

000 001 PHYSICS-GROUNDED MOTION FORECASTING VIA 002 EQUATION DISCOVERY FOR TRAJECTORY-GUIDED 003 IMAGE-TO-VIDEO GENERATION 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010
011

ABSTRACT

013 Recent advances in video generation models have achieved remarkable visual
014 realism. However, these models typically lack accurate physical alignment, failing
015 to replicate real-world dynamics in object motion. This limitation arises primarily
016 from their reliance on learned statistical correlations rather than capturing mech-
017 anisms adhering to physical laws. To address this issue, we introduce a novel
018 framework that integrates symbolic regression (SR) and trajectory-guided image-
019 to-video (I2V) models for physics-grounded video forecasting. Our approach ex-
020 tracts motion trajectories from input videos, uses a retrieval-based pre-training
021 mechanism to enhance symbolic regression, and discovers equations of motion
022 to forecast physically accurate future trajectories. These trajectories then guide
023 video generation without requiring fine-tuning of existing models. We eval-
024 uate our framework on scenarios from classical mechanics, including spring-mass,
025 pendulums, and projectile motions. In these settings, our method successfully re-
026 covers ground-truth analytical equations and improves the physical alignment of
027 generated videos compared to baseline methods. This work provides a first step
028 toward integrating equation discovery with video generation.¹
029

1 INTRODUCTION

030 Recent advances in video generation models have significantly improved the realism of synthesized
031 videos, driven primarily by diffusion-based and autoregressive models Blattmann et al. (2023); Yang
032 et al. (2025); Team (2025); Kong et al. (2025). Incorporating motion trajectories enables precise con-
033 trol over object movements, facilitating videos that more accurately capture intended dynamics Wu
034 et al. (2025); Wang et al. (2024b); Namekata et al. (2025). However, existing trajectory-guided
035 methods typically rely on text prompts, manually drawn or statistically derived trajectories Zhang
036 et al. (2024); Team, none of which ensures adherence to the underlying laws of physics Kang et al.
037 (2024); Motamed et al. (2025); Wang et al. (2025).
038

039 Physicists understand object dynamics by discovering physical laws from observational data and
040 formulating these laws into symbolic equations. These equations reliably forecast object move-
041 ments, unaffected by shifts in the underlying data distributions. Moreover, such equation discovery
042 does not require extensive training data, unlike the scaling laws commonly adopted by current video
043 generation models Kaplan et al. (2020). Therefore, for the *first* time, we investigate: i) whether
044 AI methods can feasibly discover physics equations directly from video clips and subsequently use
045 these equations to reliably forecast object motion trajectories, and ii) whether such equations can be
046 identified from just one or a handful of video clip without extensive data-driven training.
047

048 To address the above research questions, we propose a novel *neuro-symbolic, inference-only* frame-
049 work for forecasting object motion trajectories from a short video clip, followed by feeding the
050 predicted trajectories into an image-to-video (I2V) model to produce physics-grounded videos. As
051 illustrated in Figure 1, our approach first utilizes CoTracker Karaev et al. (2024) to extract initial
052 object motion trajectories from a short video clip. We then employ a symbolic regression (SR)
053 algorithm Crammer (2023a), an evolutionary search method that automatically discovers explicit

¹The code and dataset are available at <https://anonymous.4open.science/r/ReSR-0083/>

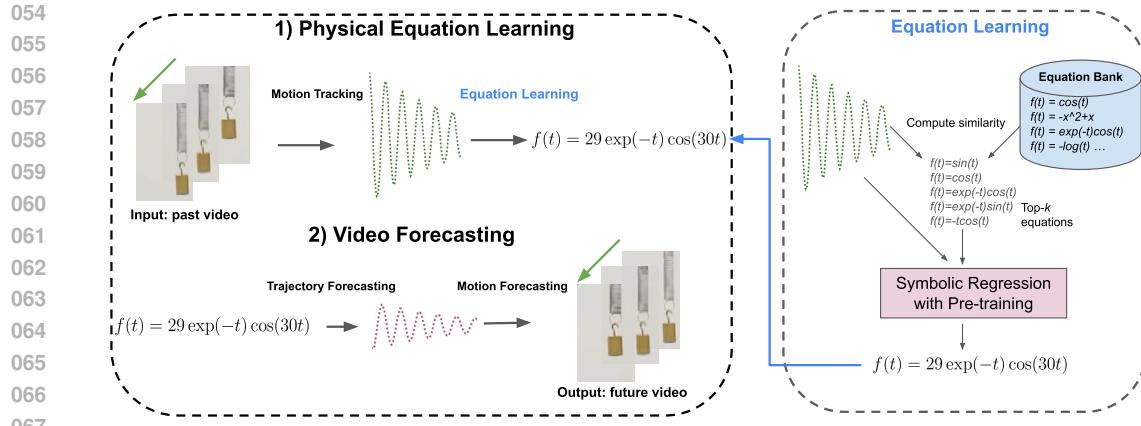


Figure 1: An overview of our framework. Given an input video, we first extract object (*i.e.*, spring or weight) motion trajectories, which are used to discover equations of motion via SR enhanced by our proposed retrieval-based pre-training mechanism (ReSR), where ReSR initializes the search with candidates retrieved from a curated equation bank of known physical laws. The learned symbolic equations forecast future object trajectories, serving as precise control signals to guide trajectory-guided video generation models, resulting in more physics-grounded video generation.

mathematical equations, to derive a *human-interpretable* symbolic equation characterizing the underlying physical law. Given the initial trajectories, this discovered equation can reliably produce future object movements of arbitrary length, consistently adhering to the underlying physics laws.

From another perspective, the equation discovery process can be viewed as training a symbolic model that characterizes motion trajectories. Current evolutionary search methods typically initialize their searches using randomly selected functions, often starting far from the global optimum and resulting in slow convergence. To mitigate this, we propose a novel **Retrieval-based** pre-training method for **Symbolic Regression**, called ReSR, which initializes the search from relevant equations retrieved from a physical equation bank. Unlike prior SR methods that rely on randomly initialized function sets, ReSR incorporates physics-inspired equations, reducing search space bias and improving both efficiency and interpretability by aligning candidates with established physics priors.

To investigate the fundamental challenges of learning equations from given videos, we conduct experiments on a set of videos in a controlled laboratory environment governed by the laws of classical mechanics. These videos depict systems, such as spring-mass oscillators, pendulums, and projectile motion. We choose this controlled setting because: i) it enables direct evaluation of discovered equations against ground-truth equations identified by physicists; ii) insights into object motion in classical mechanics can be easily extended into other types of motion; and iii) classical mechanics underpins a wide range of real-world applications, including physics simulation, scientific visualization, and physics education.

