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ABSTRACT

In inverse reinforcement learning (IRL), an agent seeks to replicate expert demon-
strations through interactions with the environment. Traditionally, IRL is treated
as an adversarial game, where an adversary searches over reward models, and a
learner optimizes the reward through repeated RL procedures. This game-solving
approach is both computationally expensive and difficult to stabilize. In this work,
we propose a novel approach to IRL by direct policy optimization: exploiting a
linear factorization of the return as the inner product of successor features and
a reward vector, we design an IRL algorithm by policy gradient descent on the
gap between the learner and expert features. Our non-adversarial method does
not require learning a reward function and can be solved seamlessly with existing
actor-critic RL algorithms. Remarkably, our approach works in state-only settings
without expert action labels, a setting which behavior cloning (BC) cannot solve.
Empirical results demonstrate that our method learns from as few as a single ex-
pert demonstration and achieves improved performance on various control tasks.

1 INTRODUCTION
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Figure 1: Comparing Mean Normalized Re-
turn on 10 tasks from DMC (Tassa et al.,
2018) suite of our method SFM against the of-
fline method BC (Pomerleau, 1988), the non-
adversarial IRL method IQ-Learn (Garg et al.,
2021), and the state-only adversarial methods
MM (Swamy et al., 2021) and GAIfO (Torabi
et al., 2018), where the agents are provided a sin-
gle expert demonstration. Our state-only non-
adversarial method SFM achieves higher perfor-
mance as measured by the Mean Normalized Re-
turn. Error bars show the 95% bootstrap CIs.

In imitation learning (Abbeel & Ng, 2004;
Ziebart et al., 2008; Silver et al., 2016; Ho & Er-
mon, 2016; Swamy et al., 2021), the goal is to
learn a decision-making policy that reproduces
behavior from demonstrations. Rather than
simply mimicking the state-conditioned action
distribution as in behavior cloning (Pomerleau,
1988), interactive approaches like Inverse Rein-
forcement Learning (IRL; Abbeel & Ng, 2004;
Ziebart et al., 2008) have the more ambitious
goal of synthesizing a policy whose long-term
occupancy measure approximates that of the
expert demonstrator by some metric. As a re-
sult, IRL methods have proven to be more ro-
bust, particularly in a regime with few expert
demonstrations, and has lead to successful de-
ployments in real-world domains such as au-
tonomous driving (Bronstein et al., 2022; Vinit-
sky et al., 2022; Igl et al.). However, this robust-
ness comes at a cost: approaches to IRL tend to
involve a costly bi-level optimization.

Specifically, modern formulation of many IRL
methods (e.g., Garg et al., 2021; Swamy et al.,
2021) involve a min-max game between an ad-
versary that learns a reward function to maxi-
mally differentiate between the agent and expert in the outer loop and a Reinforcement learning
(RL) subroutine over this adversarial reward in the inner loop. However, all such methods encounter
a set of well-documented challenges: (1) optimizing an adversarial game between the agent and the
expert can be unstable, often requiring multiple tricks to stabilize training (Swamy et al., 2022), (2)
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the inner loop of this bi-level optimization involves repeatedly solving a computationally expensive
RL problem (Swamy et al., 2023), and (3) the reward function class must be specified in advance.
Moreover, many approaches to imitation learning require knowledge of the actions taken by the
demonstrator. This renders many forms of demonstrations unusable, such as videos, motion-capture
data, and generally any demonstrations leveraging an alternative control interface than the learned
policy (e.g., a human puppeteering a robot with external forces). As such, it is desirable to build IRL
algorithms where the imitation policies learn from only expert states.

These challenges lead us to the following research question: Can a non-adversarial approach to
occupancy matching recover the expert’s behavior without action labels? To address this question,
we present a new approach to IRL, called Successor Feature Matching (SFM), which provides a
remarkably simple algorithm for imitation learning. Our contributions are the following:

Occupancy matching via reduction to reinforcement learning. We revisit the earlier approaches
to feature matching (Abbeel & Ng, 2004; Ziebart et al., 2008), that is, matching the accumulation of
discounted state or state-action base features along the expert’s trajectory. For this task, we propose
to estimate expected cumulative sum of features using Successor Features (SF; Barreto et al., 2017) –
a low-variance, fully online algorithm that employs temporal-difference based methods for learning.
Leveraging the benefits of SF, we demonstrate that feature matching can be achieved by direct policy
search via policy gradients. In doing so, our method Successor Feature Matching (SFM) achieves
strong imitation performance using off-the-shelf RL algorithms, circumventing bilevel optimization.

Imitation from a single state-only demonstration. When the learned base features are action-
independent, we show that SFM can imitate an expert without knowledge of the actions it took in
its demonstrations. This accommodates a variety of expert demonstration formats, such as video
and motion-capture, where action labels are naturally absent. Through our experiments, we demon-
strate that SFM successfully learns to imitate from as little as a single expert demonstration, with-
out action labels—as highlighted in Figure 1. To our knowledge, SFM is the only online method
capable of learning from a single unlabeled expert trajectory without requiring an expensive and
difficult-to-stabilize bilevel optimization (Swamy et al., 2022). Additionally, rather than manually
pre-specifying a class of expert reward functions (Swamy et al., 2021), SFM adaptively learns a class
of reward functions from data using unsupervised RL techniques. As a result, SFM outperforms
its competitors across a wide range of imitation learning benchmarks.

2 RELATED WORK

Inverse Reinforcement Learning (IRL) methods typically learn via adversarial game dynamics,
where prior methods assumed the base features are known upfront (Abbeel & Ng, 2004; Ziebart
et al., 2008; Syed & Schapire, 2007; Syed et al., 2008) The advent of modern deep learning archi-
tectures led to methods (e.g. Ho & Ermon, 2016; Swamy et al., 2021; Fu et al., 2018) that do not
estimate expected features, but instead learn a more expressive reward function that captures the dif-
ferences between the expert and the the agent. The class of Moment Matching (MM; Swamy et al.,
2021) methods offers a general framework that unifies existing algorithms through the concept of
moment matching, or equivalently Integral Probability Metrics (IPM; Sun et al., 2019). In contrast
to these methods, our approach is non-adversarial and focuses on directly addressing the problem
of matching expected features. Furthermore, unlike prior methods in Apprenticeship Learning (AL;
Abbeel & Ng, 2004) and Maximum Entropy IRL (Ziebart et al., 2008), our work does not assume
the knowledge of base features. Instead, SFM leverages representation learning technique to extract
relevant features from the raw observations. The method most similar to ours is IQ-Learn (Garg
et al., 2021), a non-adversarial approach that utilizes an inverse Bellman operator to directly esti-
mate the value function of the expert. Our method is also non-adversarial, but offers a significant
advantage over IQ-Learn: it does not require knowledge of expert actions during training—it is
a state-only imitation learning algorithm (Torabi et al., 2019). However, many existing state-only
methods also rely on adversarial approaches (Torabi et al., 2018; Zhu et al., 2020). For instance,
GAIfO (Torabi et al., 2018) modifies the discriminator to account for state-only inputs. In contrast,
SFM is a non-adversarial approach from learning from state-only demonstrations.

