

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIPO: TEXT TO IMAGE WITH TEXT PRESAMPLING FOR PROMPT OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for automatic prompt refinement in text-to-image (T2I) generation. Starting from simple user prompts, TIPO leverages a lightweight pre-trained model to expand these prompts into richer, detailed versions. Conceptually, TIPO samples refined prompts from a targeted sub-distribution within the broader semantic space, preserving the original intent while significantly improving visual quality, coherence, and detail. Unlike resource-intensive methods based on large language models (LLMs) or reinforcement learning (RL), TIPO provides computational efficiency and scalability, opening new possibilities for effective, automated prompt engineering in T2I tasks. Extensive experiments across multiple domains demonstrate that TIPO delivers stronger text alignment, reduced visual artifacts, and consistently higher human preference rates, while maintaining competitive aesthetic quality. These results highlight the effectiveness of distribution-aligned prompt engineering and point toward broader opportunities for scalable, automated refinement in text-to-image generation.

1 INTRODUCTION

The rapid proliferation of Text-to-Image (T2I) generative models has revolutionized artistic creation (Ossa et al., 2024; Betker et al., 2023; Esser et al., 2024a; Saharia et al., 2022; Ramesh et al., 2021; 2022; Shi et al., 2020; Rombach et al., 2022a; Podell et al., 2024; Sauer et al., 2024; Chen et al., 2024b;a; Li et al., 2024b; Esser et al., 2024b; black-forest labs, 2024). These models offer direct control over generative visual content via *text prompts*. To achieve precise control, modern T2I architectures are often trained on lengthy, detailed text descriptions, which may consist of individual, formatted tags of objects, backgrounds, styles, or complex, integrated paragraphs outlining image content and layout. However, the increasing complexity of prompts often forces users to iteratively refine them to convey intent. Moreover, most state-of-the-art T2I models are aesthetically fine-tuned (e.g., on LAION-aesthetics (Podell et al., 2024)) to favor nuanced artistic and stylistic cues, making high-quality T2I artwork mainly accessible to those with significant artistic expertise.

Extensive efforts have been made to reduce the reliance on human expertise through *prompt optimization*, i.e., expanding and refining a user’s primitive input into a more detailed prompt to enhance generation quality. As shown in Figure 1(a), a straightforward approach is to leverage pre-trained Large Language Models (LLMs) to rewrite prompts in a zero-shot manner (Mañas et al., 2024). Yet, LLMs are primarily trained on general natural language, such as paragraphs and dialogues, which differ significantly from the structured prompts used for T2I models. This discrepancy often leads to additional effort in crafting LLM prompts and increased misalignment between generated images and intended prompts. Figure 1(b) shows a more effective approach: training LLMs directly on prompt data collected from model users (AUTOMATIC, 2022; daspartho, 2022). While promising, this method is inherently constrained by the varying levels of user expertise, often resulting in inconsistent or suboptimal outputs. Recent work (Hao et al., 2023) trains LLMs with reinforcement learning, where aesthetic scores of generated images serve as rewards, as depicted in Figure 1(c). However, reinforcement learning is performed on one specific T2I model with high computational cost, hindering its application to a broader variety of models.

In contrast to prior work, we argue that *good prompts should align with the large-scale text distributions of T2I models’ training*, including those emphasized in aesthetic fine-tuning. Such alignment

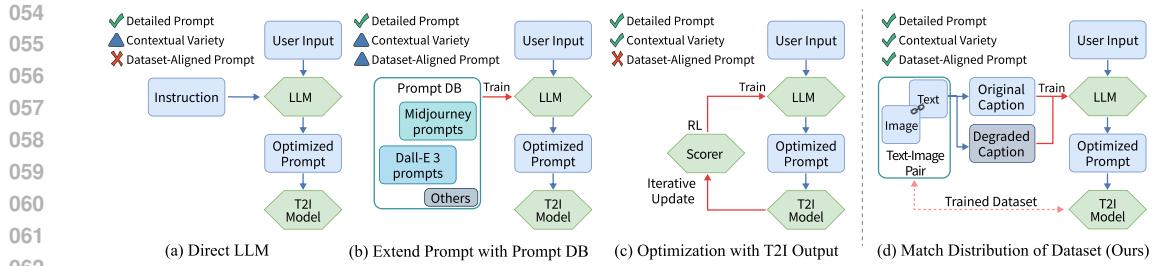


Figure 1: Comparison of prompt optimization methods using LLM. **(a)** uses instructions for prompting but its understanding is constrained by the LLM’s knowledge base, not the T2I model. **(b)** relies on a curated prompt database, enhancing detail but limiting variety by not fully leveraging the T2I model’s learned distribution. **(c)** optimizes using the scorer with RL, requiring multi-turn inference with additional cost. **(d)** aligns prompts with the T2I model’s training distribution, ensuring detailed and diverse prompt generation that fits the target T2I model.

allows models to better interpret user intent and leverage their learned priors, resulting in stronger text alignment and overall image quality. Based on this insight, we introduce **TIPO** (Text to Image with text pre-sampling for **P**rompt **O**ptimization), a framework that brings prompt optimization into the domain of large-scale multi-task pre-training. TIPO is supported by a curated 30M-pair, 40B-token caption corpus, which is filtered and balanced to maximize compatibility with leading T2I models and to preserve aesthetic quality. On top of this corpus, we design a suite of pretext tasks that reformulate raw user inputs, including both concise natural sentences and tag-based prompts, into enriched and distribution-consistent forms. Through this multi-task sampling pipeline, a lightweight language model expands (rather than fully rewrites) user prompts, preserving original semantics while enriching details that are diverse, edit-friendly, and aligned with T2I training distributions. Extensive experiments on both in-domain and out-of-domain prompts show that TIPO consistently outperforms strong baselines, achieving a 62.8% win rate in human preference (validated by more than 1,400 pairwise comparisons from 221 volunteers), and providing up to a 29.4% runtime efficiency improvement. Figure 1 illustrates the conceptual differences between existing methods and TIPO. To summarize, our contributions are at least threefold:

1. We introduce TIPO, a prompt optimization framework that leverages the large-scale text distributions used in text-to-image (T2I) training.
2. We train a lightweight multi-task language model that progressively refines both tag-based and natural language inputs into unified prompts, enhancing compatibility across a broad spectrum of T2I models.
3. Extensive experiments demonstrate that TIPO achieves superior image quality, stronger text alignment, higher human preference, competitive aesthetic quality, and improved runtime efficiency against strong baselines with SOTA T2I models, highlighting its practical value.

2 RELATED WORK

Prompt optimization for T2I models typically leverages language models, which can be broadly classified into two categories: (1) *Model-specific strategies* that tailor prompts for a particular T2I model, and (2) *Universal strategies* that improve prompt quality across a variety of T2I models.

Model-specific Strategies T2I models generate images whose quality is often measured using metrics such as fidelity, aesthetics, and user preference. These metrics facilitate reinforcement learning approaches that optimize prompts for a specific T2I model. For instance, Promptist (Hao et al., 2023) fine-tunes a pre-trained language model by using CLIP relevance scores as rewards. Similarly, PAE (Mo et al., 2024) extends this approach by generating dense text embeddings rather than discrete text tokens, with additional control vectors during online reinforcement learning. However, these methods are computationally intensive, often struggling with a larger number of training prompts. Moreover, a model optimized for one specific T2I system may not generalize well to others. In contrast, our method leverages over 30 million text descriptions to cover a wide range of high-quality prompts, ensuring compatibility with a broad spectrum of T2I models.

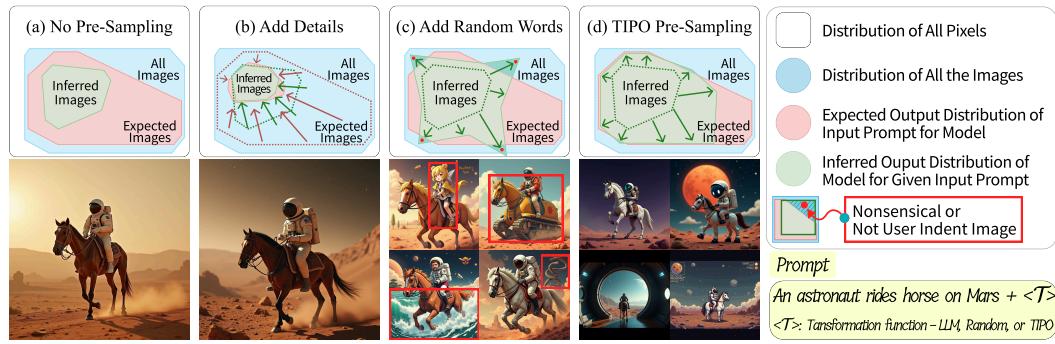


Figure 2: Illustration of various pre-sampling methods for generating the T2I prompt `An astronaut rides horse on Mars + <T>`. (a) yields a basic image. (b) enhances details of images but requires manual refinement. (c) adding random words may introduce irrelevant content (red boxes), exceeding the user’s intent. (d) TIPO pre-sampling (ours) aligns outputs with expected intent, maintaining both detail and variety. $<T>$ represents a transformation function for pre-sampling.

Universal Strategies To reduce the dependency on specific T2I models, some researchers have focused on refining prompts solely using language models. For example, CogView3 (Zheng et al., 2024) employ GLM-4 (GLM et al., 2024), and Lee et al. (2024) employ GPT-J and Text Style Transfer (TST) techniques, respectively, for prompt enhancement. However, both of them rely heavily on the LLM’s inherent understanding of visual content descriptions, which may result in a misalignment with the diverse requirements of various T2I models. Alternatively, other approaches collect high-quality prompts from T2I model users to fine-tune or train LLMs (AUTOMATIC, 2022; succinctly, 2022; daspartho, 2022). Such methods, however, are limited by the inconsistent expertise of users. More recently, He et al. (2025); Liu et al. (2024b) leverage vision language models to optimize prompts in an iterative loop: a user prompt generates images via a T2I model, the prompt–image pairs are evaluated by the VLM to suggest refinements, and the revised prompts are reapplied to T2I generation for continual improvement. While such iterative refinement can improve quality, the distribution mismatch between VLMs and T2I training data persists. Conversely, our approach constructs both tag-based and natural language prompts using a large-scale dataset of image-text descriptions, thereby aligning closely with the text distributions underlying T2I models.

3 PRELIMINARIES

We present the formal definition of T2I models and the problem statement of this work.

Text-to-Image Model. A *text-to-image (T2I) model* defines a conditional distribution

$$\mathcal{I}_p = P(x | p), \quad x \in \mathcal{X},$$

which maps a prompt p to a distribution of images over the space of all possible images \mathcal{X} .

Reviewer fBC3-W2

Problem statement. Let \mathcal{I}_u denote the user’s *intended distribution* over \mathcal{X} . The task of *prompt optimization* is to find an optimized prompt p_o from the space of all possible prompts \mathcal{P} to minimize a distance d between the T2I output distribution \mathcal{I}_p and the intended distribution \mathcal{I}_u :

$$p_o = \arg \min_{p \in \mathcal{P}} d(\mathcal{I}_p, \mathcal{I}_u),$$

where $d(\cdot, \cdot)$ is a distance between image distributions (e.g., Fréchet Inception Distance).

4 METHODOLOGY

We aim to optimize user prompts to enhance image generation quality. Instead of end-to-end optimizations tailored to a single T2I model, our focus is on prompt rewriting that generalizes across a broad spectrum of models. Our core intuition is that an ideal prompt should align with the texts used in T2I model training. However, rapid advances in image captioning have rendered these texts

162 increasingly diverse and complex. To address this, we propose to (1) design a clearly structured
 163 prompt schema compatible with most text descriptions, and (2) implement a pre-sampling algorithm
 164 that progressively refines arbitrary, coarse user input into organized, fine-grained prompts.
 165

166 **4.1 TEXT SET PREPARATION**
 167

168 Although the text descriptions used for T2I model training are notably diverse, most are image
 169 captions that fall into two broad categories: tag-based and natural language (NL)-based captions.
 170 Tag-based captions, such as those in the Danbooru2023 dataset (nyanko202, 2023; Yeh, 2024a), use
 171 comma-separated, succinct terms to describe image content. In contrast, NL-based captions, typically
 172 generated by language models with visual capabilities (Liu et al., 2023; Agrawal et al., 2024; OpenAI,
 173 2024; Li et al., 2024a; Bai et al., 2023; Dai et al., 2024; Xiao et al., 2024; Deitke et al., 2024), may
 174 comprise multiple sentences. We represent both types using a unified text set $T = \{t_1, t_2, t_3, \dots, t_n\}$,
 175 where each element is an individual tag or sentence.
 176

177 While the original image captions are fine-grained and detailed, which can yield high-quality images
 178 when all elements are used, they often result in prompts that are excessively lengthy or overloaded
 179 with information. Such prompts diverge from typical user input and pose alignment challenges. To
 180 mitigate this, we construct a simpler subset by removing some tags and sentences from the original
 181 prompt set, as detailed in Section 4.2.
 182

183 **4.2 FORMATTED PROMPT CONSTRUCTION**
 184

185 We aim to construct prompts in a unified format compatible with existing image
 186 captions. First, we incorporate the common *metadata* present in these image captions,
 187 typically represented as `<Category>: <Content>`. These metadata categories
 188 primarily include style, aspect ratio, quality, and year (e.g.,
 189 `quality: masterpiece, style: Impressionist`). This structured metadata is
 190 intuitive for users to read and edit, while also providing strong guidance to downstream T2I models
 191 on the generation scope.
 192

193 Next, we construct both tag-based and NL-based prompts using text sets T . Our design generates both
 194 simple (incomplete) and complete prompts for each image, and we train an auto-regressive language
 195 model to extend the simple prompts into complete versions. For tag-based prompts, since the tags are
 196 largely order-insensitive (i.e., the order has minimal impact on T2I outcomes), we propose a prefix-
 197 based dropout strategy. We first randomly shuffle the complete set of tags $T = \{t_1, t_2, t_3, \dots, t_n\}$
 198 from a given image caption. Then, we construct a simpler tag set $T_s = \{t_1, t_2, \dots, t_m\}$ by randomly
 199 selecting $m < n$ tags. The prompts are constructed as:
 200

$$p_s = \text{concat}(T_s), \quad p_o = \text{concat}(T)$$

201 Here, p_s and p_o denote the simple and original prompts, respectively. By ensuring that p_s is always a
 202 prefix of p_o , the language model can readily expand simple tag-based prompts into complete versions.
 203

204 For NL-based prompts, however, this strategy cannot be applied directly because the first sentence
 205 often contains crucial information (Godbole et al., 2024) and the order of sentences significantly
 206 influences the caption’s semantics. Therefore, we preserve the first sentence and randomly drop some
 207 of the subsequent sentences without changing their order. Let:
 208

$$S = [\text{sentence}_1, \text{sentence}_2, \text{sentence}_3, \dots, \text{sentence}_n]$$

209 represent the ordered sequence of sentences in an image caption. We derive a simple subsequence S_s
 210 by randomly selecting m sentences from S while ensuring that the first sentence is always included
 211 and that the original order is maintained. In other words,
 212

$$S_s = [\text{sentence}_1, \text{sentence}_{i_2}, \dots, \text{sentence}_{i_m}],$$

213 with $1 < i_2 < \dots < i_m \leq n$ and $m < n$. The simple and complete NL-based prompts are then
 214 constructed as:
 215

$$p_s = \text{concat}(S_s), \quad p_o = \text{concat}(S_s, S)$$

216 This ensures that p_s remains a prefix of p_o . Although some sentences may be repeated in p_o , selecting
 217 a smaller m effectively mitigates this, and it does not empirically affect the generation quality.
 218

216 4.3 TEXT PRE-SAMPLING
217

218 We aim to reformulate user input into forms that better align with the high-quality training text distribution p_o via *pre-sampling*, which stands for “text sampling before image sampling.” A naïve strategy
219 is plain text completion, where tokens are directly appended to the user input in an unstructured
220 manner. Such completion often mirrors the low-quality phrasing of the input, deviates from the
221 distribution of high-quality prompts, and produces inferior generations. On the other hand, a full
222 rewrite risks deviating from the user’s original intention. To balance these issues, TIPO preserves the
223 original input and appends a structured, distribution-consistent expansion. This appended segment
224 is typically paragraph-like or tag-like, making it both informative and easy to edit or remove (see
225 Figure 2 for an illustration and Appendix E for concrete examples).
226

227 We propose the core technique of TIPO, a flexible pre-sampling mechanism that decomposes prompt
228 optimization into three subtasks: enriching tag sequences, extending natural language (NL) prompts,
229 and refining NL prompts. For example, a short NL prompt can be expanded into a detailed tag
230 sequence (*short_to_tag*), as illustrated in Figure 3. We further distinguish between *basic tasks*, which
231 perform a single transformation, and *composite tasks*, which chain multiple transformations within
232 a single forward pass. The latter expose the model to more holistic training signals while reducing
233 computational overhead. Table 1 summarizes all tasks and their input–output forms.
234

235 Task	236 Description
<i>Basic tasks</i>	
237 tag_to_long	238 Generate a new NL prompt given tags.
238 long_to_tag	239 Extend a tag sequence given an NL prompt.
239 short_to_tag	240 Extend a tag sequence given a short/simple prompt p_s .
240 short_to_long	241 Generate a refined, detailed NL prompt given a user-provided NL prompt.
<i>Composite tasks</i>	
241 short_to_tag_to_long	242 From a short NL prompt or tags, produce a refined NL prompt.
242 short_to_long_to_tag	243 From a short or generated NL prompt, extend a tag sequence.
243 tag_to_short_to_long	244 From tags or NL prompts, generate a refined NL prompt.

245 Table 1: Pre-sampling tasks in TIPO. Basic tasks focus on one-step transformations, while composite
246 tasks combine two basic tasks within a single forward pass.
247

248 We randomly select from the aforementioned tasks during training to enhance model generalization.
249 By extensively training on these tasks, TIPO can seamlessly adapt to various input types, flexibly
250 refining user input whether it consists of tags, short sentences, or long sentences. Figure 3 (b)
251 illustrates a scenario where both tag captions T_s and short NL captions S_s are available. In such
252 cases, TIPO processes each input type separately to maintain clarity and coherence:
253

$$254 \quad S_s = [\text{A young girl with long hair...}], \quad \text{metadata} = \emptyset \\ 255 \quad T_s = \{\text{outdoors, scenery, water, wind, landscape, ...}\}$$

257 The generation proceeds sequentially as follows:
258

- 259 1. **short_to_tag**: TIPO uses T_s as the primary prompt to generate a detailed tag sequence T_d .
260
- 261 2. **tag_to_long**: T_d is incorporated into the metadata, and TIPO produces a refined short NL
262 prompt S_d based on T_d .
263
- 264 3. **short_to_tag_to_long**: With both T_d and S_d in the metadata, TIPO generates a comprehen-
265 sive long NL prompt S_d , ensuring a more detailed output.
266
- 267 4. TIPO aggregates T_d , S_d , and any additional metadata to construct a context-rich prompt p_d .
268

269 This progressive process enables TIPO to build prompts that are both detailed and contextually
aligned with the user’s input.

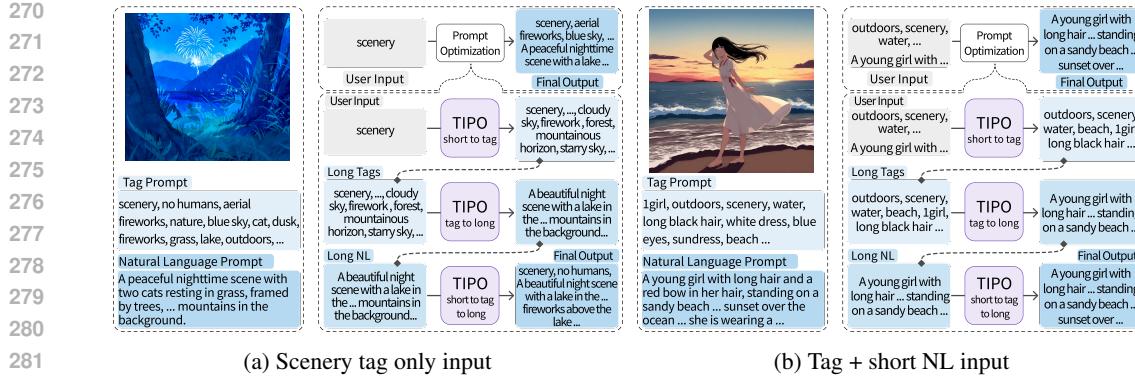


Figure 3: Example prompt optimization paths in TIPO. (a) shows generation from a single tag input, while (b) uses both tag and natural language input. These illustrate representative pipelines, not the full range of use cases. Blue shading indicates increasing prompt richness.

