

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROVABLY EFFICIENT LEARNING ALGORITHMS FOR NOISY QUANTUM STATE AND PROCESS TOMOGRA- PHY

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Characterizing noisy n -qubit states and processes is vital yet lacks scalability with
014 conventional methods. Considering the circuit under unital or non-unital indepen-
015 dent and identically distributed (i.i.d) single-qubit noise where each local gate fol-
016 lows the local 2-design assumption, we propose a structure-free learning algorithm
017 that reconstructs any noisy process or state from measurement data. The proposed
018 algorithm yields $\text{poly}(n, 1/\epsilon)$ sample complexity and classical post-processing
019 running time for target accuracy ϵ in the *average case* scenario over the random
020 circuit ensemble. We numerically benchmark the algorithm on both unital and
021 non-unital i.i.d single-qubit noise channels, and our results indicate that the al-
022 gorithm remains highly effective and accurate even for specific quantum circuits,
023 such as noisy Hamiltonian dynamics, suggesting its broader practical utility. This
024 work offers a new approach to practical quantum-process learning, and suggests a
025 potential path for scalable process characterization in near-term quantum devices.

1 INTRODUCTION

029 Quantum computers are entering regimes beyond the reach of classical computational power (Arute
030 et al., 2019; Morvan et al., 2024; Zhong et al., 2020). Coherent manipulation of complex quantum
031 states with hundreds of physical qubits has been demonstrated across multiple platforms, including
032 trapped ions (Smith et al., 2016), neutral atom arrays (Evered et al., 2023), and superconducting
033 qubit circuits (Arute et al., 2019; Morvan et al., 2024; Acharya et al., 2024). As quantum hardware
034 continues to scale in size and complexity, the ability to characterize quantum states and quantum pro-
035 cesses becomes critical for advancing quantum error correction code (Bravyi et al., 2024; Acharya
036 et al., 2024), quantum error mitigation (Kim et al., 2023b; O’Brien et al., 2023), and quantum algo-
037 rithms (Kim et al., 2023a; Morvan et al., 2024). This drive for advancing quantum utility is coupled
038 with an increasing demand for verifiable results, as emphasized in recent literature arguing that the
039 ultimate success of quantum systems hinges on robust certification and system validation (Babbush
040 et al., 2025). Consequently, the comprehensive characterization of quantum states and processes is
041 paramount to meet this demand. Among various approaches for characterizing quantum states and
042 processes, quantum state tomography (QST) (Banaszek et al., 2013; Blume-Kohout, 2010; Eisert
043 et al., 2020; Gross et al., 2010; Hradil, 1997; Mauro D’Ariano et al., 2003) and quantum process
044 tomography (QPT) (Chuang & Nielsen, 1997; D’Ariano & Lo Presti, 2001; Mohseni et al., 2008)
045 stand as fundamental methods to reconstruct target quantum processes (states) by leveraging quan-
046 tum measurement results.

047 Due to the quantum process and quantum state being defined in exponentially high-dimensional
048 Hilbert space, the challenge is fundamental for both QST and QPT tasks. It is proven that both
049 approaches rely on extensive measurements of many observables and incur exponential resource
050 scaling with system size in the *worst-case scenario* (Chen et al., 2022b; Haah et al., 2023; 2017;
051 O’Donnell & Wright, 2016; Oufkir, 2023). However, the above “no-go” results do not rule out
052 efficient algorithms for QPT (QST) tasks in the *average-case scenario*. Actually, assuming specific
053 structures or relaxed learning objectives, QPT (QST) tasks would be efficient (Aaronson & Grewal,
2023; Anshu et al., 2020; Arunachalam et al., 2023; Bairey et al., 2019; Che et al., 2021; Chen
et al., 2022a; Cramer et al., 2010; Flammia & Wallman, 2020; Flammia & O’Donnell, 2021;
Gebhart et al., 2023; Granade et al., 2012; Grewal et al., 2024; 2023; Gross et al., 2021; Gu et al.,

054 2024; Haah et al., 2022; Hangleiter et al., 2024; Huang et al., 2023b; 2020; Lai & Cheng, 2022;
 055 Lanyon et al., 2017; Li et al., 2020; Montanaro, 2017; Rouzé & França, 2024; Stilck França et al.,
 056 2024; Van Den Berg et al., 2023; Yu et al., 2023; Zubida et al., 2021; Wu et al., 2025b) in sample or
 057 classical post-processing complexity. To the best of our knowledge, current results are not efficient
 058 when the target quantum process (state) is given by a general *Noisy Quantum Computer* which has
 059 a certain level of noise channels before and after each quantum gate, and the quantum noise could
 060 be either unital or non-unital channels.

061 On the other hand, given the power of classical artificial-intelligence methods, it is natural to con-
 062 sider their application to complex QPT and QST tasks, such as neural-network models (Melko et al.,
 063 2019; Acharya et al., 2019; Wanner et al., 2024; Tang et al., 2024), tensor networks (Torlai et al.,
 064 2023), diffusion models (Yehui et al., 2025), and other approaches (Wu et al., 2025a; Du et al.,
 065 2025). However, these heuristic methods generally lack theoretical guarantees or may not handle
 066 QPT and QST in a noisy environment. These advances, together with the fundamental limitations
 067 discussed above, naturally raise a question:

068 *“Can we efficiently learn a general noisy quantum process and quantum state when the underlying
 069 noise channel may be unital or non-unital?”*

070 In this paper, we answer this question by proposing a unified learning framework for both QPT and
 071 QST. The key idea relies on a unified representation of noisy quantum processes and states (Lem-
 072 mas 2 and 3). Specifically, let \mathcal{C} denote the target noisy quantum circuit. We show theoretically that
 073 any noisy quantum process $\text{Tr}(\mathcal{O}\mathcal{C}(\cdot))$ accompanied by an unknown measurement \mathcal{O} , and quantum
 074 state $\rho = \mathcal{C}(|0^n\rangle\langle 0^n|)$, regardless of whether the underlying noise channel is unital or non-unital,
 075 their related tomography tasks can be reduced to learning an unknown observable with the decom-
 076 position $\mathcal{M} = \sum_{|P| \leq \mathcal{O}(1), P \in \{I, X, Y, Z\}^{\otimes n}} \alpha_P P$, where the coefficients $\alpha_P \in \mathbb{R}$. This observation
 077 reduces the learning space from 4^n to $\text{poly}(n)$, yielding an efficient learning algorithm when the
 078 quantum circuit suffers from a constant-strength noise channel after each quantum gate. The fun-
 079 damental idea is illustrated in Figure 1. Finally, we numerically benchmark our algorithm on noisy
 080 Hamiltonian dynamics driven by a two-dimensional lattice model (Kim et al., 2023a) and apply it
 081 to the quantum error mitigation with an agnostic input state. The results demonstrate high accuracy
 082 for both QST and QPT tasks.

084 2 PRELIMINARY KNOWLEDGE

086 To motivate and contextualize our contribution, we briefly review the requisite background on noisy
 087 quantum channels and circuits.

088 **Definition 1** (Single-Qubit Pauli Channel). *Let $\mathcal{E}_{\text{Pauli}}$ denote the single-qubit Pauli channel, which
 089 is*

$$091 \mathcal{E}_{\text{Pauli}}(\rho) = \gamma_1 \rho + \gamma_2 X \rho X^\dagger + \gamma_3 Y \rho Y^\dagger + \gamma_4 Z \rho Z^\dagger, \quad (1)$$

092 where real parameters $\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 = 1$, and $\gamma_i \in [0, 1]$ for $i \in [4]$.

094 As a standard unital quantum channel, the Pauli noise has the property $\mathcal{E}_{\text{Pauli}}(I) = I$, $\mathcal{E}_{\text{Pauli}}(X) =$
 095 $(1 - 2(\gamma_3 + \gamma_4))X$, $\mathcal{E}(Y) = (1 - 2(\gamma_2 + \gamma_4))Y$ and $\mathcal{E}_{\text{Pauli}}(Z) = (1 - 2(\gamma_2 + \gamma_3))Z$. Note that
 096 if $\gamma_2 = \gamma_3 = \gamma_4$, \mathcal{E} degenerates to an i.i.d single-qubit depolarizing noise, which is $\mathcal{E}_{\text{depo}}(P) =$
 097 $(1 - \gamma)P$ for $P \in \{X, Y, Z\}$. Techniques like Pauli twirling are employed to transform complex
 098 unital channels into diagonal forms on the Pauli basis (Chen et al., 2023; Wallman & Emerson,
 099 2016a). In the following, we utilize the Pauli noise channel to represent the unital channel.

100 Another widely studied class of quantum channels is the non-unital channel, which describes chan-
 101 nels that do not map the identity operator to itself. This kind of noise often reflects complicated
 102 environmental disturbances on the quantum system, where a canonical example is the amplitude
 103 damping. Ref. (Angrisani et al., 2025) decompose the normal form of a non-unital single-qubit
 104 noise channel \mathcal{E} as

$$105 \mathcal{E} = \mathcal{E}_{\text{depo}}^\gamma \circ \mathcal{E}', \quad (2)$$

106 where \mathcal{E}' is a suitable (non-physical) linear map and $\mathcal{E}_{\text{depo}}^\gamma$ is a depolarizing noise with the effective
 107 depolarizing rate γ . Given this observation, we define a unified noise parameter across unital and

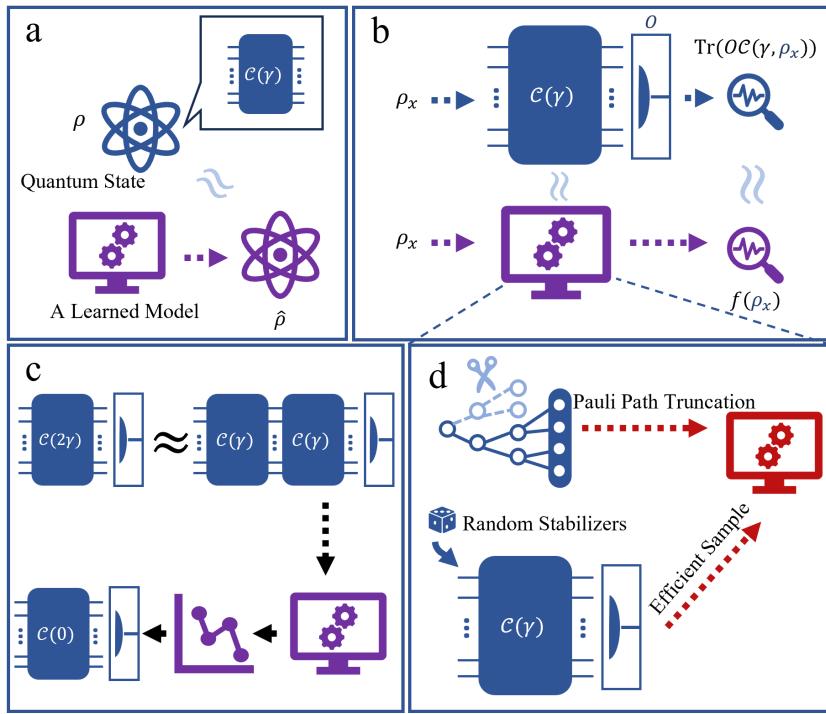


Figure 1: (a) Illustration of the noisy quantum state learning, wherein a trained model $\hat{\rho}$ is generated by leveraging the adaptive measurement result from the target noisy quantum state ρ . (b) Depiction of the noisy quantum process learning. Here, the noisy quantum process $\mathcal{C}(\gamma)$ represents a d -depth quantum circuit with noise strength γ , and O represents an unknown local measurement operator. The task is to learn a function f such that $|f(\cdot) - \text{Tr}[O\mathcal{C}(\gamma, \cdot)]| \leq \epsilon$ for all input quantum states ρ_x . (c) The proposed learning algorithm can be applied to the quantum error mitigation task. (d) Outline of the fundamental principle underlying our learning algorithm.

non-unital noise channels:

$$\gamma = \begin{cases} 2(\gamma_i + \gamma_j) & (i, j) \in \{2, 3, 4\}, \quad \mathcal{E} \text{ is unital} \\ 1 - \chi_{\mathcal{D}}(\mathcal{E}), & \mathcal{E} \text{ is non-unital} \end{cases} \quad (3)$$

where $\chi_{\mathcal{D}}(\mathcal{E})$ denotes the mean squared contraction coefficient of \mathcal{E} with respect to the locally unbiased distribution \mathcal{D} . The details of the non-unital noise are in Appendix C.1.3.

Definition 2 (Schatten τ -Norm). *The Schatten τ -norm of a matrix A is defined as $\|A\|_{\tau} = (\sum_i \nu_i^{\tau})^{\frac{1}{\tau}}$, where ν_i is the singular value of A and τ is a positive integer. Note that $\|A\|_1 = \text{Tr}[\sqrt{AA^\dagger}]$, and $\|A\|_2$ coincides with the Frobenius norm $\|A\|_F$.*

Definition 3 (The Squared Normalized Frobenius Norm). *Suppose the matrix $A = \sum_P \alpha_P P$, with $P \in \{X/\sqrt{2}, Y/\sqrt{2}, Z/\sqrt{2}, I/\sqrt{2}\}^{\otimes n}$, its squared normalized Frobenius norm is defined by $\|A\|_F^2 = \sum_P \alpha_P^2$.*

Definition 4 (Hamming Weight of Pauli Operators). *Suppose P represents an n -qubit (normalized) Pauli operator, then its Hamming weight $|\hat{P}|$ is defined as the number of qubits that are non-trivially acted by P .*

3 PROBLEM STATEMENT

Here, we consider an n -qubit noisy quantum process

$$\mathcal{C} = \mathcal{E}^{\otimes n} \mathcal{C}_d \mathcal{E}^{\otimes n} \mathcal{C}_{d-1} \cdots \mathcal{E}^{\otimes n} \mathcal{C}_1 \quad (4)$$

162 in which a γ -strength local noise channel \mathcal{E} (unital or non-unital) is applied uniformly throughout
 163 the circuit. The quantum circuit depth is d , and each layer of the circuit consists of two-qubit gates
 164 acting between every pair of qubits, where each gate is uniformly sampled from a local 2-design
 165 unitary group. In other words,

166 This architecture, which interleaves high-fidelity unitary operations with i.i.d single-qubit noise,
 167 serves as a standard model for benchmarking computational hardness (e.g., in quantum supremacy
 168 (Arute et al., 2019)) and is the theoretical basis for characterizing device fidelity via Randomized
 169 Benchmarking (RB) (Magesan et al., 2011). For a complete and rigorous understanding of the
 170 model’s topological structure, its graph-theoretic definitions, and its high generality, see Appendix B
 171

172 Here, a natural step toward fully understanding the power of noisy quantum computation is to learn
 173 the behavior of the noise process. Specifically, we focus on learning the quantum mean value
 174 $\text{Tr}(O\mathcal{C}(\rho_x))$, where O is an unknown observable and ρ_x is the input state of \mathcal{C} . In the worst-
 175 case scenario, learning the output of a general quantum process is even quantumly hard; however,
 176 we argue that the noisy quantum process can be efficiently characterized when the noise parameter
 177 $\gamma = \Omega(1)$. We first consider a warm-up task that inspires us to design a highly efficient learning
 178 algorithm for general noisy quantum processes.

179 **Problem 1** (Noisy Quantum State Learning). *Let $\rho = \mathcal{C}(|0^n\rangle\langle 0^n|)$ be an unknown quantum state
 180 prepared by \mathcal{C} . The target is to learn an approximation $\hat{\rho}$, which is a classical representation of ρ ,
 181 such that their trace distance $T(\rho, \hat{\rho}) \leq \epsilon$ for any $\epsilon \in (0, 1)$.*

182 Here, the trace distance $T(\sigma, \rho) = \frac{1}{2}\text{Tr}\left(\sqrt{(\sigma - \rho)^\dagger(\sigma - \rho)}\right)$ is used as the **maximum bias** derived
 183 by quantum states ρ and σ . In the following section, we will demonstrate that learning a noisy
 184 quantum state representation may inspire a quantum process characterization learning algorithm.

185 **Problem 2** (Noisy Quantum Process learning). *Given an unknown noisy quantum process \mathcal{C} and an
 186 unknown observable O , the task is to learn a classical function f , such that for any $\epsilon \in (0, 1)$ and
 187 input quantum state ρ_x , $|f(\rho_x) - \text{Tr}(O\mathcal{C}(\rho_x))| < \epsilon$.*

189 4 QUANTUM LEARNING ALGORITHM FOR NOISY QUANTUM STATE

191 We first present an efficient method for learning a classical representation of a noisy quantum state.

192 **Lemma 1** (Unified Representation of Noisy Quantum State). *Let the noisy quantum state be $\rho =$
 193 $\mathcal{C}(|0^n\rangle\langle 0^n|)$, with $\mathcal{C} = \mathcal{E}^{\otimes n}\mathcal{C}_d\mathcal{E}^{\otimes n}\mathcal{C}_{d-1}\cdots\mathcal{E}^{\otimes n}\mathcal{C}_1$ represent a d -depth noisy quantum circuit, where
 194 $\mathcal{C}_i(\cdot) = \mathcal{C}_i^\dagger(\cdot)\mathcal{C}_i$ is a unitary channel consisting of a layer of two-qubit Haar random gates. The
 195 noisy quantum state*

$$197 \rho = \sum_{s \in \mathcal{P}_n^{\otimes(d+1)}} (1 - \gamma)^{|s|} \Phi(\mathcal{C}, s) s_d, \quad (5)$$

198 where the $n(d+1)$ -qubit operator is $s = (s_0 s_1 \cdots s_d)$ and $\mathcal{P}_n = \{I/\sqrt{2}, X/\sqrt{2}, Y/\sqrt{2}, Z/\sqrt{2}\}^{\otimes n}$.
 199 The related coefficient

$$200 \Phi(\mathcal{C}, s) = \begin{cases} \text{Tr}(s_d \mathcal{C}_d(s_{d-1}) \cdots \text{Tr}(s_1 \mathcal{C}_1(s_0)) \text{Tr}(s_0 |0^n\rangle\langle 0^n|), & \mathcal{E} \text{ is unital,} \\ \text{Tr}(s_d \mathcal{E}'^{\otimes n} \mathcal{C}_d(s_{d-1}) \cdots \text{Tr}(s_1 \mathcal{E}'^{\otimes n} \mathcal{C}_1(s_0)) \text{Tr}(s_0 |0^n\rangle\langle 0^n|), & \mathcal{E} \text{ is non-unital} \end{cases} \quad (6)$$

201 where the channel \mathcal{E}' is defined as Eq. 2.

