — we fix #; = —% and only change 6,. As reported
in [Kim et al| (2023a)), current superconducting quantum computers have a certain level of noise
within each quantum gate. During our simulation, we thus introduce a i.i.d single-qubit depolariz-
ing channel after each quantum gate, with strength 2 x 10~2 for unital cases in both quantum state
and process tomography tasks. For more general non-unital noisy channel cases, we assume each
quantum gate suffers from an i.i.d single-qubit depolarizing channel and a local amplitude damping
channel. We simulate the noisy quantum state and process using the Qulacs Package (Suzuki et al.,
2021). The quantum circuit is tested up to a 3 x 5-sized instance 20 layers, corresponding to a
215 % 215 matrix, occupying 16 GB of RAM and taking approximately 17 hours for each shot.

6.2 EXPERIMENT RESULTS

_3
a 10 b 0.20
10 —— [' =1, datasize = 1000 —-—compute directly
< —— ' = 2, datasize = 4000 015 —-—tomography
S08 —— I'=3, datasize = 20000 -
\k/ —_
& 06 2010
B =
049,
S “ 0.05
E 0.2 x
- '\.
0.0 —_— e — —. o 0.00
2x3  2x4  3x3  2x5 3x4  2xT  3x5 0 /8 /4 3w /4 /2
Number of Qubits O
C d
== ' = 1, datasize = 500 . == AmplitudeDampingNoise
2.5 0.03 o
—— I’ =2, datasize = 2000 —— DepolarizingNoise
§2_0 —— ' = 3, datasize = 2000 E L
= 7 0.02
1.5 ~ .
I S \
< <
1.0 Q .
S Z oo ~—
) ~ .
—05 3 —
0.0 :§=/'\=—s 0.00
2x3 2x4 3x3 2x5H 3x4 2xT 0.01 0.015 0.02 0.025 0.03
Number of Qubits Noise Strength

Figure 2: (a) QST results for various numbers of qubits and I’. Each circuit is 20 layers accompanied
by depolarizing noise of strength 0.02 and fixed 6, = 7. The grid illustrates the 3 x 5 2D transverse
field Ising model. (b). Learning of the p generated by sweeping 6, from 0 to 7; the circuit size
2 x b, 45 layers, depolarizing noise strength 0.02. The heat-map shows a 25 x 25 sub-matrix of the
p — pat By = 7 (the full matrix in Appendix . (c). QPT results for different qubit numbers and
I’, where the circuit depth is 5 layers and the depolarizing noise strength is 0.01. (d). QPT for the
2 x 5 system under 2 kinds of noise and other settings identical to c.

The visualizations of the results of 4 experiments are shown in Figure 2] In all panels, the shaded
area indicates the range of experimental outcomes, with the upper bound representing the maximum
value and the lower bound the minimum value; the solid line indicates the mean over 10 trials.
Figure[2]a shows that the error decreases as the system size increases and stabilizers once the system
is sufficiently large; the same behavior is observed in Figure 2] c, consistent with the theoretical
findings Theorem [T]and [2] In Figure[2]b, the two dot lines respectively display the ideal outcomes
and the outcomes from the tomography algorithm, which conveys that the trace distance exhibits
minimal fluctuation as 6}, varies. Figure[2]d demonstrates that our protocol is capable of effectively
learning depolarizing noise and also shows the capacity to learn non-unital noise. Interestingly, the
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learning performance improves as the noise strength increases, demonstrating the strong robustness
of the learning algorithm in terms of the noise strength. Moreover, our approach reduces the storage
required for storing a quantum state: for example, a 14-qubit density matrix (2 x 7 lattice) generally
occupies 8 GB, whereas storing the coefficients of its Pauli decomposition requires only 1 KB,
offering an efficient and compact representation of noisy quantum processes.

6.3 APPLICATION: QUANTUM ERROR MITIGATION

a b 1.0
¢ prediction
0.8 %  d-scaled truth
: : = : m 7-scaled truth
§ 0.6 1 exponential fit
. é — DB-spline fit
: S:' 0.4
&~
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Figure 3: (a) The procedure of the ZNE. (b) The numerical result of the ZNE-QEM using the
proposed learning algorithm.

0.2
0.0

‘We note that our learning algorithm can also be applied to solve the quantum error mitigation (QEM)
task (Eisert et al. [2020). QEM comprises protocols that suppress stochastic errors on NISQ hard-
ware by classical post-processing of measurement data, without introducing full quantum error-
correcting codes. Whereas error correction aims to eliminate noise, QEM converts every hardware
improvement into an immediate fidelity gain by suppressing residual errors. One QEM approach
is zero-noise extrapolation (ZNE), which executes the circuit at several circuit fault rates A, which
measures the level of errors occurring in the overall circuit, and A « v (Cai et al., [2023). Al-
though the circuit output at A = 0 cannot be measured directly, an empirical model A(\) linking
A to the circuit output can be built from a set of different A values. This allows us to extrapolate
the case of A\ = 0, which corresponds to zero noise. Different A values can be generated by purse-
stretching(Kandala et al., 2019} |[Kim et al.| 2023b) or by inserting additional noise channels (Endo
et al.} 2018)). For an i.i.d single-qubit noise, it is natural to set A proportional to the gate count, thus
v o< A o Number of the gates. Here we vary A by controlling the depth of the circuit d.

Whereas the conventional ZNE must be tailored to each specific input, our protocol is input-agnostic.
Similar to Lemma Tr(OC(1)) = > p<p(1 — 7)IP1®(C, P)Tr(P-). Considering the depolariz-

|P]
d

ing noise strength v < 1, (1 — )Pl = (1 — ’y)%d ~ (1 — ~vd) @ . In other words, one can
obtain the characterizations of the same quantum processes with different noise strength by append-
ing extra quantum circuit layers to the original process, this yields a sequence of learned values
{frllfr = TX[OCrq(]0™)(0™])]| < €}r>1. One can utilize { f, },>1 to extrapolate fo, which is con-
sidered as the characterization of C4 with zero noise.

The result of numerical experiments of application is shown in Figure 3] where we simulate a six-
qubit 2D transverse field Ising model Eq. [T4] with 5 layers. Two key observations emerge:

* Rescaling either the depth coefficient d or the noise strength ~ perturbs the dynamics to a
comparable extent, as seen from the nearly overlapping dots.