Implementation Details In implementation, TIPO adopt the LLaMA architecture (Touvron et al., 2023a;b; AI@Meta, 2024)¹, with all experiments are conducted with a 200M-parameter model². Our training dataset is about 40 billion tokens curated from Danbooru2023 (nyanko202, 2023; Yeh, 2024b), GBC10M (Hsieh et al., 2024), and CoyoHD11M (CaptionEmporium, 2024).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Baselines and T2I Models We compare against representative prompt-optimization baselines: GPT-4o-mini for zero-shot rewriting (OpenAI, 2024), MagicPrompt, which fine-tunes GPT-2 on community-collected prompts (daspartho, 2022), Promptist, which applies reinforcement learning for model-preferred prompt optimization (Hao et al., 2023), and Gemini-2.0-flash-image³, which uniquely serves both as a prompt-refinement baseline and a T2I generator. For image generation backbones, our main experiments adopt *SDXL-base-1.0* (Podell et al., 2024), *Illustrious v3.5 (vpred)*, *Kohaku-XL-Zeta*, and *Stable Diffusion 3.5 Large* (Esser et al., 2024a). To further assess generalization, we additionally evaluate on four diverse backbones with undisclosed training data: *FLUX.1-dev* (black-forest labs, 2024), *Omnigen2* (Wu et al., 2025), *Lumina-2* (Qin et al., 2025), and *HiDream-I1* (Cai et al., 2025). The details of T2I models are provided in Appendix B.

Evaluation Metrics We employ four latest metrics FDD (Stein et al., 2023), Aesthetic Score (discus0434, 2024), AI Corrupt Score (narugo1992, 2023), and Vendi Score (Friedman & Dieng, 2022) to measure the quality of generated images. Specifically, FDD (Fréchet DINO Distance) quantifies fidelity by comparing the distribution of DINOv2 features (Oquab et al., 2023) between reference images in the evaluation dataset and images generated from the corresponding captions, which better aligns with human perception than traditional FID (Heusel et al., 2017). Aesthetic Score is computed via Aesthetic Predictor V2.5 (discus0434, 2024), quantifying visual appeal, composition quality, and artistic merit. AI Corrupt Score detects technical flaws in generated images by identifying visual artifacts. Vendi Score quantifies image diversity by calculating the von Neumann entropy from a normalized cosine similarity matrix using DinoV2 embeddings. **Notably, Vendi is defined directly on feature-space dispersion and is sensitive to non-semantic variations such as low-level noise or artifacts. As a result, it “should be used alongside a quality metric”** (Friedman & Dieng, 2022) and a higher value alone does not always correspond to more meaningful semantic diversity.

Reviewer fBC3-Q1
 Reviewer TMB7-W2

¹The multi-task design of TIPO is compatible with many autoregressive language models (e.g., GPT, LLaMA, Qwen, etc.). Intuitively, adopting more advanced backbones could further enhance efficiency and effectiveness, but such exploration would require extra training cost, which we defer to future work.

²We also trained TIPO-100M and 500M variants to analyze the impact of model scales. See Appendix C.

³<https://developers.googleblog.com/experiment-with-gemini-20-flash-native-image-generation/>

Figure 4: Generated images from 4 types of prompts: (a) simple scenery tag, (b) scenery tag enhanced by TIPO, (c) truncated (< 40 words) long prompt, (d) TIPO-enhanced truncated prompt. TIPO adds detail and maintains variety, yielding coherent images from simple prompts.

Evaluation Protocols Our proposed TIPO leverages large-scale image caption datasets for training, which overlap with the training text distributions of many T2I models. Following Promptist (Hao et al., 2023), we divide our experiments into two settings: (1) **In-domain**, where the T2I model’s training texts overlap with those used by TIPO, and (2) **Out-of-domain**, where no overlap exists.

5.2 EXPERIMENTAL RESULTS

In-domain Tag-based Prompt Optimization To assess prompt optimization performance on tag-based prompts, we generate scenery images, as they contain abundant descriptive tags for objects and backgrounds. We randomly sample 32,768 tag-based prompts from Danbooru2023 (Yeh, 2024b; nyanko202, 2023), shuffle and concatenate the scenery tags into new prompts (thereby preventing data leakage of the original captions), and generate one image per prompt using Kohaku-XL-Zeta. This evaluation tests the *in-domain* capabilities, as Danbooru2023 is used during both TIPO and Kohaku-XL-Zeta training. The results in Table 2 reveal two key insights. First, MagicPrompt and Promptist, which rely on user prompts or reinforcement learning, underperform in Aesthetic and AI Corrupted Scores due to the quality or quantity limitations of their collected samples (e.g., Promptist uses 90K samples, limited by the high reinforcement learning cost). In contrast, GPT and TIPO benefit from large-scale training corpora (> 30 M samples), yielding higher-quality outputs. Second, TIPO achieves the best FDD by a substantial margin over GPT, which can be attributed to its superior distribution alignment with T2I models.

In-domain NL-based Prompt Optimization We evaluate the prompt optimization performance on NL-based prompts by selecting 10,000 short prompts and 10,000 long prompts from CaptionEmporium (CaptionEmporium, 2024) and GBC (Hsieh et al., 2024) as test prompts. In particular, since the long prompts are much longer than typical user input, we truncate them to two sentences (< 40 words) to simulate real-world applications. We use SDXL-1.0-base as the T2I model, whose training text data largely overlap with TIPO. Table 2 demonstrates that TIPO achieves either the best or second-best scores in Aesthetic and AI Corrupt Score by effectively enriching the original prompt with appropriate textual elements while rarely introducing extraneous noise. While all methods compromise fidelity and diversity, as reflected in the FDD and Vendi Score, TIPO remains competitive because it maintains small semantic deviation from the original sentences via progressive refinement.

Out-of-domain Performance Some recent T2I models are trained on proprietary images and captions. As a representative example, SD-3.5-Large is trained on private images captioned with CogView (Zheng et al., 2024), which differ markedly from the texts used to train TIPO. To evaluate model performance in this out-of-domain scenario, we generate 8,192 original tag- and NL-based prompts using the baseline GPT-4o-mini rather than relying on existing prompt datasets. We apply the remaining methods to these prompts and assess their performance.

As shown in Table 2, SD-3.5-Large faithfully generates images that align well with GPT-produced prompts. Consequently, additional optimizations tend to reduce fidelity and introduce more artifacts. Nevertheless, GPT-generated prompts are accurate and lack diversity. TIPO optimization enriches

378
 379 Table 2: Comprehensive performance comparison of TIPO against baselines across different in-domain prompt
 380 types. Metrics are marked with \uparrow (higher is better) or \downarrow (lower is better). For OOD tests, the 'Original' baseline
 381 and the FDD metric was not applicable. In the table, **Aesthetic** refers to Aesthetic Score, **Corrupt** to AI Corrupt
 382 Score, and **Vendi** to Vendi Score. TIPO demonstrates significant improvements, achieving the highest average
 383 rank among all baselines. Best results are in **bold** and second-best are underlined.

Prompt Type / Task	Metric	Original	GPT	MagicPrompt	Promptist	TIPO
In-domain Tag-based Prompts	FDD \downarrow	0.3558	0.5414	0.3247	0.2350	0.2282
	Aesthetic \uparrow	5.0569	6.3676	6.1609	5.9468	<u>6.2571</u>
	Corrupt \downarrow	0.5743	<u>0.2510</u>	0.4976	0.4331	0.0805
	Vendi \uparrow	16.814	8.663	11.901	<u>14.327</u>	13.307
In-domain NL-based (Short)	FDD \downarrow	0.0957	0.1668	<u>0.0980</u>	0.1783	0.1168
	Aesthetic \uparrow	5.8370	6.0589	5.8213	5.7963	<u>5.8531</u>
	Corrupt \downarrow	<u>0.2887</u>	0.3015	0.2936	0.3686	0.2870
	Vendi \uparrow	38.172	34.714	<u>38.155</u>	34.127	37.065
In-domain NL-based (Truncated Long)	FDD \downarrow	0.0955	0.1683	0.1247	0.2096	<u>0.1210</u>
	Aesthetic \uparrow	5.7497	6.0168	5.8191	5.7759	<u>5.8364</u>
	Corrupt \downarrow	<u>0.3132</u>	0.3288	0.3259	0.4075	0.2870
	Vendi \uparrow	38.253	34.811	<u>37.841</u>	33.527	37.090
Out-of-Domain (OOD) Test	Aesthetic \uparrow	N/A	6.7125	<u>6.4507</u>	6.3924	6.0536
	Corrupt \downarrow	N/A	0.0518	0.1423	0.0947	<u>0.0720</u>
	Vendi \uparrow	N/A	8.9718	15.872	<u>16.489</u>	21.571
Overall	Average Rank \downarrow	<u>2.58</u>	3.00	3.00	3.87	2.07

402
 403 Table 3: TIPO on T2I models with undisclosed training data. Significant improvements are in **bold**.

Model	Variant	Aesthetic \uparrow	AI Corrupt \downarrow	FDD \downarrow	Vendi \uparrow
FLUX.1-dev	Original	5.2029	0.1202	0.1185	36.2597
	TIPO	5.2746	0.0938	0.1202	35.6489
Omnigen2	Original	5.2629	0.1110	0.1373	33.7724
	TIPO	5.0661	0.1187	0.1253	34.2681
Lumina-2	Original	5.2588	0.0981	0.1318	34.7599
	TIPO	5.4105	0.0916	0.1286	34.4655
HiDream-II	Original	5.7768	0.1055	0.1444	34.6318
	TIPO	5.8143	0.1019	0.1379	34.3544
Gemini-2.0-Flash-Image	Self-refined	5.2584	0.0928	0.8084	32.7422
	TIPO	5.2649	0.0700	0.7964	32.1136

416
 417 the prompts with additional details that harmonize with the original themes, significantly enhancing
 418 the diversity of the generated images.

419
 420
 421 **Compatibility with other T2I Models** In addition to the above baselines with publicly known
 422 training data, we further evaluate TIPO on recent models with undisclosed training sources:
 423 FLUX.1-dev (black-forest labs, 2024), Omnigen2 (Wu et al., 2025), Lumina-2 (Qin et al.,
 424 2025), HiDream-II (Cai et al., 2025), and Gemini-2.0-flash-image (Google), using 1,000
 425 prompts sampled from the COYO/GBC datasets. Notably, Gemini-2.0-flash-image can perform its
 426 own prompt optimization, making it a strong closed-source baseline. As shown in Table 3, TIPO
 427 generally improves image quality and alignment relative to the baselines. For example, Lumina-2 and
 428 HiDream-II achieve higher aesthetic scores and lower corruption rates after TIPO optimization.
 429 Despite Gemini's integrated optimization, TIPO still yields measurable improvements, highlighting
 430 the practical value of our lightweight, task-specific strategy. Overall, these results demonstrate that
 431 TIPO maintains robust compatibility with heterogeneous T2I models, even when their training data
 432 are unavailable and potentially mismatched with TIPO's optimization corpus.

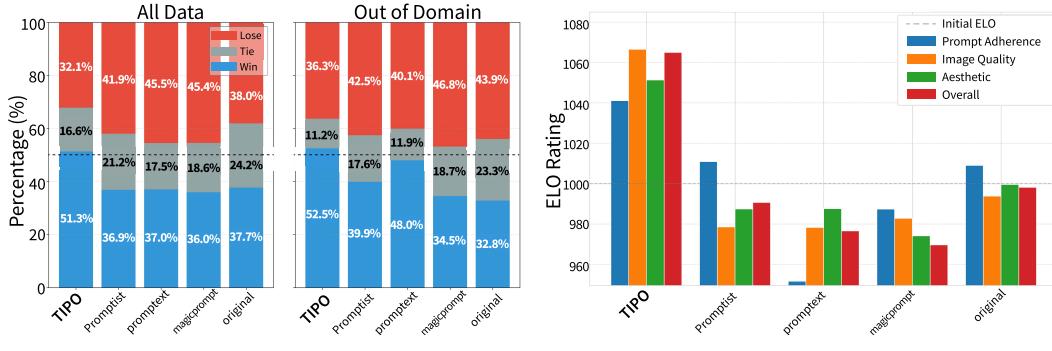
432 **Efficiency** A key concern is whether TIPO’s iterative pre-sampling strategy introduces noticeable
 433 latency. Hence, we benchmark prompt-generation latency in Table 4, where TIPO reduces per-prompt
 434 latency with an improvement up to 29.4%. [Details of training and inference are in Appendix H.4.](#)

Reviewer LKuZ-W3&Q3

Table 4: Prompt generation latency and relative speedup

	TIPO	Promptist	PromptExtend	MagicPrompt
Avg. Time (s)	1.03	1.46	1.38	1.14
TIPO speedup vs. each	—	+29.4%	+25.6%	+9.6%

442 **Human Preference Evaluation** Quantitative metrics may not fully align with human preference.
 443 Therefore, we conducted a user study based on pairwise image comparisons between the original
 444 prompt, MagicPrompt, Promptist, and TIPO on over 1,400 images, gathering preferences from
 445 221 volunteers. As illustrated in Figure 5a, TIPO achieved the highest overall win rate at 51.3%,
 446 significantly outperforming competitors. In out-of-domain scenarios, TIPO’s win rate increased to
 447 52.5%, demonstrating consistently strong user preference across different contexts. For further results
 448 and statistics, please refer to Appendix G.



461 (a) Pairwise comparison results showing win-tie-lose
 462 percentages for overall user preference. Evaluations
 463 cover ‘All Data’ and ‘Out-of-Domain’ sets for TIPO
 464 and baseline methods.

461 (b) ELO ratings comparing TIPO and baseline methods
 462 across four criteria: Prompt Adherence, Image Quality,
 463 Aesthetic, and Overall. The dashed line indicates the
 464 initial ELO rating.

465 Figure 5: Human preference evaluation demonstrates that TIPO consistently achieves higher user
 466 preference compared to baseline prompt optimization methods (Promptist, prompttext, magicprompt,
 467 and original prompts). All evaluated images were generated using SD-3.5-Medium.

Reviewer LKuZ-W1&Q1

470 **Prompt Distribution Alignment** While TIPO consistently achieves the best or competitive results
 471 in image quality, it remains unclear whether such gains arise from a closer distributional alignment
 472 between its optimized prompts and the T2I models’ training text corpora. To verify this hypothesis,
 473 we sample from two representative T2I training sets, obtaining 1,000 natural-language captions from
 474 COYO and 1,000 tag-based captions from Danbooru2023. We then encode ground-truth captions
 475 and the outputs of all compared optimization methods using two widely adopted text encoders—T5-
 476 XXL (Raffel et al., 2020a) (used in SD3, Flux, and PixArt) and `jina-embeddings-v3` (Sturua
 477 et al., 2024) (a popular recent text-embedding model). Finally, we measure the embedding-space
 478 alignment between the ground-truth captions and optimized prompts with Fréchet Distance (FD) and
 479 Maximum Mean Discrepancy (MMD with RBF kernel). As shown in Table 5, baseline methods show
 480 varying extents of alignment across different prompt types, text encoders, and metrics, while TIPO
 481 maintains consistently better alignment under all settings. This indicates that TIPO aligns well with
 482 the T2I training-text distribution in a prompt-compatible and encoder-insensitive manner.

483 **Prompt-Image Alignment** To further assess the semantic consistency between optimized prompts
 484 and their generated images, we compute CLIPScore between each prompt and its corresponding
 485 SD1.5-generated image using `openai/clip-vit-large-patch14-336`, on the same prompt
 sets as in the **Prompt Distribution Alignment** experiment. As shown in Table 6, TIPO achieves

Reviewer LKuZ-W4&Q4

486
487 Table 5: Embedding-space distances (FD and MMD) between optimized prompts and T2I training
488 corpora. Lower is better. Best results are in **bold** and second-best are underlined.

Prompt	Encoder	Metric	TIPO	Promptist	MagicPrompt	GPT-4o-mini
NL-short	Jina	FD	0.0322	0.1003	<u>0.0385</u>	0.1064
		MMD	0.0320	0.1501	<u>0.0624</u>	0.1699
	T5	FD	0.0704	0.2072	0.1441	<u>0.1252</u>
		MMD	0.1438	0.2914	<u>0.1972</u>	0.2297
NL-trunc	Jina	FD	0.0309	0.1192	<u>0.0493</u>	0.0963
		MMD	0.0359	0.1700	<u>0.0772</u>	0.1642
	T5	FD	0.0674	0.2312	0.1884	<u>0.1276</u>
		MMD	0.1404	0.3147	<u>0.2270</u>	0.2323
Tag-based	Jina	FD	0.1094	<u>0.1891</u>	0.1958	0.2479
		MMD	0.1539	0.2473	<u>0.2415</u>	0.3050
	T5	FD	0.0524	0.2080	0.2578	<u>0.0728</u>
		MMD	0.1846	0.3573	0.3948	<u>0.2194</u>

504
505 Table 6: CLIPScore between optimized prompts and T2I generated images. Higher is better. Best
506 results are in **bold** and second-best are underlined.

Prompt Type	TIPO	MagicPrompt	GPT-4o-mini	Promptist
Tag-based	0.2217	<u>0.1782</u>	0.1774	0.1642
NL-short	<u>0.2413</u>	0.2834	0.2378	0.2347
NL-trunc	<u>0.2310</u>	0.2517	0.2275	0.2063

514 the strongest alignment for tag-based prompts. While MagicPrompt shows clear advantages on
515 NL-based prompts, this is likely due to its 1.8M+ SD1.5 community training corpus, where prompts
516 are typically explicit and stylistically strong, effectively eliciting the CLIP encoder to produce high
517 alignment scores. However, such stylistic bias is often less preferred by mainstream users. In contrast,
518 TIPO attains competitive performance on NL-based prompts without such bias, as reflected by the
519 win rate in Table 11, where MagicPrompt vs. TIPO = 11:48.

6 CONCLUSION

523 We introduced TIPO, a lightweight prompt pre-sampling framework designed for efficient real-world
524 Text-to-Image (T2I) applications. By aligning user prompts with the intrinsic distributions of T2I
525 training datasets, TIPO enhances semantic coherence, image fidelity, and diversity with minimal
526 inference overhead. Experimental results show that TIPO consistently outperforms existing prompt
527 optimization methods across multiple evaluation metrics, while extensive user studies confirm its
528 strong alignment with human preferences. Despite these promising results, several aspects remain
529 open for future exploration, such as generalization to out-of-distribution user input, model-specific
530 adaptation, personalization, image-feedback-aware refinement, and large-scale model scaling. We
531 discuss these limitations and potential extensions in Appendix J. To encourage wider adoption and
532 facilitate reproducibility, we release our trained models and source code. We hope TIPO will inspire
533 further advancements in efficient, scalable, and robust generative frameworks for creative systems.

534
535
536
537
538
539
Reviewer
LKuZ-W2&Q2
Reviewer
TMB7-W1&Q1&Q2
Reviewer TZN3-W2

540 ETHICS STATEMENT
541

542 Our work democratizes prompt optimization for text-to-image models, but automatic prompt enrichment
543 can inherit biases from training data or be misused to produce misleading or harmful content.
544 We therefore emphasize responsible use, including bias mitigation, transparency, and appropriate
545 user controls. No human subjects or sensitive personal data were involved, and we avoided including
546 identifiers or metadata that could raise copyright- or attribution-related concerns.

