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ABSTRACT

TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for
automatic prompt refinement in text-to-image (T2I) generation. Starting from sim-
ple user prompts, TIPO leverages a lightweight pre-trained model to expand these
prompts into richer, detailed versions. Conceptually, TIPO samples refined prompts
from a targeted sub-distribution within the broader semantic space, preserving the
original intent while significantly improving visual quality, coherence, and detail.
Unlike resource-intensive methods based on large language models (LLMs) or re-
inforcement learning (RL), TIPO provides computational efficiency and scalability,
opening new possibilities for effective, automated prompt engineering in T2I tasks.
Extensive experiments across multiple domains demonstrate that TIPO delivers
stronger text alignment, reduced visual artifacts, and consistently higher human
preference rates, while maintaining competitive aesthetic quality. These results
highlight the effectiveness of distribution-aligned prompt engineering and point
toward broader opportunities for scalable, automated refinement in text-to-image
generation.

1 INTRODUCTION

The rapid proliferation of Text-to-Image (T2I) generative models has revolutionized artistic creation
(Ossa et al., 2024; Betker et al., 2023; Esser et al., 2024a; Saharia et al., 2022; Ramesh et al., 2021;
2022; Shi et al., 2020; Rombach et al., 2022a; Podell et al., 2024; Sauer et al., 2024; Chen et al.,
2024b;a; Li et al., 2024b; Esser et al., 2024b; black-forest labs, 2024). These models offer direct
control over generative visual content via text prompts. To achieve precise control, modern T2I
architectures are often trained on lengthy, detailed text descriptions, which may consist of individual,
formatted tags of objects, backgrounds, styles, or complex, integrated paragraphs outlining image
content and layout. However, the increasing complexity of prompts often forces users to iteratively
refine them to convey intent. Moreover, most state-of-the-art T2I models are aesthetically fine-tuned
(e.g., on LAION-aesthetics (Podell et al., 2024)) to favor nuanced artistic and stylistic cues, making
high-quality T2I artwork mainly accessible to those with significant artistic expertise.

Extensive efforts have been made to reduce the reliance on human expertise through prompt opti-
mization, i.e., expanding and refining a user’s primitive input into a more detailed prompt to enhance
generation quality. As shown in Figure 1(a), a straightforward approach is to leverage pre-trained
Large Language Models (LLMs) to rewrite prompts in a zero-shot manner (Mañas et al., 2024). Yet,
LLMs are primarily trained on general natural language, such as paragraphs and dialogues, which
differ significantly from the structured prompts used for T2I models. This discrepancy often leads to
additional effort in crafting LLM prompts and increased misalignment between generated images
and intended prompts. Figure 1(b) shows a more effective approach: training LLMs directly on
prompt data collected from model users (AUTOMATIC, 2022; daspartho, 2022). While promising,
this method is inherently constrained by the varying levels of user expertise, often resulting in
inconsistent or suboptimal outputs. Recent work (Hao et al., 2023) trains LLMs with reinforcement
learning, where aesthetic scores of generated images serve as rewards, as depicted in Figure 1(c).
However, reinforcement learning is performed on one specific T2I model with high computational
cost, hindering its application to a broader variety of models.

In contrast to prior work, we argue that good prompts should align with the large-scale text distribu-
tions of T2I models’ training, including those emphasized in aesthetic fine-tuning. Such alignment
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Figure 1: Comparison of prompt optimization methods using LLM. (a) uses instructions for prompting
but its understanding is constrained by the LLM’s knowledge base, not the T2I model. (b) relies
on a curated prompt database, enhancing detail but limiting variety by not fully leveraging the T2I
model’s learned distribution. (c) optimizes using the scorer with RL, requiring multi-turn inference
with additional cost. (d) aligns prompts with the T2I model’s training distribution, ensuring detailed
and diverse prompt generation that fits the target T2I model.

allows models to better interpret user intent and leverage their learned priors, resulting in stronger
text alignment and overall image quality. Based on this insight, we introduce TIPO (Text to Image
with text pre-sampling for Prompt Optimization), a framework that brings prompt optimization
into the domain of large-scale multi-task pre-training. TIPO is supported by a curated 30M-pair,
40B-token caption corpus, which is filtered and balanced to maximize compatibility with leading T2I
models and to preserve aesthetic quality. On top of this corpus, we design a suite of pretext tasks that
reformulate raw user inputs, including both concise natural sentences and tag-based prompts, into
enriched and distribution-consistent forms. Through this multi-task sampling pipeline, a lightweight
language model expands (rather than fully rewrites) user prompts, preserving original semantics
while enriching details that are diverse, edit-friendly, and aligned with T2I training distributions.
Extensive experiments on both in-domain and out-of-domain prompts show that TIPO consistently
outperforms strong baselines, achieving a 62.8% win rate in human preference (validated by more
than 1,400 pairwise comparisons from 221 volunteers), and providing up to a 29.4% runtime effi-
ciency improvement. Figure 1 illustrates the conceptual differences between existing methods and
TIPO. To summarize, our contributions are at least threefold:

1. We introduce TIPO, a prompt optimization framework that leverages the large-scale text
distributions used in text-to-image (T2I) training.

2. We train a lightweight multi-task language model that progressively refines both tag-based
and natural language inputs into unified prompts, enhancing compatibility across a broad
spectrum of T2I models.

3. Extensive experiments demonstrate that TIPO achieves superior image quality, stronger text
alignment, higher human preference, competitive aesthetic quality, and improved runtime
efficiency against strong baselines with SOTA T2I models, highlighting its practical value.

2 RELATED WORK

Prompt optimization for T2I models typically leverages language models, which can be broadly
classified into two categories: (1) Model-specific strategies that tailor prompts for a particular T2I
model, and (2) Universal strategies that improve prompt quality across a variety of T2I models.

Model-specific Strategies T2I models generate images whose quality is often measured using
metrics such as fidelity, aesthetics, and user preference. These metrics facilitate reinforcement learning
approaches that optimize prompts for a specific T2I model. For instance, Promptist (Hao et al., 2023)
fine-tunes a pre-trained language model by using CLIP relevance scores as rewards. Similarly,
PAE (Mo et al., 2024) extends this approach by generating dense text embeddings rather than discrete
text tokens, with additional control vectors during online reinforcement learning. However, these
methods are computationally intensive, often struggling with a larger number of training prompts.
Moreover, a model optimized for one specific T2I system may not generalize well to others. In
contrast, our method leverages over 30 million text descriptions to cover a wide range of high-quality
prompts, ensuring compatibility with a broad spectrum of T2I models.
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Figure 2: Illustration of various pre-sampling method for generating the T2I prompt An astronaut
rides horse on Mars + <T >. (a) yields a basic image. (b) enhances details of images but
requires manual refinement. (c) adding random words may introduce irrelevant content (red boxes),
exceeding the user’s intent. (d) TIPO pre-sampling (ours) aligns outputs with expected intent,
maintaining both detail and variety. <T > represents a transformation function for pre-sampling.

Universal Strategies To reduce the dependency on specific T2I models, some researchers have
focused on refining prompts solely using language models. For example, CogView3 (Zheng et al.,
2024) employ GLM-4 (GLM et al., 2024), and Lee et al. (2024) employ GPT-J and Text Style Transfer
(TST) techniques, respectively, for prompt enhancement. However, both of them rely heavily on the
LLM’s inherent understanding of visual content descriptions, which may result in a misalignment with
the diverse requirements of various T2I models. Alternatively, other approaches collect high-quality
prompts from T2I model users to fine-tune or train LLMs (AUTOMATIC, 2022; succintly, 2022;
daspartho, 2022). Such methods, however, are limited by the inconsistent expertise of users. More
recently, He et al. (2025); Liu et al. (2024b) leverage vision language models to optimize prompts
in an iterative loop: a user prompt generates images via a T2I model, the prompt–image pairs are
evaluated by the VLM to suggest refinements, and the revised prompts are reapplied to T2I generation
for continual improvement. While such iterative refinement can improve quality, the distribution
mismatch between VLMs and T2I training data persists. Conversely, our approach constructs both
tag-based and natural language prompts using a large-scale dataset of image-text descriptions, thereby
aligning closely with the text distributions underlying T2I models.

3 PRELIMINARIES

We present the formal definition of T2I models and the problem statement of this work.
Reviewer fBC3-W2Text-to-Image Model. A text-to-image (T2I) model defines a conditional distribution

Ip = P (x | p), x ∈ X ,

which maps a prompt p to a distribution of images over the space of all possible images X .

Problem statement. Let Iu denote the user’s intended distribution over X . The task of prompt
optimization is to find an optimized prompt po from the space of all possible prompts P to minimize
a distance d between the T2I output distribution Ip and the intended distribution Iu:

po = argmin
p∈P

d
(
Ip, Iu

)
,

where d(·, ·) is a distance between image distributions (e.g., Fréchet Inception Distance).

4 METHODOLOGY

We aim to optimize user prompts to enhance image generation quality. Instead of end-to-end
optimizations tailored to a single T2I model, our focus is on prompt rewriting that generalizes across
a broad spectrum of models. Our core intuition is that an ideal prompt should align with the texts
used in T2I model training. However, rapid advances in image captioning have rendered these texts

3
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increasingly diverse and complex. To address this, we propose to (1) design a clearly structured
prompt schema compatible with most text descriptions, and (2) implement a pre-sampling algorithm
that progressively refines arbitrary, coarse user input into organized, fine-grained prompts.

4.1 TEXT SET PREPARATION

Although the text descriptions used for T2I model training are notably diverse, most are image
captions that fall into two broad categories: tag-based and natural language (NL)-based captions.
Tag-based captions, such as those in the Danbooru2023 dataset (nyanko202, 2023; Yeh, 2024a), use
comma-separated, succinct terms to describe image content. In contrast, NL-based captions, typically
generated by language models with visual capabilities (Liu et al., 2023; Agrawal et al., 2024; OpenAI,
2024; Li et al., 2024a; Bai et al., 2023; Dai et al., 2024; Xiao et al., 2024; Deitke et al., 2024), may
comprise multiple sentences. We represent both types using a unified text set T = {t1, t2, t3, . . . , tn},
where each element is an individual tag or sentence.

While the original image captions are fine-grained and detailed, which can yield high-quality images
when all elements are used, they often result in prompts that are excessively lengthy or overloaded
with information. Such prompts diverge from typical user input and pose alignment challenges. To
mitigate this, we construct a simpler subset by removing some tags and sentences from the original
prompt 1set, as detailed in Section 4.2.

4.2 FORMATTED PROMPT CONSTRUCTION

We aim to construct prompts in a unified format compatible with existing image
captions. First, we incorporate the common metadata present in these image cap-
tions, typically represented as <Category>: <Content>. These metadata cat-
egories primarily include style, aspect ratio, quality, and year (e.g.,
quality: masterpiece, style: Impressionist). This structured metadata is
intuitive for users to read and edit, while also providing strong guidance to downstream T2I models
on the generation scope.

Next, we construct both tag-based and NL-based prompts using text sets T . Our design generates both
simple (incomplete) and complete prompts for each image, and we train an auto-regressive language
model to extend the simple prompts into complete versions. For tag-based prompts, since the tags are
largely order-insensitive (i.e., the order has minimal impact on T2I outcomes), we propose a prefix-
based dropout strategy. We first randomly shuffle the complete set of tags T = {t1, t2, t3, . . . , tn}
from a given image caption. Then, we construct a simpler tag set Ts = {t1, t2, . . . , tm} by randomly
selecting m < n tags. The prompts are constructed as:

ps = concat(Ts), po = concat(T )

Here, ps and po denote the simple and original prompts, respectively. By ensuring that ps is always a
prefix of po, the language model can readily expand simple tag-based prompts into complete versions.