Successor Features (SF; Barreto et al., 2017) generalize the idea of the successor representa-
tion (SR; Dayan, 1993) by modeling the expected cumulative state features discounted according
to the time of state visitation. Instead of employing successor features for tasks such as transfer
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learning (Barreto et al., 2017; Lehnert et al., 2017; Barreto et al., 2018; Abdolshah et al., 2021;
Wiltzer et al., 2024), representation learning (Le Lan et al., 2022; Farebrother et al., 2023; Ghosh
et al., 2023; Le Lan et al., 2023), exploration (Zhang et al., 2017; Machado et al., 2020; Jain et al.,
2024), or zero-shot RL (Borsa et al., 2019; Touati & Ollivier, 2021; Touati et al., 2023; Park et al.,
2024), our approach harnesses SFs for IRL, aiming to match expected features of the expert. Within
the body of work on imitation learning, SFs have been leveraged to pre-train behavior foundation
models capable of rapid imitation (Pirotta et al., 2024) and within adversarial IRL typically serves as
the basis for estimating the value-function that best explains the expert (Lee et al., 2019; Filos et al.,
2021; Abdulhai et al., 2022). In contrast, our work seeks to directly match SFs through a policy-
gradient update without requiring large diverse datasets or costly bilevel optimization procedures.

3 PRELIMINARIES

Reinforcement Learning (RL; Sutton & Barto, 2018) typically considers a Markov Decision
Process (MDP) defined by M = (S,A, T , r, γ, P0), where S and A denote the state and action
spaces, T : S × A → ∆(S) denotes the transition kernel, r : S × A → [−1, 1] is the reward
function, γ is the discount factor, and P0 is the initial state distribution. Starting from the initial
state s0 ∼ P0 an agent takes actions according to its policy π : S → ∆(A) producing trajectories
τ = {s0, a1, s1, . . . }. The value function and action-value are respectively defined as V π(s) =
Eπ[

∑∞
t=0 γ

tr(St, At)|S0 = s] and Qπ(s, a) = Eπ[
∑∞

t=0 γ
tr(St, At)|S0 = s,A0 = a] where γ ∈

[0, 1) represents the discount factor. The performance is the expected return obtained by following
policy π from the initial state, given by J(π) = Es0∼P0 [Eπ[

∑∞
t=0 γ

tr(St, At) |S0 = s]], and can
be rewritten as J(π) = Es0∼P0 [V

π(s0)].

The Successor Representation (SR; Dayan, 1993) provides the expected occupancy of future
states for a given policy. For tabular state spaces, temporal-difference learning can be em-
ployed to estimate the SR. Successor Features (SF; Barreto et al., 2017) generalize the idea of
the successor representation by instead counting the discounted sum of state features ψψψπ(s, a) =
Eπ[

∑∞
t=0 γ

tϕ(St, At)|S0 = s,A0 = a] after applying the feature mapping ϕ : S × A → Rd. The
SR is recovered when ϕ is the identity function, with ϕ typically serving as a form of dimensionality
reduction to learn SFs in continuous or large state spaces. In practice, SFs can be estimated via
temporal difference learning (Sutton, 1988) through the minimization of the following objective,

LSF (θ; θ̄) = E(s,a,s′)∼D
[
∥ϕ(s, a) + γψψψπ

θ̄ (s
′, π(s′))−ψψψπ

θ (s, a)∥22
]
, (1)

where the tuple (s, a, s′) is sampled from dataset D and ψψψθ denotes a parametric SF model.
The parameters θ̄ denote the “target parameters” that are periodically updated from θ by taking
a direct copy or through a moving average. For tasks where the reward function can be ex-
pressed as a combination of base features ϕ and a weight vector w ∈ Rd such that r(s, a) =
ϕ(s, a)Tw, the performance of a policy π can be rewritten as Qπ(s, a) = ψψψπ(s, a)Tw and
J(π) = Es0∼P0,a∼π(s0)[ψψψ

π(s0, a)]
Tw (Barreto et al., 2017).

Inverse Reinforcement Learning (IRL; Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008)
is the task of deriving behaviors using demonstrations through interacting with the environment. In
contrast to RL where the agent improves its performance using the earned reward, Inverse Reinforce-
ment Learning (IRL) involves learning without access to the reward function; good performance is
signalled by expert demonstrations. As highlighted in Swamy et al. (2021), this corresponds to min-
imizing an Integral Probability Metric (IPM) (Sun et al., 2019) between the agent’s state-visitation
occupancy and the expert’s which can be framed as a task to minimize the imitation gap given by:

J(πE)− J(π) ≤ sup
f∈Fϕ

[
E

τ∼π

∞∑
t=0

γtf(st, at)− E
τ∼πE

∞∑
t=0

γtf(st, at)

]
(2)

where Fr : S × A → [−1, 1] denotes the class of reward basis functions. Under this taxonomy,
the agent being the minimization player selects a policy π ∈ Π to compete with a discriminator that
picks a reward moment function f ∈ Fr to maximize the imitation gap, and this min-max game is
framed as minπ maxf∈F J(πE)− J(π).
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Algorithm 1 Successor Feature Matching (SFM)
Require: Expert demonstrations τE = {si0, ai0, . . . , siT−1, a

i
T−1}Mi=1

Require: Base feature loss Lfeat and initialized parameters θfeat = (ϕ, f)
Require: Initialized actor πµ, SF network and target ψψψθ,ψψψθ̄

, replay buffer B
1: while Training do
2: Observe state s and execute action a = πµ(s) to get next state s′
3: Add transition to replay buffer B ← B ∪ (s, a, s′)

4: Compute expected features of expert ψ̂̂ψ̂ψE = 1
M

∑M
i=1

∑T−1
t=0 γtϕ(sit)

5: Sample minibatch D = {(s, a, s′)} ∼ B
6: Update SF network using∇θE(s,a,s′)∼D∥ϕ(s) +ψψψθ̄(s

′, πµ(s
′))−ψψψθ(s, a)∥22

7: Update actor with∇µ
1
2∥(1− γ)

−1Es,s′∼D[ψψψθ(s, πµ(s))− γψψψθ̄(s
′, πµ(s

′))]− ψ̂̂ψ̂ψE∥22
8: Update base feature parameters using∇θfeatLfeat(θfeat)
9: end while

