
Published as a conference paper at ICLR 2022

TRAINING DATA GENERATING NETWORKS: SHAPE
RECONSTRUCTION VIA BI-LEVEL OPTIMIZATION

Biao Zhang & Peter Wonka
KAUST
{biao.zhang, peter.wonka}@kaust.edu.sa

ABSTRACT

We propose a novel 3d shape representation for 3d shape reconstruction from a
single image. Rather than predicting a shape directly, we train a network to gen-
erate a training set which will be fed into another learning algorithm to define the
shape. The nested optimization problem can be modeled by bi-level optimiza-
tion. Specifically, the algorithms for bi-level optimization are also being used
in meta learning approaches for few-shot learning. Our framework establishes a
link between 3D shape analysis and few-shot learning. We combine training data
generating networks with bi-level optimization algorithms to obtain a complete
framework for which all components can be jointly trained. We improve upon
recent work on standard benchmarks for 3d shape reconstruction.

1 INTRODUCTION

Neural networks have shown promising results for shape reconstruction (Wang et al., 2018; Groueix
et al., 2018; Mescheder et al., 2019; Genova et al., 2019). Different from the image domain, there
is no universally agreed upon way to represent 3d shapes. There exist many explicit and implicit
representations. Explicit representations include point clouds (Qi et al., 2017a;b; Lin et al., 2017),
grids (Wu et al., 2015; Choy et al., 2016; Riegler et al., 2017; Wang et al., 2017; Tatarchenko et al.,
2017), and meshes (Wang et al., 2018; Hanocka et al., 2019). Implicit representations (Mescheder
et al., 2019; Michalkiewicz et al., 2019; Park et al., 2019) define shapes as iso-surfaces of functions.
Both types of representations are important as they have different advantages.

In this work, we set out to investigate how meta-learning can be used to learn shape representations.
To employ meta-learning, we need to split the learning framework into two (or more) coupled learn-
ing problems. There are multiple design choices for exploring this idea. One related solution is to
use a hypernetwork as the first learning algorithm that produces the weights for a second network.
This approach (Littwin & Wolf, 2019), is very inspiring, but the results can still be improved by
our work. The value of our work are not mainly the state-of-the-art results, but the new framework
that enables the flow of new ideas, techniques, and methods developed in the context of few-shot
learning and meta-optimization to be applied to shape reconstruction.

In order to derive our proposed solution, we draw inspiration from few-shot learning. The formula-
tion of few-shot learning we use here is similar to Lee et al. (2019); Bertinetto et al. (2019), but also
other formulations of few shot learning exist, e.g., MAML (Finn et al., 2017). In few-shot learning
for image classification, the learning problem is split into multiple tasks (See Fig. 1). For each task,
the learning framework has to learn a decision boundary to distinguish between a smaller set of
classes. In order to do so, a first network is used to embed images into a high-dimensional feature
space. A second learner (often called base learner in the literature of meta learning approaches for
few-shot learning) is then used to learn decision boundaries in this high-dimensional feature space.
A key point is that each task has separate decision boundaries. In order to build a bridge from few-
shot learning to shape representations, we identify each shape as a separate task. For each task,
there are two classes to distinguish: inside and outside. The link might seem a bit unintuitive at first,
because in the image classification case, each task is defined by multiple images already divided into
multiple classes. However, in our case, a task is only associated with a single image. We therefore
introduce an additional component, a training data generating network, to build the bridge to few-
shot learning (See Fig. 2). This training data generating network takes a single image as input and

1

Published as a conference paper at ICLR 2022

Dtrain
1

...
...

...

Dtest
1

Task 1

Dtrain
2

...
...

...

Dtest
2

Task 2

:::

Dtrain
T

...
...

...