For NL-based prompts, however, this strategy cannot be applied directly because the first sentence
often contains crucial information (Godbole et al., 2024) and the order of sentences significantly
influences the caption’s semantics. Therefore, we preserve the first sentence and randomly drop some
of the subsequent sentences without changing their order. Let:

S = [sentence1, sentence2, sentence3, . . . , sentencen]

represent the ordered sequence of sentences in an image caption. We derive a simple subsequence Ss

by randomly selecting m sentences from S while ensuring that the first sentence is always included
and that the original order is maintained. In other words,

Ss = [sentence1, sentencei2 , . . . , sentenceim ],

with 1 < i2 < . . . < im ≤ n and m < n. The simple and complete NL-based prompts are then
constructed as:

ps = concat(Ss), po = concat(Ss, S)

This ensures that ps remains a prefix of po. Although some sentences may be repeated in po, selecting
a smaller m effectively mitigates this, and it does not empirically affect the generation quality.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 TEXT PRE-SAMPLING

We aim to reformulate user input into forms that better align with the high-quality training text distri-
bution po via pre-sampling, which stands for “text sampling before image sampling.” A naı̈ve strategy
is plain text completion, where tokens are directly appended to the user input in an unstructured
manner. Such completion often mirrors the low-quality phrasing of the input, deviates from the
distribution of high-quality prompts, and produces inferior generations. On the other hand, a full
rewrite risks deviating from the user’s original intention. To balance these issues, TIPO preserves the
original input and appends a structured, distribution-consistent expansion. This appended segment
is typically paragraph-like or tag-like, making it both informative and easy to edit or remove (see
Figure 2 for an illustration and Appendix E for concrete examples).

We propose the core technique of TIPO, a flexible pre-sampling mechanism that decomposes prompt
optimization into three subtasks: enriching tag sequences, extending natural language (NL) prompts,
and refining NL prompts. For example, a short NL prompt can be expanded into a detailed tag
sequence (short to tag), as illustrated in Figure 3. We further distinguish between basic tasks, which
perform a single transformation, and composite tasks, which chain multiple transformations within
a single forward pass. The latter expose the model to more holistic training signals while reducing
computational overhead. Table 1 summarizes all tasks and their input–output forms.

Task Description

Basic tasks
tag to long Generate a new NL prompt given tags.
long to tag Extend a tag sequence given an NL prompt.
short to tag Extend a tag sequence given a short/simple prompt ps.
short to long Generate a refined, detailed NL prompt given a user-provided NL prompt.

Composite tasks
short to tag to long From a short NL prompt or tags, produce a refined NL prompt.
short to long to tag From a short or generated NL prompt, extend a tag sequence.
tag to short to long From tags or NL prompts, generate a refined NL prompt.

Table 1: Pre-sampling tasks in TIPO. Basic tasks focus on one-step transformations, while composite
tasks combine two basic tasks within a single forward pass.

We randomly select from the aforementioned tasks during training to enhance model generalization.
By extensively training on these tasks, TIPO can seamlessly adapt to various input types, flexibly
refining user input whether it consists of tags, short sentences, or long sentences. Figure 3 (b)
illustrates a scenario where both tag captions Ts and short NL captions Ss are available. In such
cases, TIPO processes each input type separately to maintain clarity and coherence:

Ss = [A young girl with long hair...], metadata = ∅
Ts = {outdoors, scenery, water, wind, landscape, . . . }

The generation proceeds sequentially as follows:

1. short to tag: TIPO uses Ts as the primary prompt to generate a detailed tag sequence Td.

2. tag to long: Td is incorporated into the metadata, and TIPO produces a refined short NL
prompt Ss based on Td.

3. short to tag to long: With both Td and Ss in the metadata, TIPO generates a comprehen-
sive long NL prompt Sd, ensuring a more detailed output.

4. TIPO aggregates Td, Sd, and any additional metadata to construct a context-rich prompt pd.

This progressive process enables TIPO to build prompts that are both detailed and contextually
aligned with the user’s input.

5
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(a) Scenery tag only input

1girl, outdoors, scenery, water, 
long black hair, white dress, blue 
eyes, sundress, beach ... 

Natural Language Prompt
A young girl with long hair and a 
red bow in her hair, standing on a 
sandy beach ... sunset over the 
ocean ... she is wearing a ... 

outdoors, scenery, 
water, beach, 1girl, 
long black hair ...

TIPO

short to tag

User Input

outdoors, scenery, 
water, ...




A young girl with ...

outdoors, scenery, 
water, ...




A young girl with ...

User Input

A young girl with 
long hair ... standing 
on a sandy beach ... 

sunset over ...

Prompt

Optimization

Tag Prompt

Long NL

A young girl with 
long hair ... standing 
on a sandy beach ...

A young girl with 
long hair ... standing 
on a sandy beach ...
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water, beach, 1girl, 
long black hair ...

A young girl with 
long hair ... standing 
on a sandy beach ... 

sunset over ...

TIPO

tag to long

TIPO

short to tag


 to long

Long Tags

Final Output

Final Output

(b) Tag + short NL input

Figure 3: Example prompt optimization paths in TIPO. (a) shows generation from a single tag input,
while (b) uses both tag and natural language input. These illustrate representative pipelines, not the
full range of use cases. Blue shading indicates increasing prompt richness.

Implementation Details In implementation, TIPO adopt the LLaMA architecture (Touvron et al.,
2023a;b; AI@Meta, 2024)1, with all experiments are conducted with a 200M-parameter model 2.
Our training dataset is about 40 billion tokens curated from Danbooru2023 (nyanko202, 2023; Yeh,
2024b), GBC10M (Hsieh et al., 2024), and CoyoHD11M (CaptionEmporium, 2024).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Baselines and T2I Models We compare against representative prompt-optimization baselines:
GPT-4o-mini for zero-shot rewriting (OpenAI, 2024), MagicPrompt, which fine-tunes GPT-2 on
community-collected prompts (daspartho, 2022), Promptist, which applies reinforcement learning
for model-preferred prompt optimization (Hao et al., 2023), and Gemini-2.0-flash-image 3, which
uniquely serves both as a prompt-refinement baseline and a T2I generator. For image generation
backbones, our main experiments adopt SDXL-base-1.0 (Podell et al., 2024), Illustrious v3.5 (v-
pred), Kohaku-XL-Zeta, and Stable Diffusion 3.5 Large(Esser et al., 2024a). To further assess
generalization, we additionally evaluate on four diverse backbones with undisclosed training data:
FLUX.1-dev (black-forest labs, 2024), Omnigen2 (Wu et al., 2025), Lumina-2 (Qin et al.,
2025), and HiDream-I1 (Cai et al., 2025). The details of T2I models are provided in Appendix B.

Evaluation Metrics We employ four latest metrics FDD (Stein et al., 2023), Aesthetic Score (dis-
cus0434, 2024), AI Corrupt Score (narugo1992, 2023), and Vendi Score (Friedman & Dieng, 2022)
to measure the quality of generated images. Specifically, FDD (Fréchet DINO Distance) quantifies
fidelity by comparing the distribution of DINOv2 features (Oquab et al., 2023) between reference
images in the evaluation dataset and images generated from the corresponding captions, which better
aligns with human perception than traditional FID (Heusel et al., 2017). Aesthetic Score is computed
via Aesthetic Predictor V2.5 (discus0434, 2024), quantifying visual appeal, composition quality, and
artistic merit. AI Corrupt Score detects technical flaws in generated images by identifying visual
artifacts. Vendi Score quantifies image diversity by calculating the von Neumann entropy from a
normalized cosine similarity matrix using DinoV2 embeddings.

Reviewer fBC3-Q1
Reviewer TMB7-W2

Notably, Vendi is defined directly
on feature-space dispersion and is sensitive to non-semantic variations such as low-level noise or
artifacts. As a result, it “should be used alongside a quality metric” (Friedman & Dieng, 2022) and a
higher value alone does not always correspond to more meaningful semantic diversity.

1The multi-task design of TIPO is compatible with many autoregressive language models (e.g., GPT, LLaMA,
Qwen, etc.). Intuitively, adopting more advanced backbones could further enhance efficiency and effectiveness,
but such exploration would require extra training cost, which we defer to future work.

2We also trained TIPO-100M and 500M variants to analyze the impact of model scales. See Appendix C.
3https://developers.googleblog.com/experiment-with-gemini-20-flash-native-image-generation/

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Scenery Tag Only (b) Scenery Tag + TIPO (c) Truncated Long Prompt (d) Truncated + TIPO

Figure 4: Generated images from 4 types of prompts: (a) simple scenery tag, (b) scenery tag enhanced
by TIPO, (c) truncated (< 40 words) long prompt, (d) TIPO-enhanced truncated prompt. TIPO adds
detail and maintains variety, yielding coherent images from simple prompts.

Evaluation Protocols Our proposed TIPO leverages large-scale image caption datasets for training,
which overlap with the training text distributions of many T2I models. Following Promptist (Hao
et al., 2023), we divide our experiments into two settings: (1) In-domain, where the T2I model’s
training texts overlap with those used by TIPO, and (2) Out-of-domain, where no overlap exists.

5.2 EXPERIMENTAL RESULTS

In-domain Tag-based Prompt Optimization To assess prompt optimization performance on
tag-based prompts, we generate scenery images, as they contain abundant descriptive tags for objects
and backgrounds. We randomly sample 32,768 tag-based prompts from Danbooru2023 (Yeh, 2024b;
nyanko202, 2023), shuffle and concatenate the scenery tags into new prompts (thereby preventing
data leakage of the original captions), and generate one image per prompt using Kohaku-XL-Zeta.
This evaluation tests the in-domain capabilities, as Danbooru2023 is used during both TIPO and
Kohaku-XL-Zeta training. The results in Table 2 reveal two key insights. First, MagicPrompt and
Promptist, which rely on user prompts or reinforcement learning, underperform in Aesthetic and AI
Corrupted Scores due to the quality or quantity limitations of their collected samples (e.g., Promptist
uses 90K samples, limited by the high reinforcement learning cost). In contrast, GPT and TIPO
benefit from large-scale training corpora (>30M samples), yielding higher-quality outputs. Second,
TIPO achieves the best FDD by a substantial margin over GPT, which can be attributed to its superior
distribution alignment with T2I models.

In-domain NL-based Prompt Optimization We evaluate the prompt optimization performance
on NL-based prompts by selecting 10,000 short prompts and 10,000 long prompts from CaptionEm-
porium (CaptionEmporium, 2024) and GBC (Hsieh et al., 2024) as test prompts. In particular, since
the long prompts are much longer than typical user input, we truncate them to two sentences (<
40 words) to simulate real-world applications. We use SDXL-1.0-base as the T2I model, whose
training text data largely overlap with TIPO. Table 2 demonstrates that TIPO achieves either the best
or second-best scores in Aesthetic and AI Corrupt Score by effectively enriching the original prompt
with appropriate textual elements while rarely introducing extraneous noise. While all methods com-
promise fidelity and diversity, as reflected in the FDD and Vendi Score, TIPO remains competitive
because it maintains small semantic deviation from the original sentences via progressive refinement.

Out-of-domain Performance Some recent T2I models are trained on proprietary images and
captions. As a representative example, SD-3.5-Large is trained on private images captioned with
CogView (Zheng et al., 2024), which differ markedly from the texts used to train TIPO. To evaluate
model performance in this out-of-domain scenario, we generate 8,192 original tag- and NL-based
prompts using the baseline GPT-4o-mini rather than relying on existing prompt datasets. We apply
the remaining methods to these prompts and assess their performance.