* The characterization obtained by learning the coefficients of d can be extrapolated via curve
fitting to estimate the noise-free system (i.e., when v = 0) characterization. Exponential
extrapolation yields an error 0.0446; a cubic B-spline (piecewise polynomial) reduces it to
0.0222.
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7  DISCUSSION

Efficiently characterizing noisy quantum states and processes has stood as one of the most signifi-
cant problems over the past decades. In this paper, we propose a provably efficient quantum learn-
ing algorithm that handles both unital and non-unital noisy channels, extending previous art from
restricted input distributions to arbitrary input quantum states. A more detailed comparison with
other works can be found in Appendix [A] When the noise strength is a constant value, our learn-
ing algorithm is efficient in both sample and runtime complexity. These advances provide rigorous
theoretical foundations for analyzing quantum machine learning models, verifying computational
outcomes, and benchmarking noisy quantum processes in near-term quantum devices.

For noisy quantum state learning, we have proven that the learning algorithm can be efficient in the
average case. We also provide a worst-case lower bound for the sample complexity in both noisy
state and process tomography tasks. Specifically, when the noise strength is a constant and the noisy
quantum circuit depth is d = poly(logn), the sample complexity lower bound for the worst-case
scenario is quasi-polynomial. We emphasize that this result does not contradict Theorem [T and [2}
the former statement concerns the worst case, while the latter addresses the average case under the
random-circuit assumption. The details are provided in Appendix [E}

Distinguishing Learning from Simulation The primary distinction of our approach lies in its in-
formational requirements compared to classical simulation methods. From a practical perspective,
simulating a quantum circuit typically requires prior knowledge of the noise strength(Shao et al
2024} [Schuster et al}, [2024), and some noise strengths whose efficient characterization can be in-
herently challenging(Chen et al 2023). Conversely, our learning algorithm merely requires the
noise level to be constant, obviating the need for its exact strength to be known. From a theoretical
standpoint, both our learning approach and the cited simulation methods(Aharonov et al.,[2023}
grisani et al.}[2025)) leverage the principle of Pauli-path integration, wherein exponential noise decay
ensures that noisy processes are dominated by low-weight Pauli paths. The crucial difference resides
in the informational premise: In our learning algorithm, the quantum gates, circuit architecture, and
noise strength are all unknown; we exploit this property to engineer an efficient classical representa-
tion (ansatz) for tomography. Classical simulation algorithms, conversely, apply this same property
to compute circuit outputs, yet their efficacy is predicated on requiring full knowledge of the in-
volved quantum gates, architecture, and noise strengths. Consequently, our work may be viewed
as a ’learning-theoretic dual’ to the classical-simulation results(Gil-Fuster et al.} [2025). These two
paradigms operate in parallel, reflecting complementary perspectives on benchmarking noisy quan-
tum processes—specifically, quantum tomography versus classical verification within benchmarking

toolkits (Eisert et al.} [2020)

Future Directions and Open Problems Despite the high generality and efficiency of our theo-
retical framework in the current NISQ regime (assuming constant-level noise ), several important
open problems remain as we look toward applications in future fault-tolerant quantum computing:

Noise Strength Optimization and Inference (I’ Truncation):Theoretically, the Pauli
truncation length I’ depends on v~ !. In practice, exploring the use of sparsity-promoting
techniques (e.g., LASSO or OMP) to adaptively identify and learn only the most relevant
Pauli terms based on data could potentially compress the numerical complexity and en-
hance precision beyond the existing theoretical bound.

Extension to Gate-Dependent Noise: Our analysis is rigorously founded on the i.i.d.
gate-independent noise model. We acknowledge that in larger, more complex quantum
architectures, noise often exhibits gate-dependence. Extending our learning framework to
enable effective tomography of these more physically challenging noise models remains a
significant avenue for future research.

Optimal Scaling: The polynomial dependence of our algorithm’s complexity on ~ and
€ raises a natural open question: can these scalings (currently O(y~1) and O(¢~2)) be
further optimized?

10
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A COMPARISON WITH OTHER WORKS

The comparison provided in Table[T]and 2] highlights the significant differences in resource scaling
across current quantum learning paradigms. Our work offers a novel, provably efficient regime,
fundamentally separating its resource requirements from existing methods under the assumption of
random noisy quantum circuit.

A.1 GENERALIZATION AND NOISE SCOPE

The comparison provided in Table [T] highlights the differing constraints of each framework. Our
model offers crucial extensions in two key dimensions relative to existing works.

First, the core theoretical advance of our framework is the ability to unify the treatment of both i.i.d
single-qubit unital and non-unital noise channels. This contrasts with complexity results derived
primarily for the Pauli channel model (2024), which is restricted to unitary noise. Our
incorporation of non-unital CPTP maps is essential for modeling realistic hardware decoherence
processes like amplitude damping.

Second, our QPT algorithm provides an input-agnostic characterization of the noisy quantum chan-
nel, operating without requiring the rotational symmetry of the input state distribution (a require-
ment for works like[Huang et al.| (2023a))) or adherence to arbitrary product distributions
(2024). This ensures that our framework maintains predictive scalability for arbitrary input states,
despite the structural limitation of our noise model to i.i.d. single-qubit errors.

Table 1: Comparison with Related Work on Condition.

work input distribution Channel

Huang et al.|(2023a) at most polynomially far from alocally =~ General CPTP map
flat distribution

Raza et al. No restriction n-qubit Pauli channel
en et al. Product state, ||T'||op <1—17 Accessible
ur Wor No restriction (QPT) / [0™) (QST) arbitrary i.i.d. single-qubit noise

A.2 RESOURCE SCALING AND EFFICIENCY REGIME

Table 2: Comparison with Related Work on Complexity. 7 € (0, 1) is related to the input distribu-
tion; M is the number of Observables. Let L = v~ ! log (||O||pe~'6~") denote the dominant term
in the exponent.

work Classical Runtime Sample Complexity (Ngat.)