Dtest
T

Task T

Dtrain
1

Dtest
1

Shape 1

Dtrain
2

Dtest
2

Shape 2

:::

Dtrain
T

Dtest
T

Shape T

Figure 1: Few-shot learning v.s. shape representation. Left (gray): few-shot classification (im-
ages taken from miniImageNet). We show 2-shot-3-way few-shot classification in which every
training task contains 3 categories (shown in blue, orange and red bounding boxes) and 2 training
samples in each category. Thus we use 2 × 3 = 6 training samples in Dtrain

t to build classifiers
which are expected to work well on Dtest

t . Right (yellow): shape representation. Shape surfaces
are shown as dotted lines. Our proposed training data generating networks can encode a shape t as
labeled set of points with labels blue or red to provide a training set Dtrain

t . The learning frame-
work uses the training sets to build the surfaces (classification boundaries) which can be evaluated
by densely sampling the space, i.e., Dtest

t .

outputs multiple 3D points with an inside and outside label. These points define the training dataset
for one task (shape). We adopt this data set format to describe a task, because points are a natural
shape representation. Similar to the image classification setting, we also employ an embedding net-
work that maps the original training dataset (a set of 3D points) to another space where it is easier
to find a decision boundary (a distorted 3D space). In contrast to the image classification setting,
the input and output spaces of the embedding network have a lot fewer dimensions, i.e. only three
dimensions. Next, we have to tackle the base learner that takes a set of points in embedding space as
input. Here, we can draw from multiple options. In particular, we experimented with kernel SVMs
and kernel ridge regression. As both give similar results (In meta learning (Lee et al., 2019) we can
also find the same conclusion), we opted for ridge regression in our solution due to the much faster
processing time. The goal of ridge regression is to learn a decision boundary (shape surface) in 3D
space describing the shape.

Our intermediate shape representation is a set of points, but these points cannot be chosen arbitrarily.
The set of points are specifically generated so that the second learning algorithm can process them
to find a decision boundary. The second learning algorithm functions similar to other implicit shape
representations discussed above. The result of the second learning algorithm (SVM or ridge regres-
sion) can be queried as an implicit function. Still the second learning algorithm cannot be replaced
by other existing networks employed in previous work. Therefore, among existing works, only our
representation can directly use few-shot learning. It does not make sense to train our representation
without a few-shot learning framework and no other representation can be directly trained with a
few-shot learning framework. Therefore, all components in our framework are intrinsically linked
and were designed together.

Contributions.

• We propose a new type of shape representation, where we train a network to output a
training set (a set of labeled points) for another machine learning algorithm (Kernel Ridge
Regression or Kernel-SVM).

• We found an elegant way to map the problem of shape reconstruction from a single image
to the problem of few-shot classification by introducing a network to generate training
data. We combined training data generating networks with two meta learning approaches
(R2D2 (Bertinetto et al., 2019) and MetaOptNet (Lee et al., 2019)) in our framework. Our
work enables the application of ideas and techniques developed in the few-shot learning
literature to the problem of shape reconstruction.

2

Published as a conference paper at ICLR 2022

Feature
Network �

R256

PointGen
Network

f x i ; yi gN
i =1

X 2 RN � 3

J Embedding
Network

f ei ; yi gN
i =1

E 2 RN � 3

Base
Learner

�

Weights

xQuery
J Embedding

Network
e P(�) y

Label

Few-Shot LearningData Generation

Figure 2:Pipeline. Networks with trainable parameters are shown in red boxes with round corners.
Outputs are shown in yellow boxes. The base learner is a machine learning algorithm shown in the
gray box. Arrows show how the data �ows in the network. The sign

J
means we are concatenating

multiple inputs.

� We validate our model using the problem of 3d shape reconstruction from a single image
and improve upon the state of the art.