202 See Appendix C.1 for the proof. Although an arbitrary n -qubit density operator requires 4^n Pauli
 203 operators, our result theoretically demonstrates the intrinsic simplicity of a noisy quantum state.
 204 It is observed that most of Pauli paths s_d will be exponentially decayed when the noise channel
 205 strength $\gamma = \mathcal{O}(1)$, which implies the low-weight Pauli paths dominate the noisy quantum state.
 206 This observation enables a much more compact approximation to the noisy quantum state.

207 **Lemma 2.** *Let the noisy quantum state $\rho = \mathcal{C}(|0^n\rangle\langle 0^n|)$ with \mathcal{C} defined as Eq. 4, where \mathcal{C}_i is a
 208 layer of two-qubit Haar random quantum gates. With the success probability $\geq 1 - \delta_1$, there exists
 209 a density matrix $\hat{\rho} = \sum_{|s_d| \leq l', s_d \in \mathcal{P}_n} \alpha_{s_d} s_d$ such that*

$$210 \|\rho - \hat{\rho}\|_1 \leq \epsilon_1, \quad (7)$$

211 where coefficients $\alpha_{s_d} \in \mathbb{R}$ and $l' = \mathcal{O}\left(\frac{1}{\gamma} \log\left(\frac{1}{\epsilon_1 \delta_1}\right)\right)$.

We note that Lemma 2 holds for both *unital* and *non-unital* noisy channels. Consider the trace distance $T(\rho, \hat{\rho}) = \frac{1}{2}\|\rho - \hat{\rho}\|_1$ and $T(\rho, \hat{\rho}) = \max_{P \leq I} |\text{Tr}[P(\rho - \hat{\rho})]|$, the foregoing approximation result immediately yields a tight upper bound on quantum expectation values.

Proof Sketch. The fundamental idea is to obtain an efficient representation of a noisy quantum state by leveraging Lemma 1. The contribution of each Pauli path s_d is determined by a related pre-factor $(1 - \gamma)^{|s|}\Phi(\mathcal{C}, s)$, which decays exponentially with the Pauli-path weight $|s|$. Since $|s_d| \leq |s|$, we truncate the noisy-state representation in Lemma 1 to terms with $|s_d| \leq l'$. It therefore suffices to show that the rest of the average-case error $\mathbb{E}_{\mathcal{C}}[\sum_{|s_d| > l'} \Phi(\mathcal{C}, s)]^2$ is a constant. If \mathcal{E} represents an unital noise channel, the quantum local random gate property enables us to bound the contribution of each truncated Pauli term (Aharonov et al., 2023). Specifically, if $|s_d| > l'$, then there are at least $|s|/4$ gates whose input and output are both non-identity Pauli operators, and consequently $\Phi(\mathcal{C}, s)$ can be upper bounded by $\frac{1}{15}^{|s|/4}$. For non-unital noise channel \mathcal{E} , the local 1-design quantum gate property enables $\mathbb{E}_{\mathcal{C}}[\sum_{|s_d| > l'} \Phi(\mathcal{C}, s)]^2$ upper bounded by the normalized Frobenius norm of the input quantum state, that is $|0^n\rangle\langle 0^n|$ in our case (Angrisani et al., 2025). In both cases, the average-case error has the upper bound ϵ_1 with large probability by choosing $l' = \gamma^{-1} \log(\epsilon_1^{-1} \delta_1^{-1})$. This completes the proof. Details are provided in Appendix C.2. \square

The above observation implies that the number of non-trivial terms (those with $\alpha_{s_d} \neq 0$) is bounded by $N_s \leq 2^{\mathcal{O}(l')} = \mathcal{O}(1/\epsilon_1)$. Hence, when the required accuracy is $\epsilon_1 = 1/\text{poly}(n)$, all Pauli terms s_d appearing in the ansatz $\hat{\rho}$ can be enumerated efficiently. Consequently, tomography of the noisy state ρ is reduced to tomography of its approximation $\hat{\rho}$, determining the unknown coefficients α_{s_d} for s_d , then it suffices to perform the noisy-state tomography task. Since all ‘low-weight’ Pauli operators s_d can be enumerated in advance, the classical shadow method (Huang et al., 2020) is a natural candidate for estimating the coefficients α_{s_d} , yielding an $\mathcal{O}(\log(1/\epsilon_1)\epsilon_1^{-2})$ sample-complexity guarantee.

Nevertheless, the classical shadow method may not extend directly to quantum process tomography tasks. To implement a ‘unified’ learning approach for both quantum noisy state and process tomography tasks, we provide another method for estimating coefficients α_{s_d} from the quantum randomized measurement results. We generate a dataset $\{|\psi_j\rangle = \otimes_{i=1}^n |\psi_{i,j}\rangle, v_j = \langle\psi_j|\rho|\psi_j\rangle\}_{j=1}^{N_{\text{data}}}$ by drawing each single-qubit stabilizer $|\psi_{i,j}\rangle$ uniformly sampled from the set $\text{Stab} = \{|0\rangle, |1\rangle, |+\rangle, |-\rangle, |y+\rangle, |y-\rangle\}$. Here, the quantum state overlap $v_j = \langle\psi_j|\rho|\psi_j\rangle$ can be efficiently obtained by using the SWAP-test method (Buhrman et al., 2001). Without loss of generality, we assume each single-qubit stabilizer state can be prepared by $|\psi_{i,j}\rangle = U_{i,j}|0\rangle_i$, where $U_{i,j}$ is a random single-qubit Clifford gate. By leveraging the orthogonal property of single-qubit Pauli operators Q_i in the context of the Clifford ensemble, that is

$$\mathbb{E}_{U_{i,j} \sim \text{Cl}(2)} \left[U_{i,j}^{\dagger \otimes 2} (Q_i \otimes Q'_i) U_{i,j}^{\otimes 2} \right] = \begin{cases} I^{\otimes 2}, & \text{if } Q_i = Q'_i = I, \\ \frac{1}{3} \sum_{Q_i \in \{X, Y, Z\}^{\otimes 2}} (Q_i \otimes Q_i), & \text{if } Q_i = Q'_i \neq I, \\ 0, & \text{if } Q_i \neq Q'_i, \end{cases} \quad (8)$$

coefficients α_{s_d} are obtained as

$$\alpha_{s_d} = 3^{|s_d|} \mathbb{E}_{|\psi_j\rangle \sim \text{Stab}^{\otimes n}} v_j \langle\psi_j| s_d |\psi_j\rangle \approx \frac{3^{|s_d|}}{N_{\text{data}}} \sum_{j=1}^{N_{\text{data}}} v_j \langle\psi_j| s_d |\psi_j\rangle. \quad (9)$$

The in-depth explanation of the learning Algorithm is provided in Appendix C.3. We note that the above learning approach is efficient in both sample and computational complexity (classical post-processing).

Theorem 1 (Noisy Quantum State Learning). *For any noisy quantum state ρ prepared by a noisy quantum circuit \mathcal{C} (Eq. 4), where \mathcal{C}_i is a layer of two-qubit random haar quantum gates, there exists a learning algorithm that can efficiently solve Problem 1 with success probability $\geq 1 - \delta$. The learning algorithm requires sample complexity $N_{\text{data}} = 6^{\mathcal{O}(\gamma^{-1} \log(\epsilon^{-1} \delta^{-1}))} \log(1/\delta) \epsilon^{-2}$ and classical post-processing complexity $\mathcal{O}(n \cdot 24^{\mathcal{O}(\gamma^{-1} \log(\epsilon^{-1} \delta^{-1}))} \log(1/\delta) \epsilon^{-2})$.*

270 When the required accuracy and failure probability $\epsilon, \delta = 1/\text{poly}(n)$, the proposed learning al-
 271 gorithm is highly efficient to construct a density matrix $\hat{\rho}$ such that (a) $T(\rho, \hat{\rho}) \leq \epsilon$ and (b)
 272 $|\text{Tr}(O\rho) - \text{Tr}(O\hat{\rho})| \leq \epsilon\|O\|$. In many noisy intermediate-scale quantum (NISQ) algorithms, one is
 273 often interested in the expectation values of Pauli operators. Theorem 1 supplies an efficient method
 274 for benchmarking the output of NISQ algorithms.

276 5 LEARNING A QUANTUM PROCESS CHARACTERIZATION

278 Compared with the noisy quantum state tomography, QPT is a more challenging task, which re-
 279 quires an exponential query complexity in the worst-case scenario (Haah et al., 2023), rendering it infeasible for large-scale systems. Inspired by the noisy quantum state tomography method, we
 280 proposed an efficient learning algorithm for the QPT task, particularly when the quantum process
 281 is given by a noisy quantum circuit \mathcal{C} (Eq. 4) followed by an unknown quantum measurement O .
 282 Without loss of generality, we assume the n -qubit observable $O = \sum_{Q \in \{I, X, Y, Z\}^{\otimes n}} \text{Tr}[OQ]Q/2^n$
 283 is the linear combinations of local operators, where each local Pauli operator $|Q| = \mathcal{O}(1)$. In other
 284 words, O is considered as a sum of few-body observables, where each qubit is acted on by a constant
 285 number of the few-body observables.

287 Let the noisy quantum channel be given by the Kraus decomposition $\mathcal{C} = \sum_j K_j(\cdot)K_j^\dagger$. It is
 288 observed that

$$290 \text{Tr}[\mathcal{C}(\rho_x)O] = \text{Tr}\left[\sum_j K_j \rho_x K_j^\dagger O\right] = \text{Tr}\left[\sum_j \rho_x K_j^\dagger O K_j\right] = \text{Tr}[\rho_x \mathcal{C}^\dagger(O)]. \quad (10)$$

293 Consequently, the key step is to learn the ‘dual’ representation $\mathcal{C}^\dagger(O)$. We demonstrate that this dual
 294 operator also admits low-weight Pauli paths, allowing for a truncation-based approximation similar
 295 to that employed for noisy states.

296 **Lemma 3.** *Let the noisy quantum circuit $\mathcal{C} = \mathcal{E}^{\otimes n} \mathcal{C}_d \mathcal{E}^{\otimes n} \mathcal{C}_{d-1} \cdots \mathcal{E}^{\otimes n} \mathcal{C}_1$ represent a d -depth noisy
 297 quantum circuit, where \mathcal{C}_i is a layer of two-qubit Haar random quantum gates and \mathcal{E} represents an
 298 i.i.d single-qubit noisy channel (unital or non-unital). With success probability $\geq 1 - \delta_2$, there exists
 299 an operator $\mathcal{C}^{(l')\dagger}(O) = \sum_{|P| \leq l', P \in \mathcal{P}_n} \beta_P P$ such that*

$$300 \left\| \mathcal{C}^{(l')\dagger}(O) - \mathcal{C}^\dagger(O) \right\|_F \leq \epsilon_2, \quad (11)$$

302 where coefficients $\beta_P \in \mathbb{R}$ and $l' = \mathcal{O}(\gamma^{-1} \log(1/(\delta_2 \epsilon_2)))$.

304 Similar to the noisy quantum state tomography task, reconstructing $\mathcal{C}^{(l')\dagger}(O)$ proceeds from the data
 305 set $\mathcal{D}_{\text{QPT}} = \{|\psi_j\rangle = \otimes_{i=1}^n |\psi_{i,j}\rangle, \phi_j = \text{Tr}[O\mathcal{C}(|\psi_j\rangle\langle\psi_j|)]\}_{j=1}^{N_{\text{data}}}$, where $|\psi_{i,j}\rangle$ is a single-qubit
 306 stabilizer randomly sampled from the set Stab , and ϕ_j denotes the output of the target quantum
 307 process. According to the Eq. 8, coefficients β_P can be learned efficiently via

$$309 \beta_P = \frac{3^{|P|}}{N_{\text{data}}} \sum_{i=1}^{N_{\text{data}}} \phi_j \langle \psi_i | P | \psi_i \rangle. \quad (12)$$

312 The complete QPT procedure is summarized in Algorithm 1.

313 From the above algorithm, it can be observed that the computational overhead primarily stems from
 314 two sources: (1) the sampling complexity N_{data} , (2) and the complexity of classical post-processing.
 315 Both of these costs depend on the number of s_d (Pauli operator P in the algorithm), which in turn is
 316 governed by how many legal Pauli paths are retained, in other words, the number of Pauli operators
 317 s_d with non-zero parameter β_{s_d} contained in $\mathcal{C}^{(l')\dagger}(O)$. According to Lemma 3, the weight of s_d
 318 is given by $l' = \mathcal{O}(\gamma^{-1} \log(\epsilon^{-1} \delta^{-1}))$. Therefore, a rough estimate of the number of legal paths
 319 is $\mathcal{O}(n^{l'})$. For $\epsilon = 1/n$, the number of legal paths becomes $\mathcal{O}(n^{\log n})$, incurring quasi-polynomial
 320 sampling and post-processing complexity.

321 However, we can tighten the bound to retain only $e^{\mathcal{O}(l')}$ legal paths. For unital noisy circuit, the
 322 lower bound of $\mathbb{E}_{\mathcal{C}, |s| \leq l} \Phi(\mathcal{C}, s)^2$ is $\frac{1}{15}^{|s|}$, when the input and the output of the each gate are non-
 323 identity Pauli operators for a legal Pauli path. Consequently, the sum over all paths with weight up

324 **Algorithm 1** Quantum Process Learning Algorithm

325 **Input:** Data set $\mathcal{D}_{\text{QPT}} = \{|\psi_j\rangle = \otimes_{i=1}^n |\psi_{i,j}\rangle\}_{j=1}^{N_{\text{data}}}$ and accuracy parameter ϵ ;

326 **Output:** A $f(\cdot)$ such that $|f(\cdot) - \text{Tr}[\mathcal{O}C(\cdot)]| \leq \epsilon$ with high success probability for all input quantum states;

327 Let $l' = \lceil \log(1/\epsilon) \rceil$, enumerate all the $P \in \mathcal{P}_n$ with $|P| \leq l'$;

328 **For** $j \in [N_{\text{data}}]$:

329 Take the input state $|\psi_j\rangle\langle\psi_j|$ into the target quantum process, and obtain the output $\phi_j = \text{Tr}[\mathcal{O}C(|\psi_j\rangle\langle\psi_j|)]$;

330 **End For**

331 **For** each $P \in \mathcal{P}_n$ with $|P| \leq l'$:

332 Compute $\beta_P = \frac{3^{|P|}}{N_{\text{data}}} \sum_{j=1}^{N_{\text{data}}} \phi_j \langle\psi_j|P|\psi_j\rangle$.

333 **End For**

334 **Output:** $f(\cdot) = \sum_{|P| \leq l'} \beta_P \text{Tr}(P(\cdot))$

339 to l' is given by $\mathcal{O}(1) = \sum_{|s_d| \leq l'} \mathbb{E}_{\mathcal{C}, |s| \leq l} \Phi(\mathcal{C}, s)^2 \geq N_s \frac{1}{15} l'$, where N_s is the number of legal Pauli paths. Thus $N_s = 15^{\mathcal{O}(l')} \in e^{\mathcal{O}(l')}$. For non-unital noisy circuits, N_s is bounded by $\max_{Q \in \mathcal{O}} |Q| e^{l'}$ for the enumeration that starts from a local term $Q \in \mathcal{O}$ non-trivially acting on a constant number of qubits. We conclude the main results in the following Theorem. The proof is given in Appendix D.2.

344 **Theorem 2** (Noisy Quantum Process Learning). *For any noisy quantum process \mathcal{C} defined as Eq. 4, where \mathcal{C}_i is a layer of two-qubit Haar random quantum gates, and n -qubit observable $O = \sum_{Q \in \{I, X, Y, Z\}^{\otimes n}, |Q|=\mathcal{O}(1)} \text{Tr}[OQ]Q/2^n$, there exists a learning algorithm that can efficiently solve Problem 2 with success probability $\geq 1 - \delta$. The learning algorithm requires sample complexity*

349
$$N_{\text{data}} = \max_{Q \in \mathcal{O}} (|Q|^2) 6^{\mathcal{O}(\gamma^{-1} \log(\|O\|_F \epsilon^{-1} \delta^{-1}))} \log(\delta^{-1}) \epsilon^{-2}, \quad (13)$$

350 and classical post-processing complexity $\mathcal{O}\left(\frac{n \cdot \max_{Q \in \mathcal{O}} (|Q|^3) 24^{\mathcal{O}(\gamma^{-1} \log(\|O\|_F \epsilon^{-1} \delta^{-1}))} \log(\delta^{-1})}{\epsilon^2}\right)$.

351 Moreover, if the noise is unital, the sample complexity is $6^{\mathcal{O}(\gamma^{-1} \log(\frac{\|O\|_F}{\epsilon \delta}))} \log(\delta^{-1}) \epsilon^{-2}$ and classical post-processing complexity is $\mathcal{O}\left(n \cdot 24^{\mathcal{O}(\gamma^{-1} \log(\frac{\|O\|_F}{\epsilon \delta}))} \log(\delta^{-1}) \epsilon^{-2}\right)$.