As shown in Table 2 , SD-3.5-Large faithfully generates images that align well with GPT-produced
prompts. Consequently, additional optimizations tend to reduce fidelity and introduce more artifacts.
Nevertheless, GPT-generated prompts are accurate and lack diversity. TIPO optimization enriches
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Table 2: Comprehensive performance comparison of TIPO against baselines across different in-domain prompt
types. Metrics are marked with ↑ (higher is better) or ↓ (lower is better). For OOD tests, the ’Original’ baseline
and the FDD metric was not applicable. In the table, Aesthetic refers to Aesthetic Score, Corrupt to AI Corrupt
Score, and Vendi to Vendi Score. TIPO demonstrates significant improvements, achieving the highest average
rank among all baselines. Best results are in bold and second-best are underlined.

Prompt Type / Task Metric Original GPT MagicPrompt Promptist TIPO

In-domain
Tag-based Prompts

FDD ↓ 0.3558 0.5414 0.3247 0.2350 0.2282
Aesthetic ↑ 5.0569 6.3676 6.1609 5.9468 6.2571
Corrupt ↓ 0.5743 0.2510 0.4976 0.4331 0.0805
Vendi ↑ 16.814 8.663 11.901 14.327 13.307

In-domain
NL-based (Short)

FDD ↓ 0.0957 0.1668 0.0980 0.1783 0.1168
Aesthetic ↑ 5.8370 6.0589 5.8213 5.7963 5.8531
Corrupt ↓ 0.2887 0.3015 0.2936 0.3686 0.2870
Vendi ↑ 38.172 34.714 38.155 34.127 37.065

In-domain
NL-based
(Truncated Long)

FDD ↓ 0.0955 0.1683 0.1247 0.2096 0.1210
Aesthetic ↑ 5.7497 6.0168 5.8191 5.7759 5.8364
Corrupt ↓ 0.3132 0.3288 0.3259 0.4075 0.2870
Vendi ↑ 38.253 34.811 37.841 33.527 37.090

Out-of-Domain
(OOD) Test

Aesthetic ↑ N/A 6.7125 6.4507 6.3924 6.0536
Corrupt ↓ N/A 0.0518 0.1423 0.0947 0.0720
Vendi ↑ N/A 8.9718 15.872 16.489 21.571

Overall Average Rank ↓ 2.58 3.00 3.00 3.87 2.07

Table 3: TIPO on T2I models with undisclosed training data. Significant improvements are in bold.

Model Variant Aesthetic ↑ AI Corrupt ↓ FDD ↓ Vendi ↑

FLUX.1-dev Original 5.2029 0.1202 0.1185 36.2597
TIPO 5.2746 0.0938 0.1202 35.6489

Omnigen2 Original 5.2629 0.1110 0.1373 33.7724
TIPO 5.0661 0.1187 0.1253 34.2681

Lumina-2 Original 5.2588 0.0981 0.1318 34.7599
TIPO 5.4105 0.0916 0.1286 34.4655

HiDream-I1 Original 5.7768 0.1055 0.1444 34.6318
TIPO 5.8143 0.1019 0.1379 34.3544

Gemini-2.0-Flash-Image Self-refined 5.2584 0.0928 0.8084 32.7422
TIPO 5.2649 0.0700 0.7964 32.1136

the prompts with additional details that harmonize with the original themes, significantly enhancing
the diversity of the generated images.

Compatibility with other T2I Models In addition to the above baselines with publicly known
training data, we further evaluate TIPO on recent models with undisclosed training sources:
FLUX.1-dev (black-forest labs, 2024), Omnigen2 (Wu et al., 2025), Lumina-2 (Qin et al.,
2025), HiDream-I1 (Cai et al., 2025), and Gemini-2.0-flash-image (Google), using 1,000
prompts sampled from the COYO/GBC datasets. Notably, Gemini-2.0-flash-image can perform its
own prompt optimization, making it a strong closed-source baseline. As shown in Table 3, TIPO gen-
erally improves image quality and alignment relative to the baselines. For example, Lumina-2 and
HiDream-I1 achieve higher aesthetic scores and lower corruption rates after TIPO optimization.
Despite Gemini’s integrated optimization, TIPO still yields measurable improvements, highlighting
the practical value of our lightweight, task-specific strategy. Overall, these results demonstrate that
TIPO maintains robust compatibility with heterogeneous T2I models, even when their training data
are unavailable and potentially mismatched with TIPO’s optimization corpus.
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Efficiency A key concern is whether TIPO’s iterative pre-sampling strategy introduces noticeable
latency. Hence, we benchmark prompt-generation latency in Table 4, where TIPO reduces per-prompt
latency with an improvement up to 29.4%. Details of training and inference are in Appendix H.4.

Reviewer LKuZ-W3&Q3
Table 4: Prompt generation latency and relative speedup

TIPO Promptist PromptExtend MagicPrompt

Avg. Time (s) 1.03 1.46 1.38 1.14
TIPO speedup vs. each — +29.4% +25.6% +9.6%

Human Preference Evaluation Quantitative metrics may not fully align with human preference.
Therefore, we conducted a user study based on pairwise image comparisons between the original
prompt, MagicPrompt, Promptist, and TIPO on over 1,400 images, gathering preferences from
221 volunteers. As illustrated in Figure 5a, TIPO achieved the highest overall win rate at 51.3%,
significantly outperforming competitors. In out-of-domain scenarios, TIPO’s win rate increased to
52.5%, demonstrating consistently strong user preference across different contexts. For further results
and statistics, please refer to Appendix G.
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Figure 5: Human preference evaluation demonstrates that TIPO consistently achieves higher user
preference compared to baseline prompt optimization methods (Promptist, prompttext, magicprompt,
and original prompts). All evaluated images were generated using SD-3.5-Medium.

Reviewer LKuZ-W1&Q1Prompt Distribution Alignment While TIPO consistently achieves the best or competitive results
in image quality, it remains unclear whether such gains arise from a closer distributional alignment
between its optimized prompts and the T2I models’ training text corpora. To verify this hypothesis,
we sample from two representative T2I training sets, obtaining 1,000 natural-language captions from
COYO and 1,000 tag-based captions from Danbooru2023. We then encode ground-truth captions
and the outputs of all compared optimization methods using two widely adopted text encoders—T5-
XXL (Raffel et al., 2020a) (used in SD3, Flux, and PixArt) and jina-embeddings-v3 (Sturua
et al., 2024) (a popular recent text-embedding model). Finally, we measure the embedding-space
alignment between the ground-truth captions and optimized prompts with Fréchet Distance (FD) and
Maximum Mean Discrepancy (MMD with RBF kernel). As shown in Table 5, baseline methods show
varying extents of alignment across different prompt types, text encoders, and metrics, while TIPO
maintains consistently better alignment under all settings. This indicates that TIPO aligns well with
the T2I training-text distribution in a prompt-compatible and encoder-insensitive manner.

Reviewer LKuZ-W4&Q4Prompt–Image Alignment To further assess the semantic consistency between optimized prompts
and their generated images, we compute CLIPScore between each prompt and its corresponding
SD1.5-generated image using openai/clip-vit-large-patch14-336, on the same prompt
sets as in the Prompt Distribution Alignment experiment. As shown in Table 6, TIPO achieves
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Table 5: Embedding-space distances (FD and MMD) between optimized prompts and T2I training
corpora. Lower is better. Best results are in bold and second-best are underlined.

Prompt Encoder Metric TIPO Promptist MagicPrompt GPT-4o-mini

NL-short
Jina FD 0.0322 0.1003 0.0385 0.1064

MMD 0.0320 0.1501 0.0624 0.1699

T5 FD 0.0704 0.2072 0.1441 0.1252
MMD 0.1438 0.2914 0.1972 0.2297

NL-trunc
Jina FD 0.0309 0.1192 0.0493 0.0963

MMD 0.0359 0.1700 0.0772 0.1642

T5 FD 0.0674 0.2312 0.1884 0.1276
MMD 0.1404 0.3147 0.2270 0.2323

Tag-based
Jina FD 0.1094 0.1891 0.1958 0.2479

MMD 0.1539 0.2473 0.2415 0.3050

T5 FD 0.0524 0.2080 0.2578 0.0728
MMD 0.1846 0.3573 0.3948 0.2194

Table 6: CLIPScore between optimized prompts and T2I generated images. Higher is better. Best
results are in bold and second-best are underlined.

Prompt Type TIPO MagicPrompt GPT-4o-mini Promptist
Tag-based 0.2217 0.1782 0.1774 0.1642
NL-short 0.2413 0.2834 0.2378 0.2347
NL-trunc 0.2310 0.2517 0.2275 0.2063

the strongest alignment for tag-based prompts. While MagicPrompt shows clear advantages on
NL-based prompts, this is likely due to its 1.8M+ SD1.5 community training corpus, where prompts
are typically explicit and stylistically strong, effectively eliciting the CLIP encoder to produce high
alignment scores. However, such stylistic bias is often less preferred by mainstream users. In contrast,
TIPO attains competitive performance on NL-based prompts without such bias, as reflected by the
win rate in Table 11, where MagicPrompt vs. TIPO = 11:48.

6 CONCLUSION

We introduced TIPO, a lightweight prompt pre-sampling framework designed for efficient real-world
Text-to-Image (T2I) applications. By aligning user prompts with the intrinsic distributions of T2I
training datasets, TIPO enhances semantic coherence, image fidelity, and diversity with minimal
inference overhead. Experimental results show that TIPO consistently outperforms existing prompt
optimization methods across multiple evaluation metrics, while extensive user studies confirm its
strong alignment with human preferences.

Reviewer
LKuZ–W2&Q2
Reviewer
TMB7–W1&Q1&Q2
Reviewer TZN3–W2

Despite these promising results, several aspects remain
open for future exploration, such as generalization to out-of-distribution user input, model-specific
adaptation, personalization, image-feedback-aware refinement, and large-scale model scaling. We
discuss these limitations and potential extensions in Appendix J. To encourage wider adoption and
facilitate reproducibility, we release our trained models and source code. We hope TIPO will inspire
further advancements in efficient, scalable, and robust generative frameworks for creative systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work democratizes prompt optimization for text-to-image models, but automatic prompt enrich-
ment can inherit biases from training data or be misused to produce misleading or harmful content.
We therefore emphasize responsible use, including bias mitigation, transparency, and appropriate
user controls. No human subjects or sensitive personal data were involved, and we avoided including
identifiers or metadata that could raise copyright- or attribution-related concerns.

REPRODUCIBILITY STATEMENT

An anonymized repository with code and configuration files is provided in the supplementary materi-
als, enabling reproduction of all reported results. The main paper and appendix reference the exact
experimental settings, hyperparameters, random seeds, and evaluation scripts; data preprocessing
steps and any additional resources needed to re-create the experiments are also documented there.
For hardware, we report that all experiments were conducted on NVIDIA RTX 3090 and/or A6000
GPUs, with full details described in the appendix and repository.
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Ghosh, Amélie Héliou, Paul Jacob, Albert Q. Jiang, Kartik Khandelwal, Timothée Lacroix,
Guillaume Lample, Diego Las Casas, Thibaut Lavril, Teven Le Scao, Andy Lo, William Marshall,
Louis Martin, Arthur Mensch, Pavankumar Muddireddy, Valera Nemychnikova, Marie Pellat,
Patrick Von Platen, Nikhil Raghuraman, Baptiste Rozière, Alexandre Sablayrolles, Lucile Saulnier,
Romain Sauvestre, Wendy Shang, Roman Soletskyi, Lawrence Stewart, Pierre Stock, Joachim
Studnia, Sandeep Subramanian, Sagar Vaze, Thomas Wang, and Sophia Yang. Pixtral 12b, 2024.
URL https://arxiv.org/abs/2410.07073.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

AUTOMATIC. promptgen-lexart. https://huggingface.co/AUTOMATIC/
promptgen-lexart, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

black-forest labs. black-forest-labs/flux: Official inference repo for FLUX.1 models. https:
//github.com/black-forest-labs/flux, 2024.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008
(10):P10008, 2008.