2 RELATED WORK

Neural implicit shape representations. We can identify two major categories of shape repre-
sentations:explicit representations, where a shape can be explicitly de�ned; andimplicit repre-
sentations, where a shape can be de�ned as iso-surface of a function (signed distance function or
indicator function). In the past decade, we have seen great success with neural network based ex-
plicit shape representations: voxel representations (Wu et al., 2015; Choy et al., 2016; Riegler et al.,
2017; Wang et al., 2017; Tatarchenko et al., 2017), point representations (Qi et al., 2017a;b; Fan
et al., 2017; Lin et al., 2017), and mesh representations (Wang et al., 2018; Hanocka et al., 2019)).
On the other hand, modeling implicit representations with neural networks has been a current trend,
where usually a signed distance function or indicator function is parameterized by a neural net-
work (Mescheder et al., 2019; Chen & Zhang, 2019; Michalkiewicz et al., 2019; Park et al., 2019).
More recent works learn a network that outputs intermediate parameters,e.g. CvxNet (Deng et al.,
2019) and BSP-Net (Chen et al., 2019) learns to output half-spaces. We propose a novel type of
shape representation, where the model outputs a training set of labeled points.

Few-shot learning. There are two common meta learning approaches for few-shot learning:
metric-based (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017), which aims to learn a metric
for each task; optimization-based (Ravi & Larochelle, 2017; Finn et al., 2017; Nichol et al., 2018),
which is designed to learn with a few training samples by adjusting optimization algorithms. These
approaches commonly have two parts, an embedding model for mapping an input to an embedding
space, and a base learner for prediction. Qiao et al. (2018); Gidaris & Komodakis (2018) train a hy-
pernetwork (Ha et al., 2016) to output weights of another network (base learner). R2D2 (Bertinetto
et al., 2019) showed that using a light-weight and differentiable base learner (e.g. ridge regression)
leads to better results. To further develop the idea, MetaOptNet (Lee et al., 2019) used multi-class
support vector machines (Crammer & Singer, 2001) as base learner and incorporated differentiable
optimization (Amos & Kolter, 2017; Gould et al., 2016) into the framework. Lee et al. (2019) also
shows it can outperform hypernetwork-based methods. In our work, we propose a shape representa-
tion that is compatible with a few-shot classi�cation framework so that we can utilize existing meta
learning approaches. Speci�cally, we will use ridge regression and SVM as the base learner. The
most relevant method to ours is Littwin & Wolf (2019) which adapts hypernetworks. However, as we
discussed above, differentiable optimization methods (Bertinetto et al., 2019; Lee et al., 2019) are
generally better than hypernetworks. Besides that, meta learning has been applied to other �elds in
shape analysis,e.g., both Sitzmann et al. (2020) and Tancik et al. (2021) propose to use MAML-like
algorithms (Finn et al., 2017) to learn a weight initialization.

3

Published as a conference paper at ICLR 2022

3 METHOD

The framework is shown in Fig. 2. The network is mainly composed of 3 sub-networks. The Feature
Network maps an input image to feature space. The resulting feature vector� is then decoded by
the Point Generation Network to a labeled point setf x i ; yi gN

i =1 . The point set will be used as
training data in our base learner later. After that the Embedding Network projects the point set
into embedding space. The projected pointsei and the labels are taken as the input of a binary
classifer (ridge regression or SVM) parameterized by� . Finally, the framework is able to output the
inside/outside labely of a query pointx by projecting it into the embedding space and feeding it to
the binary classi�er.

In the following subsections, we describe our method in more detail. First, we introduce the back-
ground of meta learning approaches for few-show learning (Sec. 3.1) and establish a link between
single image 3D reconstruction and few-shot learning (Sec. 3.2). We propose a problem formula-
tion inspired by few-shot learning (Sec. 3.3) and propose a solution in the following subsections.
Speci�cally, we apply recently developed differentiable optimization.

3.1 BACKGROUND

Supervised learning. Given training setD train = f x i ; yi gN
i =1 , supervised learning learns a pre-

dictor y = P(x) which is able to predict the labels of test setD test = f x i ; yi gM
i =1 (assuming both

D train andD test are sampled from the same distribution).