Our contributions are summarized as follows:

- We propose a novel neuro-symbolic framework for physics-grounded video forecasting. Specifically, our method first extracts motion trajectories from input videos, then discovers equations of motion. These equations are used to forecast future trajectories, which then guide I2V models to synthesize future videos that better align with physical laws. Importantly, our approach operates entirely at inference time and does not require fine-tuning of video generation models.
- We introduce a *retrieval-based pre-training mechanism* for SR, denoted as ReSR, which leverages a curated equation bank of known physical laws to provide strong initialization candidates. This substantially improves convergence speed and accuracy in discovering equations from observed trajectories.
- We empirically demonstrate that our framework not only recovers equations closely aligned with ground-truth analytical expressions and observed trajectories, but also generates videos with significantly improved physical consistency compared to existing baselines when conditioned on trajectories discovered by ReSR.

108
109

2 PRELIMINARY

110
111
112
113
114
115
116
117
118
Scientists have discovered empirical laws from observational data. For example, Johannes Kepler
formulated the third law of planetary motion, $(\text{period})^2 \propto (\text{radius})^3$, after analyzing thirty years
of astronomical data. Similarly, Planck's law was a function fitted to experimental data Planck
(1900). However, modern scientific data is often high-dimensional and complex, making manual
equation discovery a challenging task Virgolin & Pissis (2022). SR is a computational method for
automatically deriving mathematical equations from data. Unlike traditional regression, which fits
data to a predefined equation structure (e.g., linear or polynomial regression), SR searches for both
the equation structure and parameters. This flexibility makes SR particularly valuable in scientific
discovery Rudy et al. (2017); Meidani & Farimani (2023).119
120
121
122
123
124
SR approaches can be broadly categorized into two primary types: evolutionary algorithm (EA)-
based methods and deep learning-based methods. EA-based approaches operate by evolving a pop-
ulation of candidate equations over successive generations, using operations such as mutation and
crossover to search for equations that best fit the data Brindle (1980); Goldberg & Deb (1991);
Zhang & Shasha (1989); Stephens (2025); Cranmer (2023b). EA-based methods require minimal
prior assumptions about equation structure, allowing them to explore a diverse space.125
126
127
128
129
130
131
132
133
134
135
Deep learning-based methods directly predict equations from data Biggio et al. (2021); Kamienny
et al. (2022); Shojaee et al. (2023); Meidani et al. (2024). Devlin et al. (2019); Radford et al.
(2019); Feng et al. (2023; 2025) typically train an end-to-end transformer-based model where the
input is observational data and the output is a symbolic equation. However, deep learning models
often struggle with out-of-distribution generalization Yang et al. (2024); Kim et al. (2024); Feng
et al. (2024), and cannot guarantee the generated output forms a syntactically valid equation, lead-
ing to non-executable equations. Inspired by the success of pre-training in deep learning Erhan
et al. (2010); Devlin et al. (2019), we propose a pre-training mechanism for EA-based SR (see
Section 3.3). We first construct an equation bank containing physics-related equations. During init-
ialization, the SR algorithm retrieves equations that closely align with the observed data and uses
them as initial candidates. This pre-training strategy significantly improves convergence speed and
enhances the accuracy of the learned equations.136
137
138

3 METHODOLOGY

139
140

3.1 TASK FORMULATION AND NOTATIONS

141
142
143
144
145
146
147
148
149
The objective of this study is to achieve physics-grounded motion forecasting for trajectory-guided
video generation. As illustrated in Figure 1, given an input video V_i depicting the initial motion of
an object, our approach generates a video V_o representing the object's future motion. Our approach
consists of three main steps. First, we extract the motion trajectories of moving objects in V_i . The
extracted trajectories are represented as a set $\mathbb{P} = \{p_1, p_2, \dots, p_n\}$, where each trajectory p_i is a
time series of object positions: $p_i = [p_1, p_2, \dots, p_T]$, where $p_t = (x_t, y_t)$ denotes the image-space
coordinate of the object at time step t . Next, we employ symbolic regression to learn equations that
govern the motion of objects. Specifically, for each trajectory p_i , we aim to learn a pair of functions
 $f_i^x(t)$ and $f_i^y(t)$ such that:

150
$$x_t = f_i^x(t), \quad y_t = f_i^y(t). \quad (1)$$

151
152
153
154
that map time to object position. Using the learned equation $f_i^x(t)$ and $f_i^y(t)$, we predict the future
trajectory for time steps beyond the observed interval, i.e., $p_i = f_i(t), t \in \{T+1, T+2, \dots, T+K\}$,
where K represents the forecast horizon. Finally, we utilize the predicted trajectories to guide
trajectory-based video generation models, which then synthesize the future video V_o .155
156

3.2 EXTRACTION OF OBJECT MOTION TRAJECTORY

157
158
159
160
161
To learn equations of object motion, we first extract object trajectories from the input video V_i . We
employ CoTracker Karaev et al. (2024), a state-of-the-art point tracking model that performs joint
point tracking and propagation across all frames. CoTracker requires a set of query points in the
first frame to initiate tracking. While manual annotation is possible, it is not scalable across diverse
video content. Instead, we adopt an automated approach by uniformly sampling query points on a
2D $M \times M$ grid across the first frame. Each query point is tracked throughout the entire video.

162 We perform all tracking in the original image coordinate system without additional preprocessing.
 163 After collecting all trajectories, we compute the temporal variance of each trajectory. We then rank
 164 the trajectories based on their positional variance across time and retain the top- k trajectories with
 165 the highest motion magnitude. This strategy is motivated by the observation that target objects in
 166 physics-driven videos typically exhibit the most motion, while background regions tend to remain
 167 static. As a result, selecting high-variance trajectories increases the likelihood of capturing the true
 168 object dynamics and filtering out irrelevant background noise.

169
 170 **3.3 SYMBOLIC REGRESSION WITH PRE-TRAINING**

171 In this step, we apply symbolic regression with retrieval-based pre-training (ReSR) to discover equa-
 172 tions that fit extracted object trajectories. Instead of initializing the search process from scratch with
 173 random equations, we retrieve a set of candidate equations from a curated equation bank composed
 174 of physics-related equations. The retrieved equations then serve as priors to initialize the symbolic
 175 regression. Given a trajectory $\mathbf{p}_i = [p_1, p_2, \dots, p_T]$, our goal is to learn Equation 1.

176 **Construction of Equation Bank.** We construct an equation bank containing a diverse set of equa-
 177 tions derived from classical and empirical physics to serve as priors for symbolic regression. The
 178 bank integrates equations from three sources: 1) The Feynman equation dataset Udrescu & Tegmark
 179 (2020), which consists of equations extracted from the Feynman Lectures on Physics Feynman et al.
 180 (1965). These equations typically take the form $y = f(x_1, x_2, \dots)$, with up to ten input vari-
 181 ables. To adapt them for time-series motion, we substitute time-dependent variables (e.g., velocity,
 182 acceleration, momentum) with the time variable t . Variables that are independent of time (e.g.,
 183 mass, density) are replaced with constant values (e.g., 10), aiming to preserve equation structure.
 184 We select a total of 106 equations after this adaptation. 2) The Nguyen dataset Uy et al. (2011),
 185 which includes 10 commonly used empirical formulas in symbolic regression benchmarks. We ap-
 186 ply the same time-variable substitution process. 3) We include 13 additional physics equations from
 187 Thornton & Marion (2004), not present in the aforementioned datasets, to ensure the equation bank
 188 represents a broad range of physical systems. All equations are stored as symbolic expressions in
 189 Julia syntax Bezanson et al. (2017), enabling compatibility with our symbolic regression framework.

