
Amortized Decision-Aware
Bayesian Experimental Design

Daolang Huang
Aalto University

daolang.huang@aalto.fi

Yujia Guo
Aalto University

yujia.guo@aalto.fi

Luigi Acerbi
University of Helsinki

luigi.acerbi@helsinki.fi

Samuel Kaski
Aalto University

University of Manchester
samuel.kaski@aalto.fi

Abstract

Many critical decisions are made based on insights gained from designing, ob-
serving, and analyzing a series of experiments. This highlights the crucial role
of experimental design, which goes beyond merely collecting information on sys-
tem parameters as in traditional Bayesian experimental design (BED), but also
plays a key part in facilitating downstream decision-making. Most recent BED
methods use an amortized policy network to rapidly design experiments. However,
the information gathered through these methods is suboptimal for down-the-line
decision-making, as the experiments are not inherently designed with downstream
objectives in mind. In this paper, we present an amortized decision-aware BED
framework that prioritizes maximizing downstream decision utility. We introduce
a novel architecture, the Transformer Neural Decision Process (TNDP), capable of
instantly proposing the next experimental design, whilst inferring the downstream
decision, thus effectively amortizing both tasks within a unified workflow. We
demonstrate the performance of our method across two tasks, showing that it can
deliver informative designs and facilitate accurate decision-making1.

1 Introduction

A fundamental challenge in a wide array of disciplines is the design of experiments to infer unknown
properties of the systems under study [9, 7]. Bayesian Experimental Design (BED) [17, 8, 24, 22] is
a powerful framework to guide and optimize experiments by maximizing the expected amount of
information about parameters gained from experiments, see Fig. 1(a). To pick the next optimal design,
standard BED methods require estimating and optimizing the expected information gain (EIG) over
the design space, which can be extremely time-consuming. This limitation has led to the development
of amortized BED [10, 14, 5, 6], a policy-based method which leverages a neural network policy
trained on simulated experimental trajectories to quickly generate designs, as illustrated in Fig. 1(b).

However, the ultimate goal in many tasks extends beyond parameter inference to inform a downstream
decision-making task by leveraging our understanding of these parameters, such as in personalized
medical diagnostics [4]. Previous amortized BED methods do not take down-the-line decision-making
tasks into account, which is suboptimal for decision-making in scenarios where experiments can be
adaptively designed. Loss-calibrated inference, which was originally introduced by Lacoste-Julien

1The full version of this work can be found at: https://arxiv.org/abs/2411.02064.

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

https://arxiv.org/abs/2411.02064

Figure 1: Overview of BED workflows. (a) Traditional BED, which iterates between optimizing
designs, running experiments, and updating the model via Bayesian inference. (b) Amortized BED,
which uses a policy network for rapid experimental design generation. (c) Our decision-aware
amortized BED integrates decision utility in the training to facilitate downstream decision-making.

et al. [16] for variational approximations in Bayesian inference, provides a concept that adjusts the
inference process to capture posterior regions critical for decision-making tasks. Inspired by this
concept, we consider integrating decision-making directly into the experimental design process to
align the proposed experimental designs more closely with the ultimate decision-making task.

In this paper, we propose an amortized decision-making-aware BED framework, see Fig. 1(c).
We identify two key aspects where previous amortized BED methods fall short when applied to
downstream decision-making tasks. First, the training objective of the existing methods does not
consider downstream decision tasks. Therefore, we introduce the concept of Decision Utility Gain
(DUG) to guide experimental design to better align with the downstream objective. Second, to obtain
the optimal decision, we still need to explicitly approximate the predictive distribution of the outcomes
to estimate the utility. Current amortized methods learn this distribution only implicitly and therefore
do not fully amortize the decision-making process. To address this, we propose a novel Transformer
neural decision process (TNDP) architecture, where the system can instantly propose informative
experimental designs and make final decisions. Finally, we train under a non-myopic objective
function that ensures decisions are made with consideration of future outcomes. We empirically show
the effectiveness of our method through two tasks.