352 **6 NUMERICAL EXPERIMENTS**

353 In this section, we present numerical results that employ the proposed learning algorithms to perform noisy quantum process and state tomography, thereby substantiating the theoretical analysis. We further illustrate that the same pipeline can be harnessed for quantum error mitigation. **Although our theoretical results rely on the randomness assumption, we numerically verify that our learning algorithm remains highly efficient for a broader class of circuits, including those with specific structure, such as noisy quantum dynamical processes. This demonstrates the broad practical applicability of our approach.**

354 **6.1 EXPERIMENT SETTING**

355 Benchmarks are performed on the two-dimensional transverse-field Ising model described by the Hamiltonian

356
$$H = -J \sum_{\langle q, p \rangle} Z_q Z_p + h \sum_q X_q, \quad (14)$$

357 where the notation $\langle q, p \rangle$ restricts the interaction to nearest-neighbor pairs. The positive coupling strength J and the transverse field h fully parameterize the system. Evolving for total time T via a first-order Trotter formula gives $U(T) \approx \left(\prod_{\langle q, p \rangle} e^{i\delta t J Z_q Z_p} \prod_q e^{-i\delta t h X_q} \right)^{T/\delta t}$ with Trotter step

length δt . Consequently, the quantum circuit reduces to an alternating sequence of $\text{RZZ}(\theta_J)$ and $\text{RX}(\theta_h)$ gates whose rotation angles are fixed by the physical parameters through $\theta_J = -2J\delta t$ and $\theta_h = 2h\delta t$ (Kim et al., 2023a). To simplify the subsequent gate decomposition—specifically, to minimize the CNOT count required for each RZZ—we fix $\theta_J = -\frac{\pi}{2}$ and only change θ_h . As reported in Kim et al. (2023a), current superconducting quantum computers have a certain level of noise within each quantum gate. During our simulation, we thus introduce a i.i.d single-qubit depolarizing channel after each quantum gate, with strength 2×10^{-2} for unital cases in both quantum state and process tomography tasks. For more general non-unital noisy channel cases, we assume each quantum gate suffers from an i.i.d single-qubit depolarizing channel and a local amplitude damping channel. We simulate the noisy quantum state and process using the Qulacs Package (Suzuki et al., 2021). The quantum circuit is tested up to a 3×5 -sized instance 20 layers, corresponding to a $2^{15} \times 2^{15}$ matrix, occupying 16 GB of RAM and taking approximately 17 hours for each shot.

6.2 EXPERIMENT RESULTS

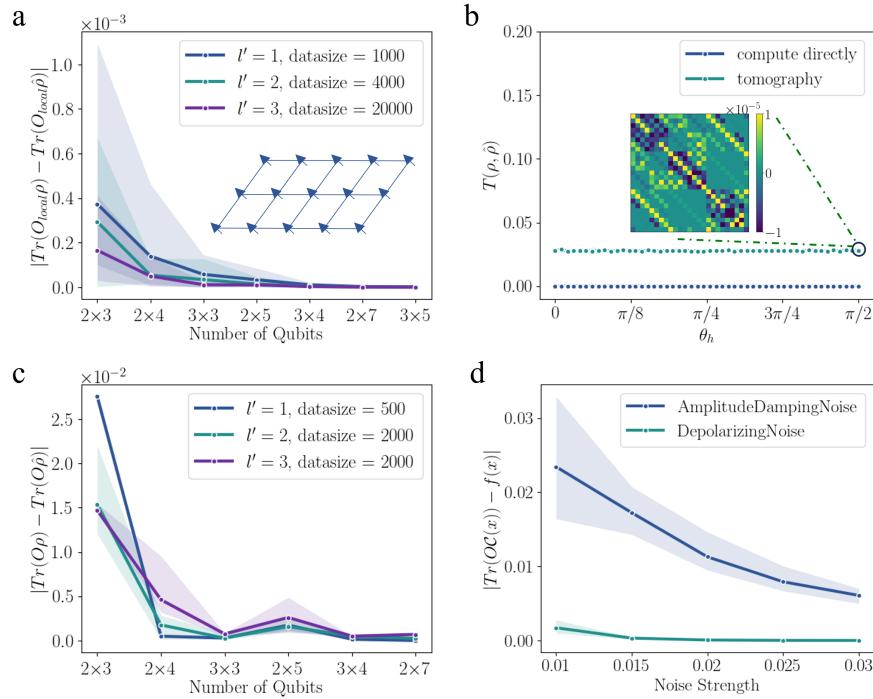


Figure 2: (a) QST results for various numbers of qubits and l' . Each circuit is 20 layers accompanied by depolarizing noise of strength 0.02 and fixed $\theta_h = \frac{\pi}{4}$. The grid illustrates the 3×5 2D transverse field Ising model. (b). Learning of the ρ generated by sweeping θ_h from 0 to $\frac{\pi}{2}$; the circuit size 2×5 , 45 layers, depolarizing noise strength 0.02. The heat-map shows a 25×25 sub-matrix of the $\rho - \hat{\rho}$ at $\theta_h = \frac{\pi}{2}$ (the full matrix in Appendix F.2). (c). QPT results for different qubit numbers and l' , where the circuit depth is 5 layers and the depolarizing noise strength is 0.01. (d). QPT for the 2×5 system under 2 kinds of noise and other settings identical to c.

The visualizations of the results of 4 experiments are shown in Figure 2. In all panels, the shaded area indicates the range of experimental outcomes, with the upper bound representing the maximum value and the lower bound the minimum value; the solid line indicates the mean over 10 trials. Figure 2 a shows that the error decreases as the system size increases and stabilizes once the system is sufficiently large; the same behavior is observed in Figure 2 c, consistent with the theoretical findings Theorem 1 and 2. In Figure 2 b, the two dot lines respectively display the ideal outcomes and the outcomes from the tomography algorithm, which conveys that the trace distance exhibits minimal fluctuation as θ_h varies. Figure 2 d demonstrates that our protocol is capable of effectively learning depolarizing noise and also shows the capacity to learn non-unital noise. Interestingly, the

learning performance improves as the noise strength increases, demonstrating the strong robustness of the learning algorithm in terms of the noise strength. Moreover, our approach reduces the storage required for storing a quantum state: for example, a 14-qubit density matrix (2×7 lattice) generally occupies 8 GB, whereas storing the coefficients of its Pauli decomposition requires only 1 KB, offering an efficient and compact representation of noisy quantum processes.

6.3 APPLICATION: QUANTUM ERROR MITIGATION

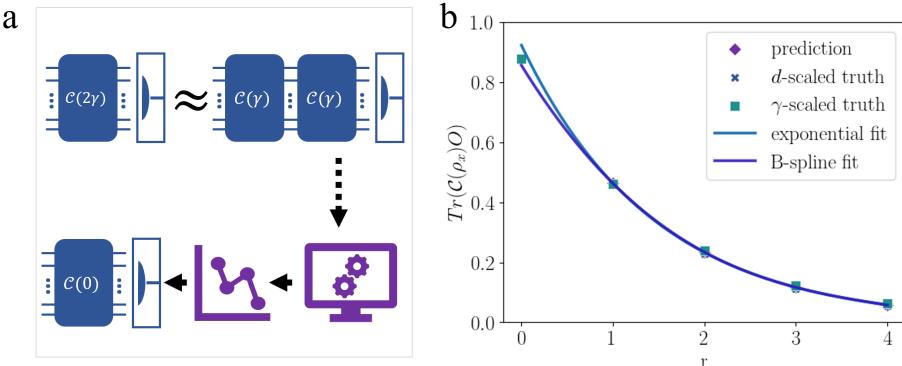


Figure 3: (a) The procedure of the ZNE. (b) The numerical result of the ZNE-QEM using the proposed learning algorithm.

We note that our learning algorithm can also be applied to solve the quantum error mitigation (QEM) task (Eisert et al., 2020). QEM comprises protocols that suppress stochastic errors on NISQ hardware by classical post-processing of measurement data, without introducing full quantum error-correcting codes. Whereas error correction aims to eliminate noise, QEM converts every hardware improvement into an immediate fidelity gain by suppressing residual errors. One QEM approach is zero-noise extrapolation (ZNE), which executes the circuit at several circuit fault rates λ , which measures the level of errors occurring in the overall circuit, and $\lambda \propto \gamma$ (Cai et al., 2023). Although the circuit output at $\lambda = 0$ cannot be measured directly, an empirical model $h(\lambda)$ linking λ to the circuit output can be built from a set of different λ values. This allows us to extrapolate the case of $\lambda = 0$, which corresponds to zero noise. Different λ values can be generated by purse-stretching (Kandala et al., 2019; Kim et al., 2023b) or by inserting additional noise channels (Endo et al., 2018). For an i.i.d single-qubit noise, it is natural to set λ proportional to the gate count, thus $\gamma \propto \lambda \propto \text{Number of the gates}$. Here we vary λ by controlling the depth of the circuit d .

Whereas the conventional ZNE must be tailored to each specific input, our protocol is input-agnostic. Similar to Lemma 1, $\text{Tr}(OC(\cdot)) = \sum_{|P| \leq l'} (1 - \gamma)^{|P|} \Phi(\mathcal{C}, P) \text{Tr}(P \cdot)$. Considering the depolarizing noise strength $\gamma < 1$, $(1 - \gamma)^{|P|} = (1 - \gamma)^{\frac{|P|}{d}d} \approx (1 - \gamma d)^{\frac{|P|}{d}}$. In other words, one can obtain the characterizations of the same quantum processes with different noise strength by appending extra quantum circuit layers to the original process, this yields a sequence of learned values $\{f_r \mid f_r - \text{Tr}[OC_{rd}(|0^n\rangle\langle 0^n|)] \leq \epsilon\}_{r \geq 1}$. One can utilize $\{f_r\}_{r \geq 1}$ to extrapolate f_0 , which is considered as the characterization of \mathcal{C}_d with zero noise.

The result of numerical experiments of application is shown in Figure 3, where we simulate a six-qubit 2D transverse field Ising model Eq. 14 with 5 layers. Two key observations emerge:

- Rescaling either the depth coefficient d or the noise strength γ perturbs the dynamics to a comparable extent, as seen from the nearly overlapping dots.
- The characterization obtained by learning the coefficients of d can be extrapolated via curve fitting to estimate the noise-free system (i.e., when $\gamma = 0$) characterization. Exponential extrapolation yields an error 0.0446; a cubic B-spline (piecewise polynomial) reduces it to 0.0222.

486 7 DISCUSSION

488 Efficiently characterizing noisy quantum states and processes has stood as one of the most significant
 489 problems over the past decades. In this paper, we propose a provably efficient quantum learning
 490 algorithm that handles both unital and non-unital noisy channels, extending previous art from
 491 restricted input distributions to arbitrary input quantum states. A more detailed comparison with
 492 other works can be found in Appendix A. When the noise strength is a constant value, our learning
 493 algorithm is efficient in both sample and runtime complexity. These advances provide rigorous
 494 theoretical foundations for analyzing quantum machine learning models, verifying computational
 495 outcomes, and benchmarking noisy quantum processes in near-term quantum devices.

496 For noisy quantum state learning, we have proven that the learning algorithm can be efficient in the
 497 average case. We also provide a worst-case lower bound for the sample complexity in both noisy
 498 state and process tomography tasks. Specifically, when the noise strength is a constant and the noisy
 499 quantum circuit depth is $d = \text{poly}(\log n)$, the sample complexity lower bound for the worst-case
 500 scenario is quasi-polynomial. We emphasize that this result does not contradict Theorem 1 and 2:
 501 the former statement concerns the worst case, while the latter addresses the average case under the
 502 random-circuit assumption. The details are provided in Appendix E.

503 **Distinguishing Learning from Simulation** The primary distinction of our approach lies in its in-
 504 formational requirements compared to classical simulation methods. From a practical perspective,
 505 simulating a quantum circuit typically requires prior knowledge of the noise strength(Shao et al.,
 506 2024; Schuster et al., 2024), and some noise strengths whose efficient characterization can be in-
 507 herently challenging(Chen et al., 2023). Conversely, our learning algorithm merely requires the
 508 noise level to be constant, obviating the need for its exact strength to be known. From a theoretical
 509 standpoint, both our learning approach and the cited simulation methods(Aharanov et al., 2023; An-
 510 grisani et al., 2025) leverage the principle of Pauli-path integration, wherein exponential noise decay
 511 ensures that noisy processes are dominated by low-weight Pauli paths. The crucial difference resides
 512 in the informational premise: In our learning algorithm, the quantum gates, circuit architecture, and
 513 noise strength are all unknown; we exploit this property to engineer an efficient classical representa-
 514 tion (ansatz) for tomography. Classical simulation algorithms, conversely, apply this same property
 515 to compute circuit outputs, yet their efficacy is predicated on requiring full knowledge of the in-
 516 volved quantum gates, architecture, and noise strengths. Consequently, our work may be viewed
 517 as a ‘learning-theoretic dual’ to the classical-simulation results(Gil-Fuster et al., 2025). These two
 518 paradigms operate in parallel, reflecting complementary perspectives on benchmarking noisy quan-
 519 tum processes—specifically, quantum tomography versus classical verification within benchmarking
 520 toolkits (Eisert et al., 2020)

521 **Future Directions and Open Problems** Despite the high generality and efficiency of our theo-
 522 retical framework in the current NISQ regime (assuming constant-level noise γ), several important
 523 open problems remain as we look toward applications in future fault-tolerant quantum computing:

524 **Noise Strength Optimization and Inference (l' Truncation):** Theoretically, the Pauli
 525 truncation length l' depends on γ^{-1} . In practice, exploring the use of sparsity-promoting
 526 techniques (e.g., LASSO or OMP) to adaptively identify and learn only the most relevant
 527 Pauli terms based on data could potentially compress the numerical complexity and en-
 528 hance precision beyond the existing theoretical bound.

529 **Extension to Gate-Dependent Noise:** Our analysis is rigorously founded on the i.i.d.
 530 gate-independent noise model. We acknowledge that in larger, more complex quantum
 531 architectures, noise often exhibits gate-dependence. Extending our learning framework to
 532 enable effective tomography of these more physically challenging noise models remains a
 533 significant avenue for future research.

534 **Optimal Scaling:** The polynomial dependence of our algorithm’s complexity on γ and
 535 ϵ raises a natural open question: can these scalings (currently $\mathcal{O}(\gamma^{-1})$ and $\mathcal{O}(\epsilon^{-2})$) be
 536 further optimized?

540 REFERENCES
541

542 Scott Aaronson and Sabee Grewal. Efficient tomography of non-interacting fermion states.
543 (arXiv:2102.10458), February 2023. doi: 10.48550/arXiv.2102.10458.

544 Anirudh Acharya, Theodore Kypraios, and Mădălin Guță. A comparative study of estimation
545 methods in quantum tomography. *Journal of Physics A: Mathematical and Theoretical*, 52(23):
546 234001, 2019. doi: 10.1088/1751-8121/ab1958.

547 Rajeev Acharya, Laleh Aghababaie-Beni, Igor Aleiner, Trond I Andersen, Markus Ansmann, Frank
548 Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, Juan Atalaya, et al. Quantum error
549 correction below the surface code threshold. *arXiv preprint arXiv:2408.13687*, 2024.

550 Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani. A Polynomial-Time
551 Classical Algorithm for Noisy Random Circuit Sampling. In *Proceedings of the 55th Annual
552 ACM Symposium on Theory of Computing*, pp. 945–957, Orlando FL USA, June 2023. ACM.
553 ISBN 978-1-4503-9913-5. doi: 10.1145/3564246.3585234.

554 Armando Angrisani, Antonio A. Mele, Manuel S. Rudolph, M. Cerezo, and Zoe Holmes. Simulating
555 quantum circuits with arbitrary local noise using pauli propagation. (arXiv:2501.13101), January
556 2025. doi: 10.48550/arXiv.2501.13101.

557 Anurag Anshu, Srinivasan Arunachalam, Tomotaka Kuwahara, and Mehdi Soleimanifar. Sample-
558 efficient learning of quantum many-body systems. In *2020 IEEE 61st Annual Symposium on
559 Foundations of Computer Science (FOCS)*, pp. 685–691, Durham, NC, USA, November 2020.
560 IEEE. ISBN 978-1-7281-9621-3. doi: 10.1109/FOCS46700.2020.00069.

561 Srinivasan Arunachalam, Sergey Bravyi, Arkopal Dutt, and Theodore J. Yoder. Optimal algorithms
562 for learning quantum phase states. (arXiv:2208.07851), May 2023. doi: 10.48550/arXiv.2208.
563 07851.

564 Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak
565 Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy using
566 a programmable superconducting processor. *Nature*, 574(7779):505–510, 2019. doi: 10.1038/
567 s41586-019-1666-5.

568 Ryan Babbush, Robbie King, Sergio Boixo, William Huggins, Tanuj Khattar, Guang Hao Low,
569 Jarrod R. McClean, Thomas O’Brien, and Nicholas C. Rubin. The grand challenge of quantum
570 applications, 2025.

571 Eyal Bairey, Itai Arad, and Netanel H. Lindner. Learning a local hamiltonian from local measure-
572 ments. *Physical Review Letters*, 122(2):020504, January 2019. doi: 10.1103/PhysRevLett.122.
573 020504.

574 K Banaszek, M Cramer, and D Gross. Focus on quantum tomography. *New Journal of Physics*, 15
575 (12):125020, December 2013. doi: 10.1088/1367-2630/15/12/125020.

576 Robin Blume-Kohout. Optimal, reliable estimation of quantum states. *New Journal of Physics*, 12
577 (4):043034, April 2010. doi: 10.1088/1367-2630/12/4/043034.

578 Sergey Bravyi, Andrew W Cross, Jay M Gambetta, Dmitri Maslov, Patrick Rall, and Theodore J
579 Yoder. High-threshold and low-overhead fault-tolerant quantum memory. *Nature*, 627(8005):
580 778–782, 2024. doi: 10.1038/s41586-024-07107-7.

581 Harry Buhrman, Richard Cleve, John Watrous, and Ronald De Wolf. Quantum fingerprinting. *Phys-
582 ical review letters*, 87(16):167902, 2001. doi: 10.1103/PhysRevLett.87.167902.