548 REPRODUCIBILITY STATEMENT
549

550 An anonymized repository with code and configuration files is provided in the supplementary materials,
551 enabling reproduction of all reported results. The main paper and appendix reference the exact
552 experimental settings, hyperparameters, random seeds, and evaluation scripts; data preprocessing
553 steps and any additional resources needed to re-create the experiments are also documented there.
554 For hardware, we report that all experiments were conducted on NVIDIA RTX 3090 and/or A6000
555 GPUs, with full details described in the appendix and repository.

557 REFERENCES
558

559 Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jessica
560 Chudnovsky, Diogo Costa, Baudouin De Moncault, Saurabh Garg, Theophile Gervet, Soham
561 Ghosh, Amélie Héliou, Paul Jacob, Albert Q. Jiang, Kartik Khandelwal, Timothée Lacroix,
562 Guillaume Lample, Diego Las Casas, Thibaut Lavril, Teven Le Scao, Andy Lo, William Marshall,
563 Louis Martin, Arthur Mensch, Pavankumar Muddireddy, Valera Nemychnikova, Marie Pellat,
564 Patrick Von Platen, Nikhil Raghuraman, Baptiste Rozière, Alexandre Sablayrolles, Lucile Saulnier,
565 Romain Sauvestre, Wendy Shang, Roman Soletskyi, Lawrence Stewart, Pierre Stock, Joachim
566 Studnia, Sandeep Subramanian, Sagar Vaze, Thomas Wang, and Sophia Yang. Pixtral 12b, 2024.
567 URL <https://arxiv.org/abs/2410.07073>.

568 AI@Meta. Llama 3 model card. 2024. URL [https://github.com/meta-llama/llama3/
569 blob/main/MODEL_CARD.md](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md).

570 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
571 *arXiv preprint arXiv:2209.15571*, 2022.

572 AUTOMATIC. promptgen-lexart. [https://huggingface.co/AUTOMATIC/
573 promptgen-lexart](https://huggingface.co/AUTOMATIC/promptgen-lexart), 2022.

575 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
576 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
577 *arXiv preprint arXiv:2308.12966*, 2023.

578 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
579 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
580 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

581 black-forest labs. black-forest-labs/flux: Official inference repo for FLUX.1 models. [https://
582 /github.com/black-forest-labs/flux](https://github.com/black-forest-labs/flux), 2024.

584 David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of machine
585 Learning research*, 3(Jan):993–1022, 2003.

586 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
587 of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment*, 2008
588 (10):P10008, 2008.

589 Phillip Bonacich. Factoring and weighting approaches to status scores and clique identification.
590 *Journal of Mathematical Sociology*, 2(1):113–120, 1972.

592 Qi Cai, Jingwen Chen, Yang Chen, Yehao Li, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Yiheng
593 Zhang, Fengbin Gao, Peihan Xu, et al. Hidream-i1: A high-efficient image generative foundation
model with sparse diffusion transformer. *arXiv preprint arXiv:2505.22705*, 2025.

594 CaptionEmporium. CaptionEmporium/coyo-hd-11m-llavanext. <https://huggingface.co/datasets/CaptionEmporium/coyo-hd-11m-llavanext>, 2024.

595

596

597 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing
598 web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.

599

600 Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
601 Luo, Huchuan Lu, and Zhengu Li. Pixart- Σ : Weak-to-strong training of diffusion transformer for
602 4k text-to-image generation, 2024a. URL <https://arxiv.org/abs/2403.04692>.

603

604 Junsong Chen, Jincheng YU, Chongjian GE, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
605 Ping Luo, Huchuan Lu, and Zhengu Li. Pixart- α : Fast training of diffusion transformer for
606 photorealistic text-to-image synthesis. In *The Twelfth International Conference on Learning
Representations*, 2024b. URL <https://openreview.net/forum?id=eAKmQPe3m1>.

607

608 Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki,
609 Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. NvIm: Open frontier-class multimodal llms.
arXiv preprint arXiv:2409.11402, 2024.

610

611 daspartho. prompt-extend. <https://huggingface.co/daspartho/prompt-extend>,
612 2022.

613

614 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
615 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
616 weights and open data for state-of-the-art multimodal models. *arXiv preprint arXiv:2409.17146*,
2024.

617

618 discuss0434. aesthetic-predictor-v2-5: SigLIP-based Aesthetic Score Predictor. <https://github.com/discuss0434/aesthetic-predictor-v2-5>, 2024.

619

620 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
621 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
622 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
2024a.

623

624 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
625 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
626 Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow trans-
627 formers for high-resolution image synthesis, 2024b. URL <https://arxiv.org/abs/2403.03206>.

628

629 Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
630 learning. *arXiv preprint arXiv:2210.02410*, 2022.

631

632 Georgi Gerganov. GitHub - ggerganov/llama.cpp: LLM inference in C/C++ — github.com/ggerganov/llama.cpp, 2023.

633

634 Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
635 Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie
636 Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong
637 Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi
638 Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao
639 Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song,
640 Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao
641 Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
642 Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024. URL
643 <https://arxiv.org/abs/2406.12793>.

644

645 Aditi Godbole, Jabin Geevarghese George, and Smita Shandilya. Leveraging long-context large
646 language models for multi-document understanding and summarization in enterprise applications,
647 2024. URL <https://arxiv.org/abs/2409.18454>.

648

649 Google. gemini-2.0-flash-preview-image-generation. Accessed: 2025-09.

648 Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
 649 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=BsZNWXD3a1>.
 650

651 John A Hartigan, Manchek A Wong, et al. A k-means clustering algorithm. *Applied statistics*, 28(1):
 652 100–108, 1979.

653 Yutong He, Alexander Robey, Naoki Murata, Yiding Jiang, Joshua Nathaniel Williams, George J.
 654 Pappas, Hamed Hassani, Yuki Mitsuji, Ruslan Salakhutdinov, and J. Zico Kolter. Automated
 655 black-box prompt engineering for personalized text-to-image generation. *Trans. Mach. Learn.
 656 Res.*, 2025, 2025. URL <https://openreview.net/forum?id=IVYVDN6pJ6>.
 657

658 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 659 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In
 660 I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.
 661

662 Yu-Guan Hsieh, Cheng-Yu Hsieh, Shih-Ying Yeh, Louis Béthune, Hadi Pour Ansari, Pavan Ku-
 663 mar Anasosalu Vasu, Chun-Liang Li, Ranjay Krishna, Oncel Tuzel, and Marco Cuturi. Graph-
 664 based captioning: Enhancing visual descriptions by interconnecting region captions, 2024. URL
 665 <https://arxiv.org/abs/2407.06723>.
 666

667 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 668 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 669

670 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
 671 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
 672 Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL <https://doi.org/10.5281/zenodo.5143773>. If you use this software, please cite it as below.
 673

674 Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiaohui Jiang, Yanchao Li, and Liang Zhao.
 675 Latent dirichlet allocation (lda) and topic modeling: models, applications, a survey, 2018. URL
 676 <https://arxiv.org/abs/1711.04305>.
 677

678 Seunghun Lee, Jihoon Lee, Chan Ho Bae, Myung-Seok Choi, Ryong Lee, and Sangtae Ahn. Opti-
 679 mizing prompts using in-context few-shot learning for text-to-image generative models. *IEEE
 680 Access*, 12:2660–2673, 2024. doi: 10.1109/ACCESS.2023.3348778.
 681

682 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 683 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv preprint
 684 arXiv:2408.03326*, 2024a.
 685

686 Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
 687 Xingchao Liu, Minbin Huang, Zedong Xiao, Dayou Chen, Jiajun He, Jiahao Li, Wenyue Li, Chen
 688 Zhang, Rongwei Quan, Jianxiang Lu, Jiabin Huang, Xiaoyan Yuan, Xiaoxiao Zheng, Yixuan
 689 Li, Jihong Zhang, Chao Zhang, Meng Chen, Jie Liu, Zheng Fang, Weiyang Wang, Jinbao Xue,
 690 Yangyu Tao, Jianchen Zhu, Kai Liu, Sihuan Lin, Yifu Sun, Yun Li, Dongdong Wang, Mingtao
 691 Chen, Zhichao Hu, Xiao Xiao, Yan Chen, Yuhong Liu, Wei Liu, Di Wang, Yong Yang, Jie Jiang,
 692 and Qinglin Lu. Hunyuan-dit: A powerful multi-resolution diffusion transformer with fine-grained
 693 chinese understanding, 2024b. URL <https://arxiv.org/abs/2405.08748>.
 694

695 Zongyu Lin, Wei Liu, Chen Chen, Jiasen Lu, Wenze Hu, Tsu-Jui Fu, Jesse Allardice, Zhengfeng Lai,
 696 Liangchen Song, Bowen Zhang, et al. Stiv: Scalable text and image conditioned video generation.
 697 *arXiv preprint arXiv:2412.07730*, 2024.
 698

699 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 700 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 701

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
 Qixiang Ye, and Fang Wan. Timestep embedding tells: It's time to cache for video diffusion model.
 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7353–7363, 2025.

702 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
 703 In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Ad-*
 704 *vances in Neural Information Processing Systems*, volume 36, pp. 34892–34916. Curran Asso-
 705 *ciates, Inc.*, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf.

706

707 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 708 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

709

710

711 Shihong Liu, Samuel Yu, Zhiqiu Lin, Deepak Pathak, and Deva Ramanan. Language models as
 712 black-box optimizers for vision-language models. In *IEEE/CVF Conference on Computer Vision*
 713 *and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 12687–12697.
 714 IEEE, 2024b. doi: 10.1109/CVPR52733.2024.01206. URL <https://doi.org/10.1109/CVPR52733.2024.01206>.

715

716 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 717 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

718

719 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

720

721 Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
 722 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=Skq89Scxx>.

723

724 Oscar Mañas, Pietro Astolfi, Melissa Hall, Candace Ross, Jack Urbanek, Adina Williams, Aishwarya
 725 Agrawal, Adriana Romero-Soriano, and Michal Drozdzal. Improving text-to-image consistency
 726 via automatic prompt optimization, 2024. URL <https://arxiv.org/abs/2403.17804>.

727

728 Rada Mihalcea and Paul Tarau. TextRank: Bringing order into text. In Dekang Lin and Dekai Wu
 729 (eds.), *Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing*,
 730 pp. 404–411, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL
<https://aclanthology.org/W04-3252>.

731

732 Wenyi Mo, Tianyu Zhang, Yalong Bai, Bing Su, Ji-Rong Wen, and Qing Yang. Dynamic prompt
 733 optimizing for text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer*
734 Vision and Pattern Recognition, pp. 26627–26636, 2024.

735

736 narugo1992. Ai-corrupt score for anime images. https://huggingface.co/deepghs/ai_image_corrupted, 2023.

737

738 nyanko202. Danbooru2023: A large-scale crowdsourced and tagged anime illustration dataset.
<https://huggingface.co/datasets/nyanko7/danbooru2023>, 2023.

739

740 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.

741

742 Maxime Oquab, Timothée Darcret, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 743 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
 744 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 745 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut,
 746 Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 2023.

747

748 Juan Ossa, Eren Doğan, Alex Birch, and F Johnson. Improvements to sdxl in novelai diffusion v3.
arXiv preprint arXiv:2409.15997, 2024.

749

750 Sang Hyun Park, Jun Young Koh, Junha Lee, Joy Song, Dongha Kim, Hoyeon Moon, Hyunju
 751 Lee, and Min Song. Illustrious: an open advanced illustration model, 2024. URL <https://arxiv.org/abs/2409.19946>.

752

753 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 754 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 755 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
<https://openreview.net/forum?id=di52zR8xgf>.

756 Qi Qin, Le Zhuo, Yi Xin, Ruoyi Du, Zhen Li, Bin Fu, Yiting Lu, Jiakang Yuan, Xinyue Li, Dongyang
 757 Liu, et al. Lumina-image 2.0: A unified and efficient image generative framework. *arXiv preprint*
 758 *arXiv:2503.21758*, 2025.

759 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 760 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 761 models from natural language supervision. In *International conference on machine learning*, pp.
 762 8748–8763. PMLR, 2021.

763 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 764 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 765 transformer. *J. Mach. Learn. Res.*, 21:140:1–140:67, 2020a.

766 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 767 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 768 transformer. *Journal of machine learning research*, 21(140):1–67, 2020b.

769 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
 770 Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang
 771 (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
 772 *Proceedings of Machine Learning Research*, pp. 8821–8831. PMLR, 18–24 Jul 2021.

773 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 774 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.

775 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 776 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 777 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022a.

778 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 779 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 780 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022b.

781 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 782 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J
 783 Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep lan-
 784 guage understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
 785 (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 36479–36494. Curran
 786 Associates, Inc., 2022.

787 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
 788 URL <https://arxiv.org/abs/2202.00512>.

789 Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
 790 Fast high-resolution image synthesis with latent adversarial diffusion distillation, 2024. URL
 791 <https://arxiv.org/abs/2403.12015>.

792 Zhan Shi, Xu Zhou, Xipeng Qiu, and Xiaodan Zhu. Improving image captioning with better use of
 793 captions, 2020. URL <https://arxiv.org/abs/2006.11807>.

794 George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Vil-
 795 lecroze, Zhaoyan Liu, Anthony L. Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Expos-
 796 ing flaws of generative model evaluation metrics and their unfair treatment of diffusion mod-
 797 els. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 798 <https://openreview.net/forum?id=08zf7kTOoh>.

799 Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. Exploring topic coherence
 800 over many models and many topics. In Jun’ichi Tsujii, James Henderson, and Marius Paşa
 801 (eds.), *Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language*
 802 *Processing and Computational Natural Language Learning*, pp. 952–961, Jeju Island, Korea,
 803 July 2012. Association for Computational Linguistics. URL <https://aclanthology.org/D12-1087>.

810 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,
 811 Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, and Han Xiao. jina-embeddings-
 812 v3: Multilingual embeddings with task lora. *CoRR*, abs/2409.10173, 2024.

813 succinctly. text2image-prompt-generator. <https://huggingface.co/succinctly/text2image-prompt-generator>, 2022.

814 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 815 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 816 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 817 models, 2023a. URL <https://arxiv.org/abs/2302.13971>.

818 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 819 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 820 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 821 Wenyan Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 822 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 823 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 824 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 825 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 826 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 827 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 828 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 829 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 830 2023b. URL <https://arxiv.org/abs/2307.09288>.

831 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 832 Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
 833 *arXiv preprint arXiv:2506.18871*, 2025.

834 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
 835 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
 836 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 837 4818–4829, 2024.

838 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
 839 Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
 840 transformers. *arXiv preprint arXiv:2410.10629*, 2024.

841 Shih-Ying Yeh. HakuBooru: text-image dataset maker for anime-style images. <https://github.com/KohakuBlueleaf/HakuBooru>, 2024a.

842 Shih-Ying Yeh. danbooru2023-webp-4Mpixel. <https://huggingface.co/datasets/KBlueLeaf/danbooru2023-webp-4Mpixel>, 2024b.

843 Mingyang Yi, Aoxue Li, Yi Xin, and Zhenguo Li. Towards understanding the working mechanism of
 844 text-to-image diffusion model. *Advances in Neural Information Processing Systems*, 37:55342–
 845 55369, 2024.

846 Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for document
 847 datasets. In *Proceedings of the Eleventh International Conference on Information and Knowledge
 848 Management*, CIKM '02, pp. 515–524, New York, NY, USA, 2002. Association for Computing
 849 Machinery. ISBN 1581134924. doi: 10.1145/584792.584877. URL <https://doi.org/10.1145/584792.584877>.

850 Wendi Zheng, Jiayan Teng, Zhuoyi Yang, Weihan Wang, Jidong Chen, Xiaotao Gu, Yuxiao Dong,
 851 Ming Ding, and Jie Tang. Cogview3: Finer and faster text-to-image generation via relay diffusion,
 852 2024. URL <https://arxiv.org/abs/2403.05121>.

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

Appendix

873

TABLE OF CONTENTS

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

A	Dataset/Resource	19
A.1	Danbooru2023	19
A.2	GBC10M	19
A.3	Coyo HD 11M	19
B	Baselines/T2I models	19
B.1	Prompt-Optimization Baselines	19
B.2	T2I Models	20
C	TIPO Implementation Details	21
C.1	TIPO Training Data Construction	21
C.2	TIPO Training Settings and Model Configurations	22
C.3	TIPO Inference Settings	23
C.4	Impact of Model Size on Performance	24
C.5	Impact of Model Size on Inference Speed	24
D	Evaluation Statistics	25
D.1	In-domain test regarding scenery tag	25
D.2	In-domain prompt generation test	26
D.3	Out-of-domain evaluation	28
D.4	Ablation Test	31
E	TIPO example	32
F	Image Examples	35
F.1	In-domain test regard to scenery tag	35
F.2	In-domain prompt generation test	35
G	Human Preference	36
G.1	User Interface for Human Preference Evaluation	39
G.2	Extended Human Evaluation	39
G.3	ELO Ratings	39
G.4	Human Preference ELO Method	39

918	G.5 Statistical Significance	40
919	G.6 Survey Response Examples	41
920	G.7 Conclusion	44
921		
922		
923	H Ablation Study on TIPO	45
924		
925	H.1 Experimental Setup	45
926	H.2 Evaluation Metrics	45
927	H.3 Results & Discussion	46
928	H.4 Speed Test and Overhead Analysis	46
929	H.5 Conclusion of Ablation	47
930		
931	I Topic Distribution Visualization	47
932		
933	J Discussion and Future Work	50
934		
935	K Disclosure of LLM Usage	50
936		
937		
938		
939		
940		
941		
942		
943		
944		
945		
946		
947		
948		
949		
950		
951		
952		
953		
954		
955		
956		
957		
958		
959		
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		

972 **A DATASET/RESOURCE**
973974 **A.1 DANBOORU2023**
975976 The Danbooru2023 dataset (Yeh, 2024b;a; nyanko202, 2023) is an extensive collection of images
977 and their corresponding tags, compiled from the Danbooru image board. This dataset includes
978 images annotated with particular and detailed tags, providing a rich resource for training both the
979 Text-to-Image (T2I) and Large Language Models (LLMs) involved in the TIPO framework. The
980 dataset contains data up to image ID 7,349,999, encompassing various visual content with granular
981 annotations. These annotations allow for creating nuanced and precise prompts, ensuring that longer,
982 more detailed prompts can indicate subsets of shorter prompts.
983984 **Key Characteristics:**
985986

- **Rich Annotations:** Detailed tags differentiate subtle variations, crucial for specific image
987 generation.
- **Large Volume:** Extensive dataset size ensures diverse training examples.
- **Tag-Based Prompting:** Refined prompts from detailed tags enhance image generation
991 accuracy.

992 **A.2 GBC10M**
993994 The GBC10M dataset (Hsieh et al., 2024) is a large-scale collection of 10 million images sourced from
995 CC12M (Changpinyo et al., 2021), annotated using the Graph-Based Captioning (GBC) approach.
996 Each image is represented by a graph where nodes correspond to object regions, compositions, and
997 relations, and edges define their hierarchical relationships. Annotations are generated automatically
998 through a pipeline leveraging pretrained multimodal large language models (MLLM) and object
999 detection tools. The GBC structure enhances traditional image captions by providing detailed
1000 descriptions and structural information. Data is provided in JSON lines format, including image
1001 URLs, bounding boxes, and captions.1002 In TIPO, only the root node captions from GBC10M are utilized for concise yet descriptive prompts.
10031004 **A.3 COYO HD 11M**
10051006 The Coyo HD 11M dataset (CaptionEmporium, 2024) consists of 11.4 million high-resolution,
1007 high-concept-density images paired with 22.8 million synthetic captions generated from the Coyo-
1008 700M dataset. Images maintain a minimum of 512 pixels on the shortest edge to ensure high visual
1009 quality. Captions, generated with the LLaVA-Next-8B model (Liu et al., 2024a) based on LLaMA
1010 3 (AI@Meta, 2024), undergo post-processing for conciseness and clarity.1011 TIPO uses short and long captions, booru tags, and open image tags from this dataset.
10121013 **B BASELINES/T2I MODELS**
10141015 **B.1 PROMPT-OPTIMIZATION BASELINES**
10161018 **GPT-4o-mini.** GPT-4o-mini(OpenAI, 2024) is a multimodal model introduced by OpenAI in July
1019 2024 as a cost-efficient variant of GPT-4o. It supports a 128k-token context window and up to 16k
1020 output tokens, trained on text and vision data. In this paper, it serves as a zero-shot rewriting baseline
1021 for prompt refinement.1022 **MagicPrompt.** MagicPrompt(daspartho, 2022) fine-tunes GPT-2 models on large-scale,
1023 community-collected prompts (e.g., from Lexica.art and the Stable Diffusion Prompts dataset).
1024 It learns to generate extended prompts with richer descriptive content, originally designed to improve
1025 prompt quality for Stable Diffusion.

