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ABSTRACT

Recent advances in video generation models have achieved remarkable visual re-
alism. However, these models typically lack accurate physical alignment, failing
to replicate real-world dynamics in object motion. This limitation arises primarily
from their reliance on learned statistical correlations rather than capturing mech-
anisms adhering to physical laws. To address this issue, we introduce a novel
framework that integrates symbolic regression (SR) and trajectory-guided image-
to-video (I2V) models for physics-grounded video forecasting. Our approach ex-
tracts motion trajectories from input videos, uses a retrieval-based pre-training
mechanism to enhance symbolic regression, and discovers equations of motion
to forecast physically accurate future trajectories. These trajectories then guide
video generation without requiring fine-tuning of existing models. We evalu-
ate our framework on scenarios from classical mechanics, including spring-mass,
pendulums, and projectile motions. In these settings, our method successfully re-
covers ground-truth analytical equations and improves the physical alignment of
generated videos compared to baseline methods. This work provides a first step
toward integrating equation discovery with video generation.1

1 INTRODUCTION

Recent advances in video generation models have significantly improved the realism of synthesized
videos, driven primarily by diffusion-based and autoregressive models Blattmann et al. (2023); Yang
et al. (2025); Team (2025); Kong et al. (2025). Incorporating motion trajectories enables precise con-
trol over object movements, facilitating videos that more accurately capture intended dynamics Wu
et al. (2025); Wang et al. (2024b); Namekata et al. (2025). However, existing trajectory-guided
methods typically rely on text prompts, manually drawn or statistically derived trajectories Zhang
et al. (2024); Team, none of which ensures adherence to the underlying laws of physics Kang et al.
(2024); Motamed et al. (2025); Wang et al. (2025).

Physicists understand object dynamics by discovering physical laws from observational data and
formulating these laws into symbolic equations. These equations reliably forecast object move-
ments, unaffected by shifts in the underlying data distributions. Moreover, such equation discovery
does not require extensive training data, unlike the scaling laws commonly adopted by current video
generation models Kaplan et al. (2020). Therefore, for the first time, we investigate: i) whether
AI methods can feasibly discover physics equations directly from video clips and subsequently use
these equations to reliably forecast object motion trajectories, and ii) whether such equations can be
identified from just one or a handful of video clip without extensive data-driven training.

To address the above research questions, we propose a novel neuro-symbolic, inference-only frame-
work for forecasting object motion trajectories from a short video clip, followed by feeding the
predicted trajectories into an image-to-video (I2V) model to produce physics-grounded videos. As
illustrated in Figure 1, our approach first utilizes CoTracker Karaev et al. (2024) to extract initial
object motion trajectories from a short video clip. We then employ a symbolic regression (SR)
algorithm Cranmer (2023a), an evolutionary search method that automatically discovers explicit

1The code and dataset are available at https://anonymous.4open.science/r/ReSR-0083/
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Figure 1: An overview of our framework. Given an input video, we first extract object (i.e., spring or
weight) motion trajectories, which are used to discover equations of motion via SR enhanced by our
proposed retrieval-based pre-training mechanism (ReSR), where ReSR initializes the search with
candidates retrieved from a curated equation bank of known physical laws. The learned symbolic
equations forecast future object trajectories, serving as precise control signals to guide trajectory-
guided video generation models, resulting in more physics-grounded video generation.

mathematical equations, to derive a human-interpretable symbolic equation characterizing the un-
derlying physical law. Given the initial trajectories, this discovered equation can reliably produce
future object movements of arbitrary length, consistently adhering to the underlying physics laws.

From another perspective, the equation discovery process can be viewed as training a symbolic
model that characterizes motion trajectories. Current evolutionary search methods typically initial-
ize their searches using randomly selected functions, often starting far from the global optimum and
resulting in slow convergence. To mitigate this, we propose a novel Retrieval-based pre-training
method for Symbolic Regression, called ReSR, which initializes the search from relevant equations
retrieved from a physical equation bank. Unlike prior SR methods that rely on randomly initialized
function sets, ReSR incorporates physics-inspired equations, reducing search space bias and im-
proving both efficiency and interpretability by aligning candidates with established physics priors.