190 **Retrieval-based Pre-training Mechanism.**

191 Our proposed ReSR initializes symbolic regression with candidate equations retrieved from a cu-
 192 rated equation bank. The retrieval is based on the similarity between the extracted object trajectory
 193 and trajectories generated by each equation in the bank. Similarity is computed using Dynamic
 194 Time Warping (DTW) Müller (2007), a sequence alignment algorithm that handles temporal mis-
 195 alignments such as phase shifts and local time warping that are not captured by Euclidean distance.

196 However, standard DTW is unable to robustly handle spatial offsets and scale variations in trajectory
 197 coordinates. To address this, we introduce *Normalized Dynamic Time Warping* (N-DTW), where the
 198 extracted trajectory is rescaled to match the coordinate range of each equation-generated trajectory
 199 before computing DTW. This helps the comparison to focus on shape similarity rather than absolute
 200 position. Formally, given an extracted trajectory $\mathbf{p}_i = [p_1, p_2, \dots, p_T]$, where each $p_t = (x_t, y_t)$, we
 201 normalize it as follows:

$$\bar{x}_t = (\hat{x}_{\max} - \hat{x}_{\min}) \cdot \frac{x_t - x_{\min}}{x_{\max} - x_{\min}} + \hat{x}_{\min} \quad (2)$$

$$\bar{y}_t = (\hat{y}_{\max} - \hat{y}_{\min}) \cdot \frac{y_t - y_{\min}}{y_{\max} - y_{\min}} + \hat{y}_{\min} \quad (3)$$

202 where $x_{\min}, x_{\max}, y_{\min}, y_{\max}$ are the bounds of the extracted trajectory, and $\hat{x}_{\min}, \hat{x}_{\max}, \hat{y}_{\min}, \hat{y}_{\max}$
 203 are the bounds of the equation-generated trajectory.

204 For each equation in the bank, we compute an N-DTW score with the normalized extracted trajec-
 205 tory. Since the similarity between the extracted trajectory and each equation-generated trajectory
 206 is computed independently, N-DTW retrieval can be easily parallelized across multiple CPU cores,
 207 enabling scalability to large equation banks. We then select the top- k equations with the lowest
 208 distances as initial candidates for symbolic regression. This retrieval strategy emphasizes shape
 209 similarity rather than proximity in raw values. For instance, consider a trajectory generated by
 210 $y = 0.5 \cos(t + 3) + 100$. Two candidate equations might be $y = 100$ and $y = \cos(t)$. While
 211 Euclidean distance may favor $y = 100$ due to its proximity in magnitude, it fails to capture the

216 oscillatory structure. In contrast, N-DTW correctly identifies $y = \cos(t)$ as the more structurally
 217 similar trajectory.

218 **Initialization of ReSR.** We initialize a portion of population members with the top- k retrieved
 219 equations that closely match the target trajectory. We introduce an initialization weight hyperpa-
 220 rameter $\alpha \in [0, 1]$, which determines the proportion of initial population members that are seeded
 221 with retrieved equations, while the remaining are randomly generated. This hybrid initialization
 222 strategy allows us to balance *exploration*—via randomly sampled equations that enable diversity in
 223 the search space—and *exploitation*—via retrieved equations that act as informative priors. Higher
 224 values of α prioritize faster convergence, while lower values preserve the capacity for discovering
 225 novel equation forms. If the available number of top- k retrieved equations is insufficient to meet the
 226 required number based on α , we duplicate top- k retrieved equations to fill the remaining positions.
 227 This strategy ensures that the initial population predominantly contains equations closely matching
 228 the observed dynamics, reducing the risk of including irrelevant or misleading equations that could
 229 negatively impact the search efficiency. This initialization occurs only once at the beginning of the
 230 symbolic regression run. All modifications, including retrieval-based pre-training and the integra-
 231 tion of N-DTW, are implemented within a modified version of the `SymbolicRegression.jl`
 232 framework Cranmer (2023b), ensuring compatibility with existing symbolic regression workflows
 233 and reproducibility of our method.

234 3.4 TRAJECTORY-GUIDED VIDEO FORECASTING

235 To generate future video frames V_o that are physically consistent with learned motion dynamics,
 236 we incorporate existing trajectory-guided I2V models, such as SG-I2V Namekata et al. (2025), Tora
 237 Zhang et al. (2024), and MotionCtrl Wang et al. (2024b), into our framework. These models are
 238 typically diffusion models Song et al. (2020) that synthesize temporally coherent video sequences
 239 by denoising noise-perturbed images conditioned on a starting image and motion trajectories.

240 We use the final frame of the observed input video V_i as the starting image and condition on future
 241 trajectories predicted by equations learned from ReSR. These trajectories are formatted as sequences
 242 of (x, y) coordinates, sampled at temporal intervals that match the requirement of each I2V model.
 243 This integration enables our framework to produce future video sequences that are not only visually
 244 plausible but also governed by equations of motion inferred from past observations. Our approach is
 245 *modular* and *model-agnostic*: it can be directly applied to any trajectory-guided I2V model without
 246 retraining or fine-tuning.

247 4 EXPERIMENTS

248 We first assess whether the proposed ReSR enhances the performance of symbolic regression in
 249 discovering equations. Then, we examine whether trajectories predicted by the learned equations
 250 lead to videos that better align with real-world physical dynamics.

251 4.1 EVALUATION OF EQUATION DISCOVERY

252 **Datasets.** We evaluate equation discovery methods using trajectories extracted from videos of clas-
 253 sical physics systems, divided into two categories: **1) systems with ground-truth trajectory equations**
 254 (*i.e.*, systems with analytical solutions), including spring mass, damped spring mass, two body, and
 255 projectile motion Huang et al. (2024); **2) systems without ground-truth trajectory equations**, includ-
 256 ing single pendulum, double pendulum and fluid motion, where no closed-form analytical solution
 257 exists Huang et al. (2024); Ohana et al. (2024). Each system includes ten videos with varying ini-
 258 tial states. We use CoTracker Karaev et al. (2024) to extract uniformly sampling query points on
 259 a 10×10 grid from the first frame. From these, we select the top 5 trajectories with the high-
 260 est temporal variance to serve as inputs for symbolic regression methods. Each trajectory is split
 261 80%/10%/10% along the time dimension for training, validation, and evaluation, respectively. This
 262 split aims to select equations that generalize from past states to unseen future states.