Few-shot learning. In few-shot learning, the sizeN of the training set is typically small. The
common learning algorithms on a single task usually cause problems like over�tting. However, we
are given a collection of tasks, the meta-training setDmeta � train = fD train

t ; D test
t gT

t =1 , on which
we train ameta-learnerwhich produces a predictor on every taskfD train

t ; D test
t g and generalizes

well on the meta-testingDmeta � test = fD train
s ; D test

s gS
s=1 .

Consider aK -class classi�cation task, each training setD train consists ofN=K labelled examples
for each ofK classes. The meta-training task is often referred to asN=K -shot-K -way. Refer to
Figure 1 for an example visualization of 2-shot-3-way few-shotimageclassi�cation.

Meta learning approaches for few-shot learning often involve an embedding network, and a base
learner (learning algorithm). The embedding network maps training samples to an embedding space.
We explain in later subsections how the 3d reconstruction is connected to meta learning in these two
aspects.

3.2 SINGLE IMAGE 3D RECONSTRUCTION

A watertight shape can be represented by an indicator (or occupancy) functionO : R3 ! f 0; 1g.
We de�ne O(x) = 1 if x 2 R3 is inside the object,O(x) = 0 otherwise. We can sample a set
of points inR3 and evaluate the indicatorO, then we have the labeled point setf x i ; yi gM

i =1 where
yi 2 f 0; 1g. The numberM needs to be large enough to approximate the shape. In this way, we
rewrite the target ground-truth as a point set. This strategy is also used by Mescheder et al. (2019)
and Deng et al. (2019). Also see Figure 1 for an illustration.

The goal of single image 3D reconstruction is to convert an input imageI to the indicator function
O. Previous work either directly learnsO (Mescheder et al., 2019))or trains a network to predict
an intermediate parametric representation (e.g. collection of convex primitives (Deng et al., 2019),
half-spaces (Chen et al., 2019)). Different from any existing methods, our shape representation is to
generate training data for a few-shot classi�cation problem. In order to make the connection clear,
we denote the ground-truthf x i ; yi gM

i =1 asD test .

The training data of single image 3D reconstruction are a collection of imagesI t and their corre-
sponding shapesD test

t which we denote asDmeta � train = f I t ; D test
t gT

t =1 . The goal is to learn a
network which takes as input an imageI and outputs a functional (predictor)P(x) which works on
D test .

We summarize the notation and the mapping of few-shot classi�cation to 3D shape reconstruction
in Table 1. Using the proposed mapping, we need to �nd adata generatingnetwork (Fig. 2 left) to

4

Published as a conference paper at ICLR 2022

Table 1: Symbols for few-shot classi�cation and 3D reconstruction. Rows shown in blue are items
3D shape reconstruction has but few-shot classi�cation does not.

Few-shot classi�cation 3D shape reconstruction

I - input images
f - D train = f (I)

D train f x i ; yi gN
i =1 -

D test f x i ; yi gM
i =1 f x i ; yi gM

i =1
x i images points
yi categories inside/outside labels

predictorP (�) classi�er surface boundary
Dmeta � train fD train

t ; D test
t gT

t =1 f I t ; D test
t gT

t =1

convert the inputI to a set of labeled pointsD train = f x i ; yi gN
i =1 (usuallyN is far smaller thanM).

Then theDmeta � train can be rewritten asfD train
t ; D test

t gT
t =1 . It can be seen that, this formulation

has a high resemblance to few-shot learning. Also see Figure 1 for a visualization. As a result, we
can leverage techniques from the literature of few-shot learning to jointly train the data generation
and the classi�cation components.

3.3 FORMULATION

Similar to few-shot learning, the problem can be written as a bi-level optimization. The inner opti-
mization is to train the predictorP(x) to estimate the inside/outside label of a point,

min
P

E(x ;y)2D train [L (y; P(x))] ; (1)

whereL (�; �) is a loss function such as cross entropy. While in few-shot learningD train is provided
or sampled, hereD train is generatedby a networkf , D train = f (I). To reconstruct the shape
(I ; D test), the predictorP should work as an approximation of the indicatorO and is expected to
minimize the term,

E(x ;y)2D test [L (y; P(x))] : (2)
This process is done by abase learner(machine learning algorithm) in some meta learning methods
(Bertinetto et al., 2019; Lee et al., 2019). The �nal objective across all shapes (tasks) is

min E(I ;D test)2D meta � train

�
E(x ;y)2D test [L (y; P(x))]

�
;

s.t.P = min
P

E(x ;y)2D train [L (y; P(x))] ; D train = f (I);
(3)

which is exactly the same as for meta learning algorithms if we remove the constraintD train = f (I).