To investigate the fundamental challenges of learning equations from given videos, we conduct ex-
periments on a set of videos in a controlled laboratory environment governed by the laws of classical
mechanics. These videos depict systems, such as spring-mass oscillators, pendulums, and projec-
tile motion. We choose this controlled setting because: i) it enables direct evaluation of discovered
equations against ground-truth equations identified by physicists; ii) insights into object motion in
classical mechanics can be easily extended into other types of motion; and iii) classical mechanics
underpins a wide range of real-world applications, including physics simulation, scientific visual-
ization, and physics education.

Our contributions are summarized as follows:

• We propose a novel neuro-symbolic framework for physics-grounded video forecasting.
Specifically, our method first extracts motion trajectories from input videos, then discovers
equations of motion. These equations are used to forecast future trajectories, which then
guide I2V models to synthesize future videos that better align with physical laws. Impor-
tantly, our approach operates entirely at inference time and does not require fine-tuning of
video generation models.

• We introduce a retrieval-based pre-training mechanism for SR, denoted as ReSR, which
leverages a curated equation bank of known physical laws to provide strong initialization
candidates. This substantially improves convergence speed and accuracy in discovering
equations from observed trajectories.

• We empirically demonstrate that our framework not only recovers equations closely aligned
with ground-truth analytical expressions and observed trajectories, but also generates
videos with significantly improved physical consistency compared to existing baselines
when conditioned on trajectories discovered by ReSR.
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2 PRELIMINARY

Scientists have discovered empirical laws from observational data. For example, Johannes Kepler
formulated the third law of planetary motion, (period)2 ∝ (radius)3, after analyzing thirty years
of astronomical data. Similarly, Planck’s law was a function fitted to experimental data Planck
(1900). However, modern scientific data is often high-dimensional and complex, making manual
equation discovery a challenging task Virgolin & Pissis (2022). SR is a computational method for
automatically deriving mathematical equations from data. Unlike traditional regression, which fits
data to a predefined equation structure (e.g., linear or polynomial regression), SR searches for both
the equation structure and parameters. This flexibility makes SR particularly valuable in scientific
discovery Rudy et al. (2017); Meidani & Farimani (2023).

SR approaches can be broadly categorized into two primary types: evolutionary algorithm (EA)-
based methods and deep learning-based methods. EA-based approaches operate by evolving a pop-
ulation of candidate equations over successive generations, using operations such as mutation and
crossover to search for equations that best fit the data Brindle (1980); Goldberg & Deb (1991);
Zhang & Shasha (1989); Stephens (2025); Cranmer (2023b). EA-based methods require minimal
prior assumptions about equation structure, allowing them to explore a diverse space.

Deep learning-based methods directly predict equations from data Biggio et al. (2021); Kamienny
et al. (2022); Shojaee et al. (2023); Meidani et al. (2024). Devlin et al. (2019); Radford et al.
(2019); Feng et al. (2023; 2025) typically train an end-to-end transformer-based model where the
input is observational data and the output is a symbolic equation. However, deep learning models
often struggle with out-of-distribution generalization Yang et al. (2024); Kim et al. (2024); Feng
et al. (2024), and cannot guarantee the generated output forms a syntactically valid equation, lead-
ing to non-executable equations. Inspired by the success of pre-training in deep learning Erhan
et al. (2010); Devlin et al. (2019), we propose a pre-training mechanism for EA-based SR (see
Section 3.3). We first construct an equation bank containing physics-related equations. During ini-
tialization, the SR algorithm retrieves equations that closely align with the observed data and uses
them as initial candidates. This pre-training strategy significantly improves convergence speed and
enhances the accuracy of the learned equations.

3 METHODOLOGY

3.1 TASK FORMULATION AND NOTATIONS

The objective of this study is to achieve physics-grounded motion forecasting for trajectory-guided
video generation. As illustrated in Figure 1, given an input video Vi depicting the initial motion of
an object, our approach generates a video Vo representing the object’s future motion. Our approach
consists of three main steps. First, we extract the motion trajectories of moving objects in Vi. The
extracted trajectories are represented as a set P = {p1,p2, ...,pn}, where each trajectory pi is a
time series of object positions: pi = [p1, p2, ..., pT ], where pt = (xt, yt) denotes the image-space
coordinate of the object at time step t. Next, we employ symbolic regression to learn equations that
govern the motion of objects. Specifically, for each trajectory pi, we aim to learn a pair of functions
fx
i (t) and fy

i (t) such that:
xt = fx

i (t), yt = fy
i (t). (1)

that map time to object position. Using the learned equation fx
i (t) and fy

i (t), we predict the future
trajectory for time steps beyond the observed interval, i.e., pi = fi(t), t ∈ {T+1, T+2, ..., T+K},
where K represents the forecast horizon. Finally, we utilize the predicted trajectories to guide
trajectory-based video generation models, which then synthesize the future video Vo.