By restricting the class of reward basis functions to be within span of some base-features ϕ of state-
action pairs such that Fϕ ∈ {f(s, a) = ϕ(s, a)Twf}, the imitation gap becomes:

J(πE)− J(π) ≤ sup
f∈Fϕ

E
τ∼π

∞∑
t=0

γtϕ(st, at)
⊤wf − E

τ∼πE

∞∑
t=0

γtϕ(st, at)
⊤wf

= sup
f∈Fϕ

(
E

s∼P0,a∼π
[ψψψπ(s, a)]− E

s∼P0,a∼πE

[ψψψE(s, a)]

)⊤

wf ,

(3)

where ψψψE(s, a) denotes the successor features (SF) of the expert policy πE for a given state s and
action a. Under this assumption, the agent that matches the SF with the expert will minimize the
performance gap across the class of restricted basis reward functions. Solving this objective of
matching expected features between the agent and the expert has been studied in prior methods
where prior methods have often resorted to an adversarial game (Ziebart et al., 2008; Abbeel & Ng,
2004; Syed & Schapire, 2007; Syed et al., 2008). In the sequel, we introduce a non-adversarial
approach that updates the policy greedily to align the SFs between the expert and the agent, rather
than learning a reward function to capture their behavioral divergence.

4 SUCCESSOR FEATURE MATCHING (SFM)

In this section, we will describe SFM – a state-only non-adversarial algorithm for matching expected
features between the agent and the expert. SFM distinguishes itself in two crucial manners; namely,
it derives a feature-matching imitation policy by direct policy optimization via policy gradient as-
cent, and it learns base features simultaneously during training. Notably, the base features depend
on states only to accommodate state-only demonstrations. These components are described in sub-
section 4.1 and subsection 4.2, respectively. Consequently, the SFM training loop closely resembles
that of familiar actor-critic methods, avoiding challenges such as bilevel optimization.

4.1 POLICY OPTIMIZATION

The key intuition behind SFM is that successor feature matching in the ℓ2-norm can be accomplished
directly via policy gradient ascent—this allows us to leverage powerful actor-critic algorithms for
IRL, as intuited by equation 3. Towards this end, we define a potential function defined as the Mean
Squared Error (MSE) between the expected features of the expert and the agent, given by:

U(µ) =
1

2
∥ψ̂̂ψ̂ψπµ − ψ̂̂ψ̂ψE∥22, (4)

where πµ is a policy parameterized by µ, ψ̂̂ψ̂ψπµ = Es∼P0,a∼π(s)[ψψψ
πµ(s, a)] and ψ̂̂ψ̂ψE =

Es∼P0,a∼πE(s)[ψψψ
E(s, a)] represents the expected SF of agent and expert conditioned on the ini-

tial state distribution P0. Note that ∇U(µ) = (ψ̂̂ψ̂ψπµ − ψ̂̂ψ̂ψE)⊤∇µψ̂̂ψ̂ψ
πµ . Interpreting ψ̂̂ψ̂ψπ as a value

function for a vector-valued reward (the base features), it becomes clear that the latter term is sim-
ply a vector of standard policy gradients. This suggests a method for matching the expert successor

4
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features with a simple actor-critic algorithm. With the state-only base feature function ϕ : S → Rd,
the expected features of the expert can be estimated using the demonstrations. Here, the SF for the
expert using M demonstrations {τ i = {si1, ai2, ..., siT , aiT }}Mi=1 of length T is obtained by

ψ̂̂ψ̂ψE =
1

M

M∑
i=1

T∑
t=1

γtϕ(sit). (5)

Taking inspiration from off-policy actor-critic methods for standard RL tasks (Fujimoto et al., 2018;
2023; Haarnoja et al., 2018), SFM maintains a deterministic actor and a network to estimate the SF
for agent’s policy. Here, instead of having a critic to estimate the expected returns, the agent has a
network to predict the expected features. The network to predict SF of the agent is a parameterized
and differentiable function with parameters θ and is denoted by ψψψθ. To obtain actions for a given
state, SFM maintains a deterministic actor πµ with parameters µ. To learn policies without an
adversarial game for this task, we propose to optimize this non-linear objective where our method
leverages the prowess of the Deterministic Policy Gradient (DPG) (Silver et al., 2014) algorithm.
We now describe the loss functions and Algorithm 1 provides a training procedure of SFM.

To update the actor network πµ, we first show how SFM estimates the SF ψ̂̂ψ̂ψπ
θ of the current policy

under the initial state distribution.

Proposition 1. Let B denote a buffer of trajectories sampled from arbitrary stationary Markovian
policies in the given MDP with initial state distribution P0. For any deterministic policy π,

ψ̂̂ψ̂ψπ := Es∼P0
[ψψψπ(s, π(s))] = (1− γ)−1E(st,st+1)∼B [ψψψπ(st, π(st))− γψψψπ(st+1, π(st+1))] . (6)

The proof of Proposition 1 is deferred to Appendix A. Proposition 1 presents a method for estimating
the SF for the agent conditioned on the initial state distribution. The proposed derivation can utilize
samples coming from a different state-visitation distribution and uses an off-policy replay buffer in
this work. Similar to standard off-policy RL algorithms (Fujimoto et al., 2018; 2023; Haarnoja et al.,
2018), SFM maintains a replay buffer B to store the transitions and use it for sampling. This buffer
allows us to make good use of all state transitions for the purpose of estimating the initial-state
successor features with temporal difference learning.

Note that the potential function defined in Equation 4 depends only on the initial state distribution
and does not specify a way of updating the actor for any other state. By substituting Equation 6 into
Equation 4, we express the potential function representing the gap between the expected features of
the agent and those of the expert in terms of features at states visited by the agent (and not just initial
states). Thus, we define the loss LG for the actor, which we call the SF-Gap loss, according to

LG(µ) :=
1

2

∥∥∥∥ 1

1− γ E
s,s′∼B

[ψψψθ(s, πµ(s))− γψψψθ̄(s
′, πµ(s

′))]− ψ̂̂ψ̂ψE

∥∥∥∥2
2

, (7)

where we use the target network ψψψθ̄ to get SF at the next state. We can see that Equation 7 approxi-
mates the potential function on states sampled from the replay buffer B. To obtain the gradients with
respect to the actor parameters µ, we propose using the Deterministic Policy Gradient (DPG) algo-
rithm (Silver et al., 2014) that estimates the gradients by applying the chain-rule over Equation 7.