Phillip Bonacich. Factoring and weighting approaches to status scores and clique identification.
Journal of Mathematical Sociology, 2(1):113–120, 1972.

Qi Cai, Jingwen Chen, Yang Chen, Yehao Li, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Yiheng
Zhang, Fengbin Gao, Peihan Xu, et al. Hidream-i1: A high-efficient image generative foundation
model with sparse diffusion transformer. arXiv preprint arXiv:2505.22705, 2025.

11

https://arxiv.org/abs/2410.07073
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/AUTOMATIC/promptgen-lexart
https://huggingface.co/AUTOMATIC/promptgen-lexart
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

CaptionEmporium. CaptionEmporium/coyo-hd-11m-llavanext. https://huggingface.co/
datasets/CaptionEmporium/coyo-hd-11m-llavanext, 2024.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In CVPR, 2021.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-Σ: Weak-to-strong training of diffusion transformer for
4k text-to-image generation, 2024a. URL https://arxiv.org/abs/2403.04692.

Junsong Chen, Jincheng YU, Chongjian GE, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=eAKmQPe3m1.

Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki,
Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Nvlm: Open frontier-class multimodal llms.
arXiv preprint arXiv:2409.11402, 2024.

daspartho. prompt-extend. https://huggingface.co/daspartho/prompt-extend,
2022.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. arXiv preprint arXiv:2409.17146,
2024.

discus0434. aesthetic-predictor-v2-5: SigLIP-based Aesthetic Score Predictor. https://github.
com/discus0434/aesthetic-predictor-v2-5, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024a.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow trans-
formers for high-resolution image synthesis, 2024b. URL https://arxiv.org/abs/2403.
03206.

Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
learning. arXiv preprint arXiv:2210.02410, 2022.

Georgi Gerganov. GitHub - ggerganov/llama.cpp: LLM inference in C/C++ — github.com. https:
//github.com/ggerganov/llama.cpp, 2023.

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie
Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong
Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi
Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao
Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song,
Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao
Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024. URL
https://arxiv.org/abs/2406.12793.

Aditi Godbole, Jabin Geevarghese George, and Smita Shandilya. Leveraging long-context large
language models for multi-document understanding and summarization in enterprise applications,
2024. URL https://arxiv.org/abs/2409.18454.

Google. gemini-2.0-flash-preview-image-generation. Accessed: 2025-09.

12

https://huggingface.co/datasets/CaptionEmporium/coyo-hd-11m-llavanext
https://huggingface.co/datasets/CaptionEmporium/coyo-hd-11m-llavanext
https://arxiv.org/abs/2403.04692
https://openreview.net/forum?id=eAKmQPe3m1
https://huggingface.co/daspartho/prompt-extend
https://github.com/discus0434/aesthetic-predictor-v2-5
https://github.com/discus0434/aesthetic-predictor-v2-5
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2409.18454


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=BsZNWXD3a1.

John A Hartigan, Manchek A Wong, et al. A k-means clustering algorithm. Applied statistics, 28(1):
100–108, 1979.

Yutong He, Alexander Robey, Naoki Murata, Yiding Jiang, Joshua Nathaniel Williams, George J.
Pappas, Hamed Hassani, Yuki Mitsufuji, Ruslan Salakhutdinov, and J. Zico Kolter. Automated
black-box prompt engineering for personalized text-to-image generation. Trans. Mach. Learn.
Res., 2025, 2025. URL https://openreview.net/forum?id=IVYVDN6pJ6.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

Yu-Guan Hsieh, Cheng-Yu Hsieh, Shih-Ying Yeh, Louis Béthune, Hadi Pour Ansari, Pavan Ku-
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(eds.), Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp. 952–961, Jeju Island, Korea,
July 2012. Association for Computational Linguistics. URL https://aclanthology.org/
D12-1087.

15

https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2403.12015
https://arxiv.org/abs/2006.11807
https://openreview.net/forum?id=08zf7kTOoh
https://aclanthology.org/D12-1087
https://aclanthology.org/D12-1087


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,
Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, and Han Xiao. jina-embeddings-
v3: Multilingual embeddings with task lora. CoRR, abs/2409.10173, 2024.

succintly. text2image-prompt-generator. https://huggingface.co/succinctly/
text2image-prompt-generator, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
arXiv preprint arXiv:2506.18871, 2025.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4818–4829, 2024.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
transformers. arXiv preprint arXiv:2410.10629, 2024.

Shih-Ying Yeh. HakuBooru: text-image dataset maker for anime-style images. https://github.
com/KohakuBlueleaf/HakuBooru, 2024a.

Shih-Ying Yeh. danbooru2023-webp-4Mpixel. https://huggingface.co/datasets/
KBlueLeaf/danbooru2023-webp-4Mpixel, 2024b.

Mingyang Yi, Aoxue Li, Yi Xin, and Zhenguo Li. Towards understanding the working mechanism of
text-to-image diffusion model. Advances in Neural Information Processing Systems, 37:55342–
55369, 2024.

Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for document
datasets. In Proceedings of the Eleventh International Conference on Information and Knowledge
Management, CIKM ’02, pp. 515–524, New York, NY, USA, 2002. Association for Computing
Machinery. ISBN 1581134924. doi: 10.1145/584792.584877. URL https://doi.org/10.
1145/584792.584877.

Wendi Zheng, Jiayan Teng, Zhuoyi Yang, Weihan Wang, Jidong Chen, Xiaotao Gu, Yuxiao Dong,
Ming Ding, and Jie Tang. Cogview3: Finer and faster text-to-image generation via relay diffusion,
2024. URL https://arxiv.org/abs/2403.05121.

16

https://huggingface.co/succinctly/text2image-prompt-generator
https://huggingface.co/succinctly/text2image-prompt-generator
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://github.com/KohakuBlueleaf/HakuBooru
https://github.com/KohakuBlueleaf/HakuBooru
https://huggingface.co/datasets/KBlueLeaf/danbooru2023-webp-4Mpixel
https://huggingface.co/datasets/KBlueLeaf/danbooru2023-webp-4Mpixel
https://doi.org/10.1145/584792.584877
https://doi.org/10.1145/584792.584877
https://arxiv.org/abs/2403.05121


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Appendix

TABLE OF CONTENTS

A Dataset/Resource 19

A.1 Danbooru2023 . . . . . . . . . . . . . . . . . . . . . . . 19

A.2 GBC10M . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.3 Coyo HD 11M . . . . . . . . . . . . . . . . . . . . . . . 19

B Baselines/T2I models 19

B.1 Prompt-Optimization Baselines . . . . . . . . . . . . . . . . . 19

B.2 T2I Models . . . . . . . . . . . . . . . . . . . . . . . . 20

C TIPO Implementation Details 21

C.1 TIPO Training Data Construction . . . . . . . . . . . . . . . . . 21

C.2 TIPO Training Settings and Model Configurations . . . . . . . . . . . 22

C.3 TIPO Inference Settings . . . . . . . . . . . . . . . . . . . . 23

C.4 Impact of Model Size on Performance . . . . . . . . . . . . . . . 24

C.5 Impact of Model Size on Inference Speed . . . . . . . . . . . . . . 24

D Evaluation Statistics 25

D.1 In-domain test regarding scenery tag . . . . . . . . . . . . . . . . 25

D.2 In-domain prompt generation test . . . . . . . . . . . . . . . . . 26

D.3 Out-of-domain evaluation . . . . . . . . . . . . . . . . . . . 28

D.4 Ablation Test . . . . . . . . . . . . . . . . . . . . . . . 31

E TIPO example 32

F Image Examples 35

F.1 In-domain test regard to scenery tag . . . . . . . . . . . . . . . . 35

F.2 In-domain prompt generation test . . . . . . . . . . . . . . . . . 35

G Human Preference 36

G.1 User Interface for Human Preference Evaluation . . . . . . . . . . . . 39

G.2 Extended Human Evaluation. . . . . . . . . . . . . . . . . . . 39

G.3 ELO Ratings. . . . . . . . . . . . . . . . . . . . . . . . 39

G.4 Human Preference ELO Method . . . . . . . . . . . . . . . . . 39

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G.5 Statistical Significance . . . . . . . . . . . . . . . . . . . . 40

G.6 Survey Response Examples . . . . . . . . . . . . . . . . . . . 41

G.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 44

H Ablation Study on TIPO 45

H.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 45

H.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 45

H.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . 46

H.4 Speed Test and Overhead Analysis . . . . . . . . . . . . . . . . 46

H.5 Conclusion of Ablation . . . . . . . . . . . . . . . . . . . . 47

I Topic Distribution Visualization 47

J Discussion and Future Work 50

K Disclosure of LLM Usage 50

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A DATASET/RESOURCE

A.1 DANBOORU2023

The Danbooru2023 dataset (Yeh, 2024b;a; nyanko202, 2023) is an extensive collection of images
and their corresponding tags, compiled from the Danbooru image board. This dataset includes
images annotated with particular and detailed tags, providing a rich resource for training both the
Text-to-Image (T2I) and Large Language Models (LLMs) involved in the TIPO framework. The
dataset contains data up to image ID 7,349,999, encompassing various visual content with granular
annotations. These annotations allow for creating nuanced and precise prompts, ensuring that longer,
more detailed prompts can indicate subsets of shorter prompts.

Key Characteristics:

• Rich Annotations: Detailed tags differentiate subtle variations, crucial for specific image
generation.

• Large Volume: Extensive dataset size ensures diverse training examples.

• Tag-Based Prompting: Refined prompts from detailed tags enhance image generation
accuracy.

A.2 GBC10M

The GBC10M dataset (Hsieh et al., 2024) is a large-scale collection of 10 million images sourced from
CC12M (Changpinyo et al., 2021), annotated using the Graph-Based Captioning (GBC) approach.
Each image is represented by a graph where nodes correspond to object regions, compositions, and
relations, and edges define their hierarchical relationships. Annotations are generated automatically
through a pipeline leveraging pretrained multimodal large language models (MLLM) and object
detection tools. The GBC structure enhances traditional image captions by providing detailed
descriptions and structural information. Data is provided in JSON lines format, including image
URLs, bounding boxes, and captions.

In TIPO, only the root node captions from GBC10M are utilized for concise yet descriptive prompts.

A.3 COYO HD 11M

The Coyo HD 11M dataset (CaptionEmporium, 2024) consists of 11.4 million high-resolution,
high-concept-density images paired with 22.8 million synthetic captions generated from the Coyo-
700M dataset. Images maintain a minimum of 512 pixels on the shortest edge to ensure high visual
quality. Captions, generated with the LLaVA-Next-8B model (Liu et al., 2024a) based on LLaMA
3 (AI@Meta, 2024), undergo post-processing for conciseness and clarity.

TIPO uses short and long captions, booru tags, and open image tags from this dataset.

B BASELINES/T2I MODELS

B.1 PROMPT-OPTIMIZATION BASELINES

GPT-4o-mini. GPT-4o-mini(OpenAI, 2024) is a multimodal model introduced by OpenAI in July
2024 as a cost-efficient variant of GPT-4o. It supports a 128k-token context window and up to 16k
output tokens, trained on text and vision data. In this paper, it serves as a zero-shot rewriting baseline
for prompt refinement.