2 Decision-aware BED

2.1 Preliminaries and problem setup

In this paper, we consider scenarios in which we design a series of experiments ξ ∈ Ξ and observe
corresponding outcomes y to inform a final decision-making step. The experimental history is denoted
as h1:t = {(ξ1, y1), ..., (ξt, yt)} and we assume a fixed experimental budget with T query steps. Our
objective is to identify an optimal decision a∗ from a set of possible decisions A at time T .

To make decisions under uncertainty, Bayesian decision theory [3] provides an axiomatic framework
by incorporating probabilistic beliefs about unknown parameters into decision-making. Given a task-
specific utility function u(θ, a), which quantifies the value of the outcomes from different decisions
a ∈ A when the system is in state θ, the optimal decision is then determined by maximizing the
expected utility under the posterior distribution of the parameters p(θ|h1:t).

In many real-world scenarios, outcomes are stochastic and it is more typical to make decisions
based on their predictive distribution p(y|ξ, h1:t) = Ep(θ|h1:t)[p(y|ξ, θ, h1:t)], such as in clinical

2

trials where the optimal treatment is chosen based on predicted patient responses. A similar setup can
be found in [15, 28]. Thus, we can represent our belief directly as p(yΞ|h1:t) ≡ {p(y|ξ, h1:t)}ξ∈Ξ,
which is a stochastic process that defines a joint predictive distribution of outcomes indexed by the
elements of the design set Ξ, given the current information h1:t. Our utility function is then expressed
as u(yΞ, a), which is a natural extension of the traditional definition of utility by marginalizing out
the posterior distribution of θ. The rule for making the optimal decision is then reformulated as:

a∗ = argmax
a∈A

Ep(yΞ|h1:t)[u(yΞ, a)]. (1)

2.2 Decision utility gain

To quantify the effectiveness of each experimental design in terms of decision-making, we introduce
Decision Utility Gain (DUG), which is defined as the difference in the expected utility of the best
decision, with the new information obtained from the current experimental design, versus the best
decision with the information obtained from previous experiments.

Definition 2.1. Given a historical experimental trajectory h1:t−1, the Decision Utility Gain (DUG)
for a given design ξt and its corresponding outcome yt at step t is defined as follows:

DUG(ξt, yt) =max
a∈A

Ep(yΞ|h1:t−1∪{(ξt,yt)}) [u(yΞ, a)]−max
a∈A

Ep(yΞ|h1:t−1) [u(yΞ, a)] . (2)

DUG measures the improvement in the maximum expected utility from observing a new ex-
perimental design, differing in this from standard marginal utility gain (see e.g., [12]). The
optimal design is the one that provides the largest increase in maximal expected utility. At
the time we choose the design ξt, the outcome remains uncertain. Therefore, we should con-
sider the Expected Decision Utility Gain (EDUG) to select the next design, which is defined as
EDUG(ξt) = Ep(yt|ξt,h1:t−1) [DUG(ξt, yt)]. The one-step lookahead optimal design can be deter-
mined by maximizing EDUG with ξ∗ = argmaxξ∈Ξ EDUG(ξ). However, in practice, the true
predictive distributions are often unknown, making the optimization of EDUG exceptionally challeng-
ing. This difficulty arises due to the inherent bi-level optimization problem and the need to evaluate
two layers of expectations.

To avoid the expensive cost of optimizing EDUG, we propose using a policy network that directly
maps historical data to the next design. This approach sidesteps the need to iteratively optimize
EDUG by learning a design strategy over many simulated experiment trajectories beforehand.

2.3 Amortization with TNDP

Our architecture, termed Transformer Neural Decision Process (TNDP), is a novel architecture build-
ing upon the Transformer neural process (TNP) [20]. It aims to amortize both the experimental design
and the subsequent decision-making. A general introduction to TNP can be found in Appendix A.

The data architecture of our system comprises four parts: A context set D(c) = {(ξ(c)
i , y(c)

i)}ti=1

contains all past t-step designs and outcomes; A prediction set D(p) = {(ξ(p)
i , y(p)

i)}np
i=1 consists of np

design-outcome pairs used for approximating p(yΞ|h1:t). The output from this head can then be used
to estimate the expected utility; A query set D(q) = {ξ(q)

i }nq
i=1 consists of nq candidate experimental

designs being considered for the next step; Global information GI = [t, γ] where t represents
the current step, and γ encapsulates task-related information, which could include contextual data
relevant to the decision-making process.