Proposition 2. The gradients of the actor for a batch of sampled transitions from the replay buffer
obtained by applying the DPG (Silver et al., 2014) algorithm to Equation 7 is

∇µLG(µ) =

d∑
i=1

zi(1− γ)−1Es,s′∼B

[
∇µπµ(s)∇aψψψθ,i(s, a)

∣∣
a=πµ(s)

]
, (8)

where zi = (1−γ)−1Es,s′∼B
[
ψψψθ,i(s, πµ(s))− γψψψθ̄,i(s

′, πµ(s
′))

]
− ψ̂̂ψ̂ψE

i ,ψψψθ,i denotes the SF at the
ith dimension for the current policy, and ψ̂̂ψ̂ψE

i is the ith dimension of SF of expert policy.

We provide the details of this derivation in Appendix A. Proposition 2 provides a way to estimate the
gradients for the actor and optimize the objective defined in Equation 4. So far, we have illustrated a
procedure for iteratively reducing the mean squared error between the expected SFs of a policy and
those of the expert; we now justify in which sense our method accomplishes the goals of IRL.
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Firstly, much like existing actor-critic methods, our procedure can ensure convergence to a local
minimum of the MSE SF-matching objective; this is a direct consequence of Agarwal et al. (2022).
Thus, as in the case of general actor-critic, we expect that local optima achieve low MSE.

The next simple proposition demonstrates that policies achieving low MSE must achieve a low
imitation gap, validating their competency in the IRL setting.

Proposition 3. Let ϵ > 0 and let µ be a policy parameter such that ∥ψ̂̂ψ̂ψπµ − ψ̂̂ψ̂ψE∥2 ≤ ϵ. Suppose the
expert policy is optimal for the reward function r(s) = w⊤ϕ(s) for base features ϕ(s) ∈ Rd and
some w ∈ [−B,B]d for B <∞. Then it holds that J(πE)− J(πµ) ≤

√
dBϵ.

Proposition 3 establishes that, for any tolerance ϵ > 0, the imitation gap can be reduced to ϵ by
approximately minimizing Equation 4 to within a margin of O(d−1/2ϵ).

Notably, ψ̂̂ψ̂ψE can be computed without knowledge of the expert’s actions, under the assumption
that the base features are action-independent. We note that SFM is not fundamentally incapable of
handling problems in which there is no state-only base feature map describing the expert’s reward:
in this case, we may simply learn base features defined on the state-action space. As a consequence,
we would require knowledge of the expert’s actions to compute equation 5. In many interesting
applications, however, it is sufficient to model state-only base features, as we show in section 5,
enabling SFM to learn strong imitation policies without access to expert actions.

Ultimately, Proposition 2 and Equation 1 provide drop-in replacements to actor and critic losses for
standard actor-critic methods (Algorithm 1 describes the training procedure of SFM). Training an
actor-critic with the corresponding gradients enables state-only non-adversarial method for IRL.

4.2 BASE FEATURE FUNCTION

We described in section 3 that SF depends on a base feature function ϕ : S → Rd. In this work, SFM
learns the base features jointly while learning the policy. Base feature methods are parameterized
by pairs θfeat = (ϕ, f) together with losses Lfeat, where ϕ : S → Rd is a state feature map, f is an
auxiliary object that may be used to learn ϕ, and Lfeat is a loss function defined for ϕ and f. Below,
we briefly outline the base feature methods considered in our experiments.

Random Features (Random): Here, ϕ is a randomly-initialized neural network, and f is discarded.
The network ϕ remains fixed during training (Lfeat ≡ 0).

Autoencoder Features (AE): Here, ϕ : S → Rd compresses states to latents in Rd, and f : Rd → S
tries to reconstruct the state from the latent. The loss Lfeat is given by the AE loss LAE,

LAE(θfeat) = Es∼D
∥∥f(ϕ(s))− s∥22] , θfeat = (ϕ, f). (9)

Inverse Dynamics Model (Pathak et al., 2017, IDM): Here, f : Rd × Rd → A is a function that
tries to predict the action that lead to the transition between embeddings of consecutive states. The
loss Lfeat is given by the IDM loss LIDM,

LIDM(θfeat) = E(s,a,s′)∼D
[
∥f(ϕ(s), ϕ(s′))− a∥22

]
, θfeat = (ϕ, f). (10)

Forward Dynamics Model (FDM): Here, f : Rd × A → S is a function that tries to predict the
next state in the MDP given the embedding of the current state and the chosen action. The loss Lfeat

is given by the FDM loss LFDM,

LFDM(θfeat) = E(s,a,s′)∼D
[
∥f(ϕ(s), a)− s′∥22

]
, θfeat = (ϕ, f). (11)

Hilbert Representations (Park et al., 2024, HR): The feature map ϕ of HR is meant to estimate
a temporal distance: the idea is that the difference between state embeddings f∗ϕ(s, g) = ∥ϕ(s) −
ϕ(g)∥ approximates the amount of timesteps required to traverse between the states s, g. Here, f is
discarded, and Lfeat is the HR loss LHR,

LHR(θfeat) = E
(s,s′)∼D

E
g∼D

[
ℓ2τ

(
−1(s ̸= g)− γsg{f∗ϕ(s′, g)}+ f∗ϕ(s, g)

)]
, θfeat = (ϕ, ∅), (12)

6
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Figure 2: Rliable (Agarwal et al., 2021) plots of the proposed method SFM with an offline method
BC (Pomerleau, 1988), a non-adversarial method IQ-Learn (Garg et al., 2021) that uses expert
action labels and adversarial state-only methods: MM (Swamy et al., 2021) and GAIfO (Torabi
et al., 2018) across 10 tasks from DMControl suite (Tassa et al., 2018).

where sg denotes the stop-gradient operator, γ is the discount factor, and ℓ2τ is the τ -expectile
loss (Newey & Powell, 1987), as a proxy for the max operator in the Bellman backup (Kostrikov
et al., 2021). In practice, sg{f∗ϕ(s′, g)} is replaced by f∗

ϕ
(s′, g), where ϕ is a delayed target network

tracking ϕ, much like a target network in DQN (Mnih et al., 2015).

Finally, our framework does not preclude the use of adversarially-trained features, although we
maintain that a key advantage of the framework is that it does not require adversarially-trained
features. To demonstrate the influence of such features, we consider training base features via IRL.

Adversarial Representations (Adv): The features ϕ : S → Rd are trained to maximally distin-
guish the features on states visited by the learned policy from the expert policy. That is, Lfeat is
given by LAdv which adversarially maximizes an imitation gap similar to equation 3,

LAdv(θfeat) = −∥Es∼πϕ(s)−Es′∼πE
ϕ(s′)∥22 , θfeat = (ϕ, ∅). (13)

In our experiments, we evaluated SFM with each of the base feature methods discussed above. A
comparison of their performance is given in Figure 7. Our SFM method adapts familiar deterministic
policy gradient algorithms, particularly TD3 (Fujimoto et al., 2018) and TD7 (Fujimoto et al., 2023),
to policy optimization through the actor loss of Equation 6, and with the value function estimating
the successor features corresponding to base features learned online. We provide implementation
details in Appendix B, and demonstrate the performance of SFM in the following section.