MagicPrompt. MagicPrompt(daspartho, 2022) fine-tunes GPT-2 models on large-scale,
community-collected prompts (e.g., from Lexica.art and the Stable Diffusion Prompts dataset).
It learns to generate extended prompts with richer descriptive content, originally designed to improve
prompt quality for Stable Diffusion.
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Promptist. Promptist(Hao et al., 2023) is a reinforcement learning framework for prompt optimiza-
tion. Starting from a seed prompt, it generates refined prompts using supervised pre-training and
reinforcement learning, guided by aesthetic and semantic alignment rewards. It consistently improves
model-preferred prompt quality when paired with diffusion backbones.

Gemini-2.0-Flash-Image. Gemini-2.0-Flash-Image4 is a variant of Google’s Gemini 2.0 Flash
family with native image generation support. It provides both prompt-refinement and text-to-image
generation within a single model, supporting high-fidelity text rendering, compositional control, and
iterative editing. Unlike other baselines, it functions as both optimizer and generator.

B.2 T2I MODELS

SDXL Stable Diffusion XL (SDXL) (Podell et al., 2024) improves upon earlier models (Rombach
et al., 2022b) with a more considerable UNet backbone and dual text encoders (CLIP ViT-L (Radford
et al., 2021) and OpenCLIP ViT-bigG (Ilharco et al., 2021)), enhancing text conditioning. Supporting
resolutions up to 1024×1024, SDXL accepts natural language prompts and tags, suitable for diverse
image generation.

In this paper, three SDXL models are used without the refiner model:5 SDXL-base-1.06 , Illustrious
v3.5 - vpred7, and Kohaku-Zeta8.

Illustrious Illustrious is a series of fine-tuned Stable Diffusion XL models primarily trained on
the Danbooru2023 dataset. In this study, we specifically employ the v3.5 version variant with v-
parameterization (Salimans & Ho, 2022), which is notable for its extensive incorporation of natural
language prompts. The inclusion of both tag-based and natural language formats allows Illustrious to
leverage a broad range of semantic knowledge for image generation.

Within TIPO, we perform an ablation study to analyze the effectiveness of different prompting
strategies—namely extended tags versus natural language prompts—to identify which approach
contributes most significantly to enhanced image generation performance.

Stable Diffusion 3.5 Stable Diffusion 3.5 (SD-3.5) incorporates the MMDiT architecture (Esser
et al., 2024a) and the Rectified Flow formulation (Liu et al., 2022; Albergo & Vanden-Eijnden,
2022; Lipman et al., 2022) for improved text-to-image generation. Utilizing triple text encoders
(CLIP/ViT-L, OpenCLIP/ViT-G, T5-XXL (Raffel et al., 2020b)), SD-3.5 supports resolutions up to
1024×1024 and uses a 50/50 mix of original and CogVLM-generated captions. Figures confirm the
capability to process both natural language prompts and tags.

This study employs SD-3.5-Large9 (8B parameters) with FP8 inference on RTX 3090 or RTX 4090
GPUs.

FLUX.1-dev FLUX.1-dev is an open-weights text-to-image model released by Black Forest Labs
as a guidance-distilled variant of their FLUX.1 family, targeting research and non-commercial
use (black-forest labs, 2024). Architecturally, FLUX adopts a transformer-based rectified-flow formu-
lation (Lipman et al., 2022) with a hybrid stack of multimodal/parallel diffusion transformer blocks
and rotary position encodings, scaled to ∼12B parameters, emphasizing prompt adherence, typog-
raphy, and aspect-ratio flexibility (black-forest labs, 2024). We use the FLUX.1-dev checkpoint
for T2I without additional refiners; it accepts both natural-language prompts and tag-like inputs and
supports resolutions in the 0.1–2.0MP range.10

OmniGen2 OmniGen2 is a unified multimodal generator that decouples autoregressive text mod-
eling from diffusion-based image generation via two distinct pathways with unshared parameters

4https://developers.googleblog.com/experiment-with-gemini-20-flash-native-image-generation/
5https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0
6https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
7OnomaAIResearch/Illustrious-xl-early-release-v0
8https://huggingface.co/KBlueLeaf/Kohaku-XL-Zeta
9https://huggingface.co/stabilityai/stable-diffusion-3.5-large

10https://huggingface.co/black-forest-labs/FLUX.1-dev
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(Wu et al., 2025). The diffusion side conditions on hidden states from the MLLM while exclusively
feeding VAE features into the diffusion decoder to preserve low-level fidelity; a 3D rotary scheme
(Omni-RoPE) disentangles sequence ID and 2D spatial coordinates to stabilize editing and in-context
generation (Wu et al., 2025). Beyond standard T2I, OmniGen2 natively supports image editing and
subject-driven in-context generation, and introduces a reflection mechanism/dataset to iteratively
refine outputs.

Lumina-Image 2.0 Lumina-Image 2.0 proposes a unified and efficient T2I framework built on
Unified Next-DiT—a single-stream DiT that performs joint self-attention over text and image to-
kens—paired with a task-tailored Unified Captioner (UniCap) that produces multi-granularity, multi-
lingual captions for training (Qin et al., 2025). The model employs Multimodal RoPE, progressive
resolution training (256→1024), and efficient inference (CFG-Renorm/Trunc (Lin et al., 2024; Yi
et al., 2024), Flow-DPM-Solver (Xie et al., 2024), TeaCache (Liu et al., 2025)) to improve prompt-
following and speed at only ∼2.6B parameters (Qin et al., 2025).

HiDream-I1 HiDream-I1 is a 17B-parameter image foundation model based on a sparse Diffusion
Transformer with dynamic Mixture-of-Experts (MoE) (Cai et al., 2025). It employs a dual-stream
(text/image) sparse DiT for separate encoding followed by a single-stream sparse DiT to fuse
modalities efficiently; hybrid text encoders (e.g., CLIP-L/14, CLIP-G/14, T5-XXL) and an LLM
aggregator provide robust conditioning (Cai et al., 2025). The suite includes I1-Full (50+ steps),
I1-Dev (guidance-distilled, 28 steps), and I1-Fast (14 steps), with a GAN-powered diffusion
distillation to retain sharpness at low step counts.

C TIPO IMPLEMENTATION DETAILS

In this appendix, we provide all the necessary details including our dataset construction process,
model configurations, inference pipeline, and the model’s properties not mentioned in Section 4.2
and 4.3.

C.1 TIPO TRAINING DATA CONSTRUCTION

This section details our methodology for constructing and preprocessing training data to ensure robust
model performance across various input scenarios.

Length Control To systematically control output prompt length, we implement a structured length
categorization system using unique length tags. These tags enforce specific constraints on tag counts
and natural language sentence lengths. For instance, the <long> tag specifies that the corresponding
prompt must contain between 36 and 52 tags (inclusive), accompanied by 4 to 8 sentences of natural
language description. We define four distinct length categories, each with strict bounds for tag count
and sentence length.

Type Very Short Short Long Very Long
Tags (count) 18 36 48 72
NL (sentences) 2 4 8 18

Table 7: Maximum length specifications for each category and caption type. For each category, the
actual count/length must not exceed these values.

Random Augmentation To enhance input diversity and better simulate real-world usage patterns,
we implement several data augmentation strategies:

• Metadata Tags: For tags representing image metadata (e.g., artist, character, aspect ratio),
we employ two randomization techniques:

– Random removal of metadata tags
– Random repositioning of metadata tags to the end of the prompt, after all content-related

descriptions
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TIPO-100M TIPO-200M stage1 TIPO-200M stage2 TIPO-500M

Architecture LLaMA
Type Pretrain Pretrain Finetune Pretrain
Vocab Size 32013
Hidden Dim 640 768 - 1280
Attention Heads 10 12 - 20
MLP Dim 2240 2304 - 3840
Hidden Layers 10 20 - 20
Model Parameters 100M 203M - 508M

Max Learning Rate 5e-4 2e-4 5e-5 2e-4
Optimizer AdamW
LR scheduler Cosine Annealing LR
betas 0.9, 0.98
weight decay 0.01

Dataset Coyo, GBC, Dan GBC, Dan Coyo, GBC, Dan Coyo, GBC, Dan
Epoch 1 5 3 5
max context length 512 512 1024 1024
global batch size 1024 2048 2048 3584
Token Seen 6.0240B 22.625B 18.339B 31.274B
Hardware 4 × RTX3090 4 × RTX3090 4 × RTX3090 8 × H100
Training Time (wall) 22.5 hour 150 hour 270 hour 100 hour

Table 8: Training settings for TIPO models. The datasets include CoyoHD11M (Coyo), GBC10M
(GBC), and Danbooru2023 (Dan). Stage 2 additionally incorporates Pixtral (Agrawal et al., 2024) to
generate NL captions from Danbooru2023 dataset.

This approach encourages the model to handle varying metadata positions and availability,
while maintaining the ability to infer metadata relationships from content descriptions.

• Content Tags: For tags describing image content (e.g., objects, actions, attributes), we
implement:

– Random shuffling of tag order within the content section
– Length-based truncation to meet target length constraints while preserving key content

information
• Natural Language: For natural language descriptions exceeding length limitations, we

employ selective sentence removal, targeting middle sentences to preserve context-setting
opening sentences and concluding details. This maintains coherent narrative flow while
meeting target length requirements.

These augmentation strategies create a more diverse training dataset that better reflects real-world
prompt variations, improving the model’s robustness and adaptability to different input styles and
formats.

C.2 TIPO TRAINING SETTINGS AND MODEL CONFIGURATIONS

Tokenizer and Task Tokens TIPO employs a vocabulary derived from LLaMA2 (Touvron et al.,
2023b) consisting of 32,000 tokens, with additional tokens (13 tokens) specifically designated for
task and length control or placeholders. This extended vocabulary includes task identifiers and length
modifiers to ensure flexibility across different prompt types:

• Placeholder Token (1 token):
<|empty|>

• Task Tokens (8 tokens):
<|gen_meta|>, <|tag_to_long|>, <|short_to_tag|>,
<|long_to_tag|>, <|short_to_long|>, <|short_to_tag_to_long|>,
<|short_to_long_to_tag|>, <|tag_to_short_to_long|>

• Length Tokens (4 tokens):
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Figure 6: TIPO inference workflow, with solid arrows denoting the primary generation steps and
dashed arrows indicating alternative generation paths within the same cycle. <TOKEN> represents
special tokens, with all tokens detailed in Section C.2.

<|very_short|>, <|short|>, <|long|>, <|very_long|>

Optimizer and Learning Schedule Training is performed using the AdamW optimizer (Loshchilov,
2017), with a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2017). The optimizer
parameters include β1 = 0.9, β2 = 0.98, and a weight decay of 0.01. Maximum learning rates are
adjusted per model size, as outlined in Table 8.

Training Configurations TIPO models are trained in multiple stages. Table 8 summarizes the
configurations for pretraining and fine-tuning TIPO-100M, TIPO-200M, and TIPO-500M. Both
pretraining and fine-tuning was conducted on datasets like Danbooru2023 (nyanko202, 2023),
GBC10M (Hsieh et al., 2024), and CoyoHD11M (CaptionEmporium, 2024).

Augmented Task Representation Each dataset entry undergoes random task assignment and
splitting to simulate a wide range of input-output mappings, effectively increasing the dataset size.
For example, a single entry may contribute to tasks like short to tag or tag to long, with
length modifiers dynamically controlling the output verbosity. This approach ensures the model can
handle diverse tasks while maintaining robust generalization.

Hardware and Time Requirements Training was conducted on NVIDIA RTX3090 GPUs for
smaller models and H100 GPUs for TIPO-500M. Total wall-clock training times ranged from 22.5
hours for TIPO-100M to 270 hours for fine-tuning TIPO-200M.