Huang et al] Ngata 90[log ¢ log(n)]
(202351])

n 10, O, 3 .
Raza etal] (2024) O(Ngaia - 1) o ((Yretnpten))

1 —1
‘ (o o=t )
en et al[(2024) Ngata min =7 =7 -log 5

Our Work O(n - Ndata) maXQeO(\QF)GO(L) log(671)e 2

The Table[2]shows a comparison between our theoretical work with other related works. For constant
accuracy €, the sample complexity in our algorithm is proportional only to a factor exponential in L,
which is independent of n. This achieves constant sample complexity for a constant noise strength
7. This contrasts sharply with the method of Raza et al|(2024), which suffers from a O(y/n)
polynomial dependency on the system size n, and an intractable O(4™) classical runtime bottleneck
inherent to standard shadow tomography protocols when estimating general channels.
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When considering high precision requirements, such as setting the accuracy e to %, our complexity
grows only polynomially with n. This provides a substantial advantage over the approaches of
Huang et al.| (2023a)) and [Chen et al.|(2024), which incur a quasi-polynomial dependence (n°(°g™)
or 20Uognlog(1/€))y que to their reliance on methods that scale with the logarithm of the system
size in the exponent. Our ability to bypass this quasi-polynomial scaling stems from leveraging the
physical constraint imposed by constant noise, which confines the learned system to a low-weight
Pauli subspace, ensuring genuinely polynomial scaling in n for practical precision levels.

B STRUCTURE AND APPLICABILITY OF THE NOISY CIRCUIT IN THIS WORK

We emphasize that the quantum process studied serves as a standard model with wide and practical
applications, especially in the Near-Term Intermediate Scale Quantum (NISQ) era. This appendix
details the topological definitions, generality, and practical relevance of the quantum circuit model
investigated.

B.1 TOPOLOGICAL DEFINITION AND MODEL GENERALITY

The studied noisy quantum process C adopts a layered structure, representing a large class of quan-
tum circuits:
C=CE%...£9m¢y (15)

in which a v-strength local noise channel £ (unital or non-unital) is applied uniformly throughout
the circuit. The quantum circuit depth is d, and each layer of the circuit consists of two-qubit gates
acting between every pair of qubits, where each gate is uniformly sampled from a local 2-design
unitary group. The local 2-design assumption is an extremely weak condition, where quantum neural
network models are typical cases(McClean et al.,[2018};[Cerezo et al}, 2021), and even Clifford gates
satisfy such an assumption (Zhu et al., 2016). We note that if an ensemble follows a (¢ + 1)-design,
it must follow the ¢-design property (Mele, [2024)). As a result, this assumption is very general and
covers a large amount of NISQ algorithms related to randomly initial parameters’ and ’classical
optimizations’(McClean et al 2018} [Cerezo et al.| [2021).

The circuit model is formally defined below using graph-theoretic definitions:

Definition 5 (Architecture, restatement of Haferkamp et al.| (2022)). An architecture is a directed
acyclic graph that contains R € Z~( vertices (gates). Two edges (qubits) enter each vertex, and two
edges exit. Two typical examples are listed below:

* A brickwork is the architecture of any circuit formed as follows. Apply a string of two-
qubit gates: Uy o ® U3 4 @ --- @ Up—1,,-Then apply a staggered string of gates. Perform
this pair of steps 7' times in total, using possibly different gates each time.

* A staircase is the architecture of any circuit which apples a stepwise string of two-qubit
gates: U, n—1Un—2n—1---Usz1. Repeat this process T' times, using possibly different
gates each time.

Here, the quantum circuit layer C; may adopt any architecture, and we note that our learning al-
gorithm can be applied to any geometrical architecture, and thus covers a large class of noisy
quantum circuits, especially for those used in NISQ algorithms.

Definition 6 (Random Quantum Circuit, restatement of [Haferkamp et al.|(2022))). Let G denote an
arbitrary architecture. A probability distribution can be induced over the architecture-G circuits as
follows: for each vertex in G, draw a gate Haar-randomly from SU (4). Then contract the unitaries
along the edges of GG. Each circuit so constructed is called a random quantum circuit.

Definition 7 (Random noisy quantum circuit). Let G denote an arbitrary architecture. A probability

distribution can be induced over the architecture-G circuits as follows: for each vertex in (G, draw a
gate Haar-randomly from SU (4) and an i.i.d single-qubit noisy channel. Then contract the unitaries

along the edges of G. Each circuit so constructed is called a random noisy quantum circuit.

The guarantee is a high-probability bound (> 1 — d) over random circuit ensemble defined in Def-
inition. [7] Furthermore, we numerically demonstrate that our learning algorithm can successfully
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handle a noisy Hamiltonian dynamics approach, where the underlying quantum circuit does not
possess the locally random property.

B.2 IMPORTANCE FOR QUANTUM BENCHMARKING AND LEARNING

To design powerful quantum algorithms, such as quantum neural network models and related states,
a benchmarking algorithm is necessary (Arute et al.| 2019} [Babbush et al.}[2023)); otherwise, one may
not verify and check the correctness of the implemented quantum algorithm. Following this logic, a
large amount of quantum learning algorithms are proposed for quantum state (process) tomography,
Hamiltonian learning(Haah et al| , shallow circuit learning(Huang et al.|[2024)), quantum gate
tomography, and other quantum benchmarking algorithms. To the best of our knowledge, this is the
first efficient learning algorithm for noisy state and process tomography, providing an efficient
tool for verifying the output of the implemented quantum algorithms on NISQ devices.

B.3 THE GATE-INDEPENDENT NOISE MODEL

We utilize the gate-independent noise model, which posits that the detrimental effects impacting
quantum operations are uniform across all fundamental gates, irrespective of their specific type or
physical implementation. This simplifying assumption is widely adopted due to several key factors:

* Theoretical Tractability: Adopting a gate-independent noise assumption allows re-
searchers to advance the development and analysis of error correction protocols and fault-
tolerant methodologies** without needing to incorporate the intricate details of gate-
specific noise characteristics(Knill et all, 2008}, [Helsen et all 2019; [Chen et al] [2021]).
This uniformity facilitates the derivation of universal results and theoretical performance
bounds (Nielsen & Chuang [200T).