3.2 EXTRACTION OF OBJECT MOTION TRAJECTORY

To learn equations of object motion, we first extract object trajectories from the input video Vi. We
employ CoTracker Karaev et al. (2024), a state-of-the-art point tracking model that performs joint
point tracking and propagation across all frames. CoTracker requires a set of query points in the
first frame to initiate tracking. While manual annotation is possible, it is not scalable across diverse
video content. Instead, we adopt an automated approach by uniformly sampling query points on a
2D M × M grid across the first frame. Each query point is tracked throughout the entire video.

3
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We perform all tracking in the original image coordinate system without additional preprocessing.
After collecting all trajectories, we compute the temporal variance of each trajectory. We then rank
the trajectories based on their positional variance across time and retain the top-k trajectories with
the highest motion magnitude. This strategy is motivated by the observation that target objects in
physics-driven videos typically exhibit the most motion, while background regions tend to remain
static. As a result, selecting high-variance trajectories increases the likelihood of capturing the true
object dynamics and filtering out irrelevant background noise.

3.3 SYMBOLIC REGRESSION WITH PRE-TRAINING

In this step, we apply symbolic regression with retrieval-based pre-training (ReSR) to discover equa-
tions that fit extracted object trajectories. Instead of initializing the search process from scratch with
random equations, we retrieve a set of candidate equations from a curated equation bank composed
of physics-related equations. The retrieved equations then serve as priors to initialize the symbolic
regression. Given a trajectory pi = [p1, p2, ..., pT ], our goal is to learn Equation 1.

Construction of Equation Bank. We construct an equation bank containing a diverse set of equa-
tions derived from classical and empirical physics to serve as priors for symbolic regression. The
bank integrates equations from three sources: 1) The Feynman equation dataset Udrescu & Tegmark
(2020), which consists of equations extracted from the Feynman Lectures on Physics Feynman et al.
(1965). These equations typically take the form y = f(x1, x2, . . . ), with up to ten input vari-
ables. To adapt them for time-series motion, we substitute time-dependent variables (e.g., velocity,
acceleration, momentum) with the time variable t. Variables that are independent of time (e.g.,
mass, density) are replaced with constant values (e.g., 10), aiming to preserve equation structure.
We select a total of 106 equations after this adaptation. 2) The Nguyen dataset Uy et al. (2011),
which includes 10 commonly used empirical formulas in symbolic regression benchmarks. We ap-
ply the same time-variable substitution process. 3) We include 13 additional physics equations from
Thornton & Marion (2004), not present in the aforementioned datasets, to ensure the equation bank
represents a broad range of physical systems. All equations are stored as symbolic expressions in
Julia syntax Bezanson et al. (2017), enabling compatibility with our symbolic regression framework.

Retrieval-based Pre-training Mechanism.

Our proposed ReSR initializes symbolic regression with candidate equations retrieved from a cu-
rated equation bank. The retrieval is based on the similarity between the extracted object trajectory
and trajectories generated by each equation in the bank. Similarity is computed using Dynamic
Time Warping (DTW) Müller (2007), a sequence alignment algorithm that handles temporal mis-
alignments such as phase shifts and local time warping that are not captured by Euclidean distance.

However, standard DTW is unable to robustly handle spatial offsets and scale variations in trajectory
coordinates. To address this, we introduce Normalized Dynamic Time Warping (N-DTW), where the
extracted trajectory is rescaled to match the coordinate range of each equation-generated trajectory
before computing DTW. This helps the comparison to focus on shape similarity rather than absolute
position. Formally, given an extracted trajectory pi = [p1, p2, ..., pT ], where each pt = (xt, yt), we
normalize it as follows:

x̄t = (x̂max − x̂min) ·
xt − xmin

xmax − xmin
+ x̂min (2)

ȳt = (ŷmax − ŷmin) ·
yt − ymin

ymax − ymin
+ ŷmin (3)

where xmin, xmax, ymin, ymax are the bounds of the extracted trajectory, and x̂min, x̂max, ŷmin, ŷmax

are the bounds of the equation-generated trajectory.