Token Seen and Effective Training Non-padding tokens are used to measure the effective token
count during training, ensuring efficiency given the short and variable data lengths. Table 8 details
the total tokens seen per model and training stage, illustrating the comprehensive exposure to diverse
data entries.

C.3 TIPO INFERENCE SETTINGS

Reviewer LKuZ–Q. Sam-
pling Strategy

Sampling Strategy We employ a hybrid stochastic decoding strategy combining nucleus sampling
(top-p = 0.95) and top-k = 60 filtering. This follows standard practice in open-ended text generation,
as adopted in the official Hugging Face generation examples 11. This hybrid approach maintains
diversity while preserving coherence, preventing both overly deterministic and excessively noisy
generations.

Inference Pipeline The TIPO inference pipeline is designed to handle various input types and
scenarios, combining different tasks to refine or expand both tag-based and natural language prompts.
Figure 6 illustrates this comprehensive workflow. Our framework processes tags and natural language

11Hugging Face. “Usage — transformers 2.11.0 documentation.” Example of text generation with XLNet uses
top-p = 0.95 and top-k = 60. https://huggingface.co/transformers/v2.11.0/usage.html
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inputs separately, allowing for specialized handling of each input type. This flexible pipeline allows
TIPO to adapt to various input scenarios, whether the user provides tags, natural language descriptions,
or both. By leveraging different task combinations, TIPO ensures that tag-based and natural language
prompts are optimized, resulting in more detailed and effective input for text-to-image models.

C.4 IMPACT OF MODEL SIZE ON PERFORMANCE

To analyze the impact of model scales on prompt-optimization performance, we compare TIPO-200M
and TIPO-500M using a 1,000-image subsample from the COYO and GBC datasets. Results are
shown in Table 9.

Table 9: Prompt optimization performance of TIPO-200M and TIPO-500M on a 1k subsample.

Metric Task TIPO-200M TIPO-500M

FDD (↓) NL-short 0.1529 0.1356
NL-long 0.1650 0.1398

Aesthetic (↑) NL-short 5.8531 ± 0.7501 5.8943 ± 0.7064
NL-long 5.8364 ± 0.7501 5.9030 ± 0.7015

AI Corrupt (↓) NL-short 0.2870 ± 0.4167 0.2891 ± 0.4189
NL-long 0.2870 ± 0.4150 0.2862 ± 0.4151

Overall, TIPO-500M shows consistent gains in FDD and Aesthetic scores, while performance on
AI Corrupt remains comparable. However, the larger 500M variant entails substantially higher
computational cost without delivering proportionally greater benefits, which limits its practicality for
community use; hence, all main experiments are conducted with TIPO-200M.

C.5 IMPACT OF MODEL SIZE ON INFERENCE SPEED

We conducted comprehensive speed tests of our 100M, 200M and 500M parameter models using
the inference pipeline described in Section 5.2. Each prompt requires two sequential generation
steps. Our primary metric is average tokens generated per second, which reflects real-world task
performance rather than theoretical maximum throughput.

The evaluation was performed using llama.cpp (Gerganov, 2023), an efficient C++ implementation
that provides optimized support for various hardware accelerators, including CUDA, HIP, and Apple
Metal.
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TIPO-100M TIPO-200M TIPO-500M
Hardware Platform tok/sec gen time tok/sec gen time tok/sec gen time

M1 Max (32 GPU cores) 339.4 0.66 190.0 1.23 119.4 2.02
RTX 3090 558.5 0.42 341.4 0.69 289.8 0.81
RTX 4090 742.9 0.29 454.5 0.51 359.7 0.63

Table 10: Model performance comparison across different hardware platforms. Tokens per second
(tok/sec) represents the average generation speed, while generation time (gen time) shows the average
time in seconds required for a complete two-step prompt optimization process.

D EVALUATION STATISTICS

In this appendix, we provide more statistics for the result obtained in Section 5.

D.1 IN-DOMAIN TEST REGARDING SCENERY TAG

(a) The box plot for the Aesthetic Score result of scenery tag test.

(b) The box plot for the AI Corrupt Score result of scenery tag test.

(c) The KDE plot for the Aesthetic Score re-
sult of scenery tag test.

(d) The KDE plot for the AI Corrupt Score
result of scenery tag test.

Figure 7: The distribution of aesthetic and AI corrupt score for scenery tag test.
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The box plot and Kernel Density Estimation (KDE) plot displayed in Figure 7 illustrate the aesthetic
scores and AI corruption scores from the scenery tag test described in Section 5.2. The analysis
shows that TIPO significantly outperforms all other methods, demonstrating a considerable margin of
improvement.

D.2 IN-DOMAIN PROMPT GENERATION TEST

(a) The box plot for the Aesthetic Score result of short prompt input.

(b) The box plot for the AI Corrupt score result of short prompt input.

(c) The KDE plot for the Aesthetic Score result
of short prompt input.

(d) The KDE plot for the AI Corrupt Score result
of short prompt input.

Figure 8: The distribution of aesthetic and AI corrupt score for short prompt input.
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(a) The box plot for the Aesthetic Score result of truncated long prompt input.

(b) The box plot for the AI Corrupt score result of truncated long prompt input.

(c) The KDE plot for the Aesthetic Score result
of truncated long prompt input.

(d) The KDE plot for the AI Corrupt Score result
of truncated long prompt input.

Figure 9: The distribution of aesthetic and AI corrupt score for truncated long prompt input.

Figures 8 and 9 display the box plots and KDE plots of aesthetic scores and AI corruption scores
obtained from the In-domain prompt generation test detailed in Section F.2. While the box plots
reveal subtle differences in performance between various methods, the AI corruption scores provide
valuable insights. Specifically, these scores indicate that implementations supported by TIPO produce
more stable output images than other methods.
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D.3 OUT-OF-DOMAIN EVALUATION

(a) The box plot for the Aesthetic Score result of out-of-focus test.

(b) The box plot for the AI Corrupt Score result of out-of-focus test.

(c) The KDE plot for the Aesthetic Score result of
out-of-focus test.

(d) The KDE plot for the AI Corrupt Score result of
out-of-focus test.

Figure 10: The distribution of aesthetic and AI corrupt score for out-of-focus test.
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(a) Original Caption (b) Prompt by GPT4o-mini

(c) Prompt by MagicPrompt (d) Prompt by Promtist

(e) Prompt by TIPO

Figure 11: The similarity matrix for the 100 best aesthetic results generated in the SD3.5-Large
experiments. Off-diagonal elements of the matrix indicate the similarity between different images. A
lower value for an off-diagonal element indicates greater diversity among the generated images.
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(a) Original Caption (b) Prompt by GPT4o-mini

(c) Prompt by MagicPrompt (d) Prompt by Promtist

(e) Prompt by TIPO

Figure 12: The similarity matrix between 100 images of worst aesthetic generated results of SD3.5-
Large experiments.

Figures 11 and 12 present similarity matrices for different prompt generation methods and their
corresponding aesthetic outputs on SD3.5-Large (Esser et al., 2024b). A matrix with predominantly
lower similarity values (brighter appearance) indicates high diversity among generated images, while
higher values (darker appearance) suggest consistent but less diverse outputs. Please refer to Table 2
in Section 5.
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D.4 ABLATION TEST

(a) The box plot for the Aesthetic Score result of NL ablation test.

(b) The box plot for the AI Corrupt Score result of NL ablation test.

(c) The KDE plot for the Aesthetic Score result of
NL ablation test.

(d) The KDE plot for the AI Corrupt Score result of
NL ablation test.

Figure 13: The distribution of aesthetic and AI corrupt score for NL ablation test.
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(a) The box plot for the Aesthetic Score result of tags ablation test.

(b) The box plot for the AI Corrupt Score result of tags ablation test.

(c) The KDE plot for the Aesthetic Score result of
tags ablation test.

(d) The KDE plot for the AI Corrupt Score result
of tags ablation test.

Figure 14: The distribution of aesthetic and AI corrupt score for tags ablation test.

Figures 14 present the tag ablation test in the TIPO effect on the aesthetic score and AI Corrupt Score
among the original tag, tag-extend and the tags TIPO. The box plot reveals that the tag TIPO is better
than the original tag and the tag extend is the best. In detail, KDE plot reveals that the tag TIPO has
a similar performance compared with the tag extend. Both of them are better than the original tag,
which indicates that the tag TIPO aspect helps control corruption and promotes the aesthetic score.

E TIPO EXAMPLE

In this section, we provide some text example of TIPO’s input and output.
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TIPO Format Template

User Input:
1girl, ciloranko, maccha (mochancc), ningen mame, ask (askzy), solo, masterpiece,

absurdres, newest, safe

A girl sits in a cozy cafe, cradling a cup of coffee in her hand

Formatted TIPO Input for Expand Tags:
meta: absurdres
rating: safe
style: anime-style illustration, digital art, character design, fantasy concept art
quality: masterpiece, newest
aspect_ratio: 1.0
target: <|short|> <|short_to_tag|>
short: A girl sits in a cozy cafe, cradling a cup of coffee in her hand
tag: 1girl, solo

Formatted TIPO Output after Expand Tags and Expand Natural Prompt:
meta: absurdres
rating: safe
style: anime-style illustration, digital art, character design, fantasy concept art
quality: masterpiece, newest
aspect_ratio: 1.0
target: <|short|> <|tag_to_long|>
tag: 1girl, solo, sitting, closed mouth, jewelry, long hair, looking at viewer, crossed

legs, plant, table, couch, bracelet, cup, smile, teacup, indoors, blue eyes,
blonde hair, holding

long: A girl sits in a cozy cafe, cradling a cup of coffee in her hand. The cafe has
large windows with green plants on the walls and a wooden table in front of her.
Behind her is a staircase leading to another room. The overall atmosphere of the
image is serene and inviting.

Formatted Output for Text-to-Image:
1girl, ciloranko, maccha (mochancc),

ningen mame, ask (askzy),

solo, sitting, closed mouth, jewelry,
long hair, looking at viewer, crossed
legs, plant, table, couch, bracelet,
cup, smile, teacup, indoors, blue
eyes, blonde hair, holding,

A girl sits in a cozy cafe, cradling a
cup of coffee in her hand. Behind her
is a staircase leading to another
room. The cafe has large windows with
green plants on the walls and a
wooden table in front of her. The
overall atmosphere of the image is
serene and inviting.

masterpiece, newest, absurdres, safe

User Input TIPO Output

Figure 15: An example of formatted content used for training and inference in TIPO.
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TIPO Format template

User Input:

s c e n e r y , no humans , m a s t e r p i e c e , a b s u r d r e s , newest , s a f e

Formatted TIPO Input For Expand Tags:

meta: absurdres
rating: safe
quality: masterpiece, newest
aspect_ratio: 1.0
target: <|long|>
tag: scenery, no humans

Formatted TIPO Output after Expand Tags and tag to long task:

meta: absurdres
rating: safe
quality: masterpiece, newest
aspect_ratio: 1.0
target: <|long|> <|tag_to_long|>
tag: scenery, no humans, storefront, motor vehicle, road sign, power lines, plant,

railing, flower pot, vanishing point, outdoors, sign, potted plant, sidewalk,
awning, tree, bicycle, window, railroad crossing, bush, building, utility pole,
lamppost, shop, truck, traffic light, fence, chinese text, stairs, door, bicycle
basket, town, day, streetcar (cafe), lamp, road

long: A small town with a variety of buildings and houses. the sky is blue and there
are trees in the background. on the left side of the image, there is an orange
building with a sign that reads "chinese restaurant". on the right side, there are
several other buildings with different types of shops and restaurants. in front
of the buildings, there appears to be a street with cars parked along the road.

in the center of the illustration, we can see a train crossing signal with two red
lights and a blue sky above it. there is also a yellow building with white walls
and a green roof. on top of the traffic light pole, there seems to be an air
conditioning unit. the street is lined with trees and bushes, and there is
graffiti on the ground.