TNDP comprises four main components, the full architecture is shown in Fig. 2(a). At first, the
data embedder block femb maps each set of D to an aligned embedding space. The embeddings
are then concatenated to form a unified representation E = concat(E(c),E(p),E(q),EGI). After the
initial embedding, the Transformer block ftfm processes E using attention mechanisms that allow
for selective interactions between different data components, ensuring that each part contributes
appropriately to the final output. Fig. 2(b) shows an example attention mask. The output of ftfm is
then split according to the specific needs of the query and prediction head λ = [λ(p),λ(q)] = ftfm(E).

The primary role of the prediction head fp is to approximate p(yΞ|h1:t) at any step t with a family of
parameterized distributions q(yΞ|pt), where pt = fp(λ

(p)
t) is the output of fp. We choose a Gaussian

3

Transformer Block

Query HeadPrediction
Head

Data Embedding Block

Context SetGlobal Info Prediction Set Query Set

(a) (b)

{

{ {{
{

{

Figure 2: Illustration of TNDP. (a) An overview of TNDP architecture with input consisting of 2
observed design-outcome pairs from D(c), 2 designs from D(p) for prediction, and 2 candidate designs
from D(q) for query. (b) The corresponding attention mask. The colored squares indicate that the
elements on the left can attend to the elements on the top in the self-attention layer of ftfm.

likelihood and train fp by minimizing the negative log-likelihood of the predicted probabilities:

L(p) = −
T∑

t=1

np∑
i=1

log q(y(p)
i |pi,t) = −

T∑
t=1

np∑
i=1

logN (y(p)
i |µi,t,σ

2
i,t), (3)

where pi,t represents the output of design ξ(p)
i at step t, µ and σ are the predicted mean and standard

deviation split from p.

Lastly, the query head fq processes the embeddings λ(q) from the Transformer block to generate a
policy distribution over possible experimental designs. The outputs of the query head, q = fq(λ

(q)),
are mapped to a probability distribution π(ξ(q)

t |h1:t−1) via a Softmax function. To design a reward
signal that guides the query head fq in proposing informative designs, we first define a single-
step immediate reward based on DUG (Eq. (2)), replacing the true predictive distribution with our
approximated distribution:

rt(ξ
(q)
t) = max

a∈A
Eq(yΞ|pt) [u(yΞ, a)]−max

a∈A
Eq(yΞ|pt−1) [u(yΞ, a)] . (4)

This reward quantifies how the experimental design influences our decision-making by estimating the
improvement in expected utility that results from incorporating new experimental outcomes. However,
this objective remains myopic, as it does not account for the future or the final decision-making. To
address this, we employ the REINFORCE algorithm [30]. The final loss of fq can be written as:

L(q) = −
T∑

t=1

Rt log π(ξ
(q)
t |h1:t−1), (5)

where Rt =
∑T

k=t α
k−trk(ξ

(q)
k) represents the non-myopic discounted reward. The discount factor

α is used to decrease the importance of rewards received at later time step. ξ(q)
t is obtained through

sampling from the policy distribution ξ(q)
t ∼ π(·|h1:t−1). The details of implementing and training

TNDP are shown in Appendix B.

3 Experiments

3.1 Toy example: targeted active learning

We begin with an illustrative example to show how our TNDP works. We consider a synthetic
regression task where the goal is to perform regression at a specific test point x∗ on an unknown
function. To accurately predict this point, we need to actively collect some new points to query.

4

0.0

0.5

1.0

1.5

2.0

y target function
x∗

queried data
next query

0.0 0.2 0.4 0.6 0.8 1.0

x
0.000

0.005

π

Figure 3: Results of toy example. The top
figure represents the true function and the ini-
tial known points. The red line indicates the
location of x∗. The blue star marks the next
query point, sampled from the policy’s pre-
dicted distribution shown in the bottom figure.