5 EXPERIMENTS

Through our experiments, we aim to analyze (1) how well SFM performs relative to competing non-
adversarial and state-only adversarial methods at imitation from a single expert demonstration, (2)
the robustness of SFM and its competitors to their underlying policy optimizer, (3) which features
lead to strong performance in SFM, and (4) can SFM learn with stochastic policy optimizers? Our
results are summarized in Figures 2, 4, 5, and 8 respectively, and are discussed in this section.

Ultimately, our results confirm that SFM indeed outperforms its competitors, achieving state-of-the-
art performance on a variety of single-demonstration tasks, and even surpassing the performance
of agents that have access to expert actions.

5.1 EXPERIMENTAL SETUP

We evaluate our method on the 10 environments from the DeepMind Control (DMC) (Tassa et al.,
2018) suite. Following the investigation in (Jena et al., 2020) which showed that the IRL algorithms
are prone to biases in the learned reward function, we consider infinite horizon tasks where all
episodes are truncated after 1000 steps in the environment. For each task, we collected expert
demonstrations by training a TD3 (Fujimoto et al., 2018) agent for 1M environment steps. In our
experiments, the agent is provided with a single expert demonstration which is sampled at the start
and kept fixed during the training phase. The agents are trained for 1M environment steps and we
report the mean performance across 10 seeds with 95% confidence interval shading and Rliable
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Figure 3: Per-task learning curves of IRL methods with a strong TD7 policy optimizer on single-
demonstration imitation in DMC. Notably, IQ-Learn and BC require access to expert actions, while
(state-only) MM, GAIfO, and SFM learn from expert states alone. Results are averaged across 10
seeds, and are shown with 95% confidence intervals.
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Figure 4: Performance of state-only IRL algorithms under the weaker TD3 policy optimizer.

metrics (Agarwal et al., 2021). For the Rliable plots, we use the returns obtained by a random
policy and the expert policy to compute the normalized returns. Our implementation of SFM is in
Jax (Bradbury et al., 2018) and it takes about∼2.5 hours for one run on a single NVIDIA A100 GPU.
We provide details about the implementation in Appendix B and hyperparameters in Appendix C.

Baselines. Our baselines include a state-only version of MM (moment matching) (Swamy et al.,
2021), which is an adversarial IRL approach with the version where the integral probability met-
ric (IPM) is replaced with the Jenson-Shannon divergence (which was shown to achieve better or
comparable performance with GAIL (Swamy et al., 2022)). We implemented the state-only MM by
changing the discriminator network to depend only on the state and not on the actions. Furthermore,
we replace the RL optimizer in MM to TD7 (Fujimoto et al., 2023) to keep parity with the proposed
method SFM. We compare SFM to another state-only baseline GAIfO (Torabi et al., 2018) where the
discriminator learns to distinguish between the state transitions of the expert and the agent. Since,
to our knowledge no official implementation of GAIfO is available, we implemented our version
of GAIfO with a similar architecture to the MM framework. Here, we change the RL optimizer
from TRPO (Schulman, 2015) in the paper to a recent RL optimizer like TD3 or TD7. Additionally,
the adversarial approaches required Gradient Penalty (Gulrajani et al., 2017) on the discriminator,
learning rate decay and the OAdam (Daskalakis et al., 2017) optimizer to stabilize learning. Apart
from state-only adversarial approaches, our baselines include behavior cloning (Pomerleau, 1988,
BC) which is a supervised learning based imitation learning method trained to match actions taken
by the expert. Lastly, we compare SFM with IQ-Learn (Garg et al., 2021) – a non-adversarial IRL
algorithm which learns the Q-function using inverse Bellman operator (Piot et al., 2016). Notably,
BC and IQ-Learn require the expert action labels in the demonstrations for learning.

5.2 RESULTS

Quantitative Results Figure 2 presents the Rliable plots (Agarwal et al., 2021) obtained across
DMC environments. We observe that the proposed method SFM learns to solve the task with a
single demonstration and significantly outperforms the offline method BC (Pomerleau, 1988) and
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Figure 5: Effect of different base feature functions on the performance of the agent. Here, we com-
pare with Random, Inverse Dynamics Model (IDM) (Pathak et al., 2017), Hilbert Representations
(Hilp) (Park et al., 2024) and Forward Dynamics Models (FDM).

non-adversarial baseline IQ-Learn (Garg et al., 2021). Notably, SFM achieves this without using
the action labels in the demonstrations. We believe behavior cloning (BC) fails in this regime of
few expert demonstrations as the agent is unpredictable upon encountering states not in the expert
dataset (Ross & Bagnell, 2010). We further observe that SFM outperforms our implementation of
state-only adversarial baselines– MM (Swamy et al., 2021) and GAIfO (Torabi et al., 2018) across all
metrics. Furthermore, SFM has a significantly lower optimality gap, indicating that the baselines are
more likely to perform much worse than the expert. Among the state-only adversarial approaches,
GAIfO leverages a more powerful discriminator based on the state transition as compared to only
states used in MM and thereby performs better. To further analyze the gains, we report the average
returns across each task in Figure 3. We observe that SFM converges faster when compared to
leading methods, suggesting improved sample efficiency relative to its competitors. To highlight,
SFM does not use techniques like gradient penalties (e.g., Gulrajani et al., 2017; Kodali et al., 2018)
which are often required when training adversarial methods. Lastly, SFM outperforms MM and
GAIfO on most tasks across the quadruped and walker domains.

Robustness with weaker policy optimizers In this work, the network architecture for SFM and
state-only baselines is inspired from the TD7 (Fujimoto et al., 2023) framework. TD7 is a very
recent algorithm presenting several tricks to attain improved performance relative to its celebrated
predecessor TD3. As such, we also studied the performance of SFM as well as the state-only base-
lines built on TD3, in order to assess the robustness of these methods to the strength of their RL
optimizer. Since the expert demonstrations were obtained using the TD3 algorithm, we believe
the agents should recover expert behavior as the policy architecture is similar. The Rliable plots
in Figure 4 present the efficacy of SFM to learn with simpler RL frameworks. Remarkably, the
performance of SFM (TD3) is similar to the SFM (Figure 2) demonstrating the efficacy of our
non-adversarial method to learn with other off-the-shelf RL algorithms. However, the adversarial
baselines did not perform as well on top of TD3. To further understand the performance difference,
in Figure 6 we see that SFM attains significant performance gains across the tasks in the quadruped
domain. In contrast, the baselines perform similarly on tasks in the cheetah and walker domains for
both RL optimizers in the inner loop.