1026 **Promptist.** Promptist(Hao et al., 2023) is a reinforcement learning framework for prompt optimization.
 1027 Starting from a seed prompt, it generates refined prompts using supervised pre-training and
 1028 reinforcement learning, guided by aesthetic and semantic alignment rewards. It consistently improves
 1029 model-preferred prompt quality when paired with diffusion backbones.
 1030

1031 **Gemini-2.0-Flash-Image.** Gemini-2.0-Flash-Image⁴ is a variant of Google’s Gemini 2.0 Flash
 1032 family with native image generation support. It provides both prompt-refinement and text-to-image
 1033 generation within a single model, supporting high-fidelity text rendering, compositional control, and
 1034 iterative editing. Unlike other baselines, it functions as both optimizer and generator.
 1035

1036 **B.2 T2I MODELS**

1037 **SDXL** Stable Diffusion XL (SDXL) (Podell et al., 2024) improves upon earlier models (Rombach
 1038 et al., 2022b) with a more considerable UNet backbone and dual text encoders (CLIP ViT-L (Radford
 1039 et al., 2021) and OpenCLIP ViT-bigG (Ilharco et al., 2021)), enhancing text conditioning. Supporting
 1040 resolutions up to 1024×1024, SDXL accepts natural language prompts and tags, suitable for diverse
 1041 image generation.
 1042

1043 In this paper, three SDXL models are used without the refiner model:⁵ SDXL-base-1.0⁶, Illustrious
 1044 v3.5 - vpred⁷, and Kohaku-Zeta⁸.
 1045

1046 **Illustrious** Illustrious is a series of fine-tuned Stable Diffusion XL models primarily trained on
 1047 the Danbooru2023 dataset. In this study, we specifically employ the v3.5 version variant with v-
 1048 parameterization (Salimans & Ho, 2022), which is notable for its extensive incorporation of natural
 1049 language prompts. The inclusion of both tag-based and natural language formats allows Illustrious to
 1050 leverage a broad range of semantic knowledge for image generation.
 1051

1052 Within TIPO, we perform an ablation study to analyze the effectiveness of different prompting
 1053 strategies—namely extended tags versus natural language prompts—to identify which approach
 1054 contributes most significantly to enhanced image generation performance.
 1055

1056 **Stable Diffusion 3.5** Stable Diffusion 3.5 (SD-3.5) incorporates the MMDiT architecture (Esser
 1057 et al., 2024a) and the Rectified Flow formulation (Liu et al., 2022; Albergo & Vanden-Eijnden,
 1058 2022; Lipman et al., 2022) for improved text-to-image generation. Utilizing triple text encoders
 1059 (CLIP/ViT-L, OpenCLIP/ViT-G, T5-XXL (Raffel et al., 2020b)), SD-3.5 supports resolutions up to
 1060 1024×1024 and uses a 50/50 mix of original and CogVLM-generated captions. Figures confirm the
 1061 capability to process both natural language prompts and tags.
 1062

1063 This study employs SD-3.5-Large⁹ (8B parameters) with FP8 inference on RTX 3090 or RTX 4090
 1064 GPUs.
 1065

1066 **FLUX.1-dev** FLUX.1-dev is an open-weights text-to-image model released by Black Forest Labs
 1067 as a guidance-distilled variant of their FLUX.1 family, targeting research and non-commercial
 1068 use (black-forest labs, 2024). Architecturally, FLUX adopts a transformer-based rectified-flow formu-
 1069 lation (Lipman et al., 2022) with a hybrid stack of multimodal/parallel diffusion transformer blocks
 1070 and rotary position encodings, scaled to ~12B parameters, emphasizing prompt adherence, typog-
 1071 raphy, and aspect-ratio flexibility (black-forest labs, 2024). We use the FLUX.1-dev checkpoint
 1072 for T2I without additional refiners; it accepts both natural-language prompts and tag-like inputs and
 1073 supports resolutions in the 0.1–2.0 MP range.¹⁰
 1074

1075 **OmniGen2** OmniGen2 is a unified multimodal generator that decouples autoregressive text mod-
 1076 elling from diffusion-based image generation via two distinct pathways with unshared parameters
 1077

⁴<https://developers.googleblog.com/experiment-with-gemini-20-flash-native-image-generation/>

⁵<https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0>

⁶<https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0>

⁷<https://OnomaAIResearch/Illustrious-xl-early-release-v0>

⁸<https://huggingface.co/KBlueLeaf/Kohaku-XL-Zeta>

⁹<https://huggingface.co/stabilityai/stable-diffusion-3.5-large>

¹⁰<https://huggingface.co/black-forest-labs/FLUX.1-dev>

(Wu et al., 2025). The diffusion side conditions on hidden states from the MLLM while *exclusively* feeding VAE features into the diffusion decoder to preserve low-level fidelity; a 3D rotary scheme (Omni-RoPE) disentangles sequence ID and 2D spatial coordinates to stabilize editing and in-context generation (Wu et al., 2025). Beyond standard T2I, OmniGen2 natively supports image editing and subject-driven in-context generation, and introduces a reflection mechanism/dataset to iteratively refine outputs.

Lumina-Image 2.0 Lumina-Image 2.0 proposes a unified and efficient T2I framework built on *Unified Next-DiT*—a single-stream DiT that performs joint self-attention over text and image tokens—paired with a task-tailored *Unified Captioner* (UniCap) that produces multi-granularity, multi-lingual captions for training (Qin et al., 2025). The model employs Multimodal RoPE, progressive resolution training (256→1024), and efficient inference (CFG-Renorm/Trunc (Lin et al., 2024; Yi et al., 2024), Flow-DPM-Solver (Xie et al., 2024), TeaCache (Liu et al., 2025)) to improve prompt-following and speed at only ~2.6B parameters (Qin et al., 2025).

HiDream-II HiDream-II is a 17B-parameter image foundation model based on a *sparse* Diffusion Transformer with dynamic Mixture-of-Experts (MoE) (Cai et al., 2025). It employs a dual-stream (text/image) sparse DiT for separate encoding followed by a single-stream sparse DiT to fuse modalities efficiently; hybrid text encoders (e.g., CLIP-L/14, CLIP-G/14, T5-XXL) and an LLM aggregator provide robust conditioning (Cai et al., 2025). The suite includes `I1-Full` (50+ steps), `I1-Dev` (guidance-distilled, 28 steps), and `I1-Fast` (14 steps), with a GAN-powered diffusion distillation to retain sharpness at low step counts.

C TIPO IMPLEMENTATION DETAILS

In this appendix, we provide all the necessary details including our dataset construction process, model configurations, inference pipeline, and the model’s properties not mentioned in Section 4.2 and 4.3.

C.1 TIPO TRAINING DATA CONSTRUCTION

This section details our methodology for constructing and preprocessing training data to ensure robust model performance across various input scenarios.

Length Control To systematically control output prompt length, we implement a structured length categorization system using unique length tags. These tags enforce specific constraints on tag counts and natural language sentence lengths. For instance, the `<long>` tag specifies that the corresponding prompt must contain between 36 and 52 tags (inclusive), accompanied by 4 to 8 sentences of natural language description. We define four distinct length categories, each with strict bounds for tag count and sentence length.

Type	Very Short	Short	Long	Very Long
Tags (count)	18	36	48	72
NL (sentences)	2	4	8	18

Table 7: Maximum length specifications for each category and caption type. For each category, the actual count/length must not exceed these values.

Random Augmentation To enhance input diversity and better simulate real-world usage patterns, we implement several data augmentation strategies:

- **Metadata Tags:** For tags representing image metadata (e.g., artist, character, aspect ratio), we employ two randomization techniques:
 - Random removal of metadata tags
 - Random repositioning of metadata tags to the end of the prompt, after all content-related descriptions

	TIPO-100M	TIPO-200M stage1	TIPO-200M stage2	TIPO-500M
Architecture		LLaMA		
Type	Pretrain	Pretrain	Finetune	Pretrain
Vocab Size		32013		
Hidden Dim	640	768	-	1280
Attention Heads	10	12	-	20
MLP Dim	2240	2304	-	3840
Hidden Layers	10	20	-	20
Model Parameters	100M	203M	-	508M
Max Learning Rate	5e-4	2e-4	5e-5	2e-4
Optimizer		AdamW		
LR scheduler		Cosine Annealing LR		
betas		0.9, 0.98		
weight decay		0.01		
Dataset	Coyo, GBC, Dan	GBC, Dan	Coyo, GBC, Dan	Coyo, GBC, Dan
Epoch	1	5	3	5
max context length	512	512	1024	1024
global batch size	1024	2048	2048	3584
Token Seen	6.0240B	22.625B	18.339B	31.274B
Hardware	4 × RTX3090	4 × RTX3090	4 × RTX3090	8 × H100
Training Time (wall)	22.5 hour	150 hour	270 hour	100 hour

Table 8: Training settings for TIPO models. The datasets include CoyoHD11M (Coyo), GBC10M (GBC), and Danbooru2023 (Dan). Stage 2 additionally incorporates Pixtral (Agrawal et al., 2024) to generate NL captions from Danbooru2023 dataset.

This approach encourages the model to handle varying metadata positions and availability, while maintaining the ability to infer metadata relationships from content descriptions.

- **Content Tags:** For tags describing image content (e.g., objects, actions, attributes), we implement:
 - Random shuffling of tag order within the content section
 - Length-based truncation to meet target length constraints while preserving key content information
- **Natural Language:** For natural language descriptions exceeding length limitations, we employ selective sentence removal, targeting middle sentences to preserve context-setting opening sentences and concluding details. This maintains coherent narrative flow while meeting target length requirements.

These augmentation strategies create a more diverse training dataset that better reflects real-world prompt variations, improving the model’s robustness and adaptability to different input styles and formats.

C.2 TIPO TRAINING SETTINGS AND MODEL CONFIGURATIONS

Tokenizer and Task Tokens TIPO employs a vocabulary derived from LLaMA2 (Touvron et al., 2023b) consisting of 32,000 tokens, with additional tokens (13 tokens) specifically designated for task and length control or placeholders. This extended vocabulary includes task identifiers and length modifiers to ensure flexibility across different prompt types:

- **Placeholder Token (1 token):**

<|empty|>

- **Task Tokens (8 tokens):**

<|gen_meta|>, <|tag_to_long|>, <|short_to_tag|>,
 <|long_to_tag|>, <|short_to_long|>, <|short_to_tag_to_long|>,
 <|short_to_long_to_tag|>, <|tag_to_short_to_long|>

- **Length Tokens (4 tokens):**

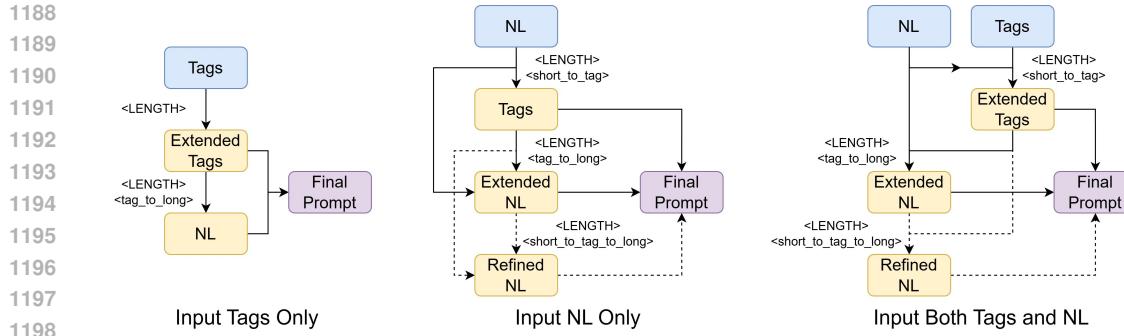


Figure 6: TIPO inference workflow, with solid arrows denoting the primary generation steps and dashed arrows indicating alternative generation paths within the same cycle. $\langle \text{TOKEN} \rangle$ represents special tokens, with all tokens detailed in Section C.2.

$\langle \text{very_short} \rangle, \langle \text{short} \rangle, \langle \text{long} \rangle, \langle \text{very_long} \rangle$

Optimizer and Learning Schedule Training is performed using the AdamW optimizer (Loshchilov, 2017), with a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2017). The optimizer parameters include $\beta_1 = 0.9$, $\beta_2 = 0.98$, and a weight decay of 0.01. Maximum learning rates are adjusted per model size, as outlined in Table 8.

Training Configurations TIPO models are trained in multiple stages. Table 8 summarizes the configurations for pretraining and fine-tuning TIPO-100M, TIPO-200M, and TIPO-500M. Both pretraining and fine-tuning was conducted on datasets like Danbooru2023 (nyanko202, 2023), GBC10M (Hsieh et al., 2024), and CoyoHD11M (CaptionEmporium, 2024).

Augmented Task Representation Each dataset entry undergoes random task assignment and splitting to simulate a wide range of input-output mappings, effectively increasing the dataset size. For example, a single entry may contribute to tasks like `short_to_tag` or `tag_to_long`, with length modifiers dynamically controlling the output verbosity. This approach ensures the model can handle diverse tasks while maintaining robust generalization.

Hardware and Time Requirements Training was conducted on NVIDIA RTX3090 GPUs for smaller models and H100 GPUs for TIPO-500M. Total wall-clock training times ranged from 22.5 hours for TIPO-100M to 270 hours for fine-tuning TIPO-200M.

Token Seen and Effective Training Non-padding tokens are used to measure the effective token count during training, ensuring efficiency given the short and variable data lengths. Table 8 details the total tokens seen per model and training stage, illustrating the comprehensive exposure to diverse data entries.

C.3 TIPO INFERENCE SETTINGS

Sampling Strategy We employ a hybrid stochastic decoding strategy combining nucleus sampling ($\text{top-}p = 0.95$) and $\text{top-}k = 60$ filtering. This follows standard practice in open-ended text generation, as adopted in the official Hugging Face generation examples¹¹. This hybrid approach maintains diversity while preserving coherence, preventing both overly deterministic and excessively noisy generations.

Reviewer LKuZ-Q. Sampling Strategy

Inference Pipeline The TIPO inference pipeline is designed to handle various input types and scenarios, combining different tasks to refine or expand both tag-based and natural language prompts. Figure 6 illustrates this comprehensive workflow. Our framework processes tags and natural language

¹¹Hugging Face. “Usage — transformers 2.11.0 documentation.” Example of text generation with XLNet uses $\text{top-}p = 0.95$ and $\text{top-}k = 60$. <https://huggingface.co/transformers/v2.11.0/usage.html>

1242 inputs separately, allowing for specialized handling of each input type. This flexible pipeline allows
 1243 TIPO to adapt to various input scenarios, whether the user provides tags, natural language descriptions,
 1244 or both. By leveraging different task combinations, TIPO ensures that tag-based and natural language
 1245 prompts are optimized, resulting in more detailed and effective input for text-to-image models.
 1246

1247 C.4 IMPACT OF MODEL SIZE ON PERFORMANCE

1249 To analyze the impact of model scales on prompt-optimization performance, we compare TIPO-200M
 1250 and TIPO-500M using a 1,000-image subsample from the COYO and GBC datasets. Results are
 1251 shown in Table 9.

1252 Table 9: Prompt optimization performance of TIPO-200M and TIPO-500M on a 1k subsample.
 1253

Metric	Task	TIPO-200M	TIPO-500M
FDD (↓)	NL-short	0.1529	0.1356
	NL-long	0.1650	0.1398
Aesthetic (↑)	NL-short	5.8531 ± 0.7501	5.8943 ± 0.7064
	NL-long	5.8364 ± 0.7501	5.9030 ± 0.7015
AI Corrupt (↓)	NL-short	0.2870 ± 0.4167	0.2891 ± 0.4189
	NL-long	0.2870 ± 0.4150	0.2862 ± 0.4151

1262 Overall, TIPO-500M shows consistent gains in FDD and Aesthetic scores, while performance on
 1263 AI Corrupt remains comparable. However, the larger 500M variant entails substantially higher
 1264 computational cost without delivering proportionally greater benefits, which limits its practicality for
 1265 community use; hence, all main experiments are conducted with TIPO-200M.
 1266

1267 C.5 IMPACT OF MODEL SIZE ON INFERENCE SPEED

1269 We conducted comprehensive speed tests of our 100M, 200M and 500M parameter models using
 1270 the inference pipeline described in Section 5.2. Each prompt requires two sequential generation
 1271 steps. Our primary metric is average tokens generated per second, which reflects real-world task
 1272 performance rather than theoretical maximum throughput.

1273 The evaluation was performed using llama.cpp (Gerganov, 2023), an efficient C++ implementation
 1274 that provides optimized support for various hardware accelerators, including CUDA, HIP, and Apple
 1275 Metal.
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

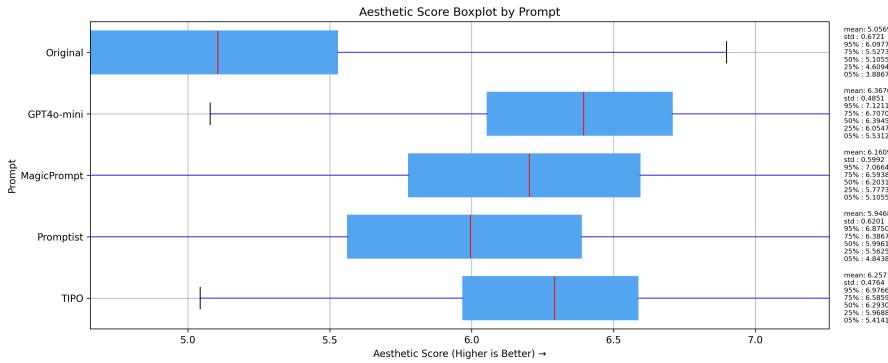
Hardware Platform	TIPO-100M		TIPO-200M		TIPO-500M	
	tok/sec	gen time	tok/sec	gen time	tok/sec	gen time
M1 Max (32 GPU cores)	339.4	0.66	190.0	1.23	119.4	2.02
RTX 3090	558.5	0.42	341.4	0.69	289.8	0.81
RTX 4090	742.9	0.29	454.5	0.51	359.7	0.63

Table 10: Model performance comparison across different hardware platforms. Tokens per second (tok/sec) represents the average generation speed, while generation time (gen time) shows the average time in seconds required for a complete two-step prompt optimization process.

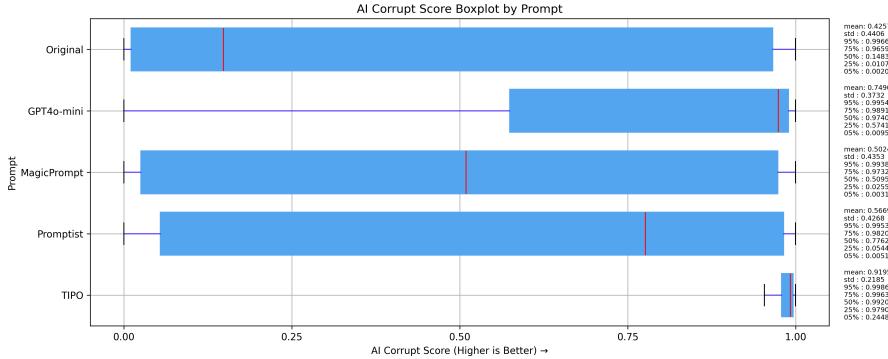
D EVALUATION STATISTICS

In this appendix, we provide more statistics for the result obtained in Section 5.