* Practical Approximations: In particular quantum systems—especially those featuring
highly calibrated gates acting on the same number of qubits and employing standardized
control mechanisms—the variability of noise across different gates can be negligible(Shor,
1996} [Arute et al, 2019). In these instances, the gate-independent noise model serves as
a tenable approximation, streamlining analysis without substantially compromising preci-
sion.

* Alignment with Noise Conversion Methods (Twirling): Techniques like Pauli twirling
are routinely applied to convert complicated physical noise channels into simpler, diagonal
forms in the Pauli basis(Wallman & Emerson|, 2016b}, [Chen et al., 2023). The resulting
channel can often be effectively approximated as gate-independent, thereby conforming to
the model’s postulates.

The gate-independent noise model thus furnishes a foundational framework for comprehending er-
ror propagation and engineering correction strategies. We identify the robust depiction of gate-
dependent noise, which typically manifests in larger, more intricate quantum architectures, as a
significant avenue for future exploration.

C LEARNING A QUANTUM STATE

The proofs of Lemma [T|and Lemma2]are presented in this section, together with further implemen-
tation details of the QST algorithm.

C.1 PROOF OF LEMMA[T]

In this section, we will prove Lemmam

Lemma 4 (Unified Representation of Noisy Quantum State, Lemma [T). Let the noisy quantum
state p = C(|0™)(0™|) with C = EXMC4EP"Cy—1 - - - E®"Cy representing a d-depth noisy quantum
circuit, where C;(+) = Cl-T (-)C; is a unitary channel consisting of a layer of two-qubit gates, and €
is a general single-qubit noise channel with strength parameter . Then the noisy quantum state p
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can be represented by the Pauli path integral, that is

p= Y. (1="®(C, s)s4, (16)
sep@a+D)
where the n(d + 1)-qubit operator s = 8951 -+~ 84, Pn = {I/v/2, X/\2,Y/\/2, Z/\/2}%". The

Pauli weight |s| represents the number of non-identity operators inse€ 73®(d+1) The coefficient

(C,5) = Tr(s4Cq(sa-1)) - - - Tr(51C1(50)){0™|s50|0™), unital, (17)
T Tr(saE " Ca(s4-1)) - - - Tr(s1E7%Ch(50))(0™[50]0™),  non-unital
where the channel £' is defined as follows.

We prove it by describing three types of noisy channels, which are depolarizing noise, single-qubit
Pauli noise, and non-unital noise.

C.1.1 DEPOLARIZING NOISE

The property of depolarizing noise Eqcpo is that

gdepo(I) = Iv
& epo(X) = - Xa
tepo(X) = (1=7) )
Eaepo(Y) = (1 = 7)Y,
Eaepo(Z) = (1 =7)Z,
so that
p = Z SdTr(Sdgdepocd(Sd—l)) Tr(slé'depocl(so))(0"|so|0n>
sepgtt
(19)
= Y (1 =)l lsad(Cls),
SGPlel
where |s| means the number of non-identities in s.
C.1.2 PAULI NOISE
We use £ to denote the noise function. Pauli noise Epgqy 5 1S
Epanti(p) = 71p + 12 XpXT +3Y pY T +1uZpZT, (20)
where 1 + 2 + 73 + 74 = 1. The Pauli noise has the property that
Epantill) =M+ +13+7)=1,
Epauii (X) = (’71 +72 =3 —7)X = (1 = 2(y3 + 7)) X, 1)
Epauli(Y) = (M1 — 12 +13 —72)Y = (1 = 2(72 +14))Y,
Epauii(Z) = ( —v2 =3 +7)Z = (1-2(72+3))Z
So the Pauli Channel can be written as
pP= Z SCl’I‘r(Sd‘c"PauhC (Sdfl)) (slgPauhcl(SO))’I‘T(Solon><0n|)
SGP,‘erl
= D0 (=205 + 7)) (= 205 +90) Y (1= 205 +90) 5 B(C)
sepatt
< Z (1 —2y)lls4®(C, ),
sE'Pferl

where |s|p denotes the number of P in s. v = min{(y2 +v3), (72 + 74), (y3 + 74)}.  still
satisfying 0 < v < 1.
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C.1.3 NON-UNITAL NOISE

Angrisani et al.| (2025)) gives a way of simulating arbitrary noise by Pauli propagation. The normal
form of a non-unital noise single-qubit channel £ is decomposed as

E=E1,,0°E, (23)
where £’ is a suitable (non-physical) linear map and £

depo
depolarizing rate v = 1 — xp(&):

Erén(rt HAN 12 1/1A]|

Y5 (£) := max max <EU~D®n {” ( Ap N il D (24)
AC[n] 2.4 #0 supp(p2)=A ||pa: HF

is the mean squared contraction coefficient of £ in terms of the locally unbiased distribution D. The

input of the C is decomposed as p, = pep, @pP. p; retains those Pauli terms whose support

is exactly A: nontrivial on A and identity elsewhere, which is different from the reduced density

matrix. Define the squared normalized Frobenius norm ||p||3: = > pcp b, |A] is the size of the

supp(p;!)-
In that case, the output of a non-unital noisy channel is
p= 3 Tr(safine " Calsa)) - Te(s1E350E " C1(50)) Tr(s0/0™) (0")

is a depolarizing noise with the effective

depo depo
sepitt
EPn (25)
= > (1=llsd(C,s).
5:€P,‘fJrl

Thus, complete the proof of Lemmal[l]

C.2 PROOF OF LEMMA2]

Aharonov et al.|(2023)) proved that sampling from a depolarizing channel reduces to fitting a constant
number [ of Pauli paths. We generalize this observation to single-qubit Pauli noise and, further, to
any i.i.d single-qubit non-unital noise that admits a sparse Pauli-path expansion.

According to Lemmal[T} for an arbitrary i.i.d single-qubit noise, the output state is approximated by

p= Z s, Sd = Z (1 —)llsg@(C, 5). (26)
[sa|<U sa€Pn sePITt |s|<I

In other words, we can learn the finite number of the legal Pauli paths to get a p satisfying ||p—p||1 <
€, where || A||; is the Schatten 1—norm of A. The formal statement and proof are given in Lemma
Lemma 5 (Restatement of Lemma 2). Let the noisy quantum state p = C(|0"){(0"|) with C =
EOMCLECMCy_y - -- EBTCy representing a d-depth noisy quantum circuit, where C; is a layer of
two-qubit Haar random quantum gates. With nearly unit success probability, there exists a density
matrix p =3, <y o ep, OsySd Such that

llp = pll < e, 27)
where coefficients s, € R andl' = O(log(1/(€101)) with the success probability > 1 — 6;.