For each equation in the bank, we compute an N-DTW score with the normalized extracted trajec-
tory. Since the similarity between the extracted trajectory and each equation-generated trajectory
is computed independently, N-DTW retrieval can be easily parallelized across multiple CPU cores,
enabling scalability to large equation banks. We then select the top-k equations with the lowest
distances as initial candidates for symbolic regression. This retrieval strategy emphasizes shape
similarity rather than proximity in raw values. For instance, consider a trajectory generated by
y = 0.5 cos(t + 3) + 100. Two candidate equations might be y = 100 and y = cos(t). While
Euclidean distance may favor y = 100 due to its proximity in magnitude, it fails to capture the

4
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oscillatory structure. In contrast, N-DTW correctly identifies y = cos(t) as the more structurally
similar trajectory.

Initialization of ReSR. We initialize a portion of population members with the top-k retrieved
equations that closely match the target trajectory. We introduce an initialization weight hyperpa-
rameter α ∈ [0, 1], which determines the proportion of initial population members that are seeded
with retrieved equations, while the remaining are randomly generated. This hybrid initialization
strategy allows us to balance exploration—via randomly sampled equations that enable diversity in
the search space—and exploitation—via retrieved equations that act as informative priors. Higher
values of α prioritize faster convergence, while lower values preserve the capacity for discovering
novel equation forms. If the available number of top-k retrieved equations is insufficient to meet the
required number based on α, we duplicate top-k retrieved equations to fill the remaining positions.
This strategy ensures that the initial population predominantly contains equations closely matching
the observed dynamics, reducing the risk of including irrelevant or misleading equations that could
negatively impact the search efficiency. This initialization occurs only once at the beginning of the
symbolic regression run. All modifications, including retrieval-based pre-training and the integra-
tion of N-DTW, are implemented within a modified version of the SymbolicRegression.jl
framework Cranmer (2023b), ensuring compatibility with existing symbolic regression workflows
and reproducibility of our method.

3.4 TRAJECTORY-GUIDED VIDEO FORECASTING

To generate future video frames Vo that are physically consistent with learned motion dynamics,
we incorporate existing trajectory-guided I2V models, such as SG-I2V Namekata et al. (2025), Tora
Zhang et al. (2024), and MotionCtrl Wang et al. (2024b), into our framework. These models are
typically diffusion models Song et al. (2020) that synthesize temporally coherent video sequences
by denoising noise-perturbed images conditioned on a starting image and motion trajectories.

We use the final frame of the observed input video Vi as the starting image and condition on future
trajectories predicted by equations learned from ReSR. These trajectories are formatted as sequences
of (x, y) coordinates, sampled at temporal intervals that match the requirement of each I2V model.
This integration enables our framework to produce future video sequences that are not only visually
plausible but also governed by equations of motion inferred from past observations. Our approach is
modular and model-agnostic: it can be directly applied to any trajectory-guided I2V model without
retraining or fine-tuning.

4 EXPERIMENTS

We first assess whether the proposed ReSR enhances the performance of symbolic regression in
discovering equations. Then, we examine whether trajectories predicted by the learned equations
lead to videos that better align with real-world physical dynamics.

4.1 EVALUATION OF EQUATION DISCOVERY

Datasets. We evaluate equation discovery methods using trajectories extracted from videos of clas-
sical physics systems, divided into two categories: 1) systems with ground-truth trajectory equations
(i.e., systems with analytical solutions), including spring mass, damped spring mass, two body, and
projectile motion Huang et al. (2024); 2) systems without ground-truth trajectory equations, includ-
ing single pendulum, double pendulum and fluid motion, where no closed-form analytical solution
exists Huang et al. (2024); Ohana et al. (2024). Each system includes ten videos with varying ini-
tial states. We use CoTracker Karaev et al. (2024) to extract uniformly sampling query points on
a 10 × 10 grid from the first frame. From these, we select the top 5 trajectories with the high-
est temporal variance to serve as inputs for symbolic regression methods. Each trajectory is split
80%/10%/10% along the time dimension for training, validation, and evaluation, respectively. This
split aims to select equations that generalize from past states to unseen future states.