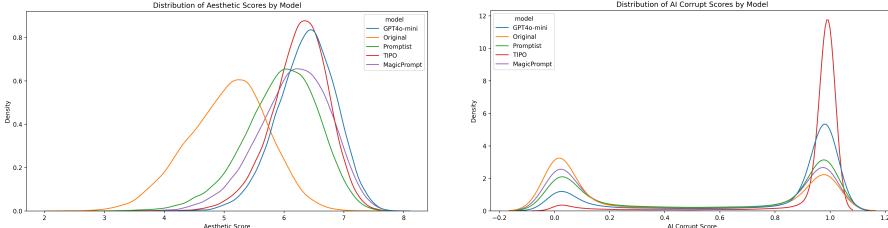
D.1 IN-DOMAIN TEST REGARDING SCENERY TAG



(a) The box plot for the Aesthetic Score result of scenery tag test.



(b) The box plot for the AI Corrupt Score result of scenery tag test.



(c) The KDE plot for the Aesthetic Score result of scenery tag test.

(d) The KDE plot for the AI Corrupt Score result of scenery tag test.

Figure 7: The distribution of aesthetic and AI corrupt score for scenery tag test.

1350
 1351 The box plot and Kernel Density Estimation (KDE) plot displayed in Figure 7 illustrate the aesthetic
 1352 scores and AI corruption scores from the scenery tag test described in Section 5.2. The analysis
 1353 shows that TIPO significantly outperforms all other methods, demonstrating a considerable margin of
 1354 improvement.
 1355
 1356
 1357

1358 D.2 IN-DOMAIN PROMPT GENERATION TEST

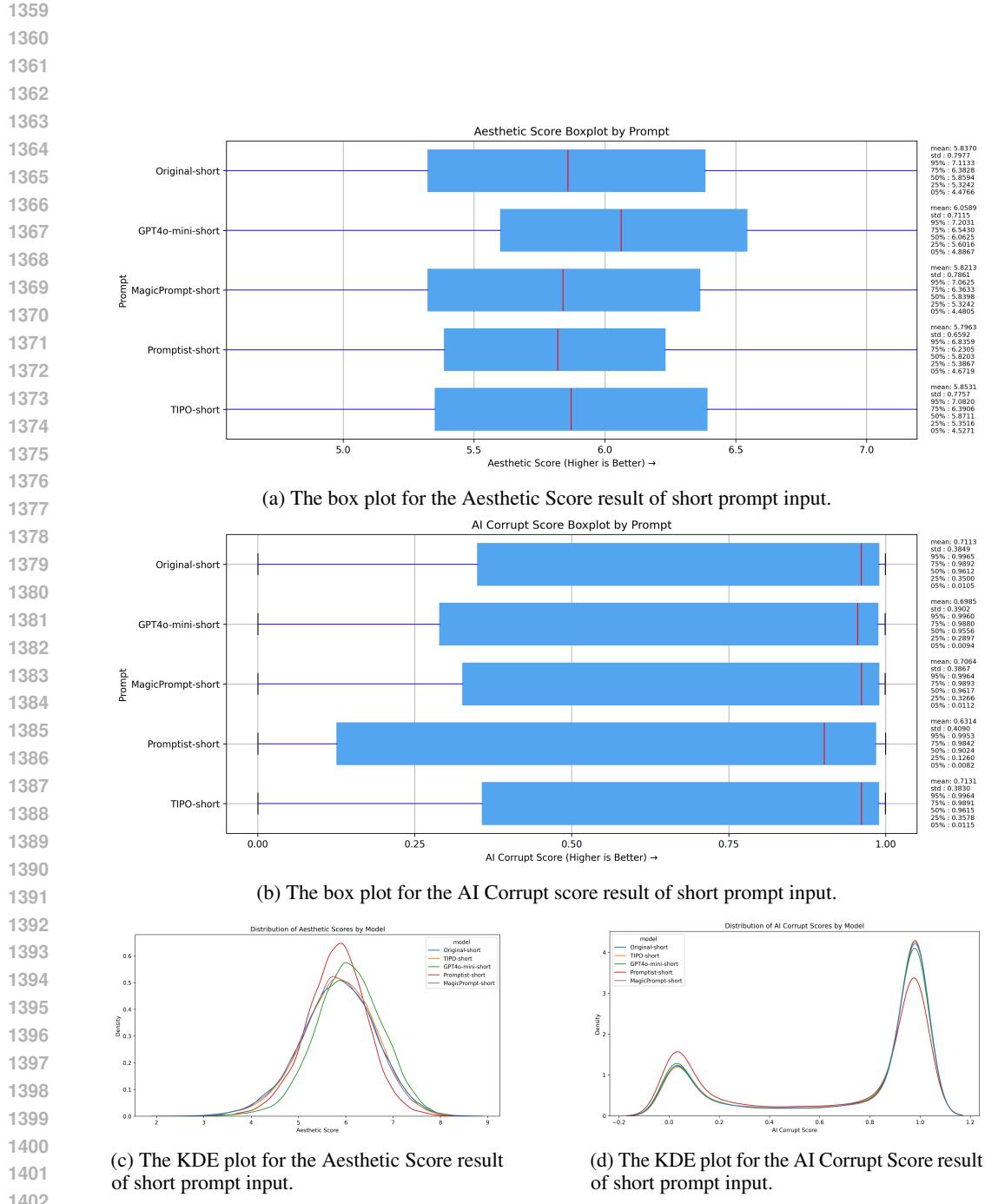


Figure 8: The distribution of aesthetic and AI corrupt score for short prompt input.

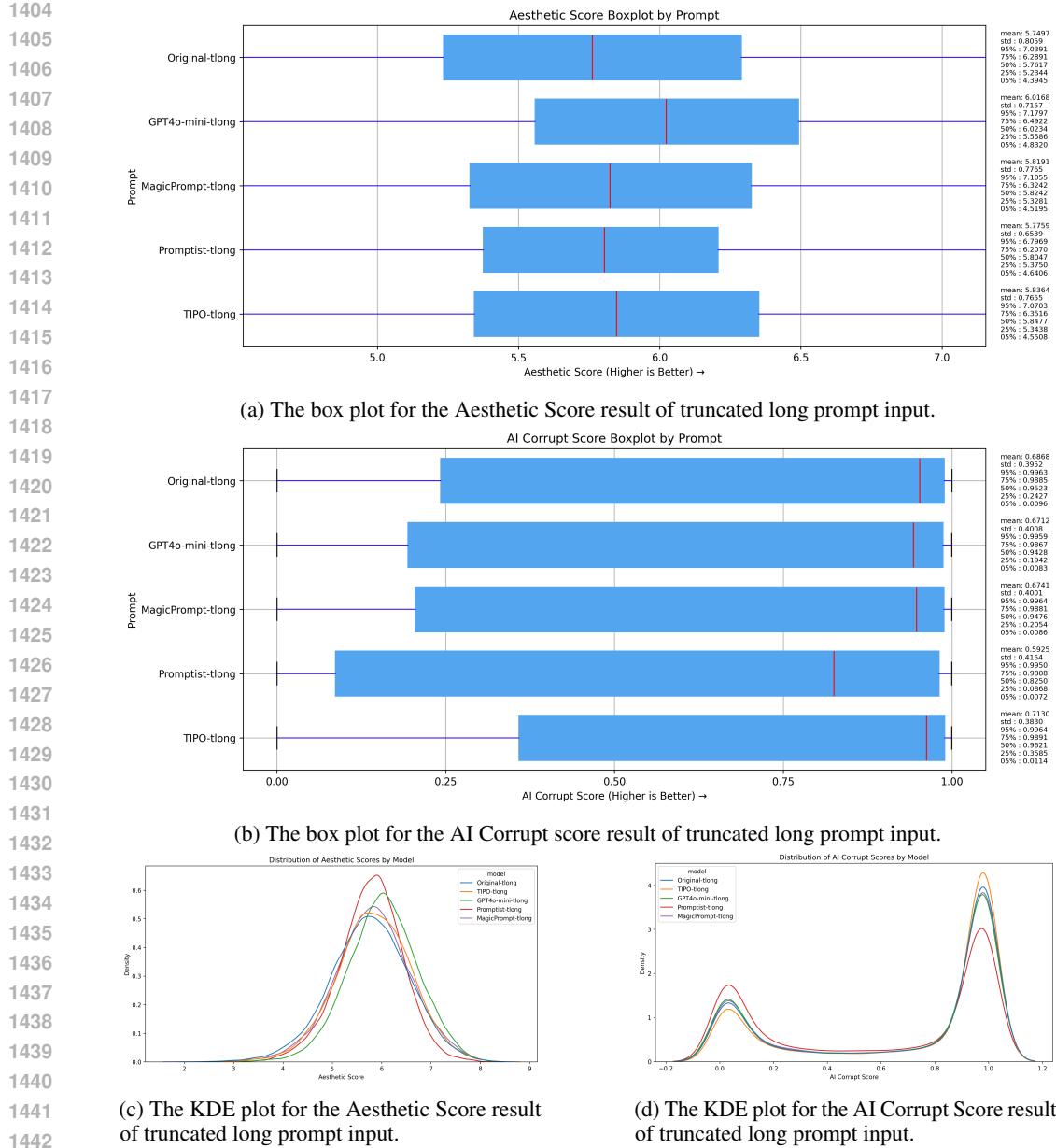


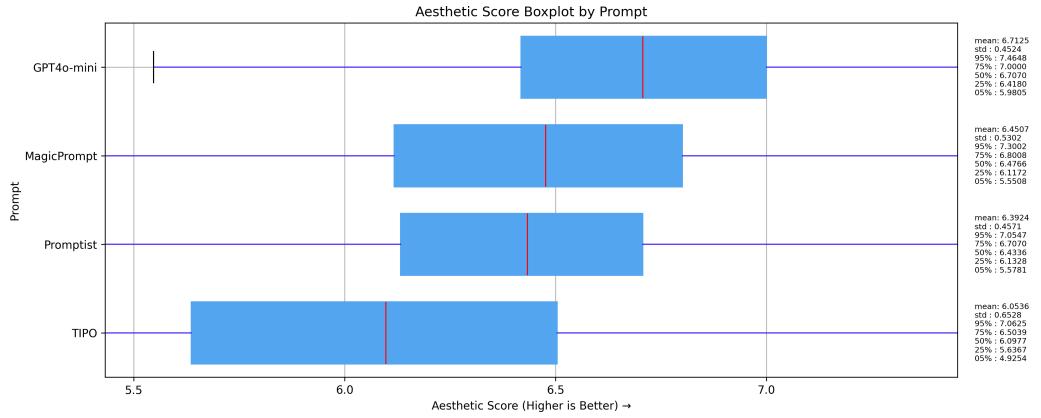
Figure 9: The distribution of aesthetic and AI corrupt score for truncated long prompt input.

Figures 8 and 9 display the box plots and KDE plots of aesthetic scores and AI corruption scores obtained from the In-domain prompt generation test detailed in Section F.2. While the box plots reveal subtle differences in performance between various methods, the AI corruption scores provide valuable insights. Specifically, these scores indicate that implementations supported by TIPO produce more stable output images than other methods.

1458 D.3 OUT-OF-DOMAIN EVALUATION

1459

1460



1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

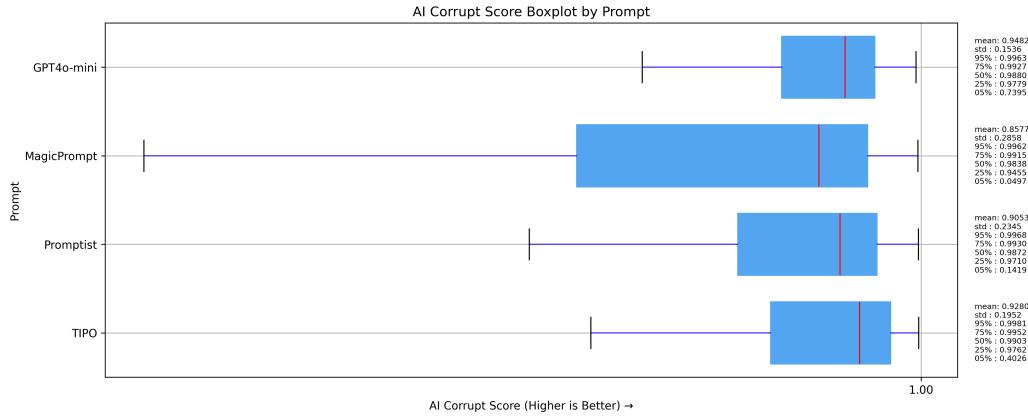
1508

1509

1510

1511

(a) The box plot for the Aesthetic Score result of out-of-focus test.



1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

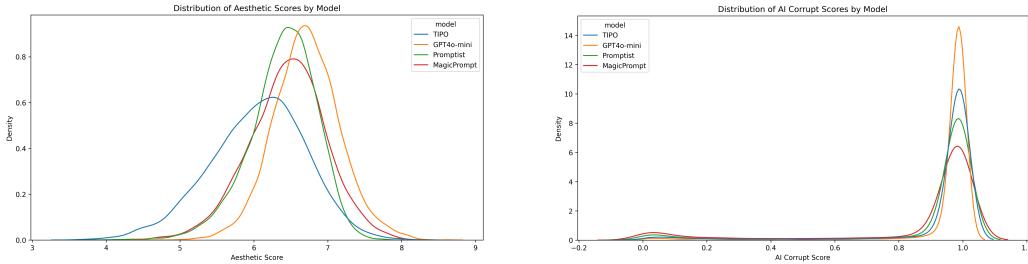
1508

1509

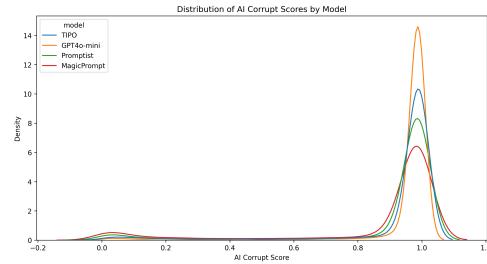
1510

1511

(b) The box plot for the AI Corrupt Score result of out-of-focus test.



(c) The KDE plot for the Aesthetic Score result of out-of-focus test.



(d) The KDE plot for the AI Corrupt Score result of out-of-focus test.

Figure 10: The distribution of aesthetic and AI corrupt score for out-of-focus test.

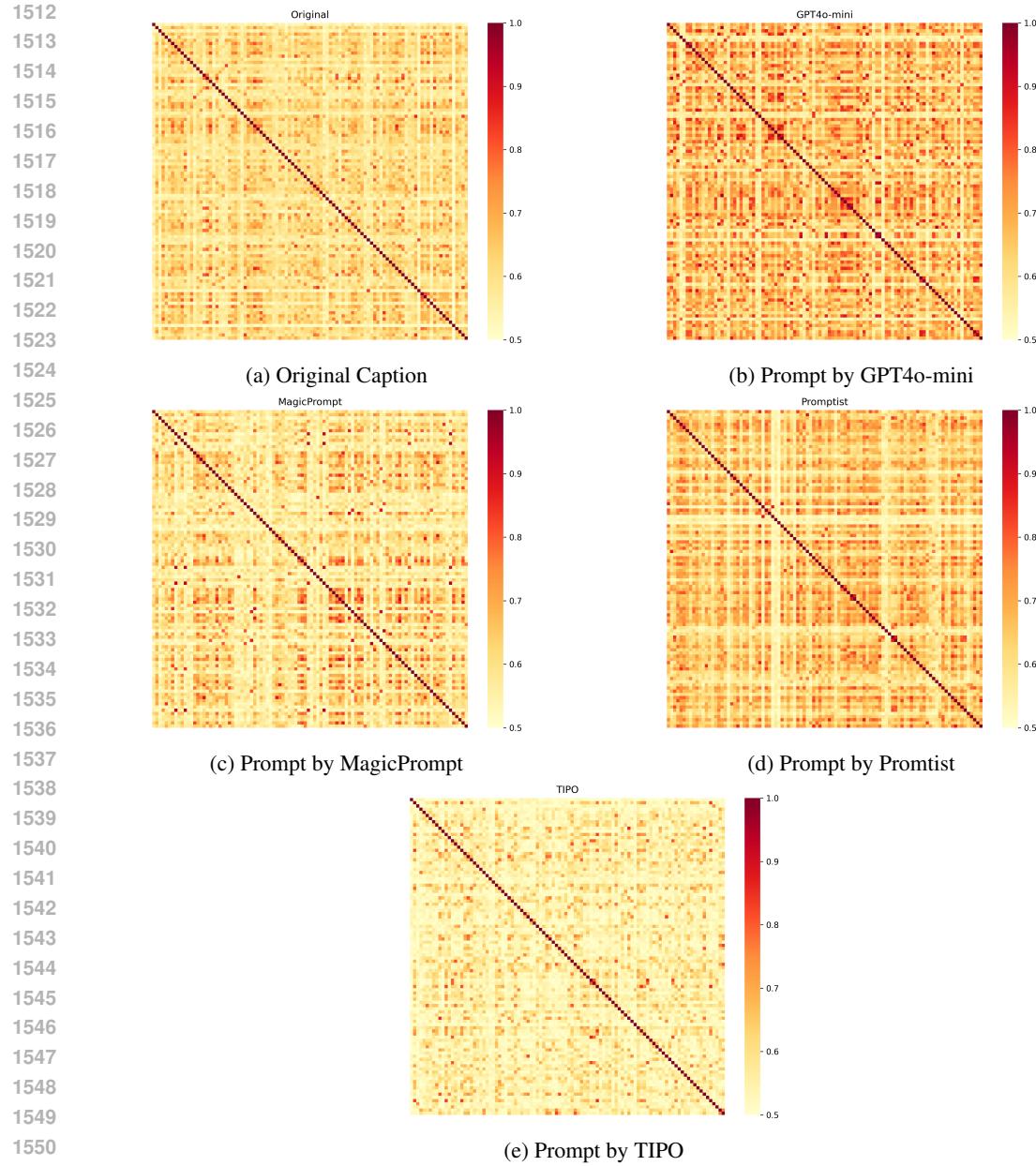


Figure 11: The similarity matrix for the 100 best aesthetic results generated in the SD3.5-Large experiments. Off-diagonal elements of the matrix indicate the similarity between different images. A lower value for an off-diagonal element indicates greater diversity among the generated images.