Formatted Output For Text-to-Image

scenery, no humans, storefront, motor vehicle, road sign, power
lines, plant, railing, flower pot, vanishing point, outdoors
, sign, potted plant, sidewalk, awning, tree, bicycle,
window, railroad crossing, bush, building, utility pole,
lamppost, shop, truck, traffic light, fence, chinese text,
stairs, door, bicycle basket, town, day, streetcar \(cafe\),
lamp, road,

A small town with a variety of buildings and houses. the sky is
blue and there are trees in the background. on the left side
of the image, there is an orange building with a sign that
reads "chinese restaurant". on the right side, there are
several other buildings with different types of shops and
restaurants. in front of the buildings, there appears to be
a street with cars parked along the road. in the center of
the illustration, we can see a train crossing signal with
two red lights and a blue sky above it. there is also a
yellow building with white walls and a green roof.

masterpiece, newest, absurdres, safe

User Input

TIPO Output

Figure 16: An example formatted content we used for training and inference in TIPO.
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F IMAGE EXAMPLES

In this section, we present sample images from the experiments described in Section 5 to visually
demonstrate the improvements achieved by TIPO.

F.1 IN-DOMAIN TEST REGARD TO SCENERY TAG

Figure 17: Comparison of generated images using simple input (left) vs. TIPO-enhanced input (right)
for the scenery tag

Figure 17 demonstrates the difference in output diversity between simple input and TIPO-enhanced
input for the scenery tag. As observed, TIPO significantly expands the range of generated sceneries,
better reflecting the variety present in the Danbooru2023 dataset (Yeh, 2024b). The left column
shows results from simple input (scenery tag only), while the right column illustrates the enhanced
diversity achieved with TIPO-enhanced input.

F.2 IN-DOMAIN PROMPT GENERATION TEST

(a) Short Caption (b) TIPO-Generated Caption

Figure 18: Comparison of generated images using original input (left) vs. TIPO-enhanced input
(right)

Figure 18 illustrates the differences between short captions, truncated long captions, TIPO-generated
captions, and TIPO-extended captions. The “short prompt” and “truncated long prompt” used in this
experiment typically consist of 1-2 sentences, resulting in reasonably good quality outputs. However,
the use of TIPO to refine or extend these prompts still yields noticeable improvements in aesthetics
and overall quality.
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G HUMAN PREFERENCE

(a) ELO rating on Illustrious (b) Win rate matrix on Illustrious

(c) ELO rating on SD3.5-medium (d) Win rate matrix on SD3.5-medium

Figure 19: ELO ratings and win rate matrices across different experimental settings comparing five
prompting methods (TIPO, Promptist, Promptextend, MagicPrompt, and Original) on three evaluation
dimensions

Comparison Win Ratio (A:B) Proportion A p-value Significant?
Original vs. PromptExtend 45:66 0.405 0.0572 Marginally
Original vs. Tipo 28:80 0.259 < 0.0001 Yes***
Original vs. Promptist 35:64 0.354 0.0046 Yes**
PromptExtend vs. Promptist 41:80 0.339 0.0005 Yes***
Promptist vs. Tipo 30:101 0.229 < 0.0001 Yes***
PromptExtend vs. Tipo 30:90 0.250 < 0.0001 Yes***
MagicPrompt vs. Promptist 14:34 0.292 0.0055 Yes**
MagicPrompt vs. Tipo 11:48 0.186 < 0.0001 Yes***
MagicPrompt vs. Original 15:28 0.349 0.0660 No
MagicPrompt vs. PromptExtend 19:35 0.352 0.0402 Yes*

Table 11: Pairwise win rates and statistical significance (Overall Dimension). Significance levels: *
p < 0.05, ** p < 0.01, *** p < 0.001

We conducted a series of A/B tests to compare five prompt transformations, (TIPO, Promptist,
Promptext, MagicPrompt, and Original(unmodified)), for two models, Illustrious, SD3.5-medium,
which is known for both core word/natural language understanding. In total, we collected responses
for ∼1,500 pairwise comparisons, from more than 20 anonymous evaluators. Each evaluation asked

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

(a) Full Win-Tie-Lose plot

(b) Illustrious Win-Tie-Lose plot

(c) SD3.5-medium Win-Tie-Lose

Figure 20: Win-Tie-Lose comparison across different experimental settings showing the relative
performance of five prompting methods on prompt adherence, image quality, and aesthetic appeal
metrics
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(a) The UI of survey system before submitting the choices.

(b) The UI of survey system after submitting the choices.

Figure 21: Survey interface for human evaluation of image pairs, showing the evaluation process
before submission (a) where users compare two images based on four metrics, and after submission
(b) where the generated prompts for each image are revealed
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participants to compare two generated images—labeled A and B—and select which they preferred (or
a tie) according to specific criteria (e.g., prompt adherence, image quality, or aesthetic appeal).

G.1 USER INTERFACE FOR HUMAN PREFERENCE EVALUATION

We developed a specialized survey interface to facilitate efficient and unbiased human evaluation
of generated images. As illustrated in Figure 21, the interface presents evaluators with an original
prompt and two corresponding images (labeled A and B) generated using different prompting methods.
Before submission, users can see the original prompt in the center panel while the processed prompts
used to generate each image remain hidden to prevent bias.

The evaluation framework requires participants to compare the image pairs across four distinct
metrics: prompt adherence (how well the image follows the original prompt), image quality (detail
and correctness), aesthetic appeal (color, composition, and style), and overall personal preference.
For each metric, users can select one of three options: “A is better,” “A and B are equal,” or “B is
better.”

When evaluators encounter image pairs that appear to be from different prompts or settings, they
are instructed to click “Refresh” to obtain a new comparison. After submitting their evaluations, the
interface reveals the transformed prompts used to generate each image, providing transparency about
how the original prompt was modified by each method.

G.2 EXTENDED HUMAN EVALUATION.

Participants assessed each image’s performance on prompt adherence, image quality, and aesthetic
appeal, with visually shown unmodified and image pairs. TIPO exhibited superior outcomes in all
comparison settings. Notably, it attained a 64.4% peak win rate (against MagicPrompt) under the
Full scenario and 57.5% (also against MagicPrompt) under SD35-medium, emphasizing TIPO’s
proficiency in generating images that closely follow prompt specifications while maintaining visual
coherence.

G.3 ELO RATINGS.

We computed theoretical ELO ratings from the aggregated pairwise comparisons to quantify overall
performance differences among the five methods. The rating update rules were based on each pair’s
binary outcome (win or lose), ignoring tie cases. The result is depicted in Figure 19, TIPO has
secured the highest ELO rating over other models.

G.4 HUMAN PREFERENCE ELO METHOD

We computed theoretical ELO ratings from human-judged pairwise preference data to quantitatively
evaluate the relative performance of each prompting method. The ELO rating system, initially
designed for ranking chess players, aggregates binary outcomes into numerical ratings representing
comparative performance.

Pairwise Outcomes. Human evaluators assessed comparisons between methods, resulting in one
of three outcomes:

• Method i wins: assigned a score of 1 for method i, and 0 for method j.

• Method j wins: assigned score 1 for method j, and 0 for method i.

• Tie: assigned score 0.5 to both methods.

Conversion to ELO Differences. Win and tie rates were converted to ELO rating differences using:

Adjusted Win Rate = Win Rate +
Tie Rate

2

ELO Difference = 400× log10

(
Adjusted Win Rate

1− Adjusted Win Rate

)
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To ensure numerical stability, extreme adjusted win rates were constrained as follows:

ELO Difference =

{
−800, Adjusted Win Rate ≤ 0.001

+800, Adjusted Win Rate ≥ 0.999

Calculating Method ELO Ratings. Final ELO ratings were determined by averaging each
method’s pairwise ELO differences and centering these averages around a baseline rating (e.g.,
1000):

ELOmethodi = Base Rating+(Average ELO Difference for method i− Overall Mean ELO Difference)

Interpretation of ELO Scores. Methods with higher ELO scores consistently outperform lower-
scored methods. A rating difference of 400 points corresponds to a 90% expected win probability for
the superior method.

G.5 STATISTICAL SIGNIFICANCE

As summarized in Table 11, we conducted two-sided binomial and McNemar’s tests (p <0.05) to
assess the statistical significance of observed differences. The result confirms that TIPO’s advantages
are unlikely to be explained by random variation, which also supports a consistent performance
hierarchy: TIPO ranks highest, followed by Promptist, PromptExtend, Original, and MagicPrompt.
Collectively, these findings illustrate TIPO’s robust, model-agnostic effectiveness and underscore the
model-sensitivity of alternative methods, particularly Promptext and MagicPrompt.
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G.6 SURVEY RESPONSE EXAMPLES

In this section we provided some responses of our human preference survey as reference.

Figure 22: Some survey responses on illustrious-3.5-vpred generated image with different prompt
optimization method
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Figure 23: Some survey responses on illustrious-3.5-vpred generated image with different prompt
optimization method
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Figure 24: Some survey responses on SD3.5-medium generated image with different prompt opti-
mization method

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Figure 25: Some survey responses on SD3.5-medium generated image with different prompt opti-
mization method

G.7 CONCLUSION

The extended evaluations presented here reinforce TIPO’s standing as a reliable and effective prompt-
optimization strategy. Its consistent performance gains under diverse model conditions highlight its
potential for broad applicability, with its strong alignment with user-specified prompts, high image
quality, and favorable aesthetic outcomes.
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H ABLATION STUDY ON TIPO

In this section, we investigate the effect of incorporating TIPO (Tags + Inferred Prompt Objects)
across various generation settings. Our primary goal is to validate whether additional structured
information (e.g., core tags and minimal spatial/contextual cues) can improve image quality, reduce
artifacts.

H.1 EXPERIMENTAL SETUP

Prompt Variants To systematically analyze TIPO’s contribution, we consider four types of input
prompts improvement task:

1. Tag → More core words: Given an initial set of core words, generate more refined or
expanded core words.

2. NL → More NL: Given a short natural language (NL) description, elaborate into a richer NL
prompt.

3. Tag → (More core words + NL): Combine expanded tags with a corresponding NL descrip-
tion derived from them.

4. NL → (More NL + core words): Use the NL prompt to add relevant tags, forming a mixed
prompt of NL plus core words.

In each case, we compare the baseline prompts (without TIPO cues) against prompts incorporating
TIPO’s structured, tag-based critical information and minimal spatial hints.

Data Preparation We start by randomly sampling core words from a word table to represent a
diverse range of topics (e.g., objects, environments, descriptors). Additionally, for each word set, we
generate a corresponding short NL sentence using a compact language model (GPT4o-mini). Overall,
the six prompt variants are tested on 4,000 images, ensuring a balanced comparison.

Inference Procedure Prompts are fed into our image-generation pipeline under identical model
settings (classifier free guidance, sampler, steps, etc.), using the v-parameterized variant of Illustrious
v3.5(Park et al., 2024). We focus on how TIPO modifications alter the generation outcomes and
whether they introduce additional computational overhead.

H.2 EVALUATION METRICS

(a) Corrupt Score Distributions (b) Aesthetic Score Distributions

Figure 26: Side-by-side comparison of Corrupt (left) and Aesthetic (right) score distributions across
prompt types.