583 Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jar-
584 rod R. McClean, and Thomas E. O’Brien. Quantum error mitigation. *Reviews of Modern Physics*,
585 95(4):045005, 2023. doi: 10.1103/RevModPhys.95.045005.

586 M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. Cost function dependent
587 barren plateaus in shallow parametrized quantum circuits. *Nature Communications*, 12(1):1791,
588 2021. doi: 10.1038/s41467-021-21728-w.

594 Liangyu Che, Chao Wei, Yulei Huang, Dafa Zhao, Shunzhong Xue, Xinfang Nie, Jun Li, Dawei Lu,
 595 and Tao Xin. Learning quantum hamiltonians from single-qubit measurements. *Physical Review*
 596 *Research*, 3(2):023246, June 2021. doi: 10.1103/PhysRevResearch.3.023246.

597 Senrui Chen, Wenjun Yu, Pei Zeng, and Steven T. Flammia. Robust shadow estimation. *PRX*
 598 *Quantum*, 2(3):030348, 2021. doi: 10.1103/PRXQuantum.2.030348.

600 Senrui Chen, Sisi Zhou, Alireza Seif, and Liang Jiang. Quantum advantages for pauli channel esti-
 601 mation. *Physical Review A*, 105(3):032435, March 2022a. doi: 10.1103/PhysRevA.105.032435.

602 Senrui Chen, Yunchao Liu, Matthew Otten, Alireza Seif, Bill Fefferman, and Liang Jiang.
 603 The learnability of pauli noise. *Nature Communications*, 14(1):52, 2023. doi: 10.1038/
 604 s41467-022-35759-4.

606 Sitian Chen, Jerry Li, Brice Huang, and Allen Liu. Tight bounds for quantum state certification with
 607 incoherent measurements. In 2022 *IEEE 63rd Annual Symposium on Foundations of Computer*
 608 *Science (FOCS)*, pp. 1205–1213, Denver, CO, USA, October 2022b. IEEE. ISBN 978-1-6654-
 609 5519-0. doi: 10.1109/FOCS54457.2022.000118.

610 Sitian Chen, Jaume de Dios Pont, Jun-Ting Hsieh, Hsin-Yuan Huang, Jane Lange, and Jerry Li.
 611 Predicting quantum channels over general product distributions. (arXiv:2409.03684), September
 612 2024. doi: 10.48550/arXiv.2409.03684.

613 Isaac L. Chuang and M. A. Nielsen. Prescription for experimental determination of the dynamics
 614 of a quantum black box. *Journal of Modern Optics*, 44(11-12):2455–2467, November 1997. doi:
 615 10.1080/09500349708231894.

617 Marcus Cramer, Martin B. Plenio, Steven T. Flammia, Rolando Somma, David Gross, Stephen D.
 618 Bartlett, Olivier Landon-Cardinal, David Poulin, and Yi-Kai Liu. Efficient quantum state tomog-
 619 raphy. *Nature Communications*, 1(1):149, December 2010. doi: 10.1038/ncomms1147.

620 G. M. D’Ariano and P. Lo Presti. Quantum tomography for measuring experimentally the matrix
 621 elements of an arbitrary quantum operation. *Physical Review Letters*, 86(19):4195–4198, May
 622 2001. doi: 10.1103/PhysRevLett.86.4195.

623 Yuxuan Du, Min-Hsiu Hsieh, and Dacheng Tao. Efficient learning for linear properties of
 624 bounded-gate quantum circuits. *Nature Communications*, 16(1):3790, 2025. doi: 10.1038/
 625 s41467-025-59198-z.

627 Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea Parekh, Ulysse
 628 Chabaud, and Elham Kashefi. Quantum certification and benchmarking. *Nature Reviews Physics*,
 629 2(7):382–390, June 2020. doi: 10.1038/s42254-020-0186-4.

630 Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future
 631 applications. *Physical Review X*, 8(3):031027, 2018. doi: 10.1103/PhysRevX.8.031027.

632 Simon J Evered, Dolev Bluvstein, Marcin Kalinowski, Sepehr Ebadi, Tom Manovitz, Hengyun
 633 Zhou, Sophie H Li, Alexandra A Geim, Tout T Wang, Nishad Maskara, et al. High-fidelity parallel
 634 entangling gates on a neutral-atom quantum computer. *Nature*, 622(7982):268–272, 2023. doi:
 635 10.1038/s41586-023-06481-y.

637 Steven T. Flammia and Ryan O'Donnell. Pauli error estimation via population recovery.
 638 *Quantum*, 5:549, September 2021. doi: 10.22331/q-2021-09-23-549.

639 Steven T. Flammia and Joel J. Wallman. Efficient estimation of pauli channels. *ACM Transactions*
 640 *on Quantum Computing*, 1(1):1–32, December 2020. doi: 10.1145/3408039.

641 Valentin Gebhart, Raffaele Santagati, Antonio Andrea Gentile, Erik M. Gauger, David Craig, Natalia
 642 Ares, Leonardo Banchi, Florian Marquardt, Luca Pezzè, and Cristian Bonato. Learning quantum
 643 systems. *Nature Reviews Physics*, February 2023. doi: 10.1038/s42254-022-00552-1.

645 Elies Gil-Fuster, Casper Gyurik, Adrian Perez-Salinas, and Vedran Dunjko. On the relation be-
 646 tween trainability and dequantization of variational quantum learning models. In Y. Yue, A. Garg,
 647 N. Peng, F. Sha, and R. Yu (eds.), *International Conference on Representation Learning*, volume
 2025, pp. 24069–24093, 2025.

648 Christopher E Granade, Christopher Ferrie, Nathan Wiebe, and D G Cory. Robust online hamiltonian learning. *New Journal of Physics*, 14(10):103013, October 2012. doi: 10.1088/1367-2630/14/10/103013.

649

650

651

652 Sabee Grewal, Vishnu Iyer, William Kretschmer, and Daniel Liang. Low-stabilizer-complexity 653 quantum states are not pseudorandom. *LIPICS, Volume 251, ITCS 2023*, 251:64:1–64:20, 2023. 654 doi: 10.4230/LIPICS.ITCS.2023.64.

655

656 Sabee Grewal, Vishnu Iyer, William Kretschmer, and Daniel Liang. Improved stabilizer estimation 657 via bell difference sampling. (arXiv:2304.13915), March 2024. doi: 10.48550/arXiv.2304.13915.

658

659 David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker, and Jens Eisert. Quantum state 660 tomography via compressed sensing. *Physical Review Letters*, 105(15):150401, October 2010. 661 doi: 10.1103/PhysRevLett.105.150401.

662

663 David Gross, Sepehr Nezami, and Michael Walter. Schur–weyl duality for the clifford group 664 with applications: Property testing, a robust hudson theorem, and de finetti representations. 665 *Communications in Mathematical Physics*, 385(3):1325–1393, August 2021. doi: 10.1007/s00220-021-04118-7.

666

667 Andi Gu, Lukasz Cincio, and Patrick J. Coles. Practical black box hamiltonian learning. *Nature 668 Communications*, 15(1):312, January 2024. doi: 10.1038/s41467-023-44008-1.

669

670 Jeongwan Haah, Aram W. Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun Yu. Sample-optimal 671 tomography of quantum states. *IEEE Transactions on Information Theory*, pp. 1–1, 2017. doi: 10.1109/TIT.2017.2719044.

672

673 Jeongwan Haah, Robin Kothari, and Ewin Tang. Optimal learning of quantum hamiltonians from 674 high-temperature gibbs states. In *2022 IEEE 63rd Annual Symposium on Foundations of Computer 675 Science (FOCS)*, pp. 135–146, Denver, CO, USA, October 2022. IEEE. ISBN 978-1-6654-5519-0. doi: 10.1109/FOCS54457.2022.00020.

676

677 Jeongwan Haah, Robin Kothari, Ryan O’Donnell, and Ewin Tang. Query-optimal estimation of 678 unitary channels in diamond distance. In *2023 IEEE 64th Annual Symposium on Foundations of Computer 679 Science (FOCS)*, pp. 363–390, November 2023. doi: 10.1109/FOCS57990.2023.00028.

680

681 Jeongwan Haah, Robin Kothari, and Ewin Tang. Learning quantum hamiltonians from high- 682 temperature gibbs states and real-time evolutions. *Nature Physics*, 20(6):1027–1031, June 2024. 683 doi: 10.1038/s41567-023-02376-x.

684

685 Jonas Haferkamp, Philippe Faist, Naga B. T. Kothakonda, Jens Eisert, and Nicole Yunger Halpern. 686 Linear growth of quantum circuit complexity. *Nature Physics*, 18(5):528–532, 2022. doi: 10.1038/s41567-022-01539-6.

687

688 Dominik Hangleiter, Ingo Roth, Jonáš Fuksa, Jens Eisert, and Pedram Roushan. Robustly learning 689 the hamiltonian dynamics of a superconducting quantum processor. *Nature Communications*, 15 690 (1):9595, November 2024. doi: 10.1038/s41467-024-52629-3.

691

692 Jonas Helsen, Xiao Xue, Lieven MK Vandersypen, and Stephanie Wehner. A new class of efficient 693 randomized benchmarking protocols. *npj Quantum Information*, 5(1):1–9, 2019.

694

695 Z. Hradil. Quantum-state estimation. *Physical Review A*, 55(3):R1561–R1564, March 1997. doi: 696 10.1103/PhysRevA.55.R1561.

697

698 Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum 699 system from very few measurements. *Nature Physics*, 16(10):1050–1057, October 2020. doi: 10.1038/s41567-020-0932-7.

700

701 Hsin-Yuan Huang, Sitan Chen, and John Preskill. Learning to Predict Arbitrary Quantum Processes. *PRX Quantum*, 4(4):040337, December 2023a. doi: 10.1103/PRXQuantum.4.040337.

702 Hsin-Yuan Huang, Yu Tong, Di Fang, and Yuan Su. Learning many-body hamiltonians with
 703 heisenberg-limited scaling. *Physical Review Letters*, 130(20):200403, May 2023b. doi: 10.1103/
 704 PhysRevLett.130.200403.

705 Hsin-Yuan Huang, Yunchao Liu, Michael Broughton, Isaac Kim, Anurag Anshu, Zeph Landau, and
 706 Jarrod R. McClean. Learning Shallow Quantum Circuits. In *Proceedings of the 56th Annual ACM
 707 Symposium on Theory of Computing*, pp. 1343–1351, June 2024. doi: 10.1145/3618260.3649722.

708 Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and
 709 Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor.
 710 *Nature*, 567(7749):491–495, 2019. doi: 10.1038/s41586-019-1040-7.

711 Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout Van Den Berg, Sami Rosen-
 712 blatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, and Abhinav Kandala. Evi-
 713 dence for the utility of quantum computing before fault tolerance. *Nature*, 618(7965):500–505,
 714 June 2023a. doi: 10.1038/s41586-023-06096-3.

715 Youngseok Kim, Christopher J. Wood, Theodore J. Yoder, Seth T. Merkel, Jay M. Gambetta,
 716 Kristan Temme, and Abhinav Kandala. Scalable error mitigation for noisy quantum cir-
 717 cuits produces competitive expectation values. *Nature Physics*, 19(5):752–759, 2023b. doi:
 718 10.1038/s41567-022-01914-3.

719 Emanuel Knill, Dietrich Leibfried, Rolf Reichle, Joe Britton, R Brad Blakestad, John D Jost, Chris
 720 Langer, Roei Ozeri, Signe Seidelin, and David J Wineland. Randomized benchmarking of quan-
 721 tum gates. *Physical Review A*, 77(1):012307, 2008.

722 Ching-Yi Lai and Hao-Chung Cheng. Learning quantum circuits of some T gates. *IEEE Transac-
 723 tions on Information Theory*, 68(6):3951–3964, June 2022. doi: 10.1109/TIT.2022.3151760.

724 B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A. S.
 725 Buyskikh, A. J. Daley, M. Cramer, M. B. Plenio, R. Blatt, and C. F. Roos. Efficient tomogra-
 726 phy of a quantum many-body system. *Nature Physics*, 13(12):1158–1162, December 2017. doi:
 727 10.1038/nphys4244.

728 Zhi Li, Liujun Zou, and Timothy H. Hsieh. Hamiltonian tomography via quantum quench. *Physical
 729 Review Letters*, 124(16):160502, April 2020. doi: 10.1103/PhysRevLett.124.160502.

730 Easwar Magesan, J. M. Gambetta, and Joseph Emerson. Scalable and robust randomized bench-
 731 marking of quantum processes. *Physical Review Letters*, 106(18):180504, 2011. doi: 10.1103/
 732 PhysRevLett.106.180504.

733 G. Mauro D’Ariano, Matteo G.A. Paris, and Massimiliano F. Sacchi. Quantum tomography. In
 734 *Advances in Imaging and Electron Physics*, volume 128, pp. 205–308. Elsevier, 2003. ISBN
 735 978-0-12-014770-0. doi: 10.1016/S1076-5670(03)80065-4.

736 Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven.
 737 Barren plateaus in quantum neural network training landscapes. *Nature Communications*, 9(1):
 738 4812, 2018. doi: 10.1038/s41467-018-07090-4.

739 Antonio Anna Mele. Introduction to haar measure tools in quantum information: A beginners
 740 tutorial. *Quantum*, 8:1340, 2024. doi: 10.22331/q-2024-05-08-1340.

741 Roger G Melko, Giuseppe Carleo, Juan Carrasquilla, and J Ignacio Cirac. Restricted boltz-
 742 mann machines in quantum physics. *Nature Physics*, 15(9):887–892, 2019. doi: 10.1038/
 743 s41567-019-0545-1.

744 M. Mohseni, A. T. Rezakhani, and D. A. Lidar. Quantum-process tomography: Resource analysis
 745 of different strategies. *Physical Review A*, 77(3):032322, March 2008. doi: 10.1103/PhysRevA.
 746 77.032322.

747 Ashley Montanaro. Learning stabilizer states by bell sampling. (arXiv:1707.04012), July 2017. doi:
 748 10.48550/arXiv.1707.04012.

756 Alexis Morvan, B Villalonga, X Mi, S Mandra, A Bengtsson, PV Klimov, Z Chen, S Hong, C Erick-
 757 son, IK Drozdov, et al. Phase transitions in random circuit sampling. *Nature*, 634(8033):328–333,
 758 2024. doi: 10.1038/s41586-024-07998-6.

759 Michael A Nielsen and Isaac L Chuang. *Quantum Computation and Quantum Information*, vol-
 760 ume 2. Cambridge university press Cambridge, 2001.

762 Ryan O’Donnell and John Wright. Efficient quantum tomography. In *Proceedings of the Forty-
 763 Eighth Annual ACM Symposium on Theory of Computing*, pp. 899–912, Cambridge MA USA,
 764 June 2016. ACM. ISBN 978-1-4503-4132-5. doi: 10.1145/2897518.2897544.

766 Aadil Oufkir. Sample-optimal quantum process tomography with non-adaptive incoherent measure-
 767 ments. In *2023 IEEE International Symposium on Information Theory (ISIT)*, pp. 1919–1924,
 768 June 2023. doi: 10.1109/ISIT54713.2023.10206538.

769 Thomas E O’Brien, G Anselmetti, Fotios Gkrtsis, VE Elfving, Stefano Polla, William J Huggins,
 770 Oumarou Oumarou, Kostyantyn Kechedzhi, Dmitry Abanin, Rajeev Acharya, et al. Purification-
 771 based quantum error mitigation of pair-correlated electron simulations. *Nature Physics*, 19(12):
 772 1787–1792, 2023. doi: 10.1038/s41567-023-02240-y.

773 Asad Raza, Matthias C. Caro, Jens Eisert, and Sumeet Khatri. Online learning of quantum processes.
 774 (arXiv:2406.04250), June 2024. doi: 10.48550/arXiv.2406.04250.

776 Cambyses Rouzé and Daniel Stilck França. Learning quantum many-body systems from a few copies.
 777 *Quantum*, 8:1319, April 2024. doi: 10.22331/q-2024-04-30-1319.

779 Thomas Schuster, Chao Yin, Xun Gao, and Norman Y. Yao. A polynomial-time classical algorithm
 780 for noisy quantum circuits. (arXiv:2407.12768), October 2024. doi: 10.48550/arXiv.2407.12768.

782 Yuguo Shao, Fuchuan Wei, Song Cheng, and Zhengwei Liu. Simulating Noisy Variational Quan-
 783 tum Algorithms: A Polynomial Approach. *Physical Review Letters*, 133(12):120603, September
 784 2024. doi: 10.1103/PhysRevLett.133.120603.

785 Peter W Shor. Fault-tolerant quantum computation. In *Proceedings of 37th Conference on Foun-
 786 tations of Computer Science*, pp. 56–65. IEEE, 1996.

787 Jacob Smith, Aaron Lee, Philip Richerme, Brian Neyenhuis, Paul W Hess, Philipp Hauke, Markus
 788 Heyl, David A Huse, and Christopher Monroe. Many-body localization in a quantum simulator
 789 with programmable random disorder. *Nature Physics*, 12(10):907–911, 2016. doi: 10.1038/
 790 nphys3783.

792 Daniel Stilck França, Liubov A. Markovich, V. V. Dobrovitski, Albert H. Werner, and Johannes
 793 Borregaard. Efficient and robust estimation of many-qubit hamiltonians. *Nature Communications*,
 794 15(1):311, January 2024. doi: 10.1038/s41467-023-44012-5.

795 Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao Chen,
 796 Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, Takahiro Yamamoto, Tennin
 797 Yan, Toru Kawakubo, Yuya O. Nakagawa, Yohei Ibe, Youyuan Zhang, Hirotsugu Yamashita,
 798 Hikaru Yoshimura, Akihiro Hayashi, and Keisuke Fujii. Qulacs: A fast and versatile quantum
 799 circuit simulator for research purpose. *Quantum*, 5:559, 2021. doi: 10.22331/q-2021-10-06-559.