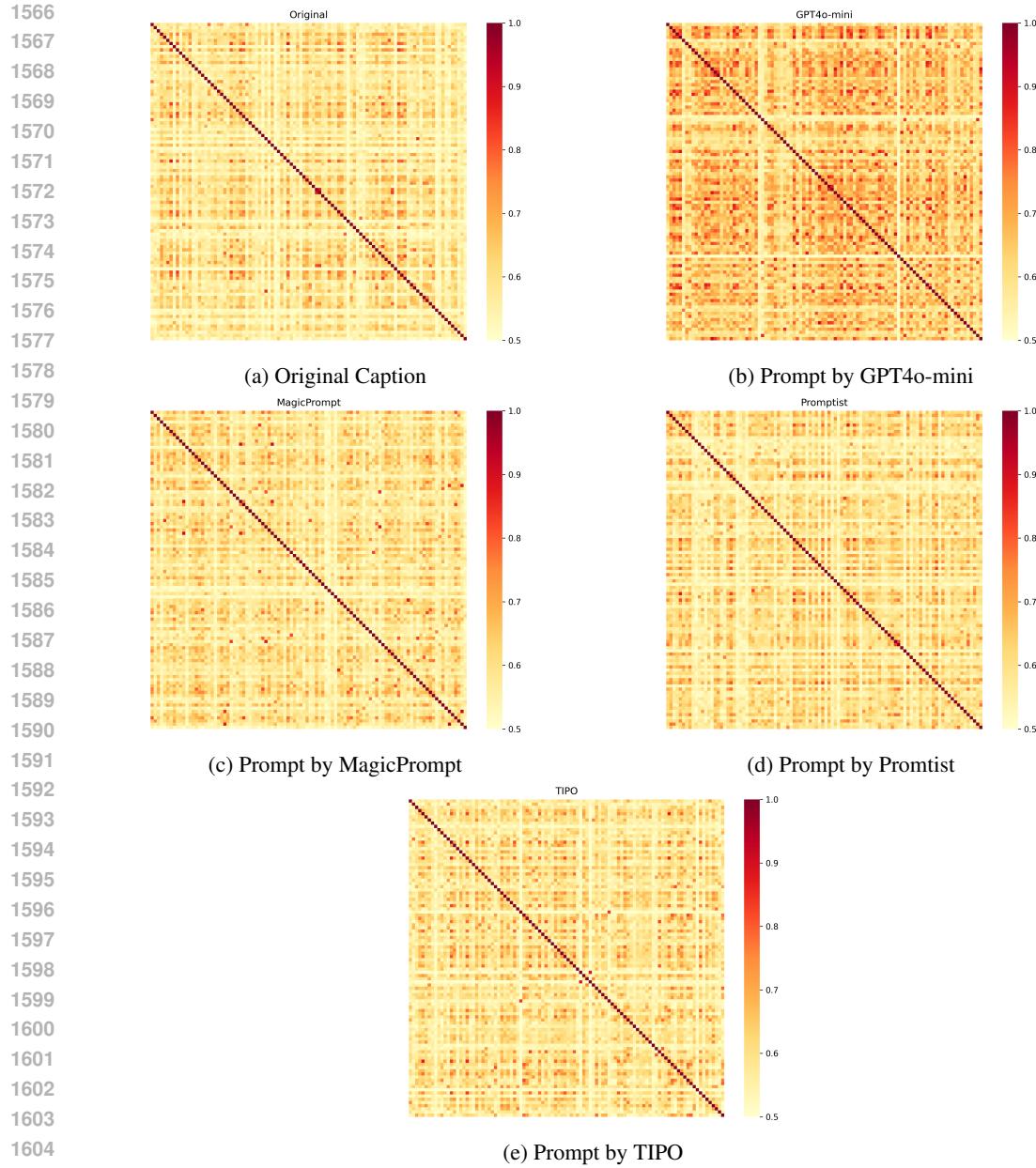


Figure 12: The similarity matrix between 100 images of worst aesthetic generated results of SD3.5-Large experiments.

Figures 11 and 12 present similarity matrices for different prompt generation methods and their corresponding aesthetic outputs on SD3.5-Large (Esser et al., 2024b). A matrix with predominantly lower similarity values (brighter appearance) indicates high diversity among generated images, while higher values (darker appearance) suggest consistent but less diverse outputs. Please refer to Table 2 in Section 5.

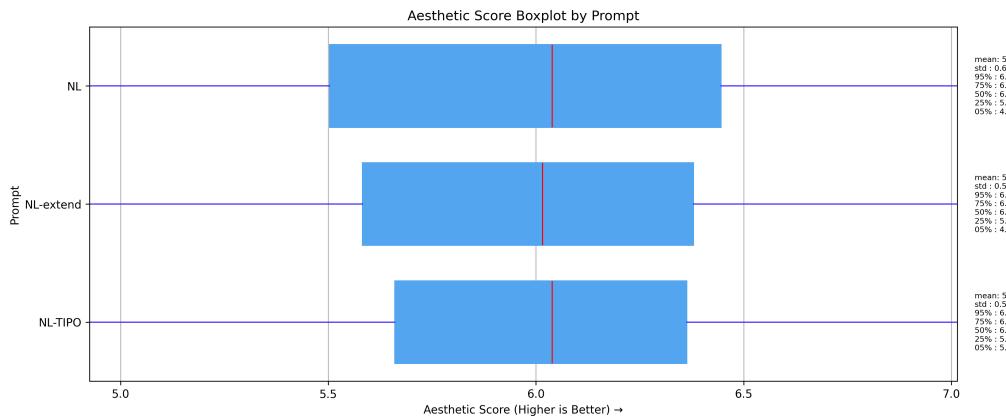
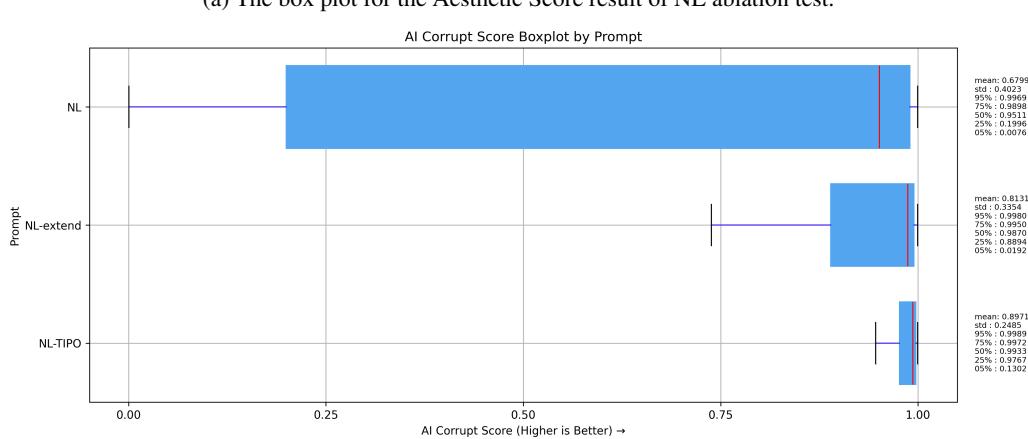
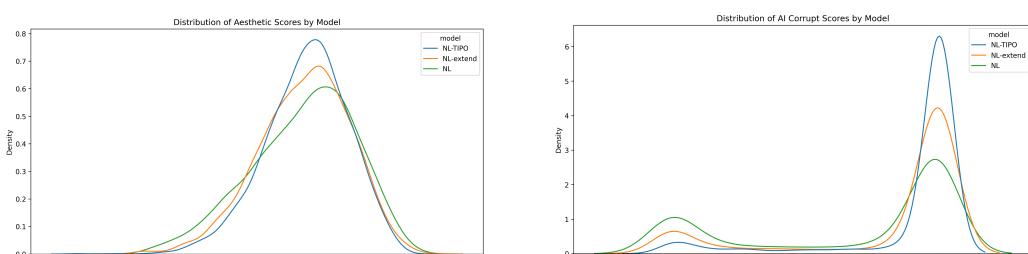
1620 D.4 ABLATION TEST
1621

Figure 13: The distribution of aesthetic and AI corrupt score for NL ablation test.

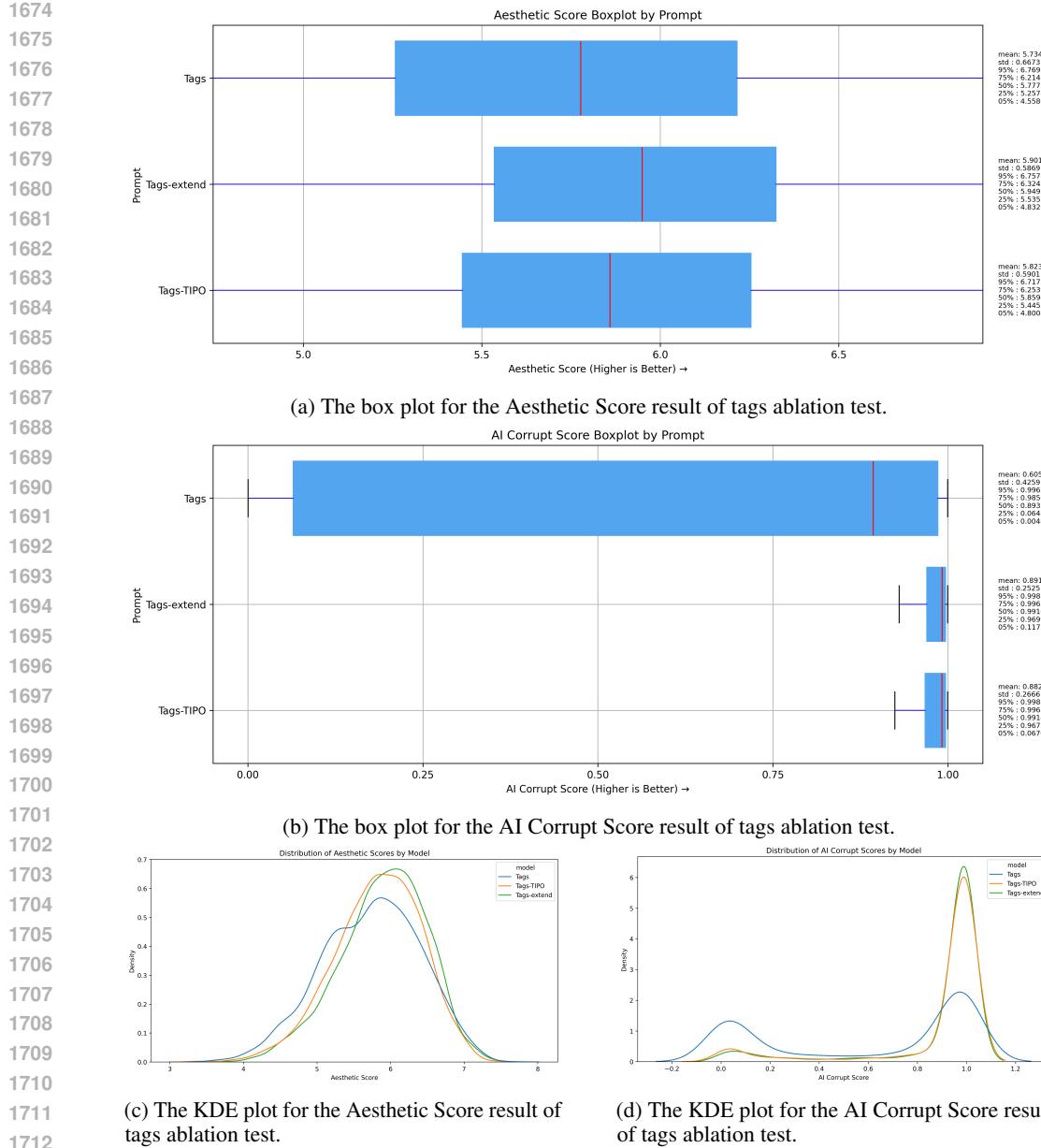


Figure 14: The distribution of aesthetic and AI corrupt score for tags ablation test.

Figures 14 present the tag ablation test in the TIPO effect on the aesthetic score and AI Corrupt Score among the original tag, tag-extend and the tags TIPO. The box plot reveals that the tag TIPO is better than the original tag and the tag extend is the best. In detail, KDE plot reveals that the tag TIPO has a similar performance compared with the tag extend. Both of them are better than the original tag, which indicates that the tag TIPO aspect helps control corruption and promotes the aesthetic score.

E TIPO EXAMPLE

In this section, we provide some text example of TIPO's input and output.

1728

1729

1730

1731 TIPO Format Template

1732

User Input:

```
1734 1girl, ciloranko, maccha (mochancc), ningen mame, ask (askzy), solo, masterpiece,
1735     absurdres, newest, safe
```

```
1736 A girl sits in a cozy cafe, cradling a cup of coffee in her hand
```

1737

1738

Formatted TIPO Input for Expand Tags:

```
1740 meta: absurdres
1741 rating: safe
1742 style: anime-style illustration, digital art, character design, fantasy concept art
1743 quality: masterpiece, newest
1744 aspect_ratio: 1.0
1745 target: <|short|> <|short_to_tag|>
1746 short: A girl sits in a cozy cafe, cradling a cup of coffee in her hand
1747 tag: 1girl, solo
```

1748

Formatted TIPO Output after Expand Tags and Expand Natural Prompt:

```
1749 meta: absurdres
1750 rating: safe
1751 style: anime-style illustration, digital art, character design, fantasy concept art
1752 quality: masterpiece, newest
1753 aspect_ratio: 1.0
1754 target: <|short|> <|tag_to_long|>
1755 tag: 1girl, solo, sitting, closed mouth, jewelry, long hair, looking at viewer, crossed
1756     legs, plant, table, couch, bracelet, cup, smile, teacup, indoors, blue eyes,
1757     blonde hair, holding
1758 long: A girl sits in a cozy cafe, cradling a cup of coffee in her hand. The cafe has
1759     large windows with green plants on the walls and a wooden table in front of her.
1760     Behind her is a staircase leading to another room. The overall atmosphere of the
1761     image is serene and inviting.
```

1762

Formatted Output for Text-to-Image:

```
1763 1girl, ciloranko, maccha (mochancc),
1764     ningen mame, ask (askzy),
1765 solo, sitting, closed mouth, jewelry,
1766     long hair, looking at viewer, crossed
1767     legs, plant, table, couch, bracelet,
1768     cup, smile, teacup, indoors, blue
1769     eyes, blonde hair, holding,
1770
1771 A girl sits in a cozy cafe, cradling a
1772     cup of coffee in her hand. Behind her
1773     is a staircase leading to another
1774     room. The cafe has large windows with
1775     green plants on the walls and a
1776     wooden table in front of her. The
1777     overall atmosphere of the image is
1778     serene and inviting.
```

```
1779 masterpiece, newest, absurdres, safe
```

1780

1781

User Input

TIPO Output

Figure 15: An example of formatted content used for training and inference in TIPO.

1782
1783

TIPO Format template

1784
1785**User Input:**1786
1787
1788

scenery, no humans, masterpiece, absurdres, newest, safe

1789
1790**Formatted TIPO Input For Expand Tags:**1791
1792
1793
1794
1795
1796
1797meta: absurdres
rating: safe
quality: masterpiece, newest
aspect_ratio: 1.0
target: <|long|>
tag: scenery, no humans1798
1799**Formatted TIPO Output after Expand Tags and tag_to_long task:**1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810meta: absurdres
rating: safe
quality: masterpiece, newest
aspect_ratio: 1.0
target: <|long|> <|tag_to_long|>
tag: scenery, no humans, storefront, motor vehicle, road sign, power lines, plant, railing, flower pot, vanishing point, outdoors, sign, potted plant, sidewalk, awning, tree, bicycle, window, railroad crossing, bush, building, utility pole, lamppost, shop, truck, traffic light, fence, chinese text, stairs, door, bicycle basket, town, day, streetcar (cafe), lamp, road
long: A small town with a variety of buildings and houses. the sky is blue and there are trees in the background. on the left side of the image, there is an orange building with a sign that reads "chinese restaurant". on the right side, there are several other buildings with different types of shops and restaurants. in front of the buildings, there appears to be a street with cars parked along the road.
in the center of the illustration, we can see a train crossing signal with two red lights and a blue sky above it. there is also a yellow building with white walls and a green roof. on top of the traffic light pole, there seems to be an air conditioning unit. the street is lined with trees and bushes, and there is graffiti on the ground.1811
1812
1813
1814
1815
1816**Formatted Output For Text-to-Image**1817
1818
1819
1820
1821
1822
1823

scenery, no humans, storefront, motor vehicle, road sign, power lines, plant, railing, flower pot, vanishing point, outdoors, sign, potted plant, sidewalk, awning, tree, bicycle, window, railroad crossing, bush, building, utility pole, lamppost, shop, truck, traffic light, fence, chinese text, stairs, door, bicycle basket, town, day, streetcar (cafe), lamp, road,

1824
1825
1826
1827
1828
1829
1830
1831

A small town with a variety of buildings and houses. the sky is blue and there are trees in the background. on the left side of the image, there is an orange building with a sign that reads "chinese restaurant". on the right side, there are several other buildings with different types of shops and restaurants. in front of the buildings, there appears to be a street with cars parked along the road. in the center of the illustration, we can see a train crossing signal with two red lights and a blue sky above it. there is also a yellow building with white walls and a green roof.

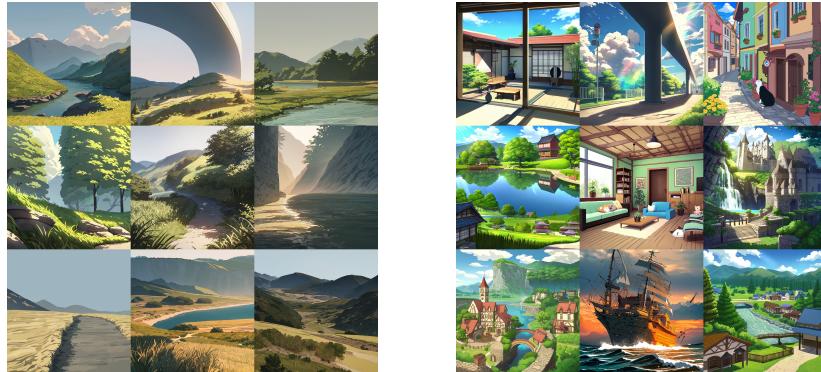
1832
1833
1834
1835

masterpiece, newest, absurdres, safe

User Input

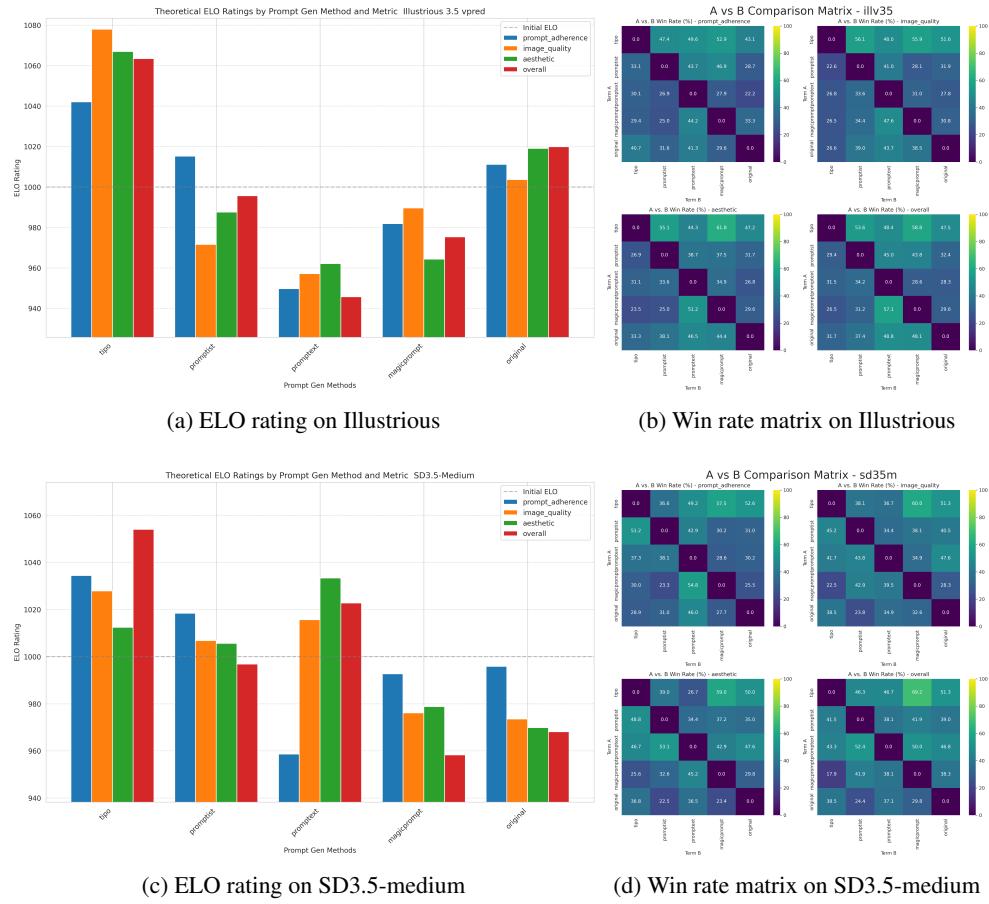
TIPO Output

Figure 16: An example formatted content we used for training and inference in TIPO.