Aesthetic Score We employ an off-the-shelf aesthetic predictor to estimate image quality. In the
following paragraph, we discuss the model’s bias.
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AI Corruption Score Using an automated ’ AI corruption ’ detection model, we measure generation
artifacts, such as distorted objects and unnatural shapes. Higher scores imply cleaner, more coherent
outputs.

H.3 RESULTS & DISCUSSION

Impact on Aesthetics Figure 26b shows that TIPO-enhanced prompts generally achieve higher
aesthetic scores than their non-TIPO counterparts, albeit with some variance. Notably, we observe a
correlation between wider color ranges and higher aesthetic scores discussed in Figure 27, suggesting
a bias toward more colorful or varied compositions.

Improvements in Corruption Score As shown in Figure 26a, TIPO-based prompts yield signifi-
cantly lower corruption scores, indicating fewer artifacts. We hypothesize that the additional spatial
and contextual details encoded via TIPO help the model place objects more consistently.

(a) Saturation vs. Aesthetic Score (b) Binned Saturation vs. Aesthetic (c) Saturation vs. Corrupt Score

Figure 27: Scatter plots (left and right) and binned analysis (middle) showing the relationship between
saturation and image metrics. We find a moderate positive correlation between saturation and aesthetic
score (Pearson r = 0.2821), particularly at lower saturation ranges, based on 24k samples. However,
saturation shows no notable correlation with corrupt score (Pearson r = 0.0125).

H.4 SPEED TEST AND OVERHEAD ANALYSIS

Inference Speed A key concern for production pipelines is whether TIPO generation imposes a
substantial time overhead. We benchmarked prompt-generation inference on four smaller models,
excluding any large proprietary LLMs. As illustrated in Table 12, the additional TIPO-related
computation remains well below the image-generation time. Hence, even in a synchronous pipeline,
TIPO prompt expansion does not constitute a bottleneck.

Table 12: Speed Test Results for TIPO and Other Prompt Methods

Method Model/Config # Runs Avg. Time (s) Std. Dev. (s)

TIPO
LLaMA-500M 500 1.4207 1.0730
LLaMA-200M 200 1.0306 0.8982
LLaMA-100M 200 1.0078 0.9394

PROMPTIST GPT2-125M 1000 1.4593 0.2857
PROMPTEXTEND GPT2-125M 1000 1.3849 0.2151
MAGICPROMPT GPT2-125M 1000 1.1398 0.4043

Memory Footprint We also confirm that TIPO’s overhead in terms of VRAM usage is minimal
(e.g., < 0.5 GB for TIPO-200M and < 1.5 GB for TIPO-500M) with the quantization supported
by llama.cpp. The practical adoption of TIPO in pipelines has shown no critical memory concerns,
which aligns with our measurements.
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Reviewer LKuZ-W3&Q3Training Costs To contextualize the training cost of TIPO, we compare its training time with
reinforcement learning (RL)-based prompt optimization methods, based on the reported settings in
their original papers. While it is technically difficult to reproduce RL-based methods on our hardware
(4×RTX 3090), their reported GPU-hour budgets provide an approximate reference for scale and
efficiency. The comparison is summarized in Table 13.

Although TIPO requires more total GPU-hours than PAE, it is trained on over 30 million
prompts—two orders of magnitude larger than both Promptist and PAE. After normalization, TIPO
achieves the lowest cost per 1k prompts, demonstrating strong scalability. It is also worth noting
that Promptist and PAE rely on reinforcement learning with external T2I rollouts. Even for SD1.5,
each rollout takes roughly five seconds, and the cost increases dramatically for larger models such as
SDXL, SD3, or Flux. By contrast, TIPO requires no rollouts, so its training cost scales linearly with
corpus size and remains independent of the target T2I model.

Table 13: Training cost comparison between TIPO and RL-based prompt optimization methods.
GPU-hours per 1k prompts are normalized for fairness.

Method #Params #Prompts #GPUs GPU-h GPU-h /1k

TIPO 200M 30,000k 4×RTX 3090 1,680 0.056
PAE 125M 450k 1×A800 90 0.20
Promptist 125M 90k 4×V100 (SFT),

32×V100 (RL)
63 0.70

H.5 CONCLUSION OF ABLATION

Our experiments suggest that TIPO (1) consistently lowers AI corruption artifacts, (2) can boost
aesthetic scores, and (3) remains computationally inexpensive. The improvements in metrics support
the viability of TIPO prompts for real-world image-generation tasks. In short, a concise natural
language prompt with core tag-based critical information appears to be an effective, suggested form
for most use cases.

I TOPIC DISTRIBUTION VISUALIZATION

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a generative probabilistic model for topic
modeling (Jelodar et al., 2018), which assumes that each document is a mixture of topics, with
each topic represented by a distribution over words. LDA uncovers hidden thematic structures by
analyzing word co-occurrence patterns, while methods like TF-IDF and TextRank (Mihalcea & Tarau,
2004) enhance its ability to extract meaningful insights from large textual datasets. We implemented
a multi-stage topic modeling and clustering methodology using LDA to extract varying numbers
of topics (20, 30, 50, and 100) from the corpus. This approach focuses on identifying significant
representative words while filtering out stop words and irrelevant terms to ensure meaningful topic
classification.

We empirically assessed whether the resulting topics were sufficiently large and diverse by employing
multi-level topic analysis. This iterative process mitigates potential challenges such as substantial
topic overlap, which can diminish distinctiveness when extracting a large number of topics (Stevens
et al., 2012).

To address the potential overlap and further assess the diversity and meaningfulness of the topics,
we performed a secondary clustering (Zhao & Karypis, 2002). We grouped the initially extracted
topics into five major clusters using k-means clustering. We evaluated the clustering performance by
calculating the inertia (Sum of Squared Distances) (Hartigan et al., 1979), shown in Table 14, 15, and
16. Since the topics have already been filtered for meaningful content, a higher inertia value indicates
greater diversity among the clusters, reflecting a broader range of valid and meaningful topics across
the dataset. This two-tiered approach allows for a more nuanced analysis of topic diversity and
ensures the robustness of the topic modeling against meaningless word groupings.
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Size MagicPrompt GPT4o-mini Promptist TIPO
Run 1 Run 2 Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

20 170.78 137.94 1078.38 204.71 125.90 144.59 1037.44 271.77
30 461.79 417.74 1758.40 736.74 327.48 195.13 1323.88 512.07
50 829.68 730.73 861.15 1036.33 400.90 373.74 823.51 959.18
100 1656.74 1245.60 1987.63 1628.32 877.36 657.14 1622.79 1777.61

Z

Table 14: Inertia for COYO-Dataset inference, higher is better

Size MagicPrompt GPT4o-mini Promptist TIPO
Run 1 Run 2 Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

20 184.53 352.16 244.79 246.15 125.47 198.94 278.56 211.98
30 452.01 566.74 505.56 441.34 204.28 328.70 372.07 471.28
50 571.77 895.47 1227.30 990.17 438.89 313.48 737.65 788.41
100 1291.60 1742.36 1675.41 1550.32 631.61 628.78 1573.47 1855.90

Table 15: Inertia for GBC-Dataset inference, higher is better

We attach a simple visualization of topics in scenery prompt generation, with topic n=100, cluster
k=5.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Size MagicPrompt GPT4o-mini Promptist TIPO
20 60.82 734.52 210.60 139.29
30 275.76 1141.77 415.95 355.20
50 630.50 826.29 722.75 1002.36
100 2026.39 1879.08 802.93 1883.70

Table 16: Inertia for Scenery extend inference, higher is better

(a) GPT-4o-mini (d) TIPO(b) MagicPrompt (c) Promptist

Figure 28: Topic visualization for scenery prompt generation. A wider spread indicates a greater
diversity of generated topics.
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Figure 29: This visualization represents a filtered subset of posts from the Danbooru2023 dataset,
centered on the ’scenery’ tag. The network graph is an ego network (depth 1), which includes only
nodes directly connected to the ’scenery’ tag. To refine the data and focus on meaningful associations,
uncommon tags with fewer than 10 occurrences were excluded. The analysis, conducted using
Gephi, focuses on nodes with a degree greater than 600 to highlight critical components. Nodes are
color-coded by modularity class by Fast Unfolding Algorithm (Blondel et al., 2008), revealing clusters
of closely associated tags. Node size reflects Eigenvector Centrality(Bonacich, 1972), emphasizing
highly connected and influential tags within their network.
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J DISCUSSION AND FUTURE WORK

Despite the promising performance demonstrated by TIPO, several limitations and future directions
remain open for further study.

Reviewer LKuZ–W2/Q2;
Reviewer TZN3–W1

Distribution Dependence and OOD Generalization. The optimization behavior of TIPO inher-
ently depends on the distributional bias of the open text–image corpus used for training. As a result,
it may exhibit unstable behavior on extremely rare or stylistically unconventional prompts. Besides,
when applied to out-of-distribution (OOD) T2I models whose training data or prompting conventions
deviate significantly from LAION-style distributions, aesthetic performance may degrade slightly. In
addition, our current OOD evaluation uses GPT-4o-mini–generated prompts, which are high-quality
but do not fully represent real-world user queries, thus limiting external validity. Addressing the
generalization to unseen models and long-tail prompts remains an important direction for future work,
which can be pursued from two complementary perspectives: improving the model’s generalization
capacity via stronger backbones and domain-diverse fine-tuning, and enhancing evaluation through
large-scale collection of authentic user prompts and cross-model benchmarking.

Reviewer TMB7
Stronger Backbone Initialization. Our current implementation trains a mid-sized LLaMA variant
from scratch. Future work could instead initialize from stronger open-source LLM backbones and
fine-tune them on T2I corpora, potentially improving robustness on long-tail and domain-specific
distributions. This could also mitigate failures on small or highly biased datasets by leveraging more
general linguistic priors.

Reviewer TMB7–Q1Model-Specific Adaptation and Style Variance. For models that require structured or JSON-
formatted prompts, TIPO can be combined with a lightweight adapter or fine-tuned on a small set
of model-specific data. Extending TIPO with such adaptation modules could better accommodate
systems whose prompt syntax diverges from mainstream diffusion models. In the longer term, TIPO
can also serve as a backbone integrated with RL-based refinement for model-specific alignment.

Reviewer TMB7
Personalization and Style Preservation. The current TIPO is a general-purpose optimizer and
does not incorporate user-level or stylistic conditioning. Building on prior personalization techniques
such as LoRA (Hu et al., 2022), future work could explore lightweight adapters or online learning
mechanisms that track user preferences and maintain project-level stylistic consistency, enabling
personalized and context-aware prompt optimization.

Reviewer TZN3–W2
Image-Aware and Feedback-Driven Refinement. TIPO currently operates purely in the text
domain without utilizing generated images or user feedback. A promising extension is to incorporate
vision–language models like Qwen3-VL (Bai et al., 2023) for image-aware refinement, allowing
iterative refinement with optimized prompts, visual outcomes, and user instructions. However, such
integration requires non-trivial data curation and training pipelines, which we leave for future work.

Reviewer TMB7–Q2Scaling Behavior and Model Capacity. From 200M to 500M parameters, TIPO continues to yield
improvements in FDD and Aesthetic scores. Due to limited compute resources, we could not explore
larger configurations to observe scaling saturation. A systematic study of TIPO’s scaling behavior and
architectural variants would be a valuable direction for future research. Such analysis could reveal
scaling laws unique to prompt optimizers and guide practical model sizing for future deployments.

K DISCLOSURE OF LLM USAGE

We used GPT-5 only to polish writing by improving the readability and grammar correctness. No
LLMs were used in the main contributions of this work, such as ideation, experiment design, or result
analysis.
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