Point Embedding. In meta learning approaches for few-shot classi�cation, an embedding network
is used to map the training samples to an embedding space,g(x) = e, wheree is the embedding
vector of the inputx. We also migrate the idea to 3d shape representations,g(x jI) = e, where the
embedding network is also conditioned on the task inputI .

In later sections, we useei and e to denote the embeddings of pointx i and x, respectively. In
addition to the objective Eq equation 3, we add a regularizer,

w � Ex ke � xk2
2 ; (4)

wherew is the weight for the regularizer. There are multiple solutions for the Embedding Network,
thus we want to use the regularizer to shrink potential solutions, which is to �nd a similar embedding
space to the original one. Thew is set to0:01 in all experiments if not speci�ed.

3.4 DIFFERENTIABLE LEARNER

The Eq. equation 1 is the inner loop of the �nal objective Eq. equation 3. Recent meta learning
approaches use differentiable learners,e.g., R2D2 (Bertinetto et al., 2019) uses Ridge Regression
and MetaOptNet (Lee et al., 2019) uses Support Vector Machines (SVM). We describe both cases
here. Different than the learner in R2D2 and MetaOptNet, we use kernelized algorithms.

5

Published as a conference paper at ICLR 2022

Ridge Regression. Given a training setD train = f x i ; yi gN
i =1 , The kernel ridge regression (Mur-

phy, 2012) is formulated as follows,

minimize
�

�
2

� | K � +
1
2

ky � K � k2
2 ; (5)

where K 2 RN � N is the data kernel matrix in which each entryK i;j is the Gaussian ker-
nel K (ei ; ej) = exp(� k ei � ej k2

2 =(2� 2)) . The solution is given by an analytic form� =
(K + � I) � 1y . By using automatic differentiation of existing deep learning libraries, we can differ-
entiate through� with respect to eachx i in D train . We obtain the prediction for a query pointx
via

RR(e; D train) =
NX

i =1

� i K (ei ; e): (6)

SVM. We use the dual form of kernel SVM,

minimize
�

1
2

NX

j =1

NX

i =1

� i � j yi yj K (ei ; ej) �
NX

i =1

� i

subject to
NX

i =1

� i yi = 0 ; 0 � � i � C; i = 1 ; : : : ; N;

(7)

whereK (�; �) is the Gaussian kernel. .

The discriminant function becomes,

SVM(e; D train) =
NX

i =1

� i yi K (ei ; e) + b: (8)

Using recent advances in differentiable optimization by Amos & Kolter (2017), the discriminant
function is differentiable with respect to eachx i in D train .

While the de�nitions of both learners are given here, we only show results of ridge regression in our
main paper. Additional results of SVM are provided in the supplementary material. In traditional
machine learning, SVM is better than ridge regression in many aspects. However, we do not �nd
SVM shows signi�cant improvement over ridge regression in our experiments. The conclusion is
also consistent with Lee et al. (2019).

3.5 INDICATOR APPROXIMATION

We clip the outputs of the ridge regression to the range[0; 1] as an approximation̂ORR of the
indicatorO. For the SVM, the predictor outputs a positive value ifx is inside the shape otherwise
a negative value. So we apply a sigmoid function to convert it to the range[0; 1], ÔSV M (x) =
Sigmoid(� SVM(e; D train)) , where� is a learned scale. Then Eq. equation 2 is written as follows:

E(x ;y)2D test

�

 Ô(x) � y

2

2

�
; (9)

where the minimum squared error (MSE) loss is also used in CvxNet (Deng et al., 2019).