1836 **F IMAGE EXAMPLES**
18371838 In this section, we present sample images from the experiments described in Section 5 to visually
1839 demonstrate the improvements achieved by TIPO.
18401841 **F.1 IN-DOMAIN TEST REGARD TO SCENERY TAG**
18421843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856 Figure 17: Comparison of generated images using simple input (left) vs. TIPO-enhanced input (right)
1857 for the scenery tag
18581859 Figure 17 demonstrates the difference in output diversity between simple input and TIPO-enhanced
1860 input for the scenery tag. As observed, TIPO significantly expands the range of generated sceneries,
1861 better reflecting the variety present in the Danbooru2023 dataset (Yeh, 2024b). The left column
1862 shows results from simple input (scenery tag only), while the right column illustrates the enhanced
1863 diversity achieved with TIPO-enhanced input.
18641865 **F.2 IN-DOMAIN PROMPT GENERATION TEST**
18661867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879 (a) Short Caption

(b) TIPO-Generated Caption

1880
1881 Figure 18: Comparison of generated images using original input (left) vs. TIPO-enhanced input
1882 (right)
18831884 Figure 18 illustrates the differences between short captions, truncated long captions, TIPO-generated
1885 captions, and TIPO-extended captions. The “short prompt” and “truncated long prompt” used in this
1886 experiment typically consist of 1-2 sentences, resulting in reasonably good quality outputs. However,
1887 the use of TIPO to refine or extend these prompts still yields noticeable improvements in aesthetics
1888 and overall quality.
1889

1890 **G HUMAN PREFERENCE**
18911922 Figure 19: ELO ratings and win rate matrices across different experimental settings comparing five
1923 prompting methods (TIPO, Promptist, Prompttextend, MagicPrompt, and Original) on three evaluation
1924 dimensions

Comparison	Win Ratio (A:B)	Proportion A	p-value	Significant?
Original vs. PromptExtend	45:66	0.405	0.0572	Marginally
Original vs. Tipo	28:80	0.259	< 0.0001	Yes***
Original vs. Promptist	35:64	0.354	0.0046	Yes**
PromptExtend vs. Promptist	41:80	0.339	0.0005	Yes***
Promptist vs. Tipo	30:101	0.229	< 0.0001	Yes***
PromptExtend vs. Tipo	30:90	0.250	< 0.0001	Yes***
MagicPrompt vs. Promptist	14:34	0.292	0.0055	Yes**
MagicPrompt vs. Tipo	11:48	0.186	< 0.0001	Yes***
MagicPrompt vs. Original	15:28	0.349	0.0660	No
MagicPrompt vs. PromptExtend	19:35	0.352	0.0402	Yes*

1937 Table 11: Pairwise win rates and statistical significance (Overall Dimension). *Significance levels: *
1938 p < 0.05, ** p < 0.01, *** p < 0.001*1941 We conducted a series of A/B tests to compare five prompt transformations, (TIPO, Promptist,
1942 Prompttextend, MagicPrompt, and Original(unmodified)), for two models, Illustrous, SD3.5-medium,
1943 which is known for both core word/natural language understanding. In total, we collected responses
for ~1,500 pairwise comparisons, from more than 20 anonymous evaluators. Each evaluation asked

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

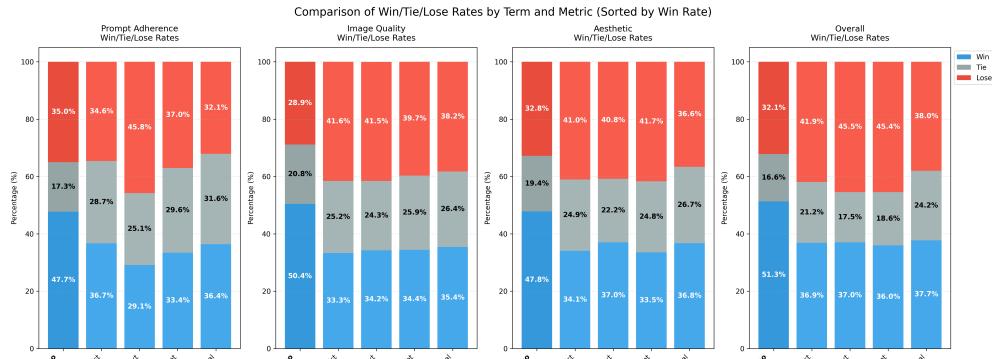
1993

1994

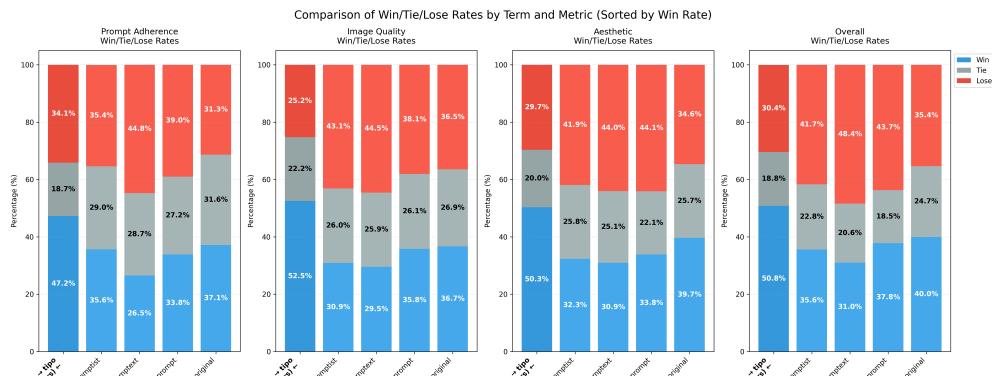
1995

1996

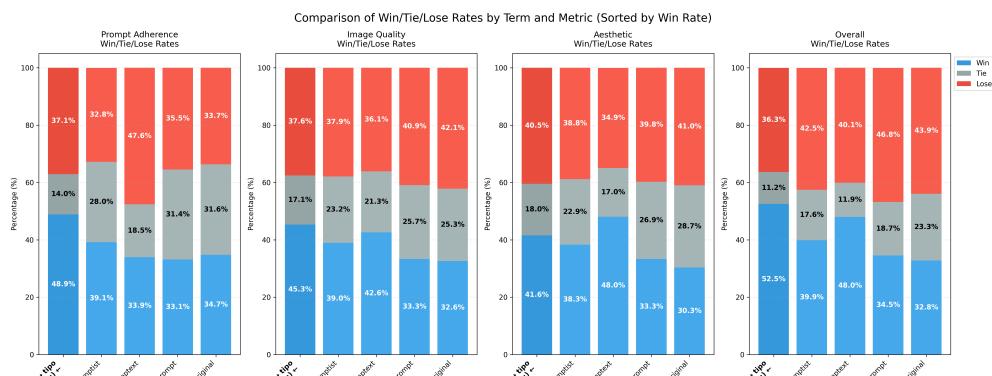
1997



(a) Full Win-Tie-Lose plot



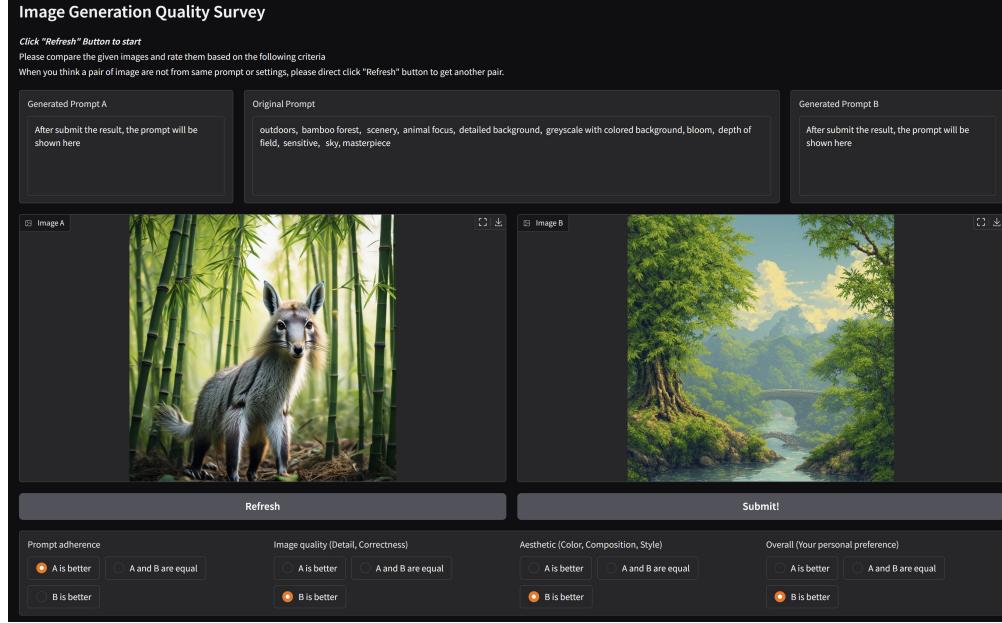
(b) Illustrous Win-Tie-Lose plot



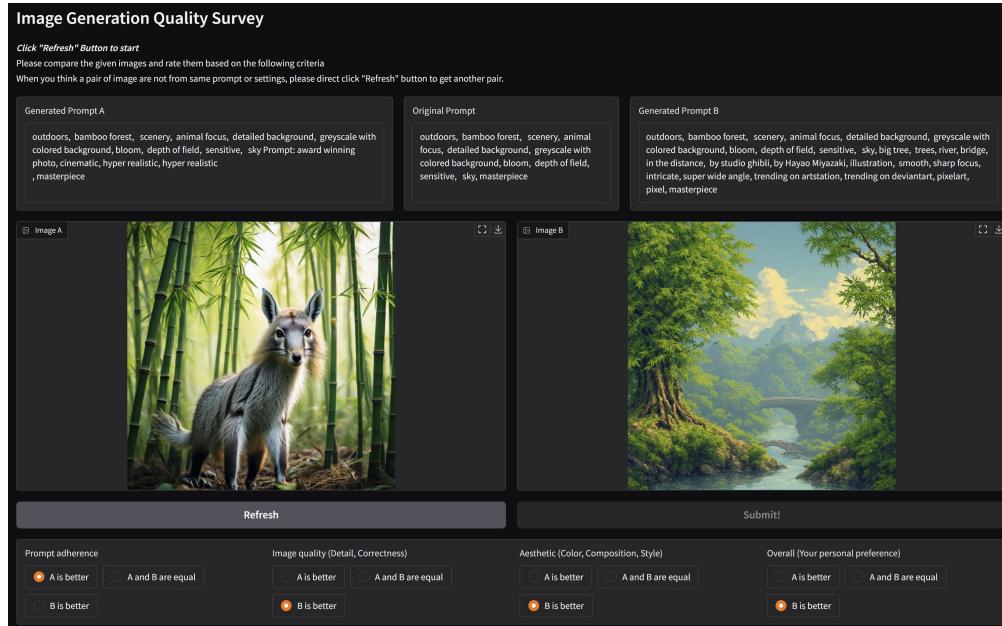
(c) SD3.5-medium Win-Tie-Lose

Figure 20: Win-Tie-Lose comparison across different experimental settings showing the relative performance of five prompting methods on prompt adherence, image quality, and aesthetic appeal metrics

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051



(a) The UI of survey system before submitting the choices.



(b) The UI of survey system after submitting the choices.

Figure 21: Survey interface for human evaluation of image pairs, showing the evaluation process before submission (a) where users compare two images based on four metrics, and after submission (b) where the generated prompts for each image are revealed

2052 participants to compare two generated images—labeled *A* and *B*—and select which they preferred (or
 2053 a tie) according to specific criteria (e.g., prompt adherence, image quality, or aesthetic appeal).
 2054

2055 G.1 USER INTERFACE FOR HUMAN PREFERENCE EVALUATION

2057 We developed a specialized survey interface to facilitate efficient and unbiased human evaluation
 2058 of generated images. As illustrated in Figure 21, the interface presents evaluators with an original
 2059 prompt and two corresponding images (labeled *A* and *B*) generated using different prompting methods.
 2060 Before submission, users can see the original prompt in the center panel while the processed prompts
 2061 used to generate each image remain hidden to prevent bias.

2062 The evaluation framework requires participants to compare the image pairs across four distinct
 2063 metrics: prompt adherence (how well the image follows the original prompt), image quality (detail
 2064 and correctness), aesthetic appeal (color, composition, and style), and overall personal preference.
 2065 For each metric, users can select one of three options: “*A* is better,” “*A* and *B* are equal,” or “*B* is
 2066 better.”

2067 When evaluators encounter image pairs that appear to be from different prompts or settings, they
 2068 are instructed to click “Refresh” to obtain a new comparison. After submitting their evaluations, the
 2069 interface reveals the transformed prompts used to generate each image, providing transparency about
 2070 how the original prompt was modified by each method.

2071

2072 G.2 EXTENDED HUMAN EVALUATION.

2073

2074 Participants assessed each image’s performance on prompt adherence, image quality, and aesthetic
 2075 appeal, with visually shown unmodified and image pairs. TIPO exhibited superior outcomes in all
 2076 comparison settings. Notably, it attained a 64.4% peak win rate (against MagicPrompt) under the
 2077 Full scenario and 57.5% (also against MagicPrompt) under SD35-medium, emphasizing TIPO’s
 2078 proficiency in generating images that closely follow prompt specifications while maintaining visual
 2079 coherence.

2080

2081 G.3 ELO RATINGS.

2082

2083 We computed theoretical ELO ratings from the aggregated pairwise comparisons to quantify overall
 2084 performance differences among the five methods. The rating update rules were based on each pair’s
 2085 binary outcome (win or lose), ignoring tie cases. The result is depicted in Figure 19, TIPO has
 2086 secured the highest ELO rating over other models.

2087

2088 G.4 HUMAN PREFERENCE ELO METHOD

2089

2090 We computed theoretical ELO ratings from human-judged pairwise preference data to quantitatively
 2091 evaluate the relative performance of each prompting method. The ELO rating system, initially
 2092 designed for ranking chess players, aggregates binary outcomes into numerical ratings representing
 2093 comparative performance.

2094

2095 **Pairwise Outcomes.** Human evaluators assessed comparisons between methods, resulting in one
 2096 of three outcomes:

2097

- Method *i* wins: assigned a score of 1 for method *i*, and 0 for method *j*.
- Method *j* wins: assigned score 1 for method *j*, and 0 for method *i*.
- Tie: assigned score 0.5 to both methods.

2098

2099 **Conversion to ELO Differences.** Win and tie rates were converted to ELO rating differences using:

2100

$$2101 \text{Adjusted Win Rate} = \text{Win Rate} + \frac{\text{Tie Rate}}{2}$$

2102

2103

2104

2105

$$\text{ELO Difference} = 400 \times \log_{10} \left(\frac{\text{Adjusted Win Rate}}{1 - \text{Adjusted Win Rate}} \right)$$

2106 To ensure numerical stability, extreme adjusted win rates were constrained as follows:
 2107

2108
$$\text{ELO Difference} = \begin{cases} -800, & \text{Adjusted Win Rate} \leq 0.001 \\ +800, & \text{Adjusted Win Rate} \geq 0.999 \end{cases}$$

 2109

2110 **Calculating Method ELO Ratings.** Final ELO ratings were determined by averaging each
 2111 method’s pairwise ELO differences and centering these averages around a baseline rating (e.g.,
 2112 1000):
 2113

2114
$$\text{ELO}_{\text{method}_i} = \text{Base Rating} + (\text{Average ELO Difference for method } i - \text{Overall Mean ELO Difference})$$

 2115

2116 **Interpretation of ELO Scores.** Methods with higher ELO scores consistently outperform lower-
 2117 scored methods. A rating difference of 400 points corresponds to a 90% expected win probability for
 2118 the superior method.
 2119

2120 **G.5 STATISTICAL SIGNIFICANCE**
 2121

2122 As summarized in Table 11, we conducted two-sided binomial and McNemar’s tests ($p < 0.05$) to
 2123 assess the statistical significance of observed differences. The result confirms that TIPO’s advantages
 2124 are unlikely to be explained by random variation, which also supports a consistent performance
 2125 hierarchy: TIPO ranks highest, followed by Promptist, PromptExtend, Original, and MagicPrompt.
 2126 Collectively, these findings illustrate TIPO’s robust, model-agnostic effectiveness and underscore the
 2127 model-sensitivity of alternative methods, particularly Prompttext and MagicPrompt.
 2128

2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160 **G.6 SURVEY RESPONSE EXAMPLES**
21612162 In this section we provided some responses of our human preference survey as reference.
21632164 best quality, absurdres, indoors, flower shop, animal focus, detailed background, colorful background, general
2165 colorful background, general, dark, sky, night, anaglyph, masterpiece
21662169 Prompt Adherence:
2170 B is better2171 Image Quality:
2172 B is better2173 Aesthetic:
2174 A is better2175 Overall:
2176 B is better2177 2178 outdoors, animal focus, detailed background, gradient background shade, shadow, darkness, bloom, depth of field
2179 bloom, depth of field, sensitive, dark, cafe, anaglyph, scenery, depth of field
2180 scenery, depth of field, masterpiece2183 Prompt Adherence:
2184 A is better2185 Image Quality:
2186 A is better2187 Aesthetic:
2188 A is better2189 Overall:
2190 A is better2191 Figure 22: Some survey responses on illustrious-3.5-vpred generated image with different prompt
2192 optimization method
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

2214

2215

2216 semirealistic, 1girl, high-waist skirt, headphones, detailed background, rainbow background, bloom, depth of field
 2217 bloom, depth of field, sensitive, fishes, transparent, scenery, backlighting, masterpiece
 2218 backlighting, masterpiece

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

Image A

Image B

2232 Prompt Adherence:
A and B are equal2233 Image Quality:
A and B are equal2234 Aesthetic:
B is better2235 Overall:
B is better

2236

2237 house, entrance, 1girl, Top Hat, bow, detailed background, rainbow background, sensitive
 2238 rainbow background, sensitive, classroom, fading, masterpiece

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

Image A

Image B

2251 Prompt Adherence:
A and B are equal2252 Image Quality:
A and B are equal2253 Aesthetic:
A and B are equal2254 Overall:
B is better

2255

2256 Figure 23: Some survey responses on illustrious-3.5-vpred generated image with different prompt
 2257 optimization method

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

semirealistic, scenery, animal focus, detailed background, two-tone background shade, shadow, darkness, bloom
 darkness, bloom, depth of field, general, sketch, scratch art, coffee, fading
 coffee, fading, masterpiece

2271

2272

2273

Image A

Image B

2284

2285

Prompt Adherence:
A is betterImage Quality:
B is betterAesthetic:
A is betterOverall:
A is better

2288

2289

2290

shrine, scenery, animal focus, detailed background, rainbow background, sensitive, sketch, scratch art
 sketch, scratch art, funeral, fading, scenery, muted colors, greyscale, masterpiece
 greyscale, masterpiece

2291

2292

Image A

Image B

2304

2305

Prompt Adherence:
A is betterImage Quality:
A is betterAesthetic:
A and B are equalOverall:
A is better

2307

2308

2309

Figure 24: Some survey responses on SD3.5-medium generated image with different prompt optimization method

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323 semirealistic, 1girl, Jodhpurs, crowns, detailed background, greyscale with colored background, general, sketch
2324 general, sketch, scratch art, ocean, fading, masterpiece

2325

2326

Image A

Image B

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

Prompt Adherence:
B is betterImage Quality:
B is betterAesthetic:
B is betterOverall:
B is better

2337

2338

2339

2340

2341

2342

extremely aesthetic, 1girl, Jubbah, headphones, detailed background, multicolored background shade, shadow, darkness
shadow, darkness, general, sketch, scratch art, coffee, transparent, scenery
transparent, scenery, JPEG artifacts on purpose, masterpiece

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

Image A

Image B

2355

2356

2357

2358

Figure 25: Some survey responses on SD3.5-medium generated image with different prompt optimization method

2360

2361

2362

G.7 CONCLUSION

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376 H ABLATION STUDY ON TIPO

2378 In this section, we investigate the effect of incorporating **TIPO** (Tags + Inferred Prompt Objects)
 2379 across various generation settings. Our primary goal is to validate whether additional structured
 2380 information (e.g., core tags and minimal spatial/contextual cues) can improve image quality, reduce
 2381 artifacts.