Proof.
A=|p—plr
:
= | Tr| | Do (=llsa®(Cos) | | D (1 —=)lslsa®(C,s)
[s|>1 [s|>1
(28)
= [T D Y (a—yitlssifec, sie(c, s')
[s|>1|s"|>1
= I3 S (1 =) HEB(C, 5)B(C, ) T (sdsj})
[s|>1|s"|>1
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The above equation illustrates the constraint that the error of p receives from the sum of a series of
constants. The orthogonality of the circuit, which is

E[®(C,s)®(C,s')] = 0. (29)

Furthermore, we have

Ec(A?) =Ec | Y. D (1-9) ke, s)a(c, s)Tr (sdsg)

[s[>1]s"|>1

= Ec Z (1—)2sle(C, 5)*Tr (&152)
[s|>1 (30)

—Ee [ S (1—)a(C, s)?

|s[>1

=> (1 -7 W

k>l

The second line is obtained via the orthogonality mentioned above. The third line uses the property
that Tr ( S48 d) = 1 where s4 is the combination of the normalized Pauli operators.The last line

denotes Wy, = E¢ 5= ®(C, s)2. For Wy, it can be written as follows
Wi, = EC,|5|:I€®(C7 8)2
= Ec o=k (Tr(saCa(sa-1)) - - - Tr(s1C1(s0)) Tr(50[0") 0" ))* 3D
= 2_nEcd (Tr(std(sd,l)) e ’IY(lel (80)))2 .

1

The third line assumes that every C; is independent respectably,and Tr(sp|0™)(0™]) = NeTE

For unital noises, using the equation

1, r=y= I®2/27
0, x=1I%2/2y+#1%?/2
T ? 7y )
Ung(zl)Tr(nyU )= 0, x#I%2/2y=1%2/2, (32)
1=, else,

We observe that certain Pauli paths contribute 0 to the circuit; these are termed illegal Pauli paths.
For k = 0, W}, = 1, where the Pauli path s consists of identity operators.
For k € (0,d], Wi, = 0.

For k¥ > d + 1, we can bound W) by focusing on every term, which is in the form of
]ECiTI‘(SiCZ‘(Si_l))Q.

Noting that each Cj is a layer of two-qubit gates, C; is equal to the multiplication of Ci(j ), where j
indexes the two-qubit gates in the layer and N, is the total number of such gates in a layer. So

Ec, Tr(s:Ci(si—1) ®EC( ) (Tr (@) (J‘H)CZ(J) ©) (]+1)C(])T)>
(33)
1 Is;l
< (— .
< (32)"

The last line is due to that one gate introduces at most 2 non-identity Pauli operators to the path
when k£ > d + 1. Since any single gate can be accountable for at most four non-identity entries
(two incoming and two outgoing), the number of two-qubit gates that actually contribute to the

suppression factor 1/15 is at least %.
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In that case, Eq.[31]is bounded by:

Wi < (3)1(5)" (34)
Since the Ekl%)% < (1) is a decreasing sequence, we can get 3, (3)% < O(1), which results in
Yisi(3)T < 0(1).

For non-unital noise, the £’ is not a CPTP map, so the preceding argument does not apply directly.

Lemma 10 of |/Angrisani et al.|(2025) shows that for v = 1 — xp(&), the (non-physical) linear map
&’ does not increase the Frobenius norm on average.

Lemma 6 (Non-unital Noise, Lemma 10 of Angrisani et al.|(2025)). Let D be a I-design over SU(2)
and let v =1 — xp(E). For all observables O, we have
n 2
Ey.pe |ETE"(VIOV)||L < O], (35)

which shows the linear map &' does not increase the Frobenius norm in expectation over a randomly
sampled V.

For an i-th layer of C, C; = V; o G, where V; ~ D®™ and G; acts on O(1) qubits.

Consequently, >, _, Wy, = 27"O(1)|[10)" (0" |[r = 27™O(1). Because the Frobenius norm of
®(C, s) remains bounded, the Pauli-path expansion of a non-unital noisy circuit can be truncated at
finite weight.

By inequality between Schatten 7-norms, we have

ol < 272||pllF (36)

So the Ec(||p — p||?) is bounded as:
Ec(|lp - pl}) < 2"Ec(A?)

=2" Z(l — )Wy

k>l
<2 Y-, @
k>l
S 271,(1 _ 7)2l2—no(1)
<e20(1)
By Markov’s inequality,
. E(||p—p
Pl — pll > en) < ZUE= 2 5, G8)
Hence, choosing [ ~ O(% log 61161 ), yields A < e; with success probability > 1 — 6. O

C.3 ALGORITHM OF LEARNING A QUANTUM STATE

For the first problem, there are several ways to get the p. The sections following introduce 2 methods,
including computing directly by classical shadow (Huang et al.,|2020), and a way of learning alpha
based on|Huang et al.| (2024)

C.3.1 COMPUTE DIRECTLY

As shown before, p = stePn a5, 54, where sq € P,. In that case,
Qsy = Tr(psd)
= Tr( Z g SgSd)

s!,€Pn

= Z g Tr(sgsa)

s1,E€Pn

(39)

= g,
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The fourth line uses

0, ifsq#s
Tr(sasy) = { - @ 40
I'(Sdsd) {1’ if 54 = S:i (40)

Thus, s, is obtained by evaluating Tr(psq), where p is estimated via classical shadows. Us-
ing a set of POVMs (Positive Operator-Valued Measures) such as the random Pauli basis that
measures each qubit and yields outcomes |b) € {0,1}", the classical shadow is constructed as

p= @y (3P Ibj) (b Py — T), immediately gives o, = Tr(fsa).