The design space Ξ = X is the domain of x, and y is
the corresponding noisy observations of the function.
Let Q(X) denote the set of combinations of distri-
butions that can be output by TNDP, we can then
define decision space to be A = Q(X). The down-
stream decision is to output a predictive distribution
for y∗ given a test point x∗, and the utility function
u(yΞ, a) = log q(y∗|x∗, h1:t) is the log probability
of y under the predicted distribution.

During training, we sample functions from Gaussian
Processes (GPs) [23] with squared exponential ker-
nels of varying output variances and lengthscales and
randomly sample a point as the test point x∗. We set
the global contextual information λ as the test point
x∗. For illustration purposes, we consider only the
case where T = 1. Additional details for the data
generation can be found in Appendix C.

Results. From Fig. 3, we can observe that the values
of π concentrate near x∗, meaning our query head fq tends to query points close to x∗ to maximize
the DUG. This is an intuitive example demonstrating that our TNDP can adjust its design strategy
based on the downstream task.

0 10 20 30 40 50

Step t
2.74

2.76

2.78

2.80

2.82

U
til

ity

ranger

0 10 20 30 40 50

Step t

2.28

2.34

2.40

2.46

2.52

rpart

0 10 20 30 40 50

Step t

2.72

2.76

2.80

2.84

2.88

svm

0 10 20 30 40 50

Step t
2.60

2.65

2.70

2.75

2.80
xgboost

RS UCB EI PI PFNs4BO TNDP

Figure 4: Average utility on Top-k HPO task. The error bars represent the standard deviation over
five runs. TNDP consistently achieved the best performance regarding the utility.

3.2 Top-k hyperparameter optimization

In traditional optimization tasks, we typically only aim to find a single point that maximizes the
underlying function f . However, instead of identifying a single optimal point, there are scenarios
where we wish to estimate a set of top-k distinct optima, such as in materials discovery [18, 27].

In this experiment, we choose hyperparameter optimization (HPO) tasks and conduct experiments on
the HPO-B datasets [1]. The design space Ξ ⊆ X is a finite set defined over the hyperparameter space
and the outcome y is the accuracy of a given configuration. Our decision is to find k hyperparameter
sets, denoted as a = (a1, ..., ak) ∈ A ⊆ X k, with ai ̸= aj . The utility function is then defined as
u(yΞ, a) =

∑k
i=1 yai

, where yai
is the accuracy corresponding to the configuration ai.

We compare our methods with five different BO acquisition functions: random sampling (RS), Upper
Confidence Bound (UCB), Expected Improvement (EI), Probability of Improvement (PI), and an
amortized method PFNs4BO [19]. We set k = 3 and T = 50. Our experiments are conducted on four
search spaces. All results are evaluated on a predefined test set. For more details, see Appendix D.

Results. From the results (Fig. 4), our method demonstrates superior performance across all four
meta-datasets, particularly during the first 10 queries.

4 Discussion and conclusion

In this paper, we introduced a decision-aware amortized BED framework with a novel TNDP architec-
ture to optimize experimental designs for better decision-making. Future work includes conducting
more extensive empirical tests and ablation studies, deploying more advanced RL algorithms [26]
to enhance training stability, addressing robust experimental design under model misspecification
[22, 13, 25], and developing dimension-agnostic methods to expand the scope of amortization.

5

References
[1] Sebastian Pineda Arango, Hadi Samer Jomaa, Martin Wistuba, and Josif Grabocka. Hpo-b:

A large-scale reproducible benchmark for black-box hpo based on openml. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
2), 2021.

[2] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33, 2020.

[3] James O Berger. Statistical decision theory and Bayesian analysis. Springer Science & Business
Media, 2013.

[4] Ioana Bica, Ahmed M Alaa, Craig Lambert, and Mihaela Van Der Schaar. From real-world
patient data to individualized treatment effects using machine learning: current and future
methods to address underlying challenges. Clinical Pharmacology & Therapeutics, 109(1):
87–100, 2021.

[5] Tom Blau, Edwin V Bonilla, Iadine Chades, and Amir Dezfouli. Optimizing sequential
experimental design with deep reinforcement learning. In International conference on machine
learning, pages 2107–2128. PMLR, 2022.

[6] Tom Blau, Edwin Bonilla, Iadine Chades, and Amir Dezfouli. Cross-entropy estimators for
sequential experiment design with reinforcement learning. arXiv preprint arXiv:2305.18435,
2023.