801 Yehui Tang, Hao Xiong, Nianzu Yang, Tailong Xiao, and Junchi Yan. Towards LLM4QPE: Unsuper-
 802 vised pretraining of quantum property estimation and a benchmark. In *The Twelfth International
 803 Conference on Learning Representations*, 2024.

804 Giacomo Torlai, Christopher J. Wood, Atithi Acharya, Giuseppe Carleo, Juan Carrasquilla, and
 805 Leandro Aolita. Quantum process tomography with unsupervised learning and tensor networks.
 806 *Nature Communications*, 14(1):2858, 2023. doi: 10.1038/s41467-023-38332-9.

808 Ewout Van Den Berg, Zlatko K. Minev, Abhinav Kandala, and Kristan Temme. Probabilistic error
 809 cancellation with sparse pauli–lindblad models on noisy quantum processors. *Nature Physics*, 19
 (8):1116–1121, August 2023. doi: 10.1038/s41567-023-02042-2.

810 Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via ran-
 811 domized compiling. *Phys. Rev. A*, 94:052325, Nov 2016a. doi: 10.1103/PhysRevA.94.052325.
 812

813 Joel J Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via random-
 814 ized compiling. *Physical Review A*, 94(5):052325, 2016b.

815 Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and
 816 Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. *Nature com-
 817 munications*, 12(1):1–11, 2021.

818

819 Marc Wanner, Laura Lewis, Chiranjib Bhattacharyya, Devdatt Dubhashi, and Alexandru Gheorghiu.
 820 Predicting ground state properties: Constant sample complexity and deep learning algorithms. In
 821 *Advances in Neural Information Processing Systems*, volume 37, pp. 33962–34024, 2024.

822 Yusen Wu, Bujiao Wu, Yanqi Song, Xiao Yuan, and Jingbo Wang. Learning the complexity of
 823 weakly noisy quantum states. In *The Thirteenth International Conference on Learning Represen-
 824 tations*, 2025a.

825

826 Yusen Wu, Yukun Zhang, Chuan Wang, and Xiao Yuan. Hamiltonian dynamics learning: A scalable
 827 approach to quantum process characterization. *arXiv preprint arXiv:2503.24171*, 2025b.

828 Tang Yehui, Long Mabiao, and Yan Junchi. Quadim: A conditional diffusion model for quantum
 829 state property estimation. In *The Thirteenth International Conference on Learning Represen-
 830 tations*, 2025.

831

832 Wenjun Yu, Jinzhao Sun, Zeyao Han, and Xiao Yuan. Robust and efficient hamiltonian learning.
 833 *Quantum*, 7:1045, June 2023. doi: 10.22331/q-2023-06-29-1045.

834 Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin,
 835 Dian Wu, Xing Ding, Yi Hu, et al. Quantum computational advantage using photons. *Science*,
 836 370(6523):1460–1463, 2020. doi: 10.1126/science.abe8770.

837 Huangjun Zhu, Richard Kueng, Markus Grassl, and David Gross. The clifford group fails gracefully
 838 to be a unitary 4-design. (arXiv:1609.08172), 2016. doi: 10.48550/arXiv.1609.08172.

839

840 Assaf Zubida, Elad Yitzhaki, Netanel H. Lindner, and Eyal Bairey. Optimal short-time measure-
 841 ments for hamiltonian learning. 2021. doi: 10.48550/ARXIV.2108.08824.

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A COMPARISON WITH OTHER WORKS**
865866 The comparison provided in Table 1 and 2 highlights the significant differences in resource scaling
867 across current quantum learning paradigms. Our work offers a novel, provably efficient regime,
868 fundamentally separating its resource requirements from existing methods under the assumption of
869 random noisy quantum circuit.870
871 **A.1 GENERALIZATION AND NOISE SCOPE**
872873 The comparison provided in Table 1 highlights the differing constraints of each framework. Our
874 model offers crucial extensions in two key dimensions relative to existing works.875 First, the core theoretical advance of our framework is the ability to unify the treatment of both i.i.d
876 single-qubit unital and non-unital noise channels. This contrasts with complexity results derived
877 primarily for the Pauli channel model Raza et al. (2024), which is restricted to unitary noise. Our
878 incorporation of non-unital CPTP maps is essential for modeling realistic hardware decoherence
879 processes like amplitude damping.880 Second, our QPT algorithm provides an input-agnostic characterization of the noisy quantum channel,
881 operating without requiring the rotational symmetry of the input state distribution (a require-
882 ment for works like Huang et al. (2023a)) or adherence to arbitrary product distributions Chen et al.
883 (2024). This ensures that our framework maintains predictive scalability for arbitrary input states,
884 despite the structural limitation of our noise model to i.i.d. single-qubit errors.885
886 Table 1: Comparison with Related Work on Condition.
887

work	input distribution	Channel
Huang et al. (2023a)	at most polynomially far from a locally flat distribution	General CPTP map
Raza et al. (2024)	No restriction	n -qubit Pauli channel
Chen et al. (2024)	Product state, $\ \Gamma\ _{op} \leq 1 - \eta$	Accessible
Our Work	No restriction (QPT) / $ 0^n\rangle$ (QST)	arbitrary i.i.d. single-qubit noise

894
895 **A.2 RESOURCE SCALING AND EFFICIENCY REGIME**
896897 Table 2: Comparison with Related Work on Complexity. $\eta \in (0, 1)$ is related to the input distribu-
898 tion; M is the number of Observables. Let $L = \gamma^{-1} \log (||O||_F \epsilon^{-1} \delta^{-1})$ denote the dominant term
900 in the exponent.
901

work	Classical Runtime	Sample Complexity (N_{data})
Huang et al. N_{data}		$2^{\mathcal{O}[\log \frac{1}{\epsilon} \log(n)]}$
(2023a)		
Raza et al. (2024)	$\mathcal{O}(N_{\text{data}} \cdot 4^n)$	$\mathcal{O}\left(\frac{\sqrt{n} \log(M) \log^{\frac{3}{2}}(\frac{1}{\epsilon \delta})}{\epsilon^3}\right)$
Chen et al. (2024)	N_{data}	$\min\left(\frac{2^{\mathcal{O}(n)}}{\epsilon^2}, n^{\mathcal{O}\left(\frac{\log \epsilon^{-1}}{\log \frac{1}{1-\eta}}\right)}\right) \cdot \log \frac{1}{\delta}$
Our Work	$\mathcal{O}(n \cdot N_{\text{data}})$	$\max_{Q \in \mathcal{O}} (Q ^2) 6^{\mathcal{O}(L)} \cdot \log(\delta^{-1}) \epsilon^{-2}$

912
913 The Table 2 shows a comparison between our theoretical work with other related works. For constant
914 accuracy ϵ , the sample complexity in our algorithm is proportional only to a factor exponential in L ,
915 which is independent of n . This achieves constant sample complexity for a constant noise strength
916 γ . This contrasts sharply with the method of Raza et al. (2024), which suffers from a $\mathcal{O}(\sqrt{n})$
917 polynomial dependency on the system size n , and an intractable $\mathcal{O}(4^n)$ classical runtime bottleneck
inherent to standard shadow tomography protocols when estimating general channels.

918 When considering high precision requirements, such as setting the accuracy ϵ to $\frac{1}{n}$, our complexity
 919 grows only polynomially with n . This provides a substantial advantage over the approaches of
 920 Huang et al. (2023a) and Chen et al. (2024), which incur a quasi-polynomial dependence ($n^{\mathcal{O}(\log n)}$
 921 or $2^{\mathcal{O}(\log n \log(1/\epsilon))}$) due to their reliance on methods that scale with the logarithm of the system
 922 size in the exponent. Our ability to bypass this quasi-polynomial scaling stems from leveraging the
 923 physical constraint imposed by constant noise, which confines the learned system to a low-weight
 924 Pauli subspace, ensuring genuinely polynomial scaling in n for practical precision levels.
 925

926 B STRUCTURE AND APPLICABILITY OF THE NOISY CIRCUIT IN THIS WORK

927
 928 We emphasize that the quantum process studied serves as a standard model with wide and practical
 929 applications, especially in the Near-Term Intermediate Scale Quantum (NISQ) era. This appendix
 930 details the topological definitions, generality, and practical relevance of the quantum circuit model
 931 investigated.
 932

933 B.1 TOPOLOGICAL DEFINITION AND MODEL GENERALITY

934
 935 The studied noisy quantum process \mathcal{C} adopts a layered structure, representing a large class of quan-
 936 tum circuits:
 937

$$\mathcal{C} = \mathcal{C}_1 \mathcal{E}^{\otimes n} \cdots \mathcal{E}^{\otimes n} \mathcal{C}_d \quad (15)$$

938 in which a γ -strength local noise channel \mathcal{E} (unital or non-unital) is applied uniformly throughout
 939 the circuit. The quantum circuit depth is d , and each layer of the circuit consists of two-qubit gates
 940 acting between every pair of qubits, where each gate is uniformly sampled from a local 2-design
 941 unitary group. The local 2-design assumption is an extremely weak condition, where quantum neural
 942 network models are typical cases(McClean et al., 2018; Cerezo et al., 2021), and even Clifford gates
 943 satisfy such an assumption (Zhu et al., 2016). We note that if an ensemble follows a $(t + 1)$ -design,
 944 it must follow the t -design property (Mele, 2024). As a result, this assumption is very general and
 945 covers a large amount of NISQ algorithms related to 'randomly initial parameters' and 'classical
 946 optimizations'(McClean et al., 2018; Cerezo et al., 2021).
 947

The circuit model is formally defined below using graph-theoretic definitions:

948
 949 **Definition 5** (Architecture, restatement of Haferkamp et al. (2022)). An architecture is a directed
 950 acyclic graph that contains $R \in \mathbb{Z}_{>0}$ vertices (gates). Two edges (qubits) enter each vertex, and two
 951 edges exit. Two typical examples are listed below:
 952

- 953 • A brickwork is the architecture of any circuit formed as follows. Apply a string of two-
 954 qubit gates: $U_{1,2} \otimes U_{3,4} \otimes \cdots \otimes U_{n-1,n}$. Then apply a staggered string of gates. Perform
 955 this pair of steps T times in total, using possibly different gates each time.
- 956 • A staircase is the architecture of any circuit which applies a stepwise string of two-qubit
 957 gates: $U_{n,n-1} U_{n-2,n-1} \cdots U_{2,1}$. Repeat this process T times, using possibly different
 958 gates each time.

959 Here, the quantum circuit layer \mathcal{C}_i may adopt any architecture, and ***we note that our learning al-***
 960 ***gorithm can be applied to any geometrical architecture***, and thus covers a large class of noisy
 961 quantum circuits, especially for those used in NISQ algorithms.
 962

963 **Definition 6** (Random Quantum Circuit, restatement of Haferkamp et al. (2022)). Let G denote an
 964 arbitrary architecture. A probability distribution can be induced over the architecture- G circuits as
 965 follows: for each vertex in G , draw a gate Haar-randomly from $SU(4)$. Then contract the unitaries
 966 along the edges of G . Each circuit so constructed is called a random quantum circuit.
 967

968 **Definition 7** (Random noisy quantum circuit). Let \tilde{G} denote an arbitrary architecture. A probability
 969 distribution can be induced over the architecture- \tilde{G} circuits as follows: for each vertex in \tilde{G} , draw a
 970 gate Haar-randomly from $SU(4)$ and an i.i.d single-qubit noisy channel. Then contract the unitaries
 971 along the edges of \tilde{G} . Each circuit so constructed is called a random noisy quantum circuit.
 972

973 The guarantee is a high-probability bound ($\geq 1 - \delta$) over random circuit ensemble defined in Def-
 974inition. 7. Furthermore, we numerically demonstrate that our learning algorithm can successfully
 975

972 handle a noisy Hamiltonian dynamics approach, where the underlying quantum circuit does not
 973 possess the locally random property.
 974

975 B.2 IMPORTANCE FOR QUANTUM BENCHMARKING AND LEARNING 976

977 To design powerful quantum algorithms, such as quantum neural network models and related states,
 978 a benchmarking algorithm is necessary (Arute et al., 2019; Babbush et al., 2025); otherwise, one may
 979 not verify and check the correctness of the implemented quantum algorithm. Following this logic, a
 980 large amount of quantum learning algorithms are proposed for quantum state (process) tomography,
 981 Hamiltonian learning(Haah et al., 2024) , shallow circuit learning(Huang et al., 2024), quantum gate
 982 tomography, and other quantum benchmarking algorithms. ***To the best of our knowledge, this is the***
 983 ***first efficient learning algorithm for noisy state and process tomography***, providing an efficient
 984 tool for verifying the output of the implemented quantum algorithms on NISQ devices.
 985

986 B.3 THE GATE-INDEPENDENT NOISE MODEL 987

988 We utilize the gate-independent noise model, which posits that the detrimental effects impacting
 989 quantum operations are uniform across all fundamental gates, irrespective of their specific type or
 990 physical implementation. This simplifying assumption is widely adopted due to several key factors:
 991

- 992 • **Theoretical Tractability:** Adopting a gate-independent noise assumption allows re-
 993 searchers to advance the development and analysis of error correction protocols and fault-
 994 tolerant methodologies** without needing to incorporate the intricate details of gate-
 995 specific noise characteristics(Knill et al., 2008; Helsen et al., 2019; Chen et al., 2021).
 996 This uniformity facilitates the derivation of universal results and theoretical performance
 997 bounds (Nielsen & Chuang, 2001).
- 998 • **Practical Approximations:** In particular quantum systems—especially those featuring
 999 highly calibrated gates acting on the same number of qubits and employing standardized
 1000 control mechanisms—the variability of noise across different gates can be negligible(Shor,
 1001 1996; Arute et al., 2019). In these instances, the gate-independent noise model serves as
 1002 a tenable approximation, streamlining analysis without substantially compromising preci-
 1003 sion.
- 1004 • **Alignment with Noise Conversion Methods (Twirling):** Techniques like Pauli twirling
 1005 are routinely applied to convert complicated physical noise channels into simpler, diagonal
 1006 forms in the Pauli basis(Wallman & Emerson, 2016b; Chen et al., 2023). The resulting
 1007 channel can often be effectively approximated as gate-independent, thereby conforming to
 1008 the model’s postulates.

1009 The gate-independent noise model thus furnishes a foundational framework for comprehending er-
 1010 ror propagation and engineering correction strategies. We identify the robust depiction of gate-
 1011 dependent noise, which typically manifests in larger, more intricate quantum architectures, as a
 1012 significant avenue for future exploration.
 1013

1014 C LEARNING A QUANTUM STATE 1015

1016 The proofs of Lemma 1 and Lemma 2 are presented in this section, together with further implemen-
 1017 tation details of the QST algorithm.
 1018

1019 C.1 PROOF OF LEMMA 1 1020

1021 In this section, we will prove Lemma 1.
 1022

1023 **Lemma 4** (Unified Representation of Noisy Quantum State, Lemma 1). *Let the noisy quantum
 1024 state $\rho = \mathcal{C}(|0^n\rangle\langle 0^n|)$ with $\mathcal{C} = \mathcal{E}^{\otimes n}\mathcal{C}_d\mathcal{E}^{\otimes n}\mathcal{C}_{d-1}\cdots\mathcal{E}^{\otimes n}\mathcal{C}_1$ representing a d -depth noisy quantum
 1025 circuit, where $\mathcal{C}_i(\cdot) = \mathcal{C}_i^\dagger(\cdot)\mathcal{C}_i$ is a unitary channel consisting of a layer of two-qubit gates, and \mathcal{E}
 1026 is a general single-qubit noise channel with strength parameter γ . Then the noisy quantum state ρ*

1026 can be represented by the Pauli path integral, that is
 1027

$$1028 \quad \rho = \sum_{s \in \mathcal{P}_n^{\otimes(d+1)}} (1 - \gamma)^{|s|} \Phi(\mathcal{C}, s) s_d, \quad (16)$$

$$1029$$

$$1030$$

1031 where the $n(d+1)$ -qubit operator $s = s_0 s_1 \cdots s_d$, $\mathcal{P}_n = \{I/\sqrt{2}, X/\sqrt{2}, Y/\sqrt{2}, Z/\sqrt{2}\}^{\otimes n}$. The
 1032 Pauli weight $|s|$ represents the number of non-identity operators in $s \in \mathcal{P}_n^{\otimes(d+1)}$. The coefficient
 1033

$$1034 \quad \Phi(\mathcal{C}, s) = \begin{cases} \text{Tr}(s_d \mathcal{C}_d(s_{d-1})) \cdots \text{Tr}(s_1 \mathcal{C}_1(s_0)) \langle 0^n | s_0 | 0^n \rangle, & \text{unital,} \\ \text{Tr}(s_d \mathcal{E}'^{\otimes n} \mathcal{C}_d(s_{d-1})) \cdots \text{Tr}(s_1 \mathcal{E}'^{\otimes n} \mathcal{C}_1(s_0)) \langle 0^n | s_0 | 0^n \rangle, & \text{non-unital} \end{cases} \quad (17)$$

$$1035$$

$$1036$$

1037 where the channel \mathcal{E}' is defined as follows.

1038 We prove it by describing three types of noisy channels, which are depolarizing noise, single-qubit
 1039 Pauli noise, and non-unital noise.