Ablation of base feature function In Figure 7, we study the performance of SFM under var-
ious base feature functions ϕ. We experiment with Random Features, Inverse Dynamics Mod-
els (IDM; Pathak et al., 2017), Hilbert Representations (Hilp; Park et al., 2024), Forward Dynamics
Model (FDM), Autoencoder (AE) and Adversarial (Adv) features, as discussed in subsection 4.2.
Through our experiments, we observe that FDM achieves superior results when compared with other
base feature functions (Figure 5). In Figure 7 and Table 4, we see that, IDM features performed sim-
ilarly to FDM on walker and cheetah domains, but did not perform well on quadruped tasks. We
believe it is challenging to learn IDM features on quadruped domain and has been observed in prior
works (Park et al., 2024; Touati & Ollivier, 2021). Similar trends were observed for Hilp features
where Hilp based features did not do well on quadruped domain, where we suspect that learning the
notion of temporal distance during online learning is challenging as the data distribution changes
while training. Random features performed well on quadruped domain but did not perform well on
cheetah and walker tasks. Autoencoder (AE) and advervsarial (Adv) features did well across Rliable
metrics, however FDM features achieved better performance– we suspect that leveraging structure
from the dynamics leads to superior performance. Moreover, learning adversarial features required
tricks like gradient penalty and learning rate decay to stabilize training. We believe SFM can lever-
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age any representation learning technique to obtain base features and a potential avenue for future
work is to leverage pretrained features for more complex tasks to speed-up learning.

Extension to Stochastic Policy Optimizers So far, we present SFM with a deterministic policy
and derive the update rule with DPG theorem in Proposition 2. In Appendix E, we describe how
SFM can be learned with a stochastic actor. Here, the actor is parameterized to estimate the Gaussian
distribution and reparameterization trick is used for computing the gradients. Moreover, we add an
entropy regularizer while updating the policy for stability. Here, the SF network is updated with
1-step TD error as described in equation 1 with an action sampled from the actor. Algorithm 2
provides the training procedure of SF with stochastic policy. In Figure 8, we observe that SFM can
learn with a stochastic policy and performs comparably to variants with deterministic polices.

6 LIMITATIONS

While SFM is simpler than IRL methods, it still doesn’t theoretically alleviate the exploration prob-
lem that IRL methods encounter. A promising direction of future work would be to combine SFM
with mechanisms like reset distribution (Swamy et al., 2023) or hybrid IRL (Ren et al., 2024) to im-
prove sample efficiency. Currently, SFM incorporates exploration much like TD3 by adding noise
to actions during training. Of course, this type of exploration strategy does not generally incur low
regret, but it is not any less principled than actor-critic methods applied to deep RL. We highlight
that SFM can leverage any existing exploration strategies common in RL—a potentially interesting
direction is to use the successor features to derive exploration bonuses (Machado et al., 2020).

7 DISCUSSION

We introduced SFM—a novel non-adversarial method for IRL that requires no expert action labels—
via a reduction to a deterministic policy gradient algorithm. Our method learns to match the expert’s
successor features, derived from adaptively learned base features, using direct policy optimization
as opposed to solving a minimax game. Through experiments on several standard imitation learn-
ing benchmarks, we have shown that state-of-the-art imitation is achievable with a non-adversarial
approach, thereby providing an affirmative answer to our central research question.

Consequently, SFM is no less stable to train than its online RL subroutine. This is not the case with
adversarial methods, which involve complex game dynamics during training. Much like the rich
literature on GANs (Goodfellow et al., 2014; Gulrajani et al., 2017; Kodali et al., 2018), adversarial
IRL methods often require several tricks to stabilize the optimization, such as gradient penalties,
specific optimizers, and careful hyperparameter tuning.

Beyond achieving state-of-the-art performance, SFM demonstrated an unexpected feat: it is excep-
tionally robust to the policy optimization subroutine. Notably, when using the weaker TD3 policy
optimizer, SFM performs almost as well as it does with a strong state-of-the-art TD7 optimizer.
This is in stark contrast to the baseline methods, which performed considerably worse under the
weaker policy optimizer. As such, we expect that SFM can be broadly useful and easier to deploy
on resource-limited systems, which is often a constraint in robotics applications.

Interestingly, SFM follows a recent trend in model alignment that foregoes explicit reward modeling
for direct policy optimization. This was famously exemplified by DPO (Rafailov et al., 2024) and its
generalizations (Azar et al., 2024), which eliminate reward modeling from RLHF. It is worth noting
that SFM, unlike DPO, does require modeling state features. However, the state features modeled by
SFM are task-agnostic, and we found in particular that state embeddings for latent dynamics models
suffice. We emphasize that this is a reflection of the more complicated dynamics inherent to general
RL problems, unlike natural language problems which have trivial dynamics.

SFM is not the first non-adversarial IRL method; we note that IQ-Learn (Garg et al., 2021) similarly
reduces IRL to RL. However, we showed that SFM substantially outperforms IQ-Learn in practice,
and more importantly, it does so without access to expert action labels. Indeed, to our knowledge,
SFM is the first non-adversarial state-only interactive IRL method. This opens the door to exciting
possibilities, such as imitation learning from video and motion-capture data, which would not be
possible for methods that require knowledge of the expert’s actions. We believe that the simpler,
non-adversarial nature of SFM training will be highly useful for scaling to such problems.
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A PROOFS

Before proving Proposition 1, we begin by proving some helpful lemmas. First, we present a simple
generalization of a result from Garg et al. (2021).

Lemma 1. Let µ denote any discounted state-action occupancy measure for an MDP with state
space S and initial state distribution P0, and let V denote a vector space. Then for any f : S → V ,
the following holds,

E(s,a)∼µ

[
f(s)− γEs′∼P (·|s,a)[f(s

′)]
]
= (1− γ)Es∼P0

[f(s)] .

Proof. Firstly, any discounted state-action occupancy measure µ is identified with a unique policy
πµ as shown by Ho & Ermon (2016). So, µ is characterized by

µ(dsda) = (1− γ)πµ(da | s)
∞∑
t=0

γtpµt (ds),

where pµt (S) = Prπµ(St ∈ S) is the state-marginal distribution under policy πµ at timestep t.
Expanding the LHS of the proposed identity yields

E(s,a)∼µ

[
f(s)− (1− γ)γEs′∼P (·|s,a)[f(s

′)]
]

= (1− γ)
∞∑
t=0

γtEs∼pµ
t
[f(s)]− γE(s,a)∼µEs′∼P (·|s,a)[f(s

′)]

= (1− γ)
∞∑
t=0

γtEs∼pµ
t
[f(s)]− (1− γ)

∞∑
t=0

γt+1Es∼pµ
t
Ea∼πµ(·|s)Es′∼P (·|s,a)[f(s

′)]

= (1− γ)
∞∑
t=0

γtEs∼pµ
t
[f(s)]− (1− γ)

∞∑
t=0

γt+1Es∼pµ
t+1

[f(s)]

= (1− γ)
∞∑
t=0

γtEs∼pµ
t
[f(s)]− (1− γ)

∞∑
t=1

γtEs∼pµ
t
[f(s)]

= (1− γ)Es∼P0
[f(s)],

since pµ0 = P0 (the initial state distribution) for any µ.