C.3.2 QUANTUM STATE TOMOGRAPHY

Algorithm 2 Quantum State Learning Algorithm

Input: Data set Dot = {|¢)j) = @i, |¢j’i>};y:‘*i““ and accuracy parameter .
Output: j such that T'(p, p) < e.
Let I’ = [log(1/€)], enumerate all the legal sq € P, with |sq| < I'.
FOI‘j € [Ndata]:

Using the SWAP-test to obtain the overlap v; of p and |1;).
End For
For each legal s;:

Compute oy, = J70 5775 v (1 5a [v).
End For
Output: p = Zlmlgl’ Qs 8d
End

This section is mainly about a way of learning o based on |Huang et al.| (2024}, which introduces a
classical dataset to reconstruct the channel’s output. Our results are given below.

Theorem 3 (Noisy Quantum State Learning). For any noisy quantum state p prepared by a
noisy quantum circuit C (Eq. H)), there exists a learning algorithm that can efficiently solve
Problem with success probability > 1 — 0. The learning algorithm requires sample

complexity Ngata = gO(v Hlog(e71071)) log(1/8)e=2 and classical post-processing complexity
92400 1os(e7167") 10g(1/5)e 2.

Details of our method are as follows.

Let Stab be a list of single-qubit stabilizers:
Let {|¢j) = @y [thi,3)} 724", where [¢); ;) € Stab.

E|y,y~staben (051 C(10™) (0™ ) [45) (¥5] sa [¥5)
= > s, By asiaben (U5l sa[v5) (5] salty)

‘Sd‘gls
= Y au,Eueue &) 01U];54U:,510) (0| Uf ;5U5 5 |0)
|sa|<ls i=1 42)

n
Qg
L@ Y (sl
=1 Qe{X,Y,Z}
— asd

= 3l
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The third line employs [¢;) = &I [¢; ;) = ®i~,U; ; |0), where U; ; ~ C1(2). The fourth line
uses

I®2a lsz = Q; = Ia

1 . ’
Ey, ,~ci2) [UZT?Q(Qi ® Q;)Ufz? =43 Z (Qi®Q:), ifQi=Q; #1. (43

Q:e{X,Y,Z}®2
07 if Qi 7é Q;a
Therefore, a5, can be calculated by

g, =3B e (5] p 1) (1] sa libj)

3\5,,\ Ndata 44)
~ Nyat Z Wil pl¥s) (Y5l salby) -
ata =1

The first part of the summation term (of the form (¢;| p|1;)) can be obtained by using the SWAP-
test method, while the latter part can be derived through classical post-processing. The data com-

plexity Niqta is 690 108 %)e21og L with failure probability 8. The details of the proof are in
Appendix [D.2] The quantum state learning procedure is presented as Algorithm 2]

D LEARNING A QUANTUM PROCESS CHARACTERIZATION

D.1 PROOF OF LEMMA 3]

This section is to give a proof of Lemma 3] which is

Lemma 7 (Restatement of Lemma [3). Letr the noisy quantum circuit C =
EONCLECNCy_1 - EBCy represent a d-depth noisy quantum circuit, where C; is a layer of
two-qubit Haar random quantum gates and & represents an i.id single-qubit noisy channel
(unital or non-unital). With nearly unit success probability > 1 — Jo, there exists an operator

C(l')T(O) = Z\Plgl’,PePn Bp P such that
[0y ~cio), < e 5)
where coefficients Bp € R and I' = O (y~!log(1/(d2€2))).

Proof. Given O = pep, @ pP, we have

Cl0)= > (1 -"o(C,s)s0, (46)
sePd
where
d(C _ Tr(slcl (30)) e Tr(sdcd(sd—l))Tr(SdO)7 unitaL 47)
(C.8) = Tr(s1£%"C1(s0)) - - - Tr(s4E" %" Ca(54-1)) Tr(s40), non-unital (
Considering the unital noise, let
E(A)? = [[cMT(0) - ct(0)

= (1 =)Wy, (“48)

k>1

where Wy, is
Wk = EC,|5\:kq>(C7 8)2

= Ec o=k (Tr(51C1(50)) - - - Tr(saCa(5a-1)) Tr(540))
= 2_”a§dEcl (Tr(51C1(50)))2..Ec, (Tr(saCa(s4-1)))? (49)

k
1 1
-n 2
s 2y, (15)
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The third line is due to that Tr(s40) = 27"aZ,. In that case, there is

E(A2)
1\
< 2= n o 2k 2 ()
> 2 %
. (50)
1 4
<3 (1) (2) 101l
k>1

< e M0]FO(D).

Considering the non-unital noise, Angrisani et al.|(2025) has shown that the non-unital noisy circuit
can be truncated by the low-weight Pauli integral because of the Theorem 5 in|/Angrisani et al.|(2025))
shown below.

Lemma 8 (Non-unital Noisy Circuit Path Truncation, Theorem 5 in |Angrisani et al.[(2025)). Let
Deire be an d-layered locally unbiased distribution over noisy circuits, and let v be the effective
depolarizing rate of D¢ir.. We have

1 [(¢1(0) ~c10)) ]| < (1 =1 0] 51)

Ec~p

circ

It conveys that the non-unital noisy process can be simulated by a low-Pauli weight. For our problem,

the gate of the circuit is the random two-qubit gate, which belongs to D.;... The last proof is similar
to the Appendix Therefore when I’ = O(1) = O ( -1 1og< H:zy;)), A < € is satisfied with

the success probability > 1 — da.

D.2 PROOF OF THEOREM [2|

In this section, we will prove the main result of our learning algorithm.

Theorem 4 (Noisy Quantum Process Learning). For any noisy quantum process C defined as
Eq. M| where C; is a layer of two-qubit Haar random quantum gates, and n-qubit observable
= ZQGU’X’Y’Z}W? 1Q1=0(1) Tr[OQ)Q/2™, there exists a learning algorithm that can efficiently
solve Problem 2| with success probability > 1 — 0. The learning algorithm requires sample complex-
ity
Niata = glag(|Q|2)6O(fl Log([10l1r<™*07)) 1og (5 1) €2, (52)
€

(n'mameo(lczlﬁzf(“ es(llonpeto7)) 1og(5_1)>

and classical post-processing complexity O =

O(fl log( 101 ) ))
Moreover, if the noise is unital, the sample complexity is 6 10g(5 *1) €2 and clas-

sical post-processing complexity is O (n 24 ( B log( HOHF))) log (6_1)6_2).