Evaluation. For systems with ground-truth equations, we evaluate symbolic similarity between pre-
dicted equations and ground-truth equations using normalized Tree Edit Distance (TED) Zhang &
Shasha (1989), which measures how many edit operations (i.e., insertions, deletions, substitutions)

5
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Baseline Comparison

Methods with AS w/o AS Conv.
TED (↑) MSE (↓) MSE (↓) ITB(↓)

APO 0.330.11 7.920.21 76.527.56 68.2116.51
gplearn 0.400.11 3.870.21 61.957.44 83.1412.97
uDSR 0.410.12 3.730.11 50.356.10 74.8313.30
KAN 0.220.14 11.140.49 91.439.57 N/A
PySR 0.470.16 2.950.05 45.254.39 61.4310.37
LaSR 0.540.15 1.910.05 32.564.05 59.9311.93
ReSR (Our) 0.800.08 1.520.04 27.583.61 44.317.61

Ablation Study
Varying Initialization Weight α

ReSR-0 0.470.16 2.950.05 45.254.39 61.4310.37
ReSR-0.25 0.600.13 1.840.06 30.903.16 57.248.29
ReSR-0.5 0.700.12 1.740.05 28.193.12 49.589.82
ReSR-0.75 0.800.08 1.520.04 27.583.61 44.317.61
ReSR-1.0 0.770.10 1.550.04 28.322.90 46.638.94

Ablation Study
Varying Training/Test Split Proportion (α = 0.75)

ReSR-2:7 0.540.17 31.965.93 137.049.17 33.765.14
ReSR-4:5 0.610.14 18.412.32 89.285.20 37.665.07
ReSR-6:3 0.680.13 7.190.21 57.516.47 42.836.39
ReSR-8:1 0.800.08 1.520.04 27.583.61 44.317.61

Table 1: Quantitative comparison with baselines
and ablation study of ReSR. AS indicates analyt-
ical solutions; Conv. indicates convergence. Best
results in bold.

(a) Damped spring–mass system.

(b) Single pendulum system.

Figure 2: Qualitative comparison of equations
discovered by different methods.

are required to transform one equation tree into another, normalized by the maximum node count
of two equation trees. For systems without ground-truth equations, we measure the Mean Squared
Error (MSE) between the trajectory generated by predicted equations and the actual observed trajec-
tory. To compare the convergence speed of different methods, we report the iteration-to-best (ITB)
metric, which measures the number of iterations required to reach the method’s lowest MSE on the
validation set Xing et al. (2018); Smith & Topin (2019).

Baselines. We compare against the following methods: APO Schmidt & Lipson (2010): A sym-
bolic regression method using Age-fitness Pareto Optimization. gplearn Stephens (2025): An EA-
based symbolic regression with a scikit-learn-style API. uDSR Landajuela et al. (2022): A hybrid
approach that combines deep learning models with evolutionary algorithms to discover equations.
KAN Liu et al. (2025): Kolmogorov-Arnold Networks (KANs) replace each weight in Multi-Layer
Perceptrons (MLPs) with a univariate function parameterized as a spline, enabling symbolic equa-
tion extraction after training. PySR Cranmer (2023b): A symbolic regression framework based on
evolutionary search, which can be viewed as an ablation model without retrieval-based pre-training.
LaSR Grayeli et al. (2024): A symbolic regression approach that leverages large language models
to propose initial equations.

Implementation Details. For EA-based symbolic regression methods, including both our method
and baselines, we run 100 iterations with a population size of 30 across 30 populations. The search
space operators include basic arithmetic (+, -, *, /), power functions, and common mathematical
functions: cos, sin, exp, log, tan, and sqrt. For KAN, we perform grid-based hyperparameter tuning
and report results using the best-performing configuration on the validation set. All experiments are
conducted on a machine with 32-core CPUs and a single 80GB A100 GPU.