[7] Martin Burger, Andreas Hauptmann, Tapio Helin, Nuutti Hyvönen, and Juha-Pekka Puska.
Sequentially optimized projections in x-ray imaging. Inverse Problems, 37(7):075006, 2021.

[8] Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical
science, pages 273–304, 1995.

[9] Yi Cheng and Yu Shen. Bayesian adaptive designs for clinical trials. Biometrika, 92(3):633–646,
2005.

[10] Adam Foster, Desi R Ivanova, Ilyas Malik, and Tom Rainforth. Deep adaptive design: Amortiz-
ing sequential bayesian experimental design. In International Conference on Machine Learning,
pages 3384–3395. PMLR, 2021.

[11] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes.
In International conference on machine learning, pages 1704–1713. PMLR, 2018.

[12] Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

[13] Daolang Huang, Ayush Bharti, Amauri Souza, Luigi Acerbi, and Samuel Kaski. Learning
robust statistics for simulation-based inference under model misspecification. Advances in
Neural Information Processing Systems, 36, 2023.

[14] Desi R Ivanova, Adam Foster, Steven Kleinegesse, Michael U Gutmann, and Thomas Rainforth.
Implicit deep adaptive design: Policy-based experimental design without likelihoods. Advances
in Neural Information Processing Systems, 34, 2021.

[15] Tomasz Kuśmierczyk, Joseph Sakaya, and Arto Klami. Variational bayesian decision-making
for continuous utilities. Advances in Neural Information Processing Systems, 32, 2019.

[16] Simon Lacoste-Julien, Ferenc Huszár, and Zoubin Ghahramani. Approximate inference for the
loss-calibrated bayesian. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 416–424. JMLR Workshop and Conference Proceedings, 2011.

[17] Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, 27(4):986–1005, 1956.

6

[18] Yue Liu, Tianlu Zhao, Wangwei Ju, and Siqi Shi. Materials discovery and design using machine
learning. Journal of Materiomics, 3(3):159–177, 2017.

[19] Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context
learning for bayesian optimization. In International Conference on Machine Learning, pages
25444–25470. PMLR, 2023.

[20] Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta
learning via sequence modeling. In International Conference on Machine Learning, pages
16569–16594. PMLR, 2022.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[22] Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian
experimental design. Statistical Science, 39(1):100–114, 2024.

[23] Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[24] Elizabeth G Ryan, Christopher C Drovandi, James M McGree, and Anthony N Pettitt. A review
of modern computational algorithms for bayesian optimal design. International Statistical
Review, 84(1):128–154, 2016.

[25] Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, and Stefan T Radev. Detecting model
misspecification in amortized bayesian inference with neural networks: An extended investiga-
tion. arXiv preprint arXiv:2406.03154, 2024.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[27] Kei Terayama, Masato Sumita, Ryo Tamura, and Koji Tsuda. Black-box optimization for
automated discovery. Accounts of Chemical Research, 54(6):1334–1346, 2021.

[28] Meet P Vadera, Soumya Ghosh, Kenney Ng, and Benjamin M Marlin. Post-hoc loss-calibration
for bayesian neural networks. In Uncertainty in Artificial Intelligence, pages 1403–1412. PMLR,
2021.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[30] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

7

Appendix

A Conditional neural processes

CNPs [11] are designed to model complex stochastic processes through a flexible architecture that
utilizes a context set and a target set. The context set consists of observed data points that the model
uses to form its understanding, while the target set includes the points to be predicted. The traditional
CNP architecture includes an encoder and a decoder. The encoder is a DeepSet architecture to
ensure permutation invariance, it transforms each context point individually and then aggregates
these transformations into a single representation that captures the overall context. The decoder then
uses this representation to generate predictions for the target set, typically employing a Gaussian
likelihood for approximation of the true predictive distributions. Due to the analytically tractable
likelihood, CNPs can be efficiently trained through maximum likelihood estimation.