1041 C.1.1 DEPOLARIZING NOISE

1043 The property of depolarizing noise $\mathcal{E}_{\text{depo}}$ is that

$$1044 \quad \mathcal{E}_{\text{depo}}(I) = I, \\ 1045 \quad \mathcal{E}_{\text{depo}}(X) = (1 - \gamma)X, \\ 1046 \quad \mathcal{E}_{\text{depo}}(Y) = (1 - \gamma)Y, \\ 1047 \quad \mathcal{E}_{\text{depo}}(Z) = (1 - \gamma)Z, \quad (18)$$

$$1048$$

$$1049$$

1050 so that

$$1051 \quad \rho = \sum_{s \in \mathcal{P}_n^{d+1}} s_d \text{Tr}(s_d \mathcal{E}_{\text{depo}}^{\otimes n} \mathcal{C}_d(s_{d-1})) \cdots \text{Tr}(s_1 \mathcal{E}_{\text{depo}}^{\otimes n} \mathcal{C}_1(s_0)) \langle 0^n | s_0 | 0^n \rangle \\ 1052 \\ 1053 \quad = \sum_{s \in \mathcal{P}_n^{d+1}} (1 - \gamma)^{|s|} s_d \Phi(\mathcal{C}, s), \quad (19)$$

$$1054$$

$$1055$$

1056 where $|s|$ means the number of non-identities in s .

1058 C.1.2 PAULI NOISE

1059 We use \mathcal{E} to denote the noise function. Pauli noise $\mathcal{E}_{\text{Pauli}}$ is

$$1061 \quad \mathcal{E}_{\text{Pauli}}(\rho) = \gamma_1 \rho + \gamma_2 X \rho X^\dagger + \gamma_3 Y \rho Y^\dagger + \gamma_4 Z \rho Z^\dagger, \quad (20)$$

$$1062$$

1063 where $\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 = 1$. The Pauli noise has the property that

$$1064 \quad \mathcal{E}_{\text{Pauli}}(I) = (\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4)I = I, \\ 1065 \quad \mathcal{E}_{\text{Pauli}}(X) = (\gamma_1 + \gamma_2 - \gamma_3 - \gamma_4)X = (1 - 2(\gamma_3 + \gamma_4))X, \\ 1066 \quad \mathcal{E}_{\text{Pauli}}(Y) = (\gamma_1 - \gamma_2 + \gamma_3 - \gamma_4)Y = (1 - 2(\gamma_2 + \gamma_4))Y, \\ 1067 \quad \mathcal{E}_{\text{Pauli}}(Z) = (\gamma_1 - \gamma_2 - \gamma_3 + \gamma_4)Z = (1 - 2(\gamma_2 + \gamma_3))Z. \quad (21)$$

$$1068$$

$$1069$$

So the Pauli Channel can be written as

$$1071 \quad \rho = \sum_{s \in \mathcal{P}_n^{d+1}} s_d \text{Tr}(s_d \mathcal{E}_{\text{Pauli}}^{\otimes n} \mathcal{C}_d(s_{d-1})) \cdots \text{Tr}(s_1 \mathcal{E}_{\text{Pauli}}^{\otimes n} \mathcal{C}_1(s_0)) \text{Tr}(s_0 | 0^n \rangle \langle 0^n |) \\ 1072 \\ 1073 \quad = \sum_{s \in \mathcal{P}_n^{d+1}} (1 - 2(\gamma_3 + \gamma_4))^{|s|_X} (1 - 2(\gamma_2 + \gamma_4))^{|s|_Y} (1 - 2(\gamma_2 + \gamma_3))^{|s|_Z} s_d \Phi(\mathcal{C}, s) \\ 1074 \\ 1075 \quad \leq \sum_{s \in \mathcal{P}_n^{d+1}} (1 - 2\gamma)^{|s|} s_d \Phi(\mathcal{C}, s), \quad (22)$$

$$1076$$

$$1077$$

$$1078$$

1079 where $|s|_P$ denotes the number of P in s . $\gamma = \min \{(\gamma_2 + \gamma_3), (\gamma_2 + \gamma_4), (\gamma_3 + \gamma_4)\}$. γ still satisfying $0 < \gamma \leq 1$.

1080 C.1.3 NON-UNITAL NOISE
10811082 Angrisani et al. (2025) gives a way of simulating arbitrary noise by Pauli propagation. The normal
1083 form of a non-unital noise single-qubit channel \mathcal{E} is decomposed as

1084
$$\mathcal{E} = \mathcal{E}_{\text{depo}}^\gamma \circ \mathcal{E}', \quad (23)$$

1085 where \mathcal{E}' is a suitable (non-physical) linear map and $\mathcal{E}_{\text{depo}}^\gamma$ is a depolarizing noise with the effective
1086 depolarizing rate $\gamma = 1 - \chi_{\mathcal{D}}(\mathcal{E})$:
1087

1088
$$\chi_{\mathcal{D}}^2(\mathcal{E}) := \max_{A \subseteq [n]} \max_{x_A \neq 0, \text{supp}(\rho_x^A) = A} \left(\mathbb{E}_{U \sim \mathcal{D}^{\otimes n}} \left[\frac{\|\mathcal{E}^{\dagger \otimes n}(U^\dagger \rho_x^A U)\|_F^2}{\|\rho_x^A\|_F^2} \right] \right)^{1/|A|} \quad (24)$$

1090 is the mean squared contraction coefficient of \mathcal{E} in terms of the locally unbiased distribution \mathcal{D} . The
1091 input of the \mathcal{C} is decomposed as $\rho_x = \sum_{P \in \mathcal{P}_n} \alpha_P P$. ρ_x^A retains those Pauli terms whose support
1092 is exactly A : nontrivial on A and identity elsewhere, which is different from the reduced density
1093 matrix. Define the squared normalized Frobenius norm $\|\rho\|_F^2 = \sum_{P \in \mathcal{P}_n} \alpha_P^2$, $|A|$ is the size of the
1094 $\text{supp}(\rho_x^A)$.
1095

1096 In that case, the output of a non-unital noisy channel is

1097
$$\begin{aligned} \rho &= \sum_{s \in \mathcal{P}_n^{d+1}} \text{Tr}(s_d \mathcal{E}_{\text{depo}}^{\gamma \otimes n} \mathcal{E}'^{\otimes n} \mathcal{C}_d(s_{d-1})) \cdots \text{Tr}(s_1 \mathcal{E}_{\text{depo}}^{\gamma \otimes n} \mathcal{E}'^{\otimes n} \mathcal{C}_1(s_0)) \text{Tr}(s_0 |0^n\rangle \langle 0^n|) \\ &= \sum_{s \in \mathcal{P}_n^{d+1}} (1 - \gamma)^{|s|} s_d \Phi(\mathcal{C}, s). \end{aligned} \quad (25)$$

1102 Thus, complete the proof of Lemma 1.
1103

1104 C.2 PROOF OF LEMMA 2

1105 Aharonov et al. (2023) proved that sampling from a depolarizing channel reduces to fitting a constant
1106 number l of Pauli paths. We generalize this observation to single-qubit Pauli noise and, further, to
1107 any i.i.d single-qubit non-unital noise that admits a sparse Pauli-path expansion.
1108

1109 According to Lemma 1, for an arbitrary i.i.d single-qubit noise, the output state is approximated by

1110
$$\hat{\rho} = \sum_{|s_d| \leq l', s_d \in \mathcal{P}_n} \alpha_{s_d} s_d = \sum_{s \in \mathcal{P}_n^{d+1}, |s| \leq l} (1 - \gamma)^{|s|} s_d \Phi(\mathcal{C}, s). \quad (26)$$

1111 In other words, we can learn the finite number of the legal Pauli paths to get a $\hat{\rho}$ satisfying $\|\rho - \hat{\rho}\|_1 < \epsilon$,
1112 where $\|A\|_1$ is the Schatten 1-norm of A . The formal statement and proof are given in Lemma 5.
11131114 **Lemma 5** (Restatement of Lemma 2). *Let the noisy quantum state $\rho = \mathcal{C}(|0^n\rangle \langle 0^n|)$ with $\mathcal{C} = \mathcal{E}^{\otimes n} \mathcal{C}_d \mathcal{E}^{\otimes n} \mathcal{C}_{d-1} \cdots \mathcal{E}^{\otimes n} \mathcal{C}_1$ representing a d -depth noisy quantum circuit, where \mathcal{C}_i is a layer of
1115 two-qubit Haar random quantum gates. With nearly unit success probability, there exists a density
1116 matrix $\hat{\rho} = \sum_{|s_d| \leq l', s_d \in \mathcal{P}_n} \alpha_{s_d} s_d$ such that*
1117

1118
$$\|\rho - \hat{\rho}\|_1 < \epsilon_1, \quad (27)$$

1119 where coefficients $\alpha_{s_d} \in \mathbb{R}$ and $l' = \mathcal{O}(\log(1/(\epsilon_1 \delta_1)))$ with the success probability $\geq 1 - \delta_1$.
11201121 *Proof.*

1122
$$\begin{aligned} \Delta &:= \|\rho - \hat{\rho}\|_F \\ &= \sqrt{\text{Tr} \left(\left(\sum_{|s| > l} (1 - \gamma)^{|s|} s_d \Phi(\mathcal{C}, s) \right) \left(\sum_{|s| > l} (1 - \gamma)^{|s|} s_d \Phi(\mathcal{C}, s) \right)^\dagger \right)} \\ &= \sqrt{\text{Tr} \left(\sum_{|s| > l} \sum_{|s'| > l} (1 - \gamma)^{|s'| + |s|} s_d s_d^\dagger \Phi(\mathcal{C}, s) \Phi(\mathcal{C}, s') \right)} \\ &= \sqrt{\sum_{|s| > l} \sum_{|s'| > l} (1 - \gamma)^{|s'| + |s|} \Phi(\mathcal{C}, s) \Phi(\mathcal{C}, s') \text{Tr}(s_d s_d^\dagger)} \end{aligned} \quad (28)$$

1134 The above equation illustrates the constraint that the error of $\hat{\rho}$ receives from the sum of a series of
 1135 constants. The orthogonality of the circuit, which is
 1136

$$1137 \mathbb{E}[\Phi(\mathcal{C}, s)\Phi(\mathcal{C}, s')] = 0. \quad (29)$$

1138 Furthermore, we have
 1139

$$\begin{aligned} 1140 \mathbb{E}_{\mathcal{C}}(\Delta^2) &= \mathbb{E}_{\mathcal{C}} \left(\sum_{|s|>l} \sum_{|s'|>l} (1-\gamma)^{|s'|+|s|} \Phi(\mathcal{C}, s)\Phi(\mathcal{C}, s') \text{Tr} \left(s_d s_d^\dagger \right) \right) \\ 1141 &= \mathbb{E}_{\mathcal{C}} \left(\sum_{|s|>l} (1-\gamma)^{2|s|} \Phi(\mathcal{C}, s)^2 \text{Tr} \left(s_d s_d^\dagger \right) \right) \\ 1142 &= \mathbb{E}_{\mathcal{C}} \left(\sum_{|s|>l} (1-\gamma)^{2|s|} \Phi(\mathcal{C}, s)^2 \right) \\ 1143 &= \sum_{k>l} (1-\gamma)^{2k} W_k \\ 1144 & \\ 1145 & \\ 1146 & \\ 1147 & \\ 1148 & \\ 1149 & \\ 1150 & \\ 1151 & \end{aligned} \quad (30)$$

1152 The second line is obtained via the orthogonality mentioned above. The third line uses the property
 1153 that $\text{Tr} \left(s_d s_d^\dagger \right) = 1$ where s_d is the combination of the normalized Pauli operators. The last line
 1154 denotes $W_k = \mathbb{E}_{\mathcal{C}, |s|=k} \Phi(\mathcal{C}, s)^2$. For W_k , it can be written as follows
 1155

$$\begin{aligned} 1156 W_k &= \mathbb{E}_{\mathcal{C}, |s|=k} \Phi(\mathcal{C}, s)^2 \\ 1157 &= \mathbb{E}_{\mathcal{C}, |s|=k} (\text{Tr}(s_d \mathcal{C}_d(s_{d-1})) \cdots \text{Tr}(s_1 \mathcal{C}_1(s_0)) \text{Tr}(s_0 |0^n\rangle \langle 0^n|))^2 \\ 1158 &= 2^{-n} \mathbb{E}_{\mathcal{C}_d} (\text{Tr}(s_d \mathcal{C}_d(s_{d-1})) \cdots \text{Tr}(s_1 \mathcal{C}_1(s_0)))^2. \\ 1159 & \\ 1160 & \end{aligned} \quad (31)$$

1161 The third line assumes that every \mathcal{C}_i is independent respectively, and $\text{Tr}(s_0 |0^n\rangle \langle 0^n|) = \frac{1}{\sqrt{2^n}}$.
 1162

1163 For unital noises, using the equation
 1164

$$\begin{aligned} 1165 \mathbb{E}_{U \sim \mathbb{S}\mathbb{U}(4)} \text{Tr}(x U y U^\dagger)^2 &= \begin{cases} 1, & x = y = I^{\otimes 2}/2, \\ 0, & x = I^{\otimes 2}/2, y \neq I^{\otimes 2}/2, \\ 0, & x \neq I^{\otimes 2}/2, y = I^{\otimes 2}/2, \\ \frac{1}{15}, & \text{else,} \end{cases} \\ 1166 & \\ 1167 & \\ 1168 & \\ 1169 & \end{aligned} \quad (32)$$

1170 We observe that certain Pauli paths contribute 0 to the circuit; these are termed illegal Pauli paths.
 1171

1172 For $k = 0$, $W_k = 1$, where the Pauli path s consists of identity operators.
 1173

1174 For $k \in (0, d]$, $W_k = 0$.
 1175

1176 For $k \geq d + 1$, we can bound W_k by focusing on every term, which is in the form of
 $\mathbb{E}_{\mathcal{C}_i} \text{Tr}(s_i \mathcal{C}_i(s_{i-1}))^2$.
 1177

1178 Noting that each \mathcal{C}_i is a layer of two-qubit gates, \mathcal{C}_i is equal to the multiplication of $\mathcal{C}_i^{(j)}$, where j
 indexes the two-qubit gates in the layer and N_g is the total number of such gates in a layer. So
 1179

$$\begin{aligned} 1180 \mathbb{E}_{\mathcal{C}_i} \text{Tr}(s_i \mathcal{C}_i(s_{i-1}))^2 &= \bigotimes_j^{N_g} \mathbb{E}_{\mathcal{C}_i^{(j)}} \left(\text{Tr}(s_i^{(j)} s_i^{(j+1)} \mathcal{C}_i^{(j)} s_{i-1}^{(j)} s_{i-1}^{(j+1)} \mathcal{C}_i^{(j)\dagger}) \right)^2 \\ 1181 & \\ 1182 & \\ 1183 & \leq \left(\frac{1}{15} \right)^{\frac{|s_i|}{2}}. \\ 1184 & \end{aligned} \quad (33)$$

1185 The last line is due to that one gate introduces at most 2 non-identity Pauli operators to the path
 1186 when $k \geq d + 1$. Since any single gate can be accountable for at most four non-identity entries
 1187 (two incoming and two outgoing), the number of two-qubit gates that actually contribute to the
 suppression factor $1/15$ is at least $\frac{|s_i|}{4}$.
 1188

1188 In that case, Eq. 31 is bounded by:
 1189

$$W_k \leq \left(\frac{1}{15}\right)^{\frac{k}{4}} \left(\frac{1}{2}\right)^n \quad (34)$$

1190 Since the $\left(\frac{1}{15}\right)^{\frac{k}{4}} < \left(\frac{1}{2}\right)^{\frac{3k}{4}}$ is a decreasing sequence, we can get $\sum_k \left(\frac{1}{2}\right)^{\frac{3k}{4}} \leq \mathcal{O}(1)$, which results in
 1191 $\sum_{k>l} \left(\frac{1}{2}\right)^{\frac{3k}{4}} \leq \mathcal{O}(1)$.
 1192

1193 For non-unital noise, the \mathcal{E}' is not a CPTP map, so the preceding argument does not apply directly.
 1194 Lemma 10 of Angrisani et al. (2025) shows that for $\gamma = 1 - \chi_{\mathcal{D}}(\mathcal{E})$, the (non-physical) linear map
 1195 \mathcal{E}' does not increase the Frobenius norm on average.
 1196

1197 **Lemma 6** (Non-unital Noise, Lemma 10 of Angrisani et al. (2025)). *Let \mathcal{D} be a 1-design over $\mathbb{SU}(2)$
 1198 and let $\gamma = 1 - \chi_{\mathcal{D}}(\mathcal{E})$. For all observables O , we have*
 1199

$$\mathbb{E}_{V \sim \mathcal{D}^{\otimes n}} \|\mathcal{E}'^{\dagger \otimes n} (V^{\dagger} O V)\|_F^2 \leq \|O\|_F^2, \quad (35)$$

1200 which shows the linear map \mathcal{E}' does not increase the Frobenius norm in expectation over a randomly
 1201 sampled V .
 1202

1203 For an i -th layer of \mathcal{C} , $\mathcal{C}_i = V_i \circ G_i$, where $V_i \sim \mathcal{D}^{\otimes n}$ and G_i acts on $\mathcal{O}(1)$ qubits.
 1204

1205 Consequently, $\sum_{k>l} W_k = 2^{-n} \mathcal{O}(1) \| |0\rangle^n \langle 0|^n \|_F = 2^{-n} \mathcal{O}(1)$. Because the Frobenius norm of
 1206 $\Phi(\mathcal{C}, s)$ remains bounded, the Pauli-path expansion of a non-unital noisy circuit can be truncated at
 1207 finite weight.
 1208

1209 By inequality between Schatten τ -norms, we have
 1210

$$\|\rho\|_1 \leq 2^{n/2} \|\rho\|_F \quad (36)$$

1211 So the $\mathbb{E}_{\mathcal{C}}(\|\rho - \hat{\rho}\|_1^2)$ is bounded as:
 1212

$$\begin{aligned} \mathbb{E}_{\mathcal{C}}(\|\rho - \hat{\rho}\|_1^2) &\leq 2^n \mathbb{E}_{\mathcal{C}}(\Delta^2) \\ &= 2^n \sum_{k>l} (1-\gamma)^{2k} W_k \\ &\leq 2^n \sum_{k>l} (1-\gamma)^{2l} W_k \\ &\leq 2^n (1-\gamma)^{2l} 2^{-n} \mathcal{O}(1) \\ &\leq e^{-2\gamma l} \mathcal{O}(1). \end{aligned} \quad (37)$$