Results and Analysis. Table 1 presents the comparison between ReSR, baseline methods, and ab-
lation variants. ReSR consistently outperforms all baselines in both symbolic similarity (TED) and
trajectory error (MSE), demonstrating improved accuracy in discovering physical equations. Addi-
tionally, it achieves the fastest convergence (lowest ITB), highlighting the effectiveness of retrieval-
based pre-training. For the ablation study, we first analyze the effect of the initialization weight
hyperparameter α. Performance improves steadily as α increases, peaking at α = 0.75, which
supports both exploitation (using physics-aligned priors) and exploration (diversity through random
sampling). Another ablation study investigates the impact of varying the training/test split while
keeping the validation set fixed at 10% of the data. Results show that increasing the training set size
improves equation discovery accuracy, indicating that ReSR benefits from larger datasets to better
fit observational data.
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Figure 2 presents case studies on damped spring-mass and single pendulum systems. ReSR gen-
erates trajectories that closely align with the observed data, while baseline methods often produce
distorted or phase-shifted results. In the damped spring-mass system, ReSR successfully recovers
an equation that matches the ground truth.

4.2 EVALUATION OF VIDEO FORECASTING

Datasets. We evaluate motion forecasting for video generation using the same set of physical sys-
tems described in Section 4.1. Each video generation model takes an initial image (serving as the
first frame) and, optionally, a predicted trajectory. Initial images are sourced from both synthetic and
real-world domains. Synthetic images are rendered using physics simulators Huang et al. (2024);
Ohana et al. (2024) and include systems such as spring mass, damped spring mass, two-body, pro-
jectile, and fluid motion. Real initial images are extracted from videos of real-world single and
double pendulum systems. For each system, we extract ten initial images, each corresponding to
the first frame of the final 10% (test segment) of its video. We apply the learned equations on the
training portion (first 80%) of the trajectory and forecast motion into the final 10% segment.

Visual Physical Visual PhysicalModels FVD(↓) FID(↓) Smo.(↑) TraEr(↓) FVD(↓) FID(↓) Smo.(↑) TraEr(↓)

Real Synthetic
SVD 2521213 39647 91.522.31 632134 1947294 41545 95.242.41 624121
CogvidX 2203215 35624 92.402.34 51284 1547154 34231 97.381.49 58993
Cosmos 2453295 38156 91.464.35 55278 1870215 38841 96.391.40 65874
Hunyuan 2382274 38752 92.353.41 57887 1753186 36339 96.381.57 56263
ID 2607221 42331 86.384.31 56346 1994127 34843 89.395.95 56781
OurDA 1729133 27735 92.382.10 48939 853142 24835 97.841.01 37432
OurMCtrl 1793148 26631 91.443.08 48431 847153 24427 97.431.45 37845
OurSG 1778145 25431 92.393.84 45540 791138 23524 96.531.46 38433
OurTora 1674133 23534 95.302.28 43137 728121 19328 98.430.55 35429
OurKling 1064125 19424 97.532.41 40440 641103 13527 98.930.41 32530

Ablation Study
LaSRKling 1225137 21132 96.982.10 45143 710113 15131 98.240.53 34131
ManualKling 1329129 21828 97.172.33 47736 667127 16425 98.770.38 35727
GTKling 1022132 18631 97.882.18 39734 633105 13224 98.360.47 32034
Simulator N/A N/A N/A N/A 6712 163 99.520.01 4814

Table 2: Quantitative comparison of video forecasting. All reported metrics are averaged across
physical systems. DA refers to DragAnything, MCtrl to MotionCtrl.

Evaluation of Generated Videos. We evaluate generated videos along two axes: visual quality
and physics alignment. For visual quality, we use the Fréchet Video Distance (FVD) and Fréchet
inception distance (FID) Unterthiner et al. (2019); Heusel et al. (2017) to measure the difference
between generated and ground-truth videos. For physics alignment, we use AMT Li et al. (2023) to
quantify motion smoothness, and use TrajEr Zhang et al. (2024) to measure the deviation between
the input trajectory and the actual trajectory in the generated video.

We conduct pairwise human comparisons across models for both visual quality and physics align-
ment. For each model pair, three graduate-level annotators independently judged the better video.
All comparisons are anonymized and randomized. Evaluations were conducted on ten videos per
system across all physical systems. Annotators are provided with system descriptions to aid in
assessing physics correctness. Human evaluation is restricted to top-performing models based on
automatic metrics: CogVideoX1.5 (best trajectory-free baseline), Tora (best open-source trajectory-
guided model), Kling (overall best trajectory-guided model), and physics simulator.