Intuitively, we will invoke Lemma 1 with f denoting the successor features to derive an expression
for the initial state successor features via state transitions sampled from a replay buffer.

Proposition 1. Let B denote a buffer of trajectories sampled from arbitrary stationary Markovian
policies in the given MDP with initial state distribution P0. For any deterministic policy π,

ψ̂̂ψ̂ψπ := Es∼P0
[ψψψπ(s, π(s))] = (1− γ)−1E(st,st+1)∼B [ψψψπ(st, π(st))− γψψψπ(st+1, π(st+1))] . (6)

Proof. Suppose B contains rollouts from policies {πk}Nk=1 for some N ∈ N. Each of these policies
πk induces a discounted state-action occupancy measure µk. Since the space of all discounted state-
action occupancy measures is convex (Dadashi et al., 2019), it follows that µ = 1

N

∑N
k=1 µk is itself

a discounted state-action occupancy measure.
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Consider the function f : S → Rd given by f(s) = ψψψπ(s, π(s)). We have

E(st,st+1)∼B[f(st)− γf(st+1)]

= Ek∼Uniform({1,...,N})E(st,at)∼µk,st+1∼P (·|st,at)[f(st)− γf(st+1)]

= E(st,at)∼µ,st+1∼P (·|st,at)[f(st)− γf(st+1)]

= E(s,a)∼µ

[
f(st)− γEs′∼P (·|s,a)[f(s

′)]
]

= (1− γ)Es∼P0
[f(s)],

where the final step invokes Lemma 1, which is applicable since µ is a discounted state-action
occupancy measure. The claim then follows by substituting f(s) for ψψψπ(s, π(s)) and multipying
through by (1− γ)−1.

Proposition 2. The gradients of the actor for a batch of sampled transitions from the replay buffer
obtained by applying the DPG (Silver et al., 2014) algorithm to Equation 7 is

∇µLG(µ) =

d∑
i=1

zi(1− γ)−1Es,s′∼B

[
∇µπµ(s)∇aψψψθ,i(s, a)

∣∣
a=πµ(s)

]
, (8)

where zi = (1−γ)−1Es,s′∼B
[
ψψψθ,i(s, πµ(s))− γψψψθ̄,i(s

′, πµ(s
′))

]
− ψ̂̂ψ̂ψE

i ,ψψψθ,i denotes the SF at the
ith dimension for the current policy, and ψ̂̂ψ̂ψE

i is the ith dimension of SF of expert policy.

Proof. For the loss function

LG(µ) =
1

2
∥(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ̄(s

′, πµ(s
′))]− ψ̂̂ψ̂ψE∥22 (14)

the gradient for the actor is given by:

∇µLG(µ) =
1

2
∇µ

d∑
i=1

{(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ̄(s
′, πµ(s

′))]− ψ̂̂ψ̂ψE}2

=

d∑
i=1

zi∇µ{(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ̄(s
′, πµ(s

′))]− ψ̂̂ψ̂ψE}

=

d∑
i=1

zi{(1− γ)−1∇µEs,s′∼B[ψψψθ(s, πµ(s))}

=

d∑
i=1

zi{(1− γ)−1Es,s′∼B[∇µψψψθ(s, πµ(s))}

=

d∑
i=1

zi{(1− γ)−1Es,s′∼B[∇µπµ(a)∇aψψψθ(s, a)|a=πµ(s)}

Here, we defined zi = (1 − γ)−1Es,s′∼B[ψψψθ(s, πµ(s)) − γψψψθ̄(s
′, πµ(s

′))] − ψ̂̂ψ̂ψE . This completes
the proof.

Proposition 3. Let ϵ > 0 and let µ be a policy parameter such that ∥ψ̂̂ψ̂ψπµ − ψ̂̂ψ̂ψE∥2 ≤ ϵ. Suppose the
expert policy is optimal for the reward function r(s) = w⊤ϕ(s) for base features ϕ(s) ∈ Rd and
some w ∈ [−B,B]d for B <∞. Then it holds that J(πE)− J(πµ) ≤

√
dBϵ.
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Proof. Notably, we have that J(π) = w⊤ψ̂̂ψ̂ψπ . Thus,

|J(πE)− J(πµ)| = |w⊤(ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπµ)|

≤ ∥w∥∞∥ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπµ∥1,

by the Hölder inequality. By assumption, we immediately have that ∥w∥∞ ≤ B. Moreover, since
∥v∥1 ≤

√
d∥v∥2 for any v ∈ Rd, we have that

|J(πE)− J(πµ)| ≤ B
(√

d∥ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπµ∥2
)

≤
√
dBϵ.

B IMPLEMENTATION DETAILS

Since SFM does not involve estimating a reward function and cannot leverage an off-the-shelf RL
algorithm to learn a Q-funtion, we propose a novel architecture for our method. SFM is composed
of 3 different components- actor πµ, SF network ψψψθ, base feature function ϕ and f . Taking inspi-
ration from state-of-the-art RL algorithms, we mantain target networks for both actor and the SF
network. Since, SF network acts similarly to a critic in actor-critic like algorithms, SFM comprises
of two networks to estimate the SF (Fujimoto et al., 2018). Here, instead taking a minimum over
estimates of SF from these two networks, our method performed better with average over the two
estimates of SF. To implement the networks of SFM, we incorporated several components from the
TD7 (Fujimoto et al., 2023) algorithm. Moreover, unlike MM (Swamy et al., 2021), SFM did not
require techniques like gradient penalty (Gulrajani et al., 2017), the OAdam optimizer (Daskalakis
et al., 2017) and a learning rate scheduler.