4 IMPLEMENTATION

Base learner. We use� = 0 :005for ridge regression andC = 1 for SVM in all experiments. The
parameter� in the kernel functionK (�; �) is learned during training and is shape-speci�c, i.e., each
shape has its own� .

Similar to recent works on instance segmentation (Liang et al., 2017; Kendall et al., 2018; Novotny
et al., 2018; Zhang & Wonka, 2019), we also �nd that a simpleR3 spatial embedding works well,
i.e., x 2 R3 and� 2 R3. Another reason for choosingR3 embedding is that we want to visualize
the relationship between the original and embedding space in later sections.

6

Published as a conference paper at ICLR 2022

Table 2: Reconstruction results on ShapeNet. We compare our results with
Pixel2Mesh(P2M) (Wang et al., 2018), AtlasNet(AN) (Groueix et al., 2018), Occ-
Net(ON) (Mescheder et al., 2019), SIF (Genova et al., 2019), CvxNet(CN) (Deng et al.,
2019) and Hypernetwork(HN) (Littwin & Wolf, 2019). Best results are shown in bold.

Categ. IoU " Chamfer# F-Score"
Ours P2M ON ONy SIF CN HNy Ours P2M AN ON ONy SIF CN HNy Ours AN ON ONy SIF CN HNy

plane 0.633 0.420 0.571 0.603 0.530 0.598 0.6080.121 0.187 0.104 0.147 0.144 0.1670.093 0.127 71.15 67.24 62.87 67.25 52.81 68.16 68.56
bench 0.524 0.323 0.485 0.486 0.333 0.461 0.5010.132 0.201 0.138 0.155 0.148 0.261 0.133 0.14669.44 54.50 56.91 64.80 37.31 54.64 65.43
cabinet 0.732 0.664 0.733 0.733 0.648 0.7090.734 0.141 0.196 0.175 0.167 0.142 0.233 0.160 0.14565.33 46.43 61.79 62.78 31.68 46.09 63.15
car 0.748 0.552 0.737 0.738 0.657 0.675 0.7320.121 0.180 0.141 0.159 0.125 0.1610.103 0.131 65.48 51.51 56.91 63.68 37.66 47.33 61.46
chair 0.532 0.396 0.501 0.515 0.389 0.491 0.5170.205 0.265 0.209 0.228 0.217 0.380 0.337 0.23048.83 38.89 42.41 46.38 26.90 38.49 45.56
display 0.553 0.490 0.471 0.540 0.4910.576 0.542 0.215 0.239 0.198 0.278 0.213 0.401 0.223 0.21746.96 42.79 38.96 44.55 27.22 40.69 44.42
lamp 0.383 0.323 0.3710.395 0.260 0.311 0.3890.391 0.308 0.305 0.479 0.404 1.096 0.795 0.44142.99 33.04 38.3543.41 20.59 31.41 41.81
speaker0.658 0.599 0.647 0.651 0.577 0.6200.661 0.247 0.285 0.245 0.300 0.261 0.554 0.462 0.26146.86 35.75 42.48 44.05 22.42 29.45 45.33
ri�e 0.540 0.402 0.474 0.496 0.463 0.515 0.5080.111 0.164 0.115 0.141 0.129 0.1930.106 0.120 69.40 64.22 56.52 64.34 53.20 63.74 65.92
sofa 0.707 0.613 0.680 0.692 0.606 0.677 0.6920.155 0.212 0.177 0.194 0.167 0.272 0.164 0.16356.40 43.46 48.62 53.01 30.94 42.11 53.13
table 0.551 0.395 0.506 0.534 0.372 0.473 0.5310.171 0.218 0.190 0.189 0.179 0.454 0.358 0.18965.25 44.93 58.49 63.67 30.78 48.10 63.35
phone 0.779 0.661 0.720 0.756 0.658 0.719 0.7630.106 0.149 0.128 0.140 0.109 0.1590.083 0.107 75.96 58.85 66.09 71.96 45.61 59.64 73.56
vessel 0.567 0.397 0.530 0.553 0.502 0.552 0.5580.186 0.212 0.151 0.218 0.193 0.208 0.173 0.19951.57 49.87 42.37 49.48 36.04 45.88 49.03

mean 0.608 0.480 0.571 0.592 0.499 0.567 0.5950.177 0.217 0.175 0.215 0.187 0.349 0.245 0.19059.66 48.58 51.75 56.87 34.86 47.36 56.98

y Re-implemeneted version.