Video Generation Models. We conduct experiments on trajectory-free and trajectory-guided I2V
models. For trajectory-free baselines, we consider state-of-the-art I2V models, including SVD
Blattmann et al. (2023), CogVideoX1.5 Yang et al. (2025), Cosmos Team (2025), and Hunyuan-
Video Kong et al. (2025). ID Chen et al. (2022) is an encoder-decoder model that generates videos
frame-by-frame without trajectory guidance. For trajectory-guided I2V models, we use DragAny-
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thing Wu et al. (2025), MotionCtrl Wang et al. (2024b), SG Namekata et al. (2025), Tora Zhang
et al. (2024) and Kling (a commercial model) Team. These models are conditioned on the initial
image and the given trajectory. For models that accept a single trajectory, we use the one with the
highest motion magnitude, while for models that support multiple trajectories, we use the top-5 with
the highest motion magnitudes. For synthetic data, we also use a physics simulator Huang et al.
(2024) to generate future videos serving as a reference for upper-bound performance.

Pairs Visual Physical
Real

OurTora vs. CogVideoX 61% 84%
OurKling vs. OurTora 67% 71%
OurKling vs. ManKling 57% 63%

Synthetic
OurTora vs. CogVideoX 78% 77%
OurKling vs. OurTora 66% 61%
OurKling vs. ManKling 59% 64%
Simulator vs. OurKling 94% 97%

Table 3: Human evaluation via pairwise compar-
isons. In each row, the bolded model indicates the
winner, and the following cell reports its win rate
for each criterion.

Implementation Details. We resize initial im-
ages to match each model’s input resolution.
The video length is fixed at 5 seconds, with
frames per second (FPS) set per model require-
ments. For models requiring text prompts, we
use either official prompt guidelines or gener-
ate prompts using GPT-4o Yang et al. (2025).
Trajectories are normalized and scaled to match
each model’s spatial resolution and sampled
uniformly at 2 points per second. All models
are run on a machine with an NVIDIA 80G
A100 GPU or API without fine-tuning.

Results and Analysis. Table 2 presents auto-
matic evaluation results on all models. Models
guided by trajectory consistently outperform
trajectory-free baselines in both visual quality
and physics alignment. Among trajectory-guided I2V models, Kling guided by trajectories pre-
dicted by our method achieves the best performance, closely approaching Kling with ground-truth
trajectories. Real initial frame settings have lower performance than synthetic settings, likely due
to background noises and systems complexity. In the synthetic setting, all models perform signifi-
cantly worse than the simulator, indicating that current data-driven video generation models struggle
to capture physical dynamics, even when guided by ground-truth trajectory. This highlights the need
for future work to improve the physical alignment of data-driven approaches.

(a) Single pendulum system. (b) Damped spring-mass system.

Figure 3: Qualitative comparisons across models.

For human evaluation in Table 3, annotators consistently preferred trajectory-guided models over
trajectory-free baseline on both physical alignment and visual quality. Inter-annotator agreement
was measured using Fleiss’ Kappa Fleiss (1971), yielding a score of 0.73, which indicates substan-
tial agreement among annotators. Notably, Kling with ReSR-guided trajectories was preferred over
its manually guided counterpart, confirming that learned equations offer more accurate and reliable
motion control. In the synthetic setting, the physics simulator was consistently rated as the most
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physically accurate, highlighting the limitations of data-driven approaches. We attribute this to a
fundamental difference: current video generation models are trained to capture statistical correla-
tions in large-scale datasets, but lack explicit modeling of physical causality. In contrast, physics
simulators generate motion directly from governing equations, ensuring high physical fidelity. How-
ever, simulators have their own limitations. They are not scalable across diverse scenarios and tend
to lack realism when applied to real-world scenarios. This highlights the value of our method,
which seeks to combine the interpretability and physical grounding of governing equations with the
flexibility and realism of data-driven generative models.

Figure 3 illustrates qualitative comparisons. Trajectory-guided models exhibit improved global mo-
tion consistency, while trajectory-free models (e.g., CogVideoX) often produce erratic or implausi-
ble dynamics. Even the strongest model, Kling, fails to capture fine-grained physical details such
as spring deformation, suggesting that while trajectory conditioning improves high-level motion,
current models still lack the physical inductive biases needed for fine-grained dynamic synthesis.