A.1 Transformer neural processes

Transformer Neural Processes (TNPs), introduced by [20], enhance the flexibility and expressiveness
of CNPs by incorporating the Transformer’s attention mechanism [29]. In TNPs, the transformer
architecture uses self-attention to process the context set, dynamically weighting the importance of
each point. This allows the model to create a rich representation of the context, which is then used by
the decoder to generate predictions for the target set. The attention mechanism in TNPs facilitates the
handling of large and variable-sized context sets, improving the model’s performance on tasks with
complex input-output relationships. The Transformer architecture is also useful in our setups where
certain designs may have a more significant impact on the decision-making process than others. For
more details about TNPs, please refer to [20].

B Additional details of TNDP

B.1 Full algorithm for training TNDP

Algorithm 1 Transformer Neural Decision Processes (TNDP)
1: Input: Utility function u(yΞ, a), prior p(θ), likelihood p(y|θ, ξ), query horizon T
2: Output: Trained TNDP
3: while within the training budget do
4: Sample θ ∼ p(θ) and initialize D
5: for t = 1 to T do
6: ξ(q)

t ∼ πt(·|h1:t−1) ▷ sample next design from policy
7: Sample yt ∼ p(y|θ, ξ) ▷ observe outcome
8: Set ht = ht−1 ∪ {(ξ(q)

t , yt)} ▷ update history
9: Set D(c) = h1:t, D

(q) = D(q) \ {ξ(q)
t } ▷ update D

10: Calculate rt(ξ
(q)
t) with u(yΞ, a) using Eq. (4) ▷ calculate reward

11: end for
12: Rt =

∑T
k=t α

k−trk(ξ
(q)
k) ▷ calculate cumulative reward

13: Update TNDP using L(p) (Eq. (3)) and L(q) (Eq. (5))
14: end while
15: At deployment, we can use f (q) to sequentially query T designs. Afterward, based on the queried

experiments, we perform one-step final decision-making using the prediction from f (p).

B.2 Embedders

The embedder femb is responsible for mapping the raw data to a space of the same dimension. For
the toy example and the top-k hyperparameter task, we use three embedders: a design embedder
f
(ξ)
emb, an outcome embedder f (y)

emb, and a time step embedder f (t)
emb. Both f

(ξ)
emb and f

(y)
emb are multi-layer

perceptions (MLPs) with the following architecture:

8

• Hidden dimension: the dimension of the hidden layers, set to 32.

• Output dimension: the dimension of the output space, set to 32.

• Depth: the number of layers in the neural network, set to 4.

• Activation function: ReLU is used as the activation function for the hidden layers.

The time step embedder f (t)
emb is a discrete embedding layer that maps time steps to a continuous

embedding space of dimension 32.

For the decision-aware active learning task, since the design space contains both the covariates and the
decision, we use four embedders: a covariate embedder f (x)

emb, a decision embedder f (d)
emb, an outcome

embedder f (y)
emb, and a time step embedder f (t)

emb. f (x)
emb, f (y)

emb and f
(t)
emb are MLPs which use the same

settings as described above. The decision embedder f (d)
emb is another discrete embedding layer.

For context embedding E(c), we first map each ξ(c)
i and y(c)

i to the same dimension using their
respective embedders, and then sum them to obtain the final embedding. For prediction embedding
E(p) and query embedding E(q), we only encode the designs. For EGI, except the embeddings of the
time step, we also encode the global contextual information λ using f

(x)
emb in the toy example and the

decision-aware active learning task. All the embeddings are then concatenated together to form our
final embedding E.

B.3 Transformer blocks

We utilize the official TransformerEncoder layer of PyTorch [21] (https://pytorch.org) for
our transformer architecture. For all experiments, we use the same configuration, which is as follows:

• Number of layers: 6

• Number of heads: 8

• Dimension of feedforward layer: 128

• Dropout rate: 0.0

• Dimension of embedding: 32

B.4 Output heads

The prediction head, fp is an MLP that maps the Transformer’s output embeddings of the query set to
the predicted outcomes. It consists of an input layer with 32 hidden units, a ReLU activation function,
and an output layer. The output layer predicts the mean and variance of a Gaussian likelihood, similar
to CNPs.