1221 By Markov's inequality,
 1222

$$\mathbb{P}(\|\rho - \hat{\rho}\|_1 \geq \epsilon_1) \leq \frac{\mathbb{E}(\|\rho - \hat{\rho}\|_1)}{\epsilon_1} = \delta_1. \quad (38)$$

1225 Hence, choosing $l \approx \mathcal{O}(\frac{1}{\gamma} \log \frac{1}{\epsilon_1 \delta_1})$, yields $\Delta \leq \epsilon_1$ with success probability $\geq 1 - \delta$. \square
 1226

1227 C.3 ALGORITHM OF LEARNING A QUANTUM STATE

1229 For the first problem, there are several ways to get the $\hat{\rho}$. The sections following introduce 2 methods,
 1230 including computing directly by classical shadow (Huang et al., 2020), and a way of learning alpha
 1231 based on Huang et al. (2024)

1232 C.3.1 COMPUTE DIRECTLY

1233 As shown before, $\rho = \sum_{s_d \in \mathcal{P}_n} \alpha_{s_d} s_d$, where $s_d \in \mathcal{P}_n$. In that case,
 1234

$$\begin{aligned} \alpha_{s_d} &= \text{Tr}(\rho s_d) \\ &= \text{Tr}\left(\sum_{s'_d \in \mathcal{P}_n} \alpha_{s'_d} s'_d s_d\right) \\ &= \sum_{s'_d \in \mathcal{P}_n} \alpha_{s'_d} \text{Tr}(s'_d s_d) \\ &= \alpha_{s_d}. \end{aligned} \quad (39)$$

1242 The fourth line uses
 1243

1244 $\text{Tr}(s_d s'_d) = \begin{cases} 0, & \text{if } s_d \neq s'_d, \\ 1, & \text{if } s_d = s'_d. \end{cases}$ (40)
 1245

1246 Thus, α_{s_d} is obtained by evaluating $\text{Tr}(\rho s_d)$, where ρ is estimated via classical shadows. Using
 1247 a set of POVMs (Positive Operator-Valued Measures) such as the random Pauli basis that
 1248 measures each qubit and yields outcomes $|b\rangle \in \{0, 1\}^n$, the classical shadow is constructed as
 1249 $\tilde{\rho} = \bigotimes_{j=1}^n \left(3P_j^\dagger |b_j\rangle \langle b_j| P_j - I \right)$, immediately gives $\alpha_{s_d} = \text{Tr}(\tilde{\rho} s_d)$.
 1250

1252 **C.3.2 QUANTUM STATE TOMOGRAPHY**
 1253

1255 **Algorithm 2** Quantum State Learning Algorithm

1257 **Input:** Data set $\mathcal{D}_{\text{QST}} = \{|\psi_j\rangle = \bigotimes_{i=1}^n |\psi_{i,j}\rangle\}_{j=1}^{N_{\text{data}}}$ and accuracy parameter ϵ .
 1258

1259 **Output:** $\hat{\rho}$ such that $T(\rho, \hat{\rho}) \leq \epsilon$.
 1260 Let $l' = \lceil \log(1/\epsilon) \rceil$, enumerate all the legal $s_d \in \mathcal{P}_n$ with $|s_d| \leq l'$.
 1261

1262 **For** $j \in [N_{\text{data}}]$:

1263 Using the SWAP-test to obtain the overlap v_j of ρ and $|\psi_j\rangle$.
 1264

1265 **End For**

1266 **For** each legal s_d :

1267 Compute $\alpha_{s_d} = \frac{3^{|s_d|}}{N_{\text{data}}} \sum_{j=1}^{N_{\text{data}}} v_j \langle \psi_j | s_d | \psi_j \rangle$,
 1268

1269 **End For**

1270 **Output:** $\hat{\rho} = \sum_{|s_d| \leq l'} \alpha_{s_d} s_d$

1271 **End**

1272 This section is mainly about a way of learning α based on Huang et al. (2024), which introduces a
 1273 classical dataset to reconstruct the channel's output. Our results are given below.

1274 **Theorem 3** (Noisy Quantum State Learning). *For any noisy quantum state ρ prepared by a
 1275 noisy quantum circuit \mathcal{C} (Eq. 4), there exists a learning algorithm that can efficiently solve
 1276 Problem 1 with success probability $\geq 1 - \delta$. The learning algorithm requires sample
 1277 complexity $N_{\text{data}} = 6^{\mathcal{O}(\gamma^{-1} \log(\epsilon^{-1} \delta^{-1}))} \log(1/\delta) \epsilon^{-2}$ and classical post-processing complexity
 1278 $24^{\mathcal{O}(\gamma^{-1} \log(\epsilon^{-1} \delta^{-1}))} \log(1/\delta) \epsilon^{-2}$.*

1279 Details of our method are as follows.

1280 Let Stab be a list of single-qubit stabilizers:

1281 $\text{Stab} = \{|0\rangle, |1\rangle, |+\rangle, |-\rangle, |y+\rangle, |y-\rangle\}.$ (41)

1282 Let $\{|\psi_j\rangle = \bigotimes_{i=1}^n |\psi_{i,j}\rangle\}_{j=1}^{N_{\text{data}}}$, where $|\psi_{i,j}\rangle \in \text{Stab}$.
 1283

$$\begin{aligned}
 & \mathbb{E}_{|\psi_j\rangle \sim \text{Stab}^{\otimes n}} \langle \psi_j | \mathcal{C}(|0^n\rangle \langle 0^n|) | \psi_j \rangle \langle \psi_j | s_d | \psi_j \rangle \\
 &= \sum_{|s_d| \leq l_s} \alpha_{s_d} \mathbb{E}_{|\psi_j\rangle \sim \text{Stab}^{\otimes n}} \langle \psi_j | s_d | \psi_j \rangle \langle \psi_j | s_d | \psi_j \rangle \\
 &= \sum_{|s_d| \leq l_s} \alpha_{s_d} \mathbb{E}_{U \sim U(2)} \bigotimes_{i=1}^n \langle 0 | U_{i,j}^\dagger s_d U_{i,j} | 0 \rangle \langle 0 | U_{i,j}^\dagger s_d U_{i,j} | 0 \rangle \\
 &= \frac{\alpha_{s_d}}{3^{|s_d|}} \bigotimes_{i=1}^n \sum_{Q \in \{X, Y, Z\}} \langle 0^2 | Q \otimes Q | 0^2 \rangle \\
 &= \frac{\alpha_{s_d}}{3^{|s_d|}}.
 \end{aligned} \tag{42}$$

1296 The third line employs $|\psi_j\rangle = \otimes_{i=1}^n |\psi_{i,j}\rangle = \otimes_{i=1}^n U_{i,j} |0\rangle$, where $U_{i,j} \sim \text{Cl}(2)$. The fourth line
 1297 uses

$$\mathbb{E}_{U_{i,j} \sim \text{Cl}(2)} \left[U_{i,j}^{\dagger \otimes 2} (Q_i \otimes Q'_i) U_{i,j}^{\otimes 2} \right] = \begin{cases} I^{\otimes 2}, & \text{if } Q_i = Q'_i = I, \\ \frac{1}{3} \sum_{Q_i \in \{X, Y, Z\}^{\otimes 2}} (Q_i \otimes Q_i), & \text{if } Q_i = Q'_i \neq I, \\ 0, & \text{if } Q_i \neq Q'_i, \end{cases} \quad (43)$$

1304 Therefore, α_{s_d} can be calculated by
 1305

$$\begin{aligned} \alpha_{s_d} &= 3^{|s_d|} \mathbb{E}_{|\psi_j\rangle \sim \text{Stab}^{\otimes n}} \langle \psi_j | \rho | \psi_j \rangle \langle \psi_j | s_d | \psi_j \rangle \\ &\approx \frac{3^{|s_d|}}{N_{\text{data}}} \sum_{j=1}^{N_{\text{data}}} \langle \psi_j | \rho | \psi_j \rangle \langle \psi_j | s_d | \psi_j \rangle. \end{aligned} \quad (44)$$

1310 The first part of the summation term (of the form $\langle \psi_i | \rho | \psi_i \rangle$) can be obtained by using the SWAP-
 1311 test method, while the latter part can be derived through classical post-processing. The data com-
 1312 plexity N_{data} is $6^{\mathcal{O}(\gamma^{-1} \log \frac{1}{\delta})} \epsilon^{-2} \log \frac{1}{\delta}$, with failure probability δ . The details of the proof are in
 1313 Appendix D.2. The quantum state learning procedure is presented as Algorithm 2.
 1314

1315 D LEARNING A QUANTUM PROCESS CHARACTERIZATION

1316 D.1 PROOF OF LEMMA 3

1319 This section is to give a proof of Lemma 3, which is
 1320

1321 **Lemma 7** (Restatement of Lemma 3). *Let the noisy quantum circuit $\mathcal{C} = \mathcal{E}^{\otimes n} \mathcal{C}_d \mathcal{E}^{\otimes n} \mathcal{C}_{d-1} \cdots \mathcal{E}^{\otimes n} \mathcal{C}_1$ represent a d -depth noisy quantum circuit, where \mathcal{C}_i is a layer of
 1322 two-qubit Haar random quantum gates and \mathcal{E} represents an i.i.d single-qubit noisy channel
 1323 (unital or non-unital). With nearly unit success probability $\geq 1 - \delta_2$, there exists an operator
 1324 $\mathcal{C}^{(l')\dagger}(O) = \sum_{|P| \leq l', P \in \mathcal{P}_n} \beta_P P$ such that*
 1325

$$\left\| \mathcal{C}^{(l')\dagger}(O) - \mathcal{C}^\dagger(O) \right\|_F \leq \epsilon_2, \quad (45)$$

1326 where coefficients $\beta_P \in \mathbb{R}$ and $l' = \mathcal{O}(\gamma^{-1} \log(1/(\delta_2 \epsilon_2)))$.
 1327

1330 *Proof.* Given $O = \sum_{P \in \mathcal{P}_n} \alpha_P P$, we have
 1331

$$\mathcal{C}^\dagger(O) = \sum_{s \in \mathcal{P}_n^d} (1 - \gamma)^{|s|} \Phi(\mathcal{C}, s) s_0, \quad (46)$$

1334 where

$$\Phi(\mathcal{C}, s) = \begin{cases} \text{Tr}(s_1 \mathcal{C}_1(s_0)) \cdots \text{Tr}(s_d \mathcal{C}_d(s_{d-1})) \text{Tr}(s_d O), & \text{unital,} \\ \text{Tr}(s_1 \mathcal{E}'^{\otimes n} \mathcal{C}_1(s_0)) \cdots \text{Tr}(s_d \mathcal{E}'^{\otimes n} \mathcal{C}_d(s_{d-1})) \text{Tr}(s_d O), & \text{non-unital} \end{cases} \quad (47)$$

1338 Considering the unital noise, let
 1339

$$\begin{aligned} \mathbb{E}(\Delta)^2 &:= \left\| \mathcal{C}^{(k)\dagger}(O) - \mathcal{C}^\dagger(O) \right\|^2 \\ &= \sum_{k>l} (1 - \gamma)^{2k} W_k, \end{aligned} \quad (48)$$

1343 where W_k is
 1344

$$\begin{aligned} W_k &= \mathbb{E}_{\mathcal{C}, |s|=k} \Phi(\mathcal{C}, s)^2 \\ &= \mathbb{E}_{\mathcal{C}, |s|=k} (\text{Tr}(s_1 \mathcal{C}_1(s_0)) \cdots \text{Tr}(s_d \mathcal{C}_d(s_{d-1})) \text{Tr}(s_d O))^2 \\ &= 2^{-n} \alpha_{s_d}^2 \mathbb{E}_{C_1} (\text{Tr}(s_1 \mathcal{C}_1(s_0)))^2 \cdots \mathbb{E}_{C_d} (\text{Tr}(s_d \mathcal{C}_d(s_{d-1})))^2 \\ &\leq 2^{-n} \alpha_{s_d}^2 \left(\frac{1}{15} \right)^{\frac{k}{4}} \end{aligned} \quad (49)$$

1350 The third line is due to that $\text{Tr}(s_d O) = 2^{-n} \alpha_{s_d}^2$. In that case, there is
 1351

$$\begin{aligned} 1352 \quad & \mathbb{E}(\Delta^2) \\ 1353 \quad & \leq \sum_{k>l} 2^{-n} (1-\gamma)^{2k} \alpha_{s_d}^2 \left(\frac{1}{15}\right)^{\frac{k}{4}} \\ 1354 \quad & \leq \sum_{k>l} (1-\gamma)^{2l} \left(\frac{1}{2}\right)^{\frac{3k}{4}} \|O\|_F \\ 1355 \quad & \leq e^{-2\gamma l} \|O\|_F \mathcal{O}(1). \\ 1356 \end{aligned} \tag{50}$$

1360 Considering the non-unital noise, Angrisani et al. (2025) has shown that the non-unital noisy circuit
 1361 can be truncated by the low-weight Pauli integral because of the Theorem 5 in Angrisani et al. (2025)
 1362 shown below.

1363 **Lemma 8** (Non-unital Noisy Circuit Path Truncation, Theorem 5 in Angrisani et al. (2025)). *Let
 1364 $\mathcal{D}_{\text{circ}}$ be an d -layered locally unbiased distribution over noisy circuits, and let γ be the effective
 1365 depolarizing rate of $\mathcal{D}_{\text{circ}}$. We have*

$$1367 \quad \mathbb{E}_{\mathcal{C} \sim \mathcal{D}_{\text{circ}}} \left[\text{Tr} \left[\left(\mathcal{C}^\dagger(O) - \mathcal{C}^{(l')\dagger}(O) \right) \rho_x \right] \right]^2 \leq (1-\gamma)^{2l'} \|O\|_F^2. \tag{51}$$

1369 It conveys that the non-unital noisy process can be simulated by a low-Pauli weight. For our problem,
 1370 the gate of the circuit is the random two-qubit gate, which belongs to $\mathcal{D}_{\text{circ}}$. The last proof is similar
 1371 to the Appendix C.2. Therefore when $l' = \mathcal{O}(l) = \mathcal{O}\left(\gamma^{-1} \log\left(\frac{\|O\|_F}{\epsilon_2 \delta_2}\right)\right)$, $\Delta \leq \epsilon_2$ is satisfied with
 1372 the success probability $\geq 1 - \delta_2$. \square
 1373

1374 D.2 PROOF OF THEOREM 2

1375 In this section, we will prove the main result of our learning algorithm.

1376 **Theorem 4** (Noisy Quantum Process Learning). *For any noisy quantum process \mathcal{C} defined as
 1377 Eq. 4, where \mathcal{C}_i is a layer of two-qubit Haar random quantum gates, and n -qubit observable
 1378 $O = \sum_{Q \in \{I, X, Y, Z\}^{\otimes n}, |Q|=\mathcal{O}(1)} \text{Tr}[OQ]Q/2^n$, there exists a learning algorithm that can efficiently
 1379 solve Problem 2 with success probability $\geq 1 - \delta$. The learning algorithm requires sample complexity
 1380 $\mathcal{O}\left(\frac{n \cdot \max_{Q \in \mathcal{O}}(|Q|^3) 24^{\mathcal{O}\left(\gamma^{-1} \log\left(\frac{\|O\|_F}{\epsilon \delta}\right)\right)} \log(\delta^{-1})}{\epsilon^2}\right)$.*

$$1383 \quad N_{\text{data}} = \max_{Q \in \mathcal{O}} (|Q|^2) 6^{\mathcal{O}\left(\gamma^{-1} \log\left(\frac{\|O\|_F}{\epsilon \delta}\right)\right)} \log(\delta^{-1}) \epsilon^{-2}, \tag{52}$$

1384 and classical post-processing complexity $\mathcal{O}\left(\frac{n \cdot \max_{Q \in \mathcal{O}}(|Q|^3) 24^{\mathcal{O}\left(\gamma^{-1} \log\left(\frac{\|O\|_F}{\epsilon \delta}\right)\right)} \log(\delta^{-1})}{\epsilon^2}\right)$.

1385 Moreover, if the noise is unital, the sample complexity is $6^{\mathcal{O}\left(\gamma^{-1} \log\left(\frac{\|O\|_F}{\epsilon \delta}\right)\right)} \log(\delta^{-1}) \epsilon^{-2}$ and clas-
 1386 sical post-processing complexity is $\mathcal{O}\left(n \cdot 24^{\mathcal{O}\left(\gamma^{-1} \log\left(\frac{\|O\|_F}{\epsilon \delta}\right)\right)} \log(\delta^{-1}) \epsilon^{-2}\right)$.

1387 *Proof.* The discrepancy between the algorithm's learned outcome and the true value, quantified via
 1388 absolute value, encompasses two types of errors: truncation error and learning error.

$$\begin{aligned} 1389 \quad & |f(\rho_x) - \text{Tr}(\mathcal{C}(\rho_x)O)| = \left| \sum_{|P| \leq l'} \hat{\beta}_P \text{Tr}(\rho_x P) - \text{Tr}(\mathcal{C}(\rho_x)O) \right| \\ 1390 \quad & \leq \left| \sum_{|P| \leq l'} \beta_P \text{Tr}(\rho_x P) - \text{Tr}(\mathcal{C}(\rho_x)O) \right| + \left| \sum_{|P| \leq l'} \hat{\beta}_P \text{Tr}(\rho_x P) - \sum_{|P| \leq l'} \beta_P \text{Tr}(\rho_x P) \right|. \\ 1391 \end{aligned} \tag{53}$$

1392 The inequality is derived through the application of the triangle inequality, where the first term on
 1393 the right-hand side of the inequality represents the truncation error, and the second term represents
 1394 the learning error. $\hat{\beta}_P$ denotes the learned value of β_P .