263 **Evaluation.** For systems with ground-truth equations, we evaluate symbolic similarity between pre-
 264 dicted equations and ground-truth equations using normalized Tree Edit Distance (TED) Zhang &
 265 Shasha (1989), which measures how many edit operations (*i.e.*, insertions, deletions, substitutions)

Methods	Baseline Comparison			
	with AS		w/o AS	
	TED (↑)	MSE (↓)	MSE (↓)	ITB (↓)
APO	0.33 _{0.11}	7.92 _{0.21}	76.52 _{7.56}	68.21 _{16.51}
gplearn	0.40 _{0.11}	3.87 _{0.21}	61.95 _{7.44}	83.14 _{12.97}
uDSR	0.41 _{0.12}	3.73 _{0.11}	50.35 _{6.10}	74.83 _{13.30}
KAN	0.22 _{0.14}	11.14 _{0.49}	91.43 _{9.57}	N/A
PySR	0.47 _{0.16}	2.95 _{0.05}	45.25 _{4.39}	61.43 _{10.37}
LaSR	0.54 _{0.15}	1.91 _{0.05}	32.56 _{4.05}	59.93 _{11.93}
ReSR (Our)	0.80_{0.08}	1.52_{0.04}	27.58_{3.61}	44.31_{7.61}

Ablation Study				
Varying Initialization Weight α				
ReSR-0	0.47 _{0.16}	2.95 _{0.05}	45.25 _{4.39}	61.43 _{10.37}
ReSR-0.25	0.60 _{0.13}	1.84 _{0.06}	30.90 _{3.16}	57.24 _{8.29}
ReSR-0.5	0.70 _{0.12}	1.74 _{0.05}	28.19 _{3.12}	49.58 _{8.82}
ReSR-0.75	0.80 _{0.08}	1.52 _{0.04}	27.58 _{3.61}	44.31 _{7.61}
ReSR-1.0	0.77 _{0.10}	1.55 _{0.04}	28.32 _{2.90}	46.63 _{8.94}

Ablation Study				
Varying Training/Test Split Proportion ($\alpha = 0.75$)				
ReSR-2.7	0.54 _{0.17}	31.96 _{5.93}	137.04 _{9.17}	33.76 _{5.14}
ReSR-4.5	0.61 _{0.14}	18.41 _{2.32}	89.28 _{5.20}	37.66 _{6.05}
ReSR-6.3	0.68 _{0.13}	7.19 _{0.21}	57.51 _{6.47}	42.83 _{6.39}
ReSR-8.1	0.80 _{0.08}	1.52 _{0.04}	27.58 _{3.61}	44.31 _{7.61}

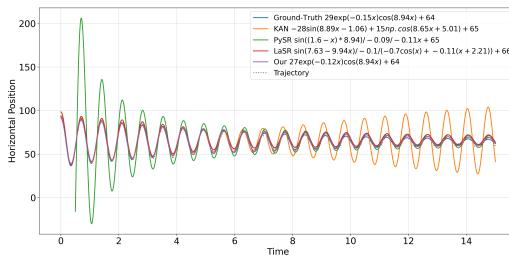
Table 1: Quantitative comparison with baselines and ablation study of ReSR. AS indicates analytical solutions; Conv. indicates convergence. Best results in **bold**.

are required to transform one equation tree into another, normalized by the maximum node count of two equation trees. For systems without ground-truth equations, we measure the Mean Squared Error (MSE) between the trajectory generated by predicted equations and the actual observed trajectory. To compare the convergence speed of different methods, we report the *iteration-to-best* (ITB) metric, which measures the number of iterations required to reach the method's lowest MSE on the validation set Xing et al. (2018); Smith & Topin (2019).

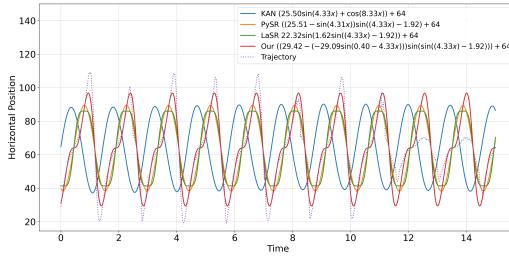
Baselines. We compare against the following methods: **APO** Schmidt & Lipson (2010): A symbolic regression method using Age-fitness Pareto Optimization. **gplearn** Stephens (2025): An EA-based symbolic regression with a scikit-learn-style API. **uDSR** Landajuela et al. (2022): A hybrid approach that combines deep learning models with evolutionary algorithms to discover equations. **KAN** Liu et al. (2025): Kolmogorov-Arnold Networks (KANs) replace each weight in Multi-Layer Perceptrons (MLPs) with a univariate function parameterized as a spline, enabling symbolic equation extraction after training. **PySR** Cranmer (2023b): A symbolic regression framework based on evolutionary search, which can be viewed as an ablation model without retrieval-based pre-training. **LaSR** Grayeli et al. (2024): A symbolic regression approach that leverages large language models to propose initial equations.

Implementation Details. For EA-based symbolic regression methods, including both our method and baselines, we run 100 iterations with a population size of 30 across 30 populations. The search space operators include basic arithmetic ($+$, $-$, $*$, $/$), power functions, and common mathematical functions: \cos , \sin , \exp , \log , \tan , and $\sqrt{}$. For KAN, we perform grid-based hyperparameter tuning and report results using the best-performing configuration on the validation set. All experiments are conducted on a machine with 32-core CPUs and a single 80GB A100 GPU.

Results and Analysis. Table 1 presents the comparison between ReSR, baseline methods, and ablation variants. ReSR consistently outperforms all baselines in both symbolic similarity (TED) and trajectory error (MSE), demonstrating improved accuracy in discovering physical equations. Additionally, it achieves the fastest convergence (lowest ITB), highlighting the effectiveness of retrieval-based pre-training. For the ablation study, we first analyze the effect of the initialization weight hyperparameter α . Performance improves steadily as α increases, peaking at $\alpha = 0.75$, which supports both exploitation (using physics-aligned priors) and exploration (diversity through random sampling). Another ablation study investigates the impact of varying the training/test split while keeping the validation set fixed at 10% of the data. Results show that increasing the training set size improves equation discovery accuracy, indicating that ReSR benefits from larger datasets to better fit observational data.



(a) Damped spring–mass system.



(b) Single pendulum system.

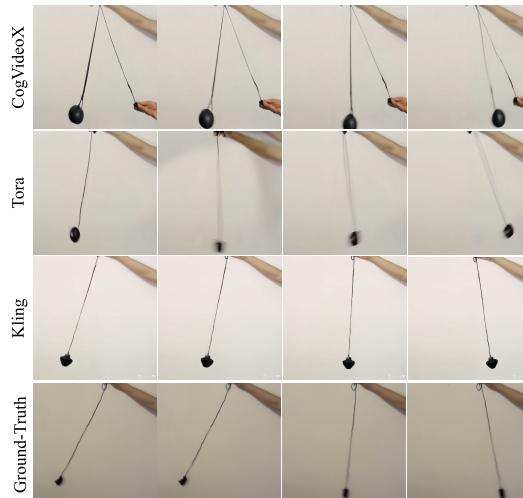
Figure 2: Qualitative comparison of equations discovered by different methods.