2382 H.1 EXPERIMENTAL SETUP

2383 **Prompt Variants** To systematically analyze TIPO’s contribution, we consider four types of input
 2384 prompts improvement task:

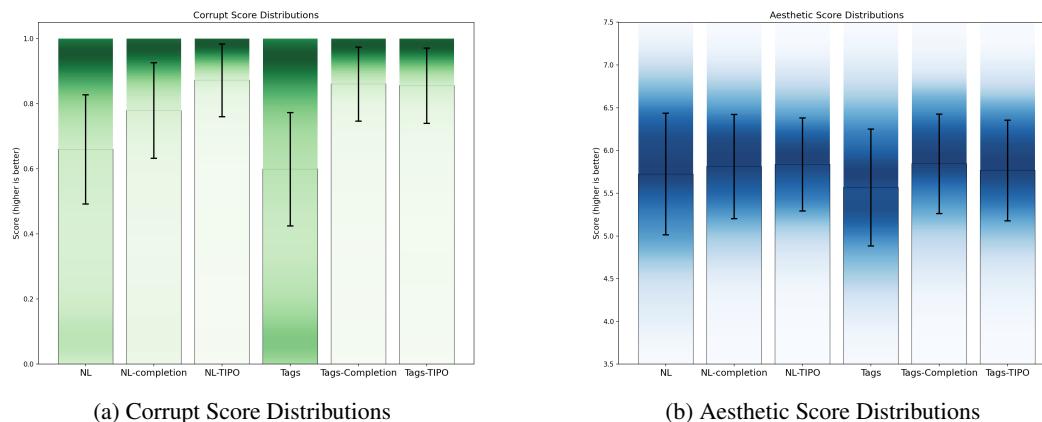
- 2388 1. *Tag → More core words*: Given an initial set of core words, generate more refined or
 2389 expanded core words.
- 2390 2. *NL → More NL*: Given a short natural language (NL) description, elaborate into a richer NL
 2391 prompt.
- 2392 3. *Tag → (More core words + NL)*: Combine expanded tags with a corresponding NL descrip-
 2393 tion derived from them.
- 2394 4. *NL → (More NL + core words)*: Use the NL prompt to add relevant tags, forming a mixed
 2395 prompt of NL plus core words.

2396 In each case, we compare the baseline prompts (without TIPO cues) against prompts incorporating
 2397 TIPO’s structured, tag-based critical information and minimal spatial hints.

2399 **Data Preparation** We start by randomly sampling core words from a word table to represent a
 2400 diverse range of topics (e.g., objects, environments, descriptors). Additionally, for each word set, we
 2401 generate a corresponding short NL sentence using a compact language model (GPT4o-mini). Overall,
 2402 the six prompt variants are tested on 4,000 images, ensuring a balanced comparison.

2404 **Inference Procedure** Prompts are fed into our image-generation pipeline under identical model
 2405 settings (classifier free guidance, sampler, steps, etc.), using the v-parameterized variant of *Illustrious*
 2406 v3.5(Park et al., 2024). We focus on how TIPO modifications alter the generation outcomes and
 2407 whether they introduce additional computational overhead.

2409 H.2 EVALUATION METRICS



2425 Figure 26: Side-by-side comparison of Corrupt (left) and Aesthetic (right) score distributions across
 2426 prompt types.

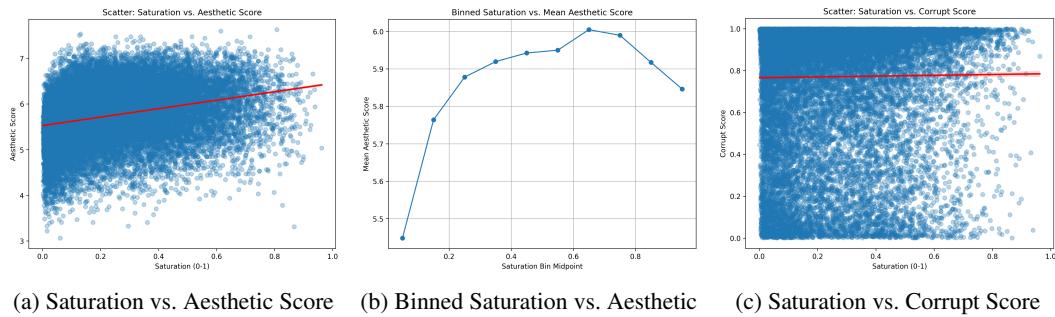
2428 **Aesthetic Score** We employ an off-the-shelf aesthetic predictor to estimate image quality. In the
 2429 following paragraph, we discuss the model’s bias.

2430 **AI Corruption Score** Using an automated ‘AI corruption’ detection model, we measure generation
 2431 artifacts, such as distorted objects and unnatural shapes. Higher scores imply cleaner, more coherent
 2432 outputs.

2434 H.3 RESULTS & DISCUSSION

2436 **Impact on Aesthetics** Figure 26b shows that **TIPO**-enhanced prompts generally achieve higher
 2437 aesthetic scores than their non-TIPO counterparts, albeit with some variance. Notably, we observe a
 2438 correlation between wider color ranges and higher aesthetic scores discussed in Figure 27, suggesting
 2439 a bias toward more colorful or varied compositions.

2441 **Improvements in Corruption Score** As shown in Figure 26a, TIPO-based prompts yield signifi-
 2442 cantly lower corruption scores, indicating fewer artifacts. We hypothesize that the additional spatial
 2443 and contextual details encoded via TIPO help the model place objects more consistently.



2454 (a) Saturation vs. Aesthetic Score (b) Binned Saturation vs. Aesthetic (c) Saturation vs. Corrupt Score
 2455
 2456 Figure 27: Scatter plots (left and right) and binned analysis (middle) showing the relationship between
 2457 saturation and image metrics. We find a moderate positive correlation between saturation and aesthetic
 2458 score (Pearson $r = 0.2821$), particularly at lower saturation ranges, based on 24k samples. However,
 2459 saturation shows no notable correlation with corrupt score (Pearson $r = 0.0125$).

2461 H.4 SPEED TEST AND OVERHEAD ANALYSIS

2463 **Inference Speed** A key concern for production pipelines is whether TIPO generation imposes a
 2464 substantial time overhead. We benchmarked prompt-generation inference on four smaller models,
 2465 excluding any large proprietary LLMs. As illustrated in Table 12, the additional TIPO-related
 2466 computation remains well below the image-generation time. Hence, even in a synchronous pipeline,
 2467 TIPO prompt expansion does not constitute a bottleneck.

2468 Table 12: Speed Test Results for TIPO and Other Prompt Methods

2471 Method	2472 Model/Config	2473 # Runs	2474 Avg. Time (s)	2475 Std. Dev. (s)
2473 TIPO	LLaMA-500M	500	1.4207	1.0730
	LLaMA-200M	200	1.0306	0.8982
	LLaMA-100M	200	1.0078	0.9394
PROMPTIST	GPT2-125M	1000	1.4593	0.2857
PROMPTEXTEND	GPT2-125M	1000	1.3849	0.2151
MAGICPROMPT	GPT2-125M	1000	1.1398	0.4043

2481 **Memory Footprint** We also confirm that TIPO’s overhead in terms of VRAM usage is minimal
 2482 (e.g., < 0.5 GB for TIPO-200M and < 1.5 GB for TIPO-500M) with the quantization supported
 2483 by [llama.cpp](#). The practical adoption of TIPO in pipelines has shown no critical memory concerns,
 which aligns with our measurements.

2484
2485
2486
2487
2488
2489

Training Costs To contextualize the training cost of TIPO, we compare its training time with reinforcement learning (RL)-based prompt optimization methods, based on the reported settings in their original papers. While it is technically difficult to reproduce RL-based methods on our hardware ($4 \times$ RTX 3090), their reported GPU-hour budgets provide an approximate reference for scale and efficiency. The comparison is summarized in Table 13.

2490
2491
2492
2493
2494
2495
2496

Although TIPO requires more total GPU-hours than PAE, it is trained on over 30 million prompts—two orders of magnitude larger than both Promptist and PAE. After normalization, TIPO achieves the lowest cost per 1k prompts, demonstrating strong scalability. It is also worth noting that Promptist and PAE rely on reinforcement learning with external T2I rollouts. Even for SD1.5, each rollout takes roughly five seconds, and the cost increases dramatically for larger models such as SDXL, SD3, or Flux. By contrast, TIPO requires no rollouts, so its training cost scales linearly with corpus size and remains independent of the target T2I model.

2497
2498
2499

Table 13: Training cost comparison between TIPO and RL-based prompt optimization methods. GPU-hours per 1k prompts are normalized for fairness.

2500
2501
2502
2503
2504
2505

Method	#Params	#Prompts	#GPUs	GPU-h	GPU-h /1k
TIPO	200M	30,000k	$4 \times$ RTX 3090	1,680	0.056
PAE	125M	450k	$1 \times$ A800	90	0.20
Promptist	125M	90k	$4 \times$ V100 (SFT), $32 \times$ V100 (RL)	63	0.70

2506
2507

H.5 CONCLUSION OF ABLATION

2510
2511
2512
2513
2514

Our experiments suggest that **TIPO** (1) consistently lowers AI corruption artifacts, (2) can boost aesthetic scores, and (3) remains computationally inexpensive. The improvements in metrics support the viability of TIPO prompts for real-world image-generation tasks. In short, a concise natural language prompt with core tag-based critical information appears to be an effective, suggested form for most use cases.

2515
2516
2517

I TOPIC DISTRIBUTION VISUALIZATION

2518
2519
2520
2521
2522
2523
2524
2525
2526

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a generative probabilistic model for topic modeling (Jelodar et al., 2018), which assumes that each document is a mixture of topics, with each topic represented by a distribution over words. LDA uncovers hidden thematic structures by analyzing word co-occurrence patterns, while methods like TF-IDF and TextRank (Mihalcea & Tarau, 2004) enhance its ability to extract meaningful insights from large textual datasets. We implemented a multi-stage topic modeling and clustering methodology using LDA to extract varying numbers of topics (20, 30, 50, and 100) from the corpus. This approach focuses on identifying significant representative words while filtering out stop words and irrelevant terms to ensure meaningful topic classification.

2527
2528
2529
2530

We empirically assessed whether the resulting topics were sufficiently large and diverse by employing multi-level topic analysis. This iterative process mitigates potential challenges such as substantial topic overlap, which can diminish distinctiveness when extracting a large number of topics (Stevens et al., 2012).

2531
2532
2533
2534
2535
2536
2537

To address the potential overlap and further assess the diversity and meaningfulness of the topics, we performed a secondary clustering (Zhao & Karypis, 2002). We grouped the initially extracted topics into five major clusters using k-means clustering. We evaluated the clustering performance by calculating the inertia (Sum of Squared Distances) (Hartigan et al., 1979), shown in Table 14, 15, and 16. Since the topics have already been filtered for meaningful content, a higher inertia value indicates greater diversity among the clusters, reflecting a broader range of valid and meaningful topics across the dataset. This two-tiered approach allows for a more nuanced analysis of topic diversity and ensures the robustness of the topic modeling against meaningless word groupings.

Reviewer LKuZ-W3&Q3

2538 2539 2540 2541 2542 2543 2544	Size	MagicPrompt		GPT4o-mini		Promptist		TIPO		Z
		Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	
20	170.78	137.94	1078.38	204.71	125.90	144.59	1037.44	271.77		
30	461.79	417.74	1758.40	736.74	327.48	195.13	1323.88	512.07		
50	829.68	730.73	861.15	1036.33	400.90	373.74	823.51	959.18		
100	1656.74	1245.60	1987.63	1628.32	877.36	657.14	1622.79	1777.61		

Table 14: Inertia for COYO-Dataset inference, higher is better

2545 2546 2547 2548 2549	Size	MagicPrompt		GPT4o-mini		Promptist		TIPO		Z
		Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	
20	184.53	352.16	244.79	246.15	125.47	198.94	278.56	211.98		
30	452.01	566.74	505.56	441.34	204.28	328.70	372.07	471.28		
50	571.77	895.47	1227.30	990.17	438.89	313.48	737.65	788.41		
100	1291.60	1742.36	1675.41	1550.32	631.61	628.78	1573.47	1855.90		

Table 15: Inertia for GBC-Dataset inference, higher is better

We attach a simple visualization of topics in scenery prompt generation, with topic n=100, cluster k=5.

2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Size	MagicPrompt	GPT4o-mini	Promptist	TIPO
20	60.82	734.52	210.60	139.29
30	275.76	1141.77	415.95	355.20
50	630.50	826.29	722.75	1002.36
100	2026.39	1879.08	802.93	1883.70

Table 16: Inertia for Scenery extend inference, higher is better

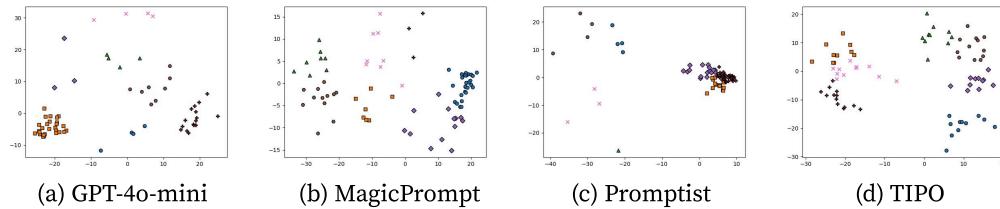


Figure 28: Topic visualization for scenery prompt generation. A wider spread indicates a greater diversity of generated topics.

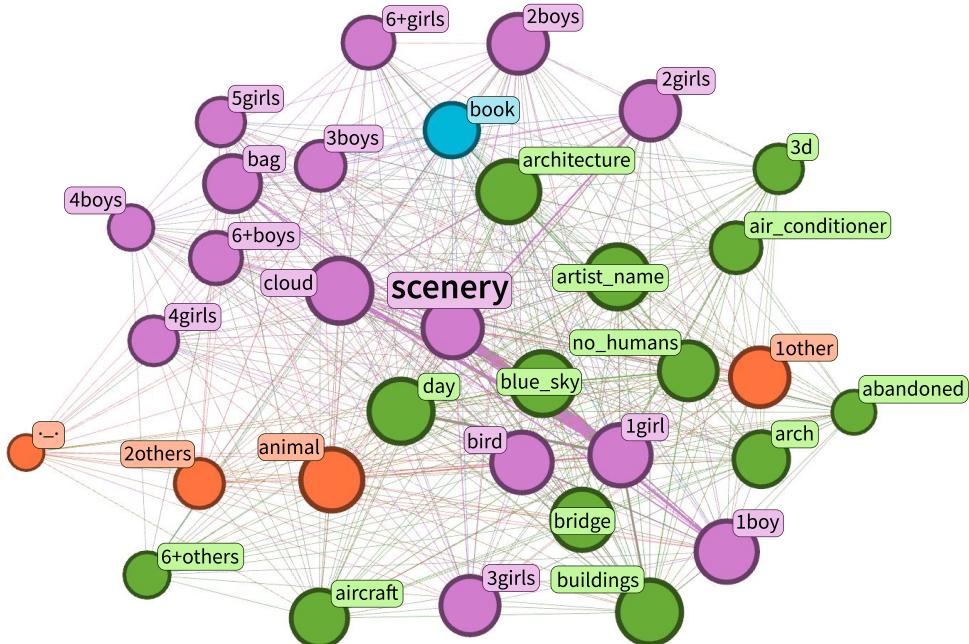


Figure 29: This visualization represents a filtered subset of posts from the Danbooru2023 dataset, centered on the 'scenery' tag. The network graph is an ego network (depth 1), which includes only nodes directly connected to the 'scenery' tag. To refine the data and focus on meaningful associations, uncommon tags with fewer than 10 occurrences were excluded. The analysis, conducted using Gephi, focuses on nodes with a degree greater than 600 to highlight critical components. Nodes are color-coded by modularity class by Fast Unfolding Algorithm (Blondel et al., 2008), revealing clusters of closely associated tags. Node size reflects Eigenvector Centrality (Bonacich, 1972), emphasizing highly connected and influential tags within their network.

2646 **J** DISCUSSION AND FUTURE WORK
26472648 Despite the promising performance demonstrated by TIPO, several limitations and future directions
2649 remain open for further study.
26502651 **Distribution Dependence and OOD Generalization.** The optimization behavior of TIPO inher-
2652 ently depends on the distributional bias of the open text–image corpus used for training. As a result,
2653 it may exhibit unstable behavior on extremely rare or stylistically unconventional prompts. **Besides,**
2654 **when applied to out-of-distribution (OOD) T2I models whose training data or prompting conventions**
2655 **deviate significantly from LAION-style distributions, aesthetic performance may degrade slightly.** In
2656 **addition, our current OOD evaluation uses GPT-4o-mini–generated prompts, which are high-quality**
2657 **but do not fully represent real-world user queries, thus limiting external validity.** Addressing the
2658 **generalization to unseen models and long-tail prompts remains an important direction for future work,**
2659 **which can be pursued from two complementary perspectives: improving the model’s generalization**
2660 **capacity via stronger backbones and domain-diverse fine-tuning, and enhancing evaluation through**
2661 **large-scale collection of authentic user prompts and cross-model benchmarking.**
26622663 **Reviewer LKuZ–W2/Q2;**
2664 **Reviewer TZN3–W1**2665 **Stronger Backbone Initialization.** Our current implementation trains a mid-sized LLaMA variant
2666 from scratch. **Future work could instead initialize from stronger open-source LLM backbones and**
2667 **fine-tune them on T2I corpora, potentially improving robustness on long-tail and domain-specific**
2668 **distributions.** This could also mitigate failures on small or highly biased datasets by leveraging more
2669 general linguistic priors.
26702671 **Reviewer TMB7**2672 **Model-Specific Adaptation and Style Variance.** For models that require structured or JSON-
2673 formatted prompts, TIPO can be combined with a lightweight adapter or fine-tuned on a small set
2674 of model-specific data. **Extending TIPO with such adaptation modules could better accommodate**
2675 **systems whose prompt syntax diverges from mainstream diffusion models.** In the longer term, TIPO
2676 **can also serve as a backbone integrated with RL-based refinement for model-specific alignment.**
26772678 **Reviewer TMB7–Q1**2679 **Personalization and Style Preservation.** The current TIPO is a general-purpose optimizer and
2680 does not incorporate user-level or stylistic conditioning. Building on prior personalization techniques
2681 such as LoRA (Hu et al., 2022), future work could explore lightweight adapters or online learning
2682 mechanisms that track user preferences and maintain project-level stylistic consistency, enabling
2683 personalized and context-aware prompt optimization.
26842685 **Reviewer TMB7**2686 **Image-Aware and Feedback-Driven Refinement.** TIPO currently operates purely in the text
2687 domain without utilizing generated images or user feedback. **A promising extension is to incorporate**
2688 **vision–language models like Qwen3–VL (Bai et al., 2023) for image-aware refinement, allowing**
2689 **iterative refinement with optimized prompts, visual outcomes, and user instructions.** However, such
2690 **integration requires non-trivial data curation and training pipelines, which we leave for future work.**
26912692 **Reviewer TZN3–W2**2693 **Scaling Behavior and Model Capacity.** From 200M to 500M parameters, TIPO continues to yield
2694 improvements in FDD and Aesthetic scores. **Due to limited compute resources, we could not explore**
2695 **larger configurations to observe scaling saturation.** A systematic study of TIPO’s scaling behavior and
2696 **architectural variants would be a valuable direction for future research.** Such analysis could reveal
2697 scaling laws unique to prompt optimizers and guide practical model sizing for future deployments.
26982699 **Reviewer TMB7–Q2**2700 **K** DISCLOSURE OF LLM USAGE
27012702 We used GPT-5 only to polish writing by improving the readability and grammar correctness. No
2703 LLMs were used in the main contributions of this work, such as ideation, experiment design, or result
2704 analysis.
27052706
2707
2708
2709