The proof for the truncation error can be analogously extended from that in Appendix D.1, demonstrating that when $l' = \mathcal{O}(\gamma^{-1} \log \frac{1}{\epsilon_2 \delta_2})$, $\left| \sum_{|P| \leq l'} \beta_P \text{Tr}(\rho_x P) - \text{Tr}(\mathcal{C}(\rho_x) O) \right| \leq \epsilon_2$.

The learning error is bounded by

$$\begin{aligned}
 & \left| \left(\sum_{|P| \leq l'} \hat{\beta}_P - \sum_{|P| \leq l'} \beta_P \right) \text{Tr}(\rho_x P) \right| \\
 & \leq \left| \sum_{|P| \leq l'} \hat{\beta}_P - \sum_{|P| \leq l'} \beta_P \right| \\
 & = \sum_{|P| \leq l'} \left| \hat{\beta}_P - \beta_P \right| \\
 & \leq N_s \left| \hat{\beta}_P - \beta_P \right| \\
 & \leq \epsilon_3.
 \end{aligned} \tag{54}$$

Combining the equation with Hoeffding's inequality, we can derive that given a dataset of size $N_{\text{data}} = \frac{3^{\mathcal{O}(l')} N_s^2}{\epsilon_3^2} \log \frac{1}{\delta}$ with probability at least $1 - \delta$, Eq. 54 is valid.

Lemma 9 (Number of the Legal Pauli Paths). *For any noisy quantum process \mathcal{C} defined as Eq. 4 and n -qubit observable $O = \sum_{Q \in \{I, X, Y, Z\}^{\otimes n}, |Q|=\mathcal{O}(1)} \text{Tr}[OQ]Q/2^n$, the number of the legal Pauli paths, denoted as N_s is $\max_{Q \in O} (|Q|) 2^{\mathcal{O}(l')}$. When the noise is unital, $N_s = 2^{\mathcal{O}(l')}$.*

The proof of Lemma 9 is provided in the next section. Considering Lemma 9, for an arbitrary i.i.d single-qubit noise, given $\epsilon_2 = \epsilon_3$, the sample complexity can be further expressed as

$$N_{\text{data}} = \max_{Q \in O} (|Q|^2) 6^{\mathcal{O}(\gamma^{-1} \log(\|O\|_F \epsilon^{-1} \delta^{-1}))} \log(\delta^{-1}) \epsilon^{-2}. \tag{55}$$

For the runtime complexity of classical post-processing, the calculation is derived directly from Algorithm 1. The dominant factor in the runtime is the computation of the coefficients β_P , which involves nested iterations over N_{data} input samples and N_s Pauli strings. The internal calculation of the expectation value $\langle \psi_j | P | \psi_j \rangle$ has a cost of $\mathcal{O}(n)$, because the input state $|\psi_j\rangle$ is a product state and P is a Pauli string, allowing the expectation value to be computed via the product of n single-qubit terms.

Thus, the total complexity is:

$$\mathcal{O}(n \cdot N_{\text{data}} \cdot N_s) = \mathcal{O}\left(n \cdot \max_{Q \in O} (|Q|^3) 24^{\mathcal{O}(\gamma^{-1} \log(\frac{\|O\|_F}{\epsilon \delta}))} \log(\delta^{-1}) \epsilon^{-2}\right), \tag{56}$$

where the factor n accounts for the linear cost of evaluating the n single-qubit terms that constitute $\langle \psi_j | P | \psi_j \rangle$ for each pair of sample $|\psi_j\rangle$ and Pauli string P .

Consequently, the runtime complexity scales as $\mathcal{O}(n \cdot \text{poly}(1/\epsilon, 1/\gamma))$. Specifically, if the noise is unital, the sample complexity is $6^{\mathcal{O}(\gamma^{-1} \log(\frac{\|O\|_F}{\epsilon \delta}))} \log(\delta^{-1}) \epsilon^{-2}$ and classical post-processing complexity is $\mathcal{O}\left(n \cdot 24^{\mathcal{O}(\gamma^{-1} \log(\frac{\|O\|_F}{\epsilon \delta}))} \log(\delta^{-1}) \epsilon^{-2}\right)$.

□

D.3 NUMBER OF THE LEGAL PAULI PATHS

Focusing on the number of the legal Pauli paths, denoted N_s , the basic idea is to enumerate all combinations that satisfy the rule. Once the non-identity positions in one layer are fixed, those in the next layer are also fixed because a legal Pauli path requires the input and the output of every gate to be either both identities or both non-identities. Starting from the first layer, the positions and count of non-identities therefore match those of the input. For a local term $Q \in O$ acting non-trivially on a constant number of qubits, N_s is bound by $\max_{Q \in O} |Q| 2^{\mathcal{O}(l')}$.

1458 Specially, in QST, since the input $|0^n\rangle\langle 0^n| = \frac{1}{2^n} \sum_{P \in \{I, Z\}} \max_{Q \in \mathcal{O}} |Q| \neq \mathcal{O}(1)$, so the pre-
 1459 vious bound cannot be used directly. Instead, we bound N_s by showing that $\tilde{\mathcal{C}}_1^{(l_0)}(|0^n\rangle\langle 0^n|) =$
 1460 $\sum_{s_1, s_0 \in \mathcal{P}_n} \text{Tr}(s_1 \mathcal{E}'^{\otimes n} \mathcal{C}_1(s_0)) \langle 0^n | s_0 | 0^n \rangle s_1$ is sparse after an l_0 -cutoff. Concretely, we prove
 1461

$$1462 \quad \|\tilde{\mathcal{C}}_1(|0^n\rangle\langle 0^n|) - \tilde{\mathcal{C}}_1^{(l_0)}(|0^n\rangle\langle 0^n|)\|_1 \leq \epsilon, \quad (57)$$

1463 so that $|Q| = \mathcal{O}(1)$ for $Q \in \tilde{\mathcal{C}}_1^{(l_0)}(|0^n\rangle\langle 0^n|)$.

1464 When $d = 1$, Eq. 57 suffices by Lemma 2. Hence, the number of legal Pauli paths in QST is
 1465 $\mathcal{O}(1)2^{\mathcal{O}(l')} \approx 2^{\mathcal{O}(l')}$.

1466 For unital noise, a tighter bound is available. W_k exists a lower bound when $l \geq d + 1$, which is
 1467 $W_k \geq \left(\frac{1}{15}\right)^k$.

1468 Since $W_k \leq \left(\frac{1}{2}\right)^{3\lceil\frac{k}{2}\rceil}$, $\sum_{k=d+1}^l W_k = \mathcal{O}(1)$. Furthermore,
 1469

$$\begin{aligned} 1470 \quad \mathcal{O}(1) &= \sum_{k=d+1}^l W_k + W_0 \\ 1471 &\geq \sum_{k=d+1}^l \left(\frac{1}{15}\right)^k + 1 \\ 1472 &\geq \sum_{k=d+1}^l \left(\frac{1}{15}\right)^l + 1 \\ 1473 &= \left(\frac{1}{15}\right)^l N_{|s| \in [d+1, l]} + 1. \end{aligned} \quad (58)$$

1474 where $N_{|s| \in [d+1, l]}$ denotes the legal Pauli paths except all identity one. The number of Pauli paths
 1475 needed is

$$1476 \quad N_s = N_{|s| \in [d+1, l]} + 1 = \mathcal{O}(1)15^l = 2^{\mathcal{O}(l)}. \quad (59)$$

1477 Here we focus on the learning algorithm, so only the number of s_d is concerned. Since different s
 1478 may contain the same s_d , the number of Pauli paths is no less than the number of combinations of
 1479 Pauli operators in s_d . We denote by N_s an upper bound on the quantity s_d that is independent of
 1480 the system size, and by l' the maximum hamming weight of s_d , with $l' = l - d = \mathcal{O}(l)$ due to the
 1481 enumeration strategy in Aharonov et al. (2023).

1482 E SAMPLE COMPLEXITY LOWER BOUND FOR THE WORST-CASE SCENARIO

1483 The main manuscript essentially considers learning an efficient classical representation of noisy
 1484 quantum states and processes in the average-case scenario. As we claimed in Theorems 1 and 2,
 1485 the tasks of learning noisy quantum states and performing tomography are highly efficient in the
 1486 average-case setting. However, this does not rule out intrinsic hardness in the worst case. Here we
 1487 theoretically demonstrate that learning noisy quantum states prepared by quantum circuits subject
 1488 to constant-strength noise channels is quantum-hard in the worst-case scenario.

1489 The fundamental idea relies on constructing a polynomial reduction to the quantum state discrimination
 1490 problem.

1491 **Task 1.** Consider two pure quantum states ρ_0 and ρ_1 , and a noisy quantum circuit \mathcal{C} with depth d ,
 1492 where Each quantum circuit is affected by by γ -strength Pauli channel in each layer. Suppose that
 1493 a distinguisher is given access to copies of the quantum states $\mathcal{C}(\rho_0)$ and $\mathcal{C}(\rho_1)$, then what is the
 1494 fewest number of copies sufficing to identify these two noisy quatum states with high probability?

1495 Obviously, if one can perform quantum state tomography on these noisy states, then efficient clas-
 1496 sical representations of the noisy states are obtained. Using these classical representations, one can
 1497 easily distinguish the noisy states $\mathcal{C}(\rho_0)$ from $\mathcal{C}(\rho_1)$ easily. As a result, Task 1 can be used to bench-
 1498 mark the sample-complexity lower bound for the noisy quantum state tomography problem. We
 1499 state the result below.

1512 **Theorem 5.** *Given an unknown noisy quantum state ρ prepared by a d -depth quantum circuit af-
 1513 fected by γ -strength local Pauli noise channels, then any algorithm designed to learn an efficient
 1514 representation to ρ requires at least m samplings in the worst-case scenario, where*

$$1515 \quad 1516 \quad m = \frac{(1 - \gamma)^{-2cd}(1 - \eta)^2}{2n},$$

1517 *where $c = 1/(2 \ln 2)$ and constant $\eta \in \mathcal{O}(1)$.*

1519 When the noise strength $\gamma = \mathcal{O}(1)$, and quantum circuit depth $d \geq \text{poly log}(n)$, the sample com-
 1520 plexity required for quantum state tomography grows at least quasi-polynomially with the system
 1521 size in the worst-case scenario. We emphasize that this result does not contradict Theorem 1 and 2:
 1522 the former statement concerns the worst case, while the latter addresses the average case under the
 1523 random-circuit assumption.

1524 In the quantum process tomography task, when $O \geq 0$, the target is to learn a classical rep-
 1525 resentation to $\mathcal{C}^\dagger[O]$ which can be easily reduced to a density matrix learning task by setting
 1526 $\rho = \mathcal{C}^\dagger[O]/\text{Tr}[\mathcal{C}^\dagger[O]]$. This justifies the statement that noisy process tomography (for this ob-
 1527 servable O) is no easier than state tomography.

1528 To support the proof of our result, we require the following lemmas.

1529
 1530 **Lemma 10** (Lemma 6 in Wang et al. (2021)). *Consider a single instanoise channel $\mathcal{N} = \mathcal{N}_1 \otimes \cdots \otimes$
 1531 \mathcal{N}_n where each local noise channel $\{\mathcal{N}_j\}_{j=1}^n$ is a Pauli noise channel that satisfies $\mathcal{N}_j(\sigma) = q_\sigma \sigma$
 1532 for $\sigma \in \{X, Y, Z\}$ and q_σ be the Pauli strength. Then we have*

$$1533 \quad 1534 \quad D_2 \left(\mathcal{N}(\rho) \middle\| \frac{I^{\otimes n}}{2^n} \right) \leq q^{2c} D_2 \left(\rho \middle\| \frac{I^{\otimes n}}{2^n} \right), \quad (60)$$

1535 *where $D_2(\cdot \middle\| \cdot)$ represents the 2-Renyi relative entropy, $q = \max_\sigma q_\sigma$ and $c = 1/(2 \ln 2)$.*

1536 **Lemma 11.** *Given an arbitrary n -qubit density matrix and maximally mixed state $I^{\otimes n}/2^n$, we have*

$$1537 \quad D(\rho \middle\| I^{\otimes n}/2^n) \leq D_2(\rho \middle\| I^{\otimes n}/2^n), \quad (61)$$

1538 *where $D(\cdot \middle\| \cdot)$ denotes the relative entropy and $D_2(\cdot \middle\| \cdot)$ denotes the 2-Renyi relative entropy.*

1539
 1540 *Proof:* Given quantum states ρ and σ , the quantum 2-Renyi entropy

$$1541 \quad 1542 \quad D_2(\rho \middle\| \sigma) = \log \text{Tr} \left[\left(\sigma^{-1/4} \rho \sigma^{-1/4} \right)^2 \right]. \quad (62)$$

1543 When $\sigma = I^{\otimes n}/2^n$, we have $D_2(\rho \middle\| I^{\otimes n}/2^n) = \log \text{Tr} \left[\left((I^{\otimes n}/2^n)^{-1} \rho^2 \right) \right] = n + \log \text{Tr}[\rho^2]$. Noting
 1544 that the function $y = x^2 - x \log x \geq 0$ when $x \in [0, 1]$, and this implies $\text{Tr}(\rho^2) \geq \text{Tr}(\rho \log \rho)$.
 1545 Finally, we have

$$1546 \quad D(\rho \middle\| I^{\otimes n}/2^n) = n + \text{Tr}[\rho \log \rho] + n \leq \text{Tr}[\rho^2] + n = D_2(\rho \middle\| I^{\otimes n}/2^n). \quad (63)$$

1547
 1548
 1549
 1550 *Proof of Theorem 5:* Now we prove the sample complexity lower bound to the noisy quantum state
 1551 tomography task. We consider the sample complexity m in distinguishing quantum states $\mathcal{C}(\rho_0)$ and
 1552 $\mathcal{C}(\rho_1)$. When their trace distance is quite large, let $\eta \in (0, 1)$ and we have

$$1553 \quad 1554 \quad \begin{aligned} 1 - \eta &\leq \frac{1}{2} \left\| \mathcal{C}(\rho_0)^{\otimes m} - \mathcal{C}(\rho_1)^{\otimes m} \right\|_1 \\ 1555 &\leq \frac{1}{2} \left(\left\| \mathcal{C}(\rho_0)^{\otimes m} - (I_n/2^n)^{\otimes m} \right\|_1 + \left\| \mathcal{C}(\rho_1)^{\otimes m} - (I_n/2^n)^{\otimes m} \right\|_1 \right) \\ 1556 &\leq \frac{1}{\sqrt{2}} \left(D^{1/2} \left(\mathcal{C}(\rho_0)^{\otimes m} \middle\| (I_n/2^n)^{\otimes m} \right) + D^{1/2} \left(\mathcal{C}(\rho_1)^{\otimes m} \middle\| (I_n/2^n)^{\otimes m} \right) \right), \end{aligned} \quad (64)$$

1557 where the second line comes from the triangle inequality and the third line comes from the Pinsker's
 1558 inequality. Using Lemmas 10 and 11, we have

$$1559 \quad 1560 \quad \begin{aligned} 1 - \eta &\leq \frac{1}{\sqrt{2}} \left(D_2^{1/2} \left(\mathcal{C}^{\otimes m}(\rho_0) \middle\| (I_n/2^n)^{\otimes m} \right) + D_2^{1/2} \left(\mathcal{C}^{\otimes m}(\rho_1) \middle\| (I_n/2^n)^{\otimes m} \right) \right) \\ 1561 &\leq \frac{\sqrt{nm}}{\sqrt{2}} ((1 - \gamma)^{cd} + (1 - \gamma)^{cd}) \\ 1562 &\leq \sqrt{2nm} (1 - \gamma)^{cd}, \end{aligned} \quad (65)$$

1566 As a result we have

1567
1568
$$m \geq \frac{(1-\gamma)^{-2cd}(1-\eta)^2}{2n}. \quad (66)$$

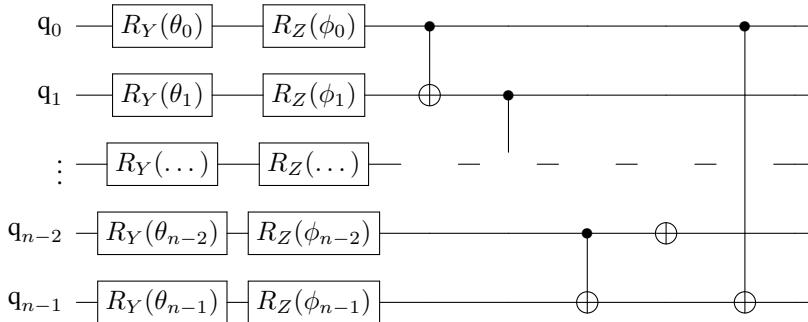
1569

1570
1571

F EXPERIMENT RESULT

1572
1573

F.1 NUMERICAL EXPERIMENT FOR HIGHLY ENTANGLED INPUT STATE

1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
211
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
216
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
220
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
221
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
222
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
223
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
224
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
225
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
226
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
227
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
228
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
229
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
230
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
231
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
232
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
233
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
234
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
235
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
236
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
237
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
238
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
239
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
240
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
241
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
242
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
243
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
244
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
245
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
246
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
247
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
248
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
249
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
250
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
251
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
252
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
253
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
254
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
255
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
256
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
257
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
258
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
259
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
260
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
261
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
262
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
263
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
264
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
265
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
266
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
267
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
268
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
269
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
270
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
271
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
272
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
273
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
274
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
275
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
276
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
277
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
278
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
279
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
280
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
281
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
282
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
283
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
284
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
285
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
286
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
287
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
288
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
289
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
290
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
291
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
292
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
293
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
294
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
295
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
296
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
297
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
298
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
299
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
300
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
301
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
302
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
303
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
304
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
305
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
306
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
307
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
308
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
309
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
310
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
311
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
312
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
313
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
314
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
315
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
316
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
317
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
318
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
319
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
320
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
321
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
322
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
323
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
324
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
325
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
326
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
327
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
328
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
329
3300
3301
33