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1680
 1681
 1682
 1683<br

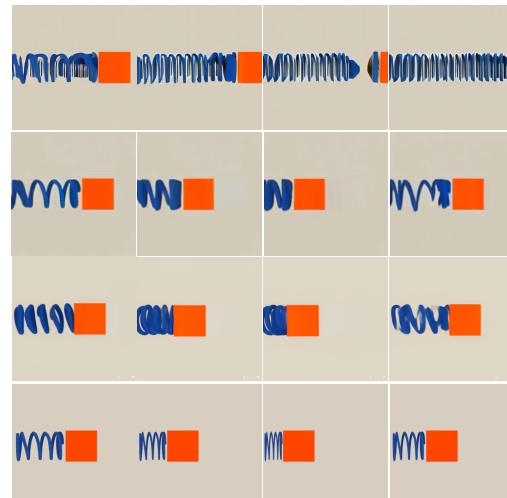
378 thing Wu et al. (2025), MotionCtrl Wang et al. (2024b), SG Namekata et al. (2025), Tora Zhang
 379 et al. (2024) and Kling (a commercial model) Team. These models are conditioned on the initial
 380 image and the given trajectory. For models that accept a single trajectory, we use the one with the
 381 highest motion magnitude, while for models that support multiple trajectories, we use the top-5 with
 382 the highest motion magnitudes. For synthetic data, we also use a physics simulator Huang et al.
 383 (2024) to generate future videos serving as a reference for upper-bound performance.

384 **Implementation Details.** We resize initial im-
 385 ages to match each model’s input resolution.
 386 The video length is fixed at 5 seconds, with
 387 frames per second (FPS) set per model require-
 388 ments. For models requiring text prompts, we
 389 use either official prompt guidelines or gen-
 390 erate prompts using GPT-4o Yang et al. (2025).
 391 Trajectories are normalized and scaled to match
 392 each model’s spatial resolution and sampled
 393 uniformly at 2 points per second. All models
 394 are run on a machine with an NVIDIA 80G
 395 A100 GPU or API without fine-tuning.
 396

396 **Results and Analysis.** Table 2 presents auto-
 397 matic evaluation results on all models. Models
 398 guided by trajectory consistently outperform
 399 trajectory-free baselines in both visual quality
 400 and physics alignment. Among trajectory-guided I2V
 401 models, Kling guided by trajectories pre-
 402 dicted by our method achieves the best performance,
 403 closely approaching Kling with ground-truth
 404 trajectories. Real initial frame settings have lower
 405 performance than synthetic settings, likely due
 406 to background noises and systems complexity.
 407 In the synthetic setting, all models perform signif-
 408 icantly worse than the simulator, indicating that
 409 current data-driven video generation models struggle
 410 to capture physical dynamics, even when guided by
 411 ground-truth trajectory. This highlights the need
 412 for future work to improve the physical alignment of
 413 data-driven approaches.



(a) Single pendulum system.



(b) Damped spring-mass system.

Figure 3: Qualitative comparisons across models.

425 For human evaluation in Table 3, annotators consistently preferred trajectory-guided models over
 426 trajectory-free baseline on both physical alignment and visual quality. Inter-annotator agreement
 427 was measured using Fleiss’ Kappa Fleiss (1971), yielding a score of 0.73, which indicates substan-
 428 tial agreement among annotators. Notably, Kling with ReSR-guided trajectories was preferred over
 429 its manually guided counterpart, confirming that learned equations offer more accurate and reliable
 430 motion control. In the synthetic setting, the physics simulator was consistently rated as the most
 431

432 physically accurate, highlighting the limitations of data-driven approaches. We attribute this to a
 433 fundamental difference: current video generation models are trained to capture statistical correlations
 434 in large-scale datasets, but lack explicit modeling of physical causality. In contrast, physics
 435 simulators generate motion directly from governing equations, ensuring high physical fidelity. How-
 436 ever, simulators have their own limitations. They are not scalable across diverse scenarios and tend
 437 to lack realism when applied to real-world scenarios. This highlights the value of our method,
 438 which seeks to combine the interpretability and physical grounding of governing equations with the
 439 flexibility and realism of data-driven generative models.

440 Figure 3 illustrates qualitative comparisons. Trajectory-guided models exhibit improved global motion
 441 consistency, while trajectory-free models (e.g., CogVideoX) often produce erratic or implausible
 442 dynamics. Even the strongest model, Kling, fails to capture fine-grained physical details such
 443 as spring deformation, suggesting that while trajectory conditioning improves high-level motion,
 444 current models still lack the physical inductive biases needed for fine-grained dynamic synthesis.

446 5 RELATED WORK

447
 448
 449 **Equation Discovery from Video.** Chari et al. (2019); Luan et al. (2021); Tetriyani et al. (2024);
 450 Garcia et al. (2024) aim to extract physical laws of dynamic systems directly from video, using
 451 symbolic regression or ODE-based methods. However, many of these approaches impose strong
 452 constraints on the equation structure, such as assuming linearity, or focus solely on estimating pa-
 453 rameters of pre-defined models. Huang et al. (2024) uses autoencoders to encode video sequences
 454 into low-dimensional latent vectors and attempt to learn system dynamics in that space. These la-
 455 tent variables often lack physical interpretability, and the resulting dynamics are not expressed as
 456 symbolic equations. In contrast, our approach employs symbolic regression to directly learn explicit
 457 symbolic equations, capturing physically meaningful variables that map time to object positions,
 458 thus ensuring interpretability and physical alignment.

459 **Physics-aligned Video Generation.** Millington (2007); Todorov et al. (2012); Bonnet et al. (2022);
 460 Kohl et al. (2024); Ohana et al. (2024); Lv et al. (2024) use physics simulators to ensure physical
 461 realism in video generation, where dynamics are modeled via hard-coded rules and equations. While
 462 highly accurate, these simulators are typically limited to specific domains, require hand-crafted
 463 scenario design. On the other hand, Blattmann et al. (2023); Wang et al. (2024a); Yang et al. (2025);
 464 Team (2025); Kong et al. (2025) use diffusion or autoregressive architectures to synthesize diverse
 465 scenes from image or text prompts but often lack physical consistency, leading to unrealistic object
 466 motion Motamed et al. (2025).

467 Trajectory-guided video generation is a motion-aware video synthesis framework where object
 468 movement is explicitly controlled by numerical trajectories, which are typically represented as se-
 469 quences of (x, y) coordinates over time Xing et al. (2025); Ho et al. (2020); Song et al. (2020); Wang
 470 et al. (2024b); Wu et al. (2025); Namekata et al. (2025); FU et al. (2025); Zhang et al. (2024). In
 471 prior work, trajectories are manually drawn, which does not ensure physical alignment. In contrast,
 472 we use learned equations from observational data to generate future trajectories, ensuring that the
 473 future object motion follows discovered physical dynamics.