5 RELATED WORK

Equation Discovery from Video. Chari et al. (2019); Luan et al. (2021); Tetriyani et al. (2024);
Garcia et al. (2024) aim to extract physical laws of dynamic systems directly from video, using
symbolic regression or ODE-based methods. However, many of these approaches impose strong
constraints on the equation structure, such as assuming linearity, or focus solely on estimating pa-
rameters of pre-defined models. Huang et al. (2024) uses autoencoders to encode video sequences
into low-dimensional latent vectors and attempt to learn system dynamics in that space. These la-
tent variables often lack physical interpretability, and the resulting dynamics are not expressed as
symbolic equations. In contrast, our approach employs symbolic regression to directly learn explicit
symbolic equations, capturing physically meaningful variables that map time to object positions,
thus ensuring interpretability and physical alignment.

Physics-aligned Video Generation. Millington (2007); Todorov et al. (2012); Bonnet et al. (2022);
Kohl et al. (2024); Ohana et al. (2024); Lv et al. (2024) use physics simulators to ensure physical
realism in video generation, where dynamics are modeled via hard-coded rules and equations. While
highly accurate, these simulators are typically limited to specific domains, require hand-crafted
scenario design. On the other hand, Blattmann et al. (2023); Wang et al. (2024a); Yang et al. (2025);
Team (2025); Kong et al. (2025) use diffusion or autoregressive architectures to synthesize diverse
scenes from image or text prompts but often lack physical consistency, leading to unrealistic object
motion Motamed et al. (2025).

Trajectory-guided video generation is a motion-aware video synthesis framework where object
movement is explicitly controlled by numerical trajectories, which are typically represented as se-
quences of (x, y) coordinates over time Xing et al. (2025); Ho et al. (2020); Song et al. (2020); Wang
et al. (2024b); Wu et al. (2025); Namekata et al. (2025); FU et al. (2025); Zhang et al. (2024). In
prior work, trajectories are manually drawn, which does not ensure physical alignment. In contrast,
we use learned equations from observational data to generate future trajectories, ensuring that the
future object motion follows discovered physical dynamics.

6 CONCLUSION

We introduce a novel physics-grounded, inference-only framework for motion forecasting in
trajectory-guided video forecasting, which employs ReSR for equation discovery. Experimental
results demonstrate that our approach can reliably generate future motion trajectories closely match-
ing equations derived from classical mechanics. Experimental results also highlight the limitations
of current SOTA I2V models. Even with accurate trajectories, generated videos may deviate in
fine-grained details such as velocity or deformation. Addressing these limitations requires advances
in controllable video generation models. Overall, our work illustrates the potential of integrating
interpretable equation discovery with I2V models and paves the way for applications in scientific
discovery and simulations for robotics. An exciting next step is to apply our approach to multi-body
systems involving collisions and contact dynamics. We expect this will require integrating symbolic
regression with hybrid modeling frameworks to capture discontinuous transitions.
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ETHICS STATEMENT

As part of our study, we hired human evaluators to assess the visual and physical quality of generated
videos. All participants were recruited voluntarily through an online platform and provided informed
consent before participating. We ensured anonymity of all responses and did not collect personally
identifiable information. Participants were compensated above the local minimum wage relative to
task duration.

REPRODUCIBILITY STATEMENT

We release code and data at https://anonymous.4open.science/r/ReSR-0083/. Ex-
perimental details can be found in section 4.1 and 4.2. All video generation models used in our
work are either publicly available or accessible through APIs (e.g., Kling).
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A THE USE OF LARGE LANGUAGE MODELS

In this research, large language models are employed as tools to support writing. Specifically, I used
LLMs to check and refine the grammar of drafts. In addition, LLMs were applied as debugging aids
during code development. Importantly, all core research ideas, experimental designs, analyses, and
conclusions presented in this thesis remain our own.

B QUALITATIVE EVALUATION

Figure 4 and 4 illustrate qualitative comparison on different physical systems across models.

(a) Double pendulum system. (b) Two-body system.

Figure 4: Qualitative comparisons across models.

(a) Projectile motion. (b) Fluid motion.

Figure 5: Qualitative comparisons across models.

15


	Introduction
	Preliminary
	Methodology
	Task Formulation and Notations
	Extraction of Object Motion Trajectory
	Symbolic Regression with Pre-training
	Trajectory-Guided Video Forecasting

	Experiments
	Evaluation of Equation Discovery
	Evaluation of Video Forecasting

	Related Work
	Conclusion
	The Use of Large Language Models
	Qualitative Evaluation