Proof. The discrepancy between the algorithm’s learned outcome and the true value, quantified via
absolute value, encompasses two types of errors: truncation error and learning error.

F(pe) = Tr(Clp)Ol = | 3 BeTr(p,P) = Tx(C(ps)O)

|P|<i’

<) BrTr(paP) — Tr(C( +| > BpTr(paP) — Y BrTr(p.P)

|P|<V |Pl<t \PI<U

(53)

The inequality is derived through the application of the triangle inequality, where the first term on
the right-hand side of the inequality represents the truncation error, and the second term represents

the learning error. Bp denotes the learned value of Sp.
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The proof for the truncation error can be analogously extended from that in Appendix [D.I] demon-

strating that when ' = O(y~'log Z2) |2 pj<ir BpTr(pe P) — Tr(C(px)O)’ < €.

The learning error is bounded by

Y Bp= Y Br | Ti(p.P)

|P|<l/ |P|<l/
<1 Be- ) Br
|Pl<t |PI<t (54)
= > ’BP - 513’
|P|<l’
< N.|Bp — Bp|
S €3.
Combining the equation with Hoeffding’s inequality, we can derive that given a dataset of size
o)
Naata = 223 log 1 with probability at least 1 — 4, Eq. is valid.
3

Lemma 9 (Number of the Legal Pauli Paths). For any noisy quantum process C defined as Eq.
and mn-qubit observable O = ZQG{I,X,Y,Z]@“, Ql=0(1) Tr[0Q]Q/2"™, the number of the legal

Pauli paths, denoted as N is maxgeo(|Q[)2°0) . When the noise is unital, N, = 200",

The proof of Lemma [9)is provided in the next section. Considering Lemma 9} for an arbitrary i.i.d
single-qubit noise, given es = €3, the sample complexity can be further expressed as

Ndata _ Iéleaé((|Q|2)6O(’Y71 10g(HO||F671571)) 10g(571)€72. (55)

For the runtime complexity of classical post-processing, the calculation is derived directly from
Algorithm [I] The dominant factor in the runtime is the computation of the coefficients 5p, which
involves nested iterations over Ng,i, input samples and N, Pauli strings. The internal calculation
of the expectation value (1);|P|1;) has a cost of O(n), because the input state |1;) is a product
state and P is a Pauli string, allowing the expectation value to be computed via the product of n
single-qubit terms.

Thus, the total complexity is:

101l F

O (n- Ngata - Ns) = O (n : ggg(l@ﬁ)ﬂ‘”(“”(’g('*f&)) log(6—1)6‘2) ; (56)

where the factor n accounts for the linear cost of evaluating the n single-qubit terms that constitute
(1| P|1;) for each pair of sample |¢);) and Pauli string P.
Consequently, the runtime complexity scales as O(n - poly(1/e,1/7)). Specifically, if the noise
el
is unital, the sample complexity is 60 (’Y lo°( o )) ]0g((5—1)6_2 and classical post-processing
IOl r

complexity is O <n : 240(7711%( =) 10g(6‘1)6_2> .

D.3 NUMBER OF THE LEGAL PAULI PATHS

Focusing on the number of the legal Pauli paths, denoted N, the basic idea is to enumerate all
combinations that satisfy the rule. Once the non-identity positions in one layer are fixed, those in
the next layer are also fixed because a legal Pauli path requires the input and the output of every gate
to be either both identities or both non-identities. Starting from the first layer, the positions and count
of non-identities therefore match those of the input. For a local term ) € O acting non-trivially on

a constant number of qubits, N, is bound by maxgeo |Q[2°¢).
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Specially, in QST, since the input [0™) (0"| = - > pe(r,zy maxqeo [Q # O(1), so the pre-

vious bound cannot be used directly. Instead, we bound N, by showing that C~§l°)(\0"> o"]) =

D1 50EP Tr(s1E"%"C1(50))(0™|50]0™) sy is sparse after an [o-cutoff. Concretely, we prove

[1G(107) 4071) = €1 (10™) (0"l < e (57)

so that |Q| = O(1) for @ € €\ (Jom) (om)).

When d = 1, Eq. suffices by Lemma 2] Hence, the number of legal Pauli paths in QST is

0(1)200) ~ 200,

For unital noise, a tighter bound is available. W}, exists a lower bound when [ > d + 1, which is
1k

Wi > (15)"

Since W}, < (%)3[§], S —gs1 Wi = O(1). Furthermore,

l

Z Wi + Wy
k=d+1

o(1)

k=d+1 (58)

1
> > () +1
15
k=d+1
1
= (E
where N;c(q+1,1 denotes the legal Pauli paths except all identity one. The number of Pauli paths
needed is

)lN\s|e[d+1,l] + 1.

N, = Nigepar1y + 1= 0(1)15" = 200, (59)

Here we focus on the learning algorithm, so only the number of s, is concerned. Since different s
may contain the same s4, the number of Pauli paths is no less than the number of combinations of
Pauli operators in s;. We denote by [N, an upper bound on the quantity sy that is independent of
the system size, and by !’ the maximum hamming weight of sq, with I’ = 1 — d = O(l) due to the

enumeration strategy in /Aharonov et al.| (2023).

E SAMPLE COMPLEXITY LOWER BOUND FOR THE WORST-CASE SCENARIO

The main manuscript essentially considers learning an efficient classical representation of noisy
quantum states and processes in the average-case scenario. As we claimed in Theorems [T] and [2]
the tasks of learning noisy quantum states and performing tomography are highly efficient in the
average-case setting. However, this does not rule out intrinsic hardness in the worst case. Here we
theoretically demonstrate that learning noisy quantum states prepared by quantum circuits subject
to constant-strength noise channels is quantum-hard in the worst-case scenario.

The fundamental idea relies on constructing a polynomial reduction to the quantum state discrimi-
nation problem.

Task 1. Consider two pure quantum states py and p1, and a noisy quantum circuit C with depth d,
where Each quantum circuit is affected by by ~y-strength Pauli channel in each layer. Suppose that
a distinguisher is given access to copies of the quantum states C(po) and C(p1), then what is the
fewest number of copies sufficing to identify these two noisy quatum states with high probability?