474 6 CONCLUSION

475
 476 We introduce a novel physics-grounded, inference-only framework for motion forecasting in
 477 trajectory-guided video forecasting, which employs ReSR for equation discovery. Experimental
 478 results demonstrate that our approach can reliably generate future motion trajectories closely match-
 479 ing equations derived from classical mechanics. Experimental results also highlight the limitations
 480 of current SOTA I2V models. Even with accurate trajectories, generated videos may deviate in
 481 fine-grained details such as velocity or deformation. Addressing these limitations requires advances
 482 in controllable video generation models. Overall, our work illustrates the potential of integrating
 483 interpretable equation discovery with I2V models and paves the way for applications in scientific
 484 discovery and simulations for robotics. An exciting next step is to apply our approach to multi-body
 485 systems involving collisions and contact dynamics. We expect this will require integrating symbolic
 486 regression with hybrid modeling frameworks to capture discontinuous transitions.

486 ETHICS STATEMENT
487488 As part of our study, we hired human evaluators to assess the visual and physical quality of generated
489 videos. All participants were recruited voluntarily through an online platform and provided informed
490 consent before participating. We ensured anonymity of all responses and did not collect personally
491 identifiable information. Participants were compensated above the local minimum wage relative to
492 task duration.494 REPRODUCIBILITY STATEMENT
495496 We release code and data at <https://anonymous.4open.science/r/ReSR-0083/>. Ex-
497 perimental details can be found in section 4.1 and 4.2. All video generation models used in our
498 work are either publicly available or accessible through APIs (e.g., Kling).500 REFERENCES
501502 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to nu-
503 matical computing. *SIAM review*, 59(1):65–98, 2017. URL <https://doi.org/10.1137/141000671>.505 Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
506 dolo. Neural symbolic regression that scales. In *International Conference on Machine Learning*,
507 pp. 936–945. Pmlr, 2021.508 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
509 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
510 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.512 Florent Bonnet, Jocelyn Ahmed Mazari, Paola Cinnella, and patrick gallinari. AirfRANS: High
513 fidelity computational fluid dynamics dataset for approximating reynolds-averaged navier–stokes
514 solutions. In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and*
515 *Benchmarks Track*, 2022.

516 Anne Brindle. Genetic algorithms for function optimization. 1980.

518 Pradyumna Chari, Chinmay Talegaonkar, Yunhao Ba, and Achuta Kadambi. Visual physics: Dis-
519 covering physical laws from videos, 2019. URL <https://arxiv.org/abs/1911.11893>.520 Boyuan Chen, Kuang Huang, Sunand Raghupathi, Ishaan Chandrateya, Qiang Du, and Hod Lip-
521 son. Automated discovery of fundamental variables hidden in experimental data. *Nature Compu-*
522 *tational Science*, 2(7):433–442, 2022.523 Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl.
524 *arXiv preprint arXiv:2305.01582*, 2023a.526 Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl,
527 2023b. URL <https://arxiv.org/abs/2305.01582>.528 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
529 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
530 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of*
531 *the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long*
532 *and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
533 *putational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.*535 Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsupervised
536 pre-training help deep learning? In Yee Whye Teh and Mike Titterington (eds.), *Proceedings*
537 *of the Thirteenth International Conference on Artificial Intelligence and Statistics*, volume 9 of
538 *Proceedings of Machine Learning Research*, pp. 201–208, Chia Laguna Resort, Sardinia, Italy,
539 13–15 May 2010. PMLR. URL <https://proceedings.mlr.press/v9/erhan10a.html>.

540 Tao Feng, Lizhen Qu, and Gholamreza Haffari. Less is more: Mitigate spurious correlations for
 541 open-domain dialogue response generation models by causal discovery. *Transactions of the As-
 542 sociation for Computational Linguistics*, 11:511–530, 2023. doi: 10.1162/tacl_a_00561. URL
 543 <https://aclanthology.org/2023.tacl-1.30/>.

544 Tao Feng, Lizhen Qu, Zhuang Li, Haolan Zhan, Yuncheng Hua, and Reza Haf. IMO: Greedy
 545 layer-wise sparse representation learning for out-of-distribution text classification with pre-
 546 trained models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of
 547 the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 548 Papers)*, pp. 2625–2639, Bangkok, Thailand, August 2024. Association for Computational Lin-
 549 guistics. doi: 10.18653/v1/2024.acl-long.144. URL <https://aclanthology.org/2024.acl-long.144/>.

550 Tao Feng, Lizhen Qu, Xiaoxi Kang, and Gholamreza Haffari. CausalScore: An automatic reference-
 551 free metric for assessing response relevance in open-domain dialogue systems. In Owen Rambow,
 552 Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert
 553 (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 2351–
 554 2369, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL <https://aclanthology.org/2025.coling-main.161/>.

555 R.P. Feynman, R.B. Leighton, M. Sands, and EM Hafner. *The Feynman Lectures on Physics*. AAPT,
 556 1965.

557 Joseph L Fleiss. Measuring nominal scale agreement among many raters. *Psychological bulletin*,
 558 76(5):378, 1971.

559 Xiao FU, Xian Liu, Xintao Wang, Sida Peng, Menghan Xia, Xiaoyu Shi, Ziyang Yuan, Pengfei
 560 Wan, Di ZHANG, and Dahua Lin. 3DTrajmaster: Mastering 3d trajectory for multi-entity motion
 561 in video generation. In *The Thirteenth International Conference on Learning Representations*,
 562 2025. URL <https://openreview.net/forum?id=Gx04TnVjee>.

563 Alejandro Castañeda Garcia, Jan van Gemert, Daan Brinks, and Nergis Tömen. Learning physics
 564 from video: Unsupervised physical parameter estimation for continuous dynamical systems,
 565 2024. URL <https://arxiv.org/abs/2410.01376>.

566 David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic
 567 algorithms. In *Foundations of genetic algorithms*, volume 1, pp. 69–93. Elsevier, 1991.

568 Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Sym-
 569 bolic regression with a learned concept library. In *ICML 2024 AI for Science Workshop*, 2024.
 570 URL <https://openreview.net/forum?id=2vZ411eb1j>.

571 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 572 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon,
 573 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
 574 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

575 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Proceed-
 576 ings of the 34th International Conference on Neural Information Processing Systems*, NIPS ’20,
 577 Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

578 Kuang Huang, Dong Heon Cho, and Boyuan Chen. Automated discovery of continuous dynamics
 579 from videos, 2024. URL <https://arxiv.org/abs/2410.11894>.

580 Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-to-
 581 end symbolic regression with transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 582 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
 583 https://openreview.net/forum?id=GoOuIrDHG_Y.

584 Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, and Jiashi
 585 Feng. How far is video generation from world model: A physical law perspective, 2024. URL
 586 <https://arxiv.org/abs/2411.02385>.

594 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 595 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 596 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

597 Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
 598 Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos, 2024.
 599 URL <https://arxiv.org/abs/2410.11831>.