Networks. Our framework is composed of three sub-networks: Feature Network, Point Genera-
tion Network and Embedding Network (see Fig. 2). For the Feature Network, we use Ef�cientNet-
B1 (Tan & Le, 2019) to generate a256-dimensional feature vector. This architecture provides a good
tradeoff between performance and simplicity. Both the Point Generation Network and Embedding
Network are implemented with MLPs (see the supplementary material for the detailed architec-
tures). The Point Generation Network outputs� and pointsf x i gN

i =1 (half of which have+1 inside
label and the other half have� 1 outside label) whereN = 64. The Embedding Network takes as
input the concatenation of both the pointx and the feature vector� . Instead of outputtinge directly,
we predict the offseto = e � x and apply thetanh activation to restrict the output to lie inside a
bounding box. The training batch size is32. We use Adam (Kingma & Ba, 2014) with learning rate
2e � 4 as our optimizer. The learning rate is decayed with a factor of0:1 after500epochs.

Data. We perform single image 3d reconstruction on the ShapeNet (Chang et al., 2015) dataset.
The rendered RGB images and data split are taken from (Choy et al., 2016). We sample 100k
points uniformly from the shape bounding box as in OccNet (Mescheder et al., 2019) and also 100k
“near-surface” points as in CvxNets (Deng et al., 2019) and SIF (Genova et al., 2019). Along with
the corresponding inside/outside labels, we constructD test for each shape of�ine to increase the
training speed. At training time, 1024 points are drawn from the bounding box and 1024 ”near-
surface”. This is the sampling strategy proposed by CvxNet.

5 RESULTS

Evaluation metrics. We use the volumetric IoU, the Chamfer-L1 distance and F-
Score (Tatarchenko et al., 2019) for evaluation. Volumetric IoU is obtained from 100k uniformly
sampled points. The Chamfer-L1 distance is estimated by randomly sampling 100k points from the
ground-truth mesh and predicted mesh which is generated by Marching Cubes (Lorensen & Cline,
1987). F-Score is calculated withd = 2% of the side length of the reconstructed volume. Note that
following the discussions by Tatarchenko et al. (2019), F-Score is a more robust and important met-
ric for 3d reconstruction compared to IoU and Chamfer. All three metrics are used in CvxNet (Deng
et al., 2019).

Competing methods. The list of competing methods includes Pixel2Mesh (Wang et al., 2018),
AtlasNet (Groueix et al., 2018), SIF (Genova et al., 2019), OccNet (Mescheder et al., 2019),
CvxNet (Deng et al., 2019) and Hypernetwork (Littwin & Wolf, 2019). Results are taken from
these works except for (Littwin & Wolf, 2019) which we provide re-implemented results.

Quantitative results. We compare our method with a list of state-of-the-art methods quantitatively
in Table 2. We improve the most important metric, F-score, from51:75% to 59:66% compared
to the previous state of the art OccNet (Mescheder et al., 2019). We also improve upon OccNet

7

	Introduction
	Related work
	Method
	Background
	Single image 3D reconstruction
	Formulation
	Differentiable learner
	Indicator approximation

	Implementation
	Results
	Conclusion
	Appendix
	Networks
	Visualization of feature space
	Statistics of metrics
	Shape Interpolation
	Effects of w
	The choice of base learners
	Results on real world images
	Inter-Categories Interpolation
	Training and Inference
	Choice of backbones
	Embedding dimensions