Obviously, if one can perform quantum state tomography on these noisy states, then efficient clas-
sical representations of the noisy states are obtained. Using these classical representations, one can
easily distinguish the noisy states C(po) from C(p1) easily. As a result, Task|[I|can be used to bench-
mark the sample-complexity lower bound for the noisy quantum state tomography problem. We
state the result below.
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Theorem 5. Given an unknown noisy quantum state p prepared by a d-depth quantum circuit af-
fected by ~-strength local Pauli noise channels, then any algorithm designed to learn an efficient
representation to p requires at least m samplings in the worst-case scenario, where

(1—7)7%(1 —np)?
n ’

where ¢ = 1/(21In2) and constant n € O(1).

When the noise strength v = (O(1), and quantum circuit depth d > poly log(n), the sample com-
plexity required for quantum state tomography grows at least quasi-polynomially with the system
size in the worst-case scenario. We emphasize that this result does not contradict Theorem|[I]and [2}
the former statement concerns the worst case, while the latter addresses the average case under the
random-circuit assumption.

In the quantum process tomography task, when O > 0, the target is to learn a classical rep-
resentation to Cf [rO] which can be easily reduced to a density matrix learning task by setting
p = CT[O]/Tx[CT[O]]. This justifies the statement that noisy process tomography (for this ob-
servable O) is no easier than state tomography.

To support the proof of our result, we require the following lemmas.

Lemma 10 (Lemma 6 in[Wang et al|(2021))). Consider a single instanoise channel N = N1 ®- - -®

Ny, where each local noise channel { N }—1 is a Pauli noise channel that satisfies N;(o) = g0
foro € {X,Y, Z} and q, be the Pauli strength. Then we have

I®n 9e I®n
Dy (Nl ) =02 (o115 ). (60)

where Ds(+||) represents the 2-Renyi relative entropy, ¢ = max, ¢, and ¢ = 1/(2In2).

Lemma 11. Given an arbitrary n-qubit density matrix and maximally mixed state I®" /2", we have
D (p|[I%"/2") < Dy (pll1®"/2"), 61)

where D(-||-) denotes the relative entropy and Ds(-||-) denotes the 2-Renyi relative entropy.

Proof: Given quantum states p and o, the quantum 2-Renyi entropy
2
Ds(pllo) = log Tr [(a—1/4pa—1/4) ] . (62)

When o = 19" /2", we have Dy (p|| %™ /2™) = log Tr [((I®™/2") 7 p?)] = n+log Tr[p?]. Noting
that the function y = 2% — xlogz > 0 when x € [0, 1], and this implies Tr(p?) > Tr(plog p).
Finally, we have

D (p|lI®"/2") = n+ Tr[plog p] + n < Tr [p°] + n = D (p||I®"/2") . (63)

Proof of Theorem 5} Now we prove the sample complexity lower bound to the noisy quantum state
tomography task. We consider the sample complexity m in distinguishing quantum states C(po) and
C(p1). When their trace distance is quite large, let ) € (0, 1) and we have

1
L—n < 5 [[Clpo)®™ = Clo1)*™[],

3 (1C(0)®™ = (/2™ |, + C(p0)®™ = (1/2)°™ ) (64)

% <D1/2 (C(p0)®mH(In/2n)®m) + D1/2 (C(p1)®mH(In/2n)®m)) 7

where the second line comes from the triangle inequality and the third line comes from the Pinsker’s
inequality. Using Lemmas[I0]and[TT] we have

(D3 (€™ (po)l| (1 /2)5™) + DY (€™ (o)l (10 /2)°™) )

IN

IN

1
1—-n< —
77\/5
nm

g (=) (=) ©
S v 2nm(1 - V)Cda

7

<
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As a result we have

_ —2cd _ 2
I o

F EXPERIMENT RESULT

F.1 NUMERICAL EXPERIMENT FOR HIGHLY ENTANGLED INPUT STATE

% —| Ry (60) [~ Rz(d0)
G —| Ry (6) | Rz(01)]
B OB O - - = — | —
G2 —| Ry (Bu—2) [-{ Rz (60—2)

-1 — Ry (6n-1) H Rz(6n-1)| & &

D
'
—e

57

Figure 4: The demonstration of a layer of the state preparation circuit for n qubits. The structure
consists of parameterized single-qubit rotations followed by a cyclic CNOT entangling layer.

To further underscore the novelty of our input-agnostic regime, we constructed a Quantum Process
Tomography (QPT) experiment using an input state that is highly entangled and falls outside the
distribution set addressed by previous work (Huang et al.| [2023a). The method detailed in (Huang
requires the input distribution to be at most polynomially far from a locally flat distri-
bution.

As demonstrated by (Huang et all, [20234d), locally flat distributions encompass: Random product
states, ground and thermal states of random local Hamiltonians and any state generated by a circuit
whose final layer consists of random single-qubit gates.

Here, we intentionally generated the input state px using a two-layer parameterized circuit to ensure
high entanglement. Each layer of this state preparation circuit is structured as depicted in Fig.[d]

The experimental result of performing QPT with this highly entangled input state is presented in
Fig.[5] The outcome clearly demonstrates that our algorithm’s performance is not constrained by
the entanglement level or specific structure of the input state, thus validating its input-agnostic
nature.

F.2 FULL MATRIX FIGURE
G LARGE LANGUAGE MODELS USAGE STATEMENT

During the preparation of this manuscript, the authors used large language models (LLMs) for lan-
guage polishing and grammar checking. The LLM assistance was limited to improving the clarity
and readability of the text; all scientific content, technical derivations, and numerical results were
conceived, verified, and approved solely by the authors. No LLM was used for generating figures,
tables, or novel scientific ideas. The authors remain fully responsible for the final content of the

paper.
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%102

Figure 5: The experiment result of QPT where the input state is generated from the form as Fig[4]
Set I’ = 2 and the process Eq.[14| with 5 layers is at the depolarizing noise strength 0.01.

x10~°

e
o

—-1.0

Figure 6: The heatmap visualizes the full matrix of the p — p in Figure ¢, when 0, = 7.
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