600 Byung Chun Kim, Byungro Kim, and Yoonsuk Hyun. Investigation of out-of-distribution detection
 601 across various models and training methodologies. *Neural Networks*, 175:106288, 2024.

602 Georg Kohl, Liwei Chen, and Nils Thuerey. Turbulent flow simulation using autoregressive condi-
 603 tional diffusion models, 2024.

604 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 605 Bo Wu, Jianwei Zhang, Katrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, An-
 606 dong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song,
 607 Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai
 608 Li, Weiyang Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhen-
 609 tao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Song-
 610 tao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar
 611 Zhong. Hunyanvideo: A systematic framework for large video generative models, 2025. URL
 612 <https://arxiv.org/abs/2412.03603>.

613 Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio Aravena, Ter-
 614 rrell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified framework for deep sym-
 615 bolic regression. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 616 *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=2FNnBhwJsHK>.

617 Zhen Li, Zuo-Liang Zhu, Ling-Hao Han, Qibin Hou, Chun-Le Guo, and Ming-Ming Cheng. Amt:
 618 All-pairs multi-field transforms for efficient frame interpolation. In *Proceedings of the IEEE/CVF
 619 Conference on Computer Vision and Pattern Recognition*, pp. 9801–9810, 2023.

620 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
 621 Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. In *The Thirteenth
 622 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Ozo7qJ5vZi>.

623 Lele Luan, Yang Liu, and Hao Sun. Uncovering closed-form governing equations of nonlinear
 624 dynamics from videos, 2021.

625 Jiaxi Lv, Yi Huang, Mingfu Yan, Jiancheng Huang, Jianzhuang Liu, Yifan Liu, Yafei Wen, Xiaoxin
 626 Chen, and Shifeng Chen. Gpt4motion: Scripting physical motions in text-to-video generation
 627 via blender-oriented gpt planning. In *2024 IEEE/CVF Conference on Computer Vision and Pat-
 628 tern Recognition Workshops (CVPRW)*, pp. 1430–1440, 2024. doi: 10.1109/CVPRW63382.2024.
 629 00150.

630 Kazem Meidani and Amir Barati Farimani. Identification of parametric dynamical systems using
 631 integer programming. *Expert Systems with Applications*, 219:119622, 2023.

632 Kazem Meidani, Parshin Shojaee, Chandan K. Reddy, and Amir Barati Farimani. SNIP: Bridging
 633 mathematical symbolic and numeric realms with unified pre-training. In *The Twelfth International
 634 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=KZSEgJGPxu>.

635 Ian Millington. *Game physics engine development*. CRC Press, 2007.

636 Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, and Robert Geirhos. Do genera-
 637 tive video models understand physical principles?, 2025. URL <https://arxiv.org/abs/2501.09038>.

638 Meinard Müller. Dynamic time warping. *Information retrieval for music and motion*, pp. 69–84,
 639 2007.

648 Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant, Igor Gilitschenski, and David B. Lindell.
 649 SG-i2v: Self-guided trajectory control in image-to-video generation. In *The Thirteenth Interna-*
 650 *tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=uQjySppU9x)
 651 [forum?id=uQjySppU9x](https://openreview.net/forum?id=uQjySppU9x).

652 Ruben Ohana, Michael McCabe, Lucas Thibaut Meyer, Rudy Morel, Fruzsina Julia Agocs, Miguel
 653 Beneitez, Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond Buschman Fielding,
 654 Daniel Fortunato, Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich Kerswell, Surya-
 655 narayana Maddu, Jonah M. Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain
 656 Watteaux, Bruno Régaldo-Saint Blancard, François Rozet, Liam Holden Parker, Miles Cranmer,
 657 and Shirley Ho. The well: a large-scale collection of diverse physics simulations for machine
 658 learning. In *The Thirty-eighth Conference on Neural Information Processing Systems Datasets*
 659 *and Benchmarks Track*, 2024.

660 M. Planck. *Ueber eine Verbesserung der Wien'schen Spectral-Gleichung*. J.A. Barth, 1900. URL
 661 <https://books.google.com.au/books?id=v3ptnQEACAAJ>.

662 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 663 Language models are unsupervised multitask learners. 2019. URL <https://api.semanticscholar.org/CorpusID:160025533>.

664 Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven discov-
 665 ery of partial differential equations. *Science Advances*, 3(4):e1602614, 2017. doi: 10.1126/
 666 sciadv.1602614. URL <https://www.science.org/doi/abs/10.1126/sciadv.1602614>.

667 Michael D. Schmidt and Hod Lipson. Age-fitness pareto optimization. In *Proceedings of the 12th*
 668 *Annual Conference on Genetic and Evolutionary Computation*, GECCO '10, pp. 543–544, New
 669 York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300728. doi: 10.
 670 1145/1830483.1830584. URL <https://doi.org/10.1145/1830483.1830584>.

671 Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K. Reddy. Transformer-
 672 based planning for symbolic regression. In *Thirty-seventh Conference on Neural Information*
 673 *Processing Systems*, 2023. URL <https://openreview.net/forum?id=0rVXQEeFEL>.

674 Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
 675 large learning rates. In *Artificial intelligence and machine learning for multi-domain operations*
 676 *applications*, volume 11006, pp. 369–386. SPIE, 2019.

677 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 678 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 679 *arXiv:2011.13456*, 2020.

680 Trevor Stephens. gplearn: Genetic programming in python, 2025. URL <https://github.com/trevorstephens/gplearn>. Accessed: 18-Mar-2025.

681 Kling Team. Kling ai. <https://app.klingai.com/cn/en>. Accessed: 2023-10-05.

682 NVIDIA Team. Cosmos world foundation model platform for physical ai, 2025.

683 Erina Tetriyani, Asep Jihad, Tika Karlina Rachmawati, and Hamdan Sugilar. Development of video
 684 animation media for learning a system two-variable linear equation. *KnE Social Sciences*, 9(8):
 685 423–430, Apr. 2024. doi: 10.18502/kss.v9i8.15575.

686 S.T. Thornton and J.B. Marion. *Classical Dynamics of Particles and Systems*. Brooks/Cole,
 687 2004. ISBN 9780534408961. URL <https://books.google.com.au/books?id=HOqLQgAACAAJ>.

688 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 689 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033,
 690 2012. doi: 10.1109/IROS.2012.6386109.

691 Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
 692 regression. *Science advances*, 6(16):eaay2631, 2020.