For the query head fq, all candidate experimental designs are first mapped to embeddings λ(q) by the
Transformer, and these embeddings are then passed through fq to obtain individual outputs. We then
apply a Softmax function to these outputs to ensure a proper probability distribution. fq is an MLP
consisting of an input layer with 32 hidden units, a ReLU activation function, and an output layer.

B.5 Training details

For all experiments, we use the same configuration to train our model. We set the initial learning rate
to 5e-4 and employ the cosine annealing learning rate scheduler. The number of training epochs is
set to 50,000. For the REINFORCE algorithm, we select a discount factor of α = 0.99.

C Details of toy example

C.1 Data generation

In our toy example, we generate data using a GP with the Squared Exponential (SE) kernel, which is
defined as:

9

https://pytorch.org

k(x, x′) = v exp

(
− (x− x′)2

2ℓ2

)
, (A.1)

where v is the variance, and ℓ is the lengthscale. Specifically, in each training iteration, we draw a
random lengthscale ℓ ∼ 0.25 + 0.75× U(0, 1) and the variance v ∼ 0.1 + U(0, 1), where U(0, 1)
denotes a uniform random variable between 0 and 1.

D Details of top-k hyperparameter optimization experiments

D.1 Data

In this task, we use HPO-B benchmark datasets [1]. The HPO-B dataset is a large-scale benchmark
for HPO tasks, derived from the OpenML repository. It consists of 176 search spaces (algorithms)
evaluated on 196 datasets, with a total of 6.4 million hyperparameter evaluations. This dataset
is designed to facilitate reproducible and fair comparisons of HPO methods by providing explicit
experimental protocols, splits, and evaluation measures.

We extracted four meta-datasets from the HPOB dataset: ranger (7609), svm (5891), rpart (5859),
and xgboost (5971). For detailed information on the datasets, please refer to https://github.com/
releaunifreiburg/HPO-B.

D.2 Other methods description

In our experiments, we compare our method with several common acquisition functions used in HPO.
We use GPs as surrogate models for these acquisition functions. All the implementations are based
on BoTorch [2] (https://botorch.org/). The acquisition functions compared are as follows:

• Random Sampling (RS): This method selects hyperparameters randomly from the search
space, without using any surrogate model or acquisition function.

• Upper Confidence Bound (UCB): This acquisition function balances exploration and
exploitation by selecting points that maximize the upper confidence bound. The UCB is
defined as:

αUCB(x) = µ(x) + κσ(x), (A.2)
where µ(x) is the predicted mean, σ(x) is the predicted standard deviation, and κ is a
parameter that controls the trade-off between exploration and exploitation.

• Expected Improvement (EI): This acquisition function selects points that are expected to
yield the greatest improvement over the current best observation. The EI is defined as:

αEI(x) = E[max(0, f(x)− f(x+))], (A.3)

where f(x+) is the current best value observed, and the expectation is taken over the
predictive distribution of f(x).

• Probability of Improvement (PI): This acquisition function selects points that have the
highest probability of improving over the current best observation. The PI is defined as:

αPI(x) = Φ

(
µ(x)− f(x+)− ξ

σ(x)

)
, (A.4)

where Φ is the cumulative distribution function of the standard normal distribution, f(x+)
is the current best value observed, and ξ is a parameter that encourages exploration.

We also compared our method with an amortized method PFNs4BO [19]. It is a Transformer-based
model designed for hyperparameter optimization which does not consider the downstream task. We
used the pre-trained PFNs4BO-BNN model and chose PI as the acquisition function. We used the
PFNs4BO’s official implementation (https://github.com/automl/PFNs4BO).

10

https://github.com/releaunifreiburg/HPO-B
https://github.com/releaunifreiburg/HPO-B
https://botorch.org/
https://github.com/automl/PFNs4BO

	Introduction
	Decision-aware BED
	Preliminaries and problem setup
	Decision utility gain
	Amortization with TNDP

	Experiments
	Toy example: targeted active learning
	Top-k hyperparameter optimization

	Discussion and conclusion
	Conditional neural processes
	Transformer neural processes

	Additional details of TNDP
	Full algorithm for training TNDP
	Embedders
	Transformer blocks
	Output heads
	Training details

	Details of toy example
	Data generation

	Details of top-k hyperparameter optimization experiments
	Data
	Other methods description