B.1 NETWORK ARCHITECTURE

The architecture used in this work is inspired from the TD7 (Fujimoto et al., 2023) algorithms for
continuous control tasks (Pseudo 2). We will describe the networks and sub-components used below:

• Two functions to estimate the SF (ψψψθ1 , ψψψθ2 )

• Two target functions to estimate the SF (ψψψθ̄1 , ψψψθ̄2 )

• A policy network πµ
• A target policy network πµ̄
• An encoder with sub-components fν , gν
• A target encoder with sub-components fν̄ , gν̄
• A fixed target encoder with sub-components f¯̄ν , g¯̄ν
• A checkpoint policy πc and the checkpoint encoder fc
• A base feature function ϕ

Encoder: The encoder comprises of two sub-networks to output state and state-action embedding,
such that zs = fν(s) and zsa = gν(z

s, a). The encoder is updated using the following loss:

LEncoder(fν , gν) =
(
gν(fν(s), a)− |fν(s′)|×

)2

(15)

=
(
zsa − |zs

′
|×
)2

, (16)

where s, a, s′ denotes the sampled transitions and | . |× is the stop-gradient operation. Also, we
represent z̄s = fν̄(s), z̄sa = gν̄(z̄

s, a), ¯̄zs = f¯̄ν(s), and ¯̄zsa = g¯̄ν(¯̄z
s, a).
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SF network: Motivated by standard RL algorithms (Fujimoto et al., 2018; 2023), SFM uses a pair
of networks to estimate the SF. The network to estimate SF are updated with the following loss:

LSF(ψψψθi) = ∥target−ψψψθi(z̄
sa, z̄s, s, a)∥22, (17)

target = ϕ(s) +
1

2
γ ∗ clip([ψψψθ̄1(x) +ψψψθ̄2(x)],ψψψmin,ψψψmax), (18)

x = [¯̄zs
′a′
, ¯̄zs

′
, s′, a′] (19)

a′ = πµ̄(¯̄z
s′ , s′) + ϵ,where ϵ ∼ clip(N (0, σ2),−c, c). (20)

Here, instead of taking the minimum over the SF networks for bootstrapping at the next state (Fuji-
moto et al., 2018), the mean over the estimates of SF is used. The action at next state a′ is samples
similarly to TD3 (Fujimoto et al., 2018) and the same values of (zs, zsa) are used for each SF net-
work. Moreover, the algorithm does clipping similar to TD7 (Fujimoto et al., 2023) on the predicted
SF at the next state which is updated using target (equation 18) at each time step, given by:

ψψψmin ← min(ψψψmin, target) (21)
ψψψmax ← min(ψψψmax, target) (22)

Policy: SFM uses a single policy network which takes [zs, s] as input and is updated using the
following loss function described in section 4.

Upon every target update frequency training steps, the target networks are updated by cloning
the current network parameters and remains fixed:

(θ1, θ2)← (θ̄1, θ̄2) (23)
µ← µ̄ (24)

(ν1, ν2)← (ν̄1, ν̄2) (25)
(ν̄1, ν̄2)← (¯̄ν1, ¯̄ν2) (26)

(27)

Moreover, the agent maintains a checkpointed network similar to TD7 (Refer to Appendix F of
TD7 (Fujimoto et al., 2023) paper). However, TD7 utilizes the returns obtained in the environment
for checkpointing. Since average returns is absent in the IRL tasks, it is not clear how to checkpoint
policies. Towards this end, we propose using the negative of MSE between the SF of trajectories
generated by agent and the SF of demonstrations as a proxy of checkpointing. To highlight some dif-
ferences with the TD7 Fujimoto et al. (2023) algorithm, SFM does not utilize a LAP Fujimoto et al.
(2020) and Huber loss to update SF network, and we leave investigating them for future research.

Base Features: Since we use a base feature function ϕ, we have two networks- 1) To provide the
embedding for the state, and 2) To predict the next state from the current state and action. Pseudo 1
provides the description of the network architectures and the corresponding forward passes.

State-only adversarial baselines: For the state-only MM method, we used the same architecture
as TD7 (Fujimoto et al., 2023) or TD3 (Fujimoto et al., 2018) for the RL subroutine. We kept
the same architecture of the discriminator as provided in the official implementation. However, we
modified the discriminator to take only states as inputs. Additionally, we used gradient penalty and
learning rate decay to update the discriminator, and OAdam optimizer (Daskalakis et al., 2017) for
all networks. For GAIfO (Torabi et al., 2018), we used the same architecture as state-only MM.
However, the discriminator takes the state-transition denoted as the state and next-state pair as input.
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Pseudo 1. Base Feature Network Details

Variables:
phi_dim = 128

Base Feature Network ϕ to encode state:
l0 = Linear(state_dim, 512)
l2 = Linear(512, 512)
l3 = Linear(512, phi_dim)

Base Feature ϕ Forward Pass:
input = state
x = Layernorm(l1(x))
x = tanh(x)
x = ReLU(x)
phi_s = L2Norm(l3(x))

FDM Network:
l0 = Linear(phi_dim + action_dim, 512)
l1 = Linear(512, 512)
l2 = Linear(512, action_dim)

FDM Network Forward Pass:
input = concatenate([phi_s, action])
x = ReLU(l0(x))
x = ReLU(l1(x))
action = tanh(l2(x))
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Pseudo 2. SFM Network Details

Variables:
phi_dim = 128
zs_dim = 256

Value SF Network:
▷ SFM uses two SF networks each with similar architechture and forward pass.
l0 = Linear(state_dim + action_dim, 256)
l1 = Linear(zs_dim * 2 + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, phi_dim)

SF Network ψψψθ Forward Pass:
input = concatenate([state, action])
x = AvgL1Norm(l0(inuput))
x = concatenate([zsa, zs, x])
x = ELU(l1(x))
x = ELU(l2(x))
sf = l3(x)

Policy π Network:
l0 = Linear(state_dim, 256)
l1 = Linear(zs_dim + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim)

Policy π Forward Pass:
input = state
x = AvgL1Norm(l0(input))
x = concatenate([zs, x])
x = ReLU(l1(x))
x = ReLU(l2(x))
action = tanh(l3(x))

State Encoder f Network:
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State Encoder f Forward Pass:
input = state
x = ELU(l1(input))
x = ELU(l2(x))
zs = AvgL1Norm(l3(x))

State-Action Encoder g Network:
l1 = Linear(action_dim + zs_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State-Action Encoder g Forward Pass:
input = concatenate([action, zs])
x = ELU(l1(input))
x = ELU(l2(x))
zsa = l3(x)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C HYPERPARAMETERS

In Table 1, we provide the details of the hyperparameters used for learning. Many of our hyper-
paramters are similar to the TD7 (Fujimoto et al., 2023) algorithm. Important hyperparameters
include the discount factor γ for the SF network and tuned it with values γ = [0.98, 0.99, 0.995] and
report the ones that worked best in the table. Rest, our method was robust to hyperparameters like
learning rate and batch-size used during training.

Name Value
Batch Size 1024
Discount factor γ for SF .99
Actor Learning Rate 5e-4
SF network Learning Rate 5e-4
Base feature function learning Rate 5e-4
Network update interval 250
Target noise .2
Target Noise Clip .5
Action noise .1
Environments steps 1e6

Table 1: Hyper parameters used to train SFM.

D EXTENDED RESULTS

In