702 Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
 703 Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges, 2019.
 704 URL <https://arxiv.org/abs/1812.01717>.
 705

706 Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O'Neill, Robert I McKay, and Edgar Galván-
 707 López. Semantically-based crossover in genetic programming: application to real-valued sym-
 708 bolic regression. *Genetic Programming and Evolvable Machines*, 12:91–119, 2011.
 709

710 Marco Virgolin and Solon P Pissis. Symbolic regression is NP-hard. *Transactions on Machine*
 711 *Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=LTiaPxqe2e>.
 712

713 Jing Wang, Ao Ma, Ke Cao, Jun Zheng, Zhanjie Zhang, Jiasong Feng, Shanyuan Liu, Yuhang
 714 Ma, Bo Cheng, Dawei Leng, Yuhui Yin, and Xiaodan Liang. Wisa: World simulator assistant
 715 for physics-aware text-to-video generation, 2025. URL <https://arxiv.org/abs/2503.08153>.
 716

717 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 718 Zhang, Yueze Wang, Zhen Li, Qiyi Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya
 719 Wu, Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu,
 720 Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you
 721 need, 2024a. URL <https://arxiv.org/abs/2409.18869>.
 722

723 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 724 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 725 *ACM SIGGRAPH 2024 Conference Papers*, SIGGRAPH '24, New York, NY, USA, 2024b. Asso-
 726 ciation for Computing Machinery. ISBN 9798400705250. doi: 10.1145/3641519.3657518. URL
 727 <https://doi.org/10.1145/3641519.3657518>.
 728

729 Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He, David Junhao Zhang, Mike Zheng Shou,
 730 Yan Li, Tingting Gao, and Di Zhang. Draganything: Motion control for anything using entity
 731 representation. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,
 732 and Gü̈l Varol (eds.), *Computer Vision – ECCV 2024*, pp. 331–348, Cham, 2025. Springer Nature
 733 Switzerland. ISBN 978-3-031-72670-5.
 734

735 Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with sgd, 2018. URL
 736 <https://arxiv.org/abs/1802.08770>.
 737

738 Jinbo Xing, Long Mai, Cusuh Ham, Jiahui Huang, Aniruddha Mahapatra, Chi-Wing Fu, Tien-Tsin
 739 Wong, and Feng Liu. Motioncanvas: Cinematic shot design with controllable image-to-video
 740 generation, 2025. URL <https://arxiv.org/abs/2502.04299>.
 741

742 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
 743 A survey. *International Journal of Computer Vision*, 132(12):5635–5662, 2024.
 744

745 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 746 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 747 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
 748 an expert transformer. In *The Thirteenth International Conference on Learning Representations*,
 749 2025. URL <https://openreview.net/forum?id=LQzN6TRFg9>.
 750

751 Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees
 752 and related problems. *SIAM Journal on Computing*, 18(6):1245–1262, 1989. doi: 10.1137/0218082. URL <https://doi.org/10.1137/0218082>.
 753

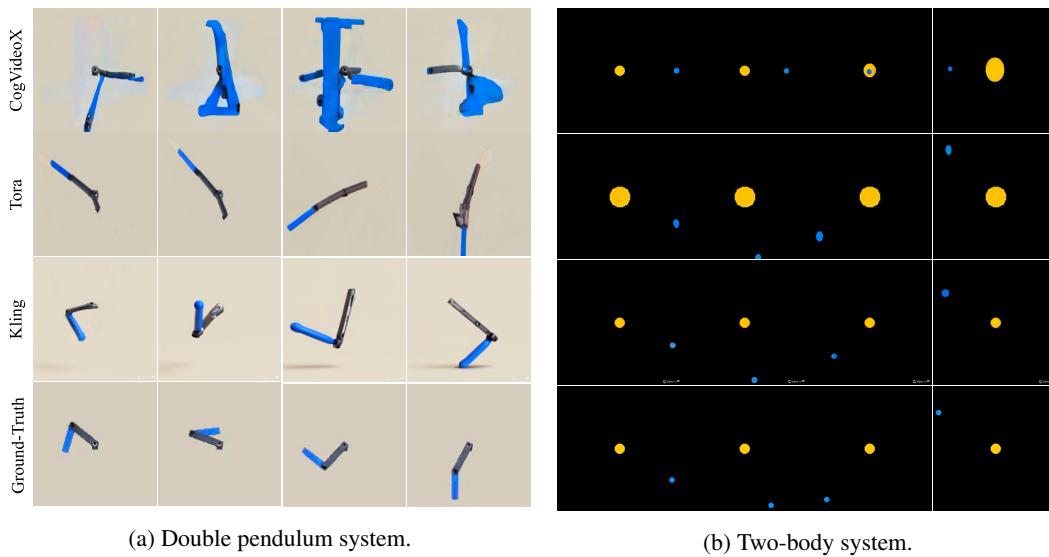
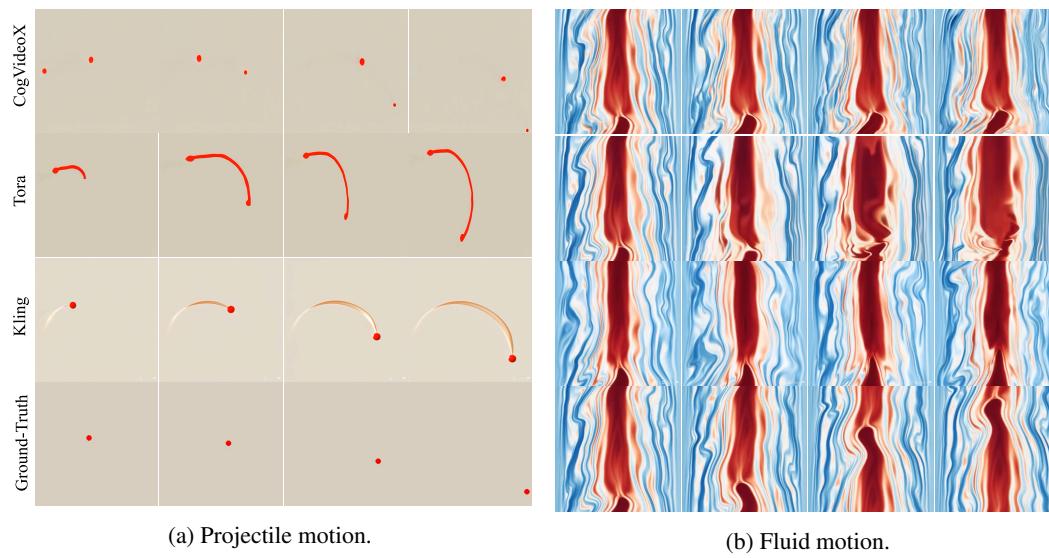
754 Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
 755 Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation, 2024. URL
<https://arxiv.org/abs/2407.21705>.

756 A THE USE OF LARGE LANGUAGE MODELS
757

758 In this research, large language models are employed as tools to support writing. Specifically, I used
759 LLMs to check and refine the grammar of drafts. In addition, LLMs were applied as debugging aids
760 during code development. Importantly, all core research ideas, experimental designs, analyses, and
761 conclusions presented in this thesis remain our own.

762
763 B QUALITATIVE EVALUATION
764

765 Figure 4 and 4 illustrate qualitative comparison on different physical systems across models.
766

784
785 Figure 4: Qualitative comparisons across models.
786
787804
805 Figure 5: Qualitative comparisons across models.
806
807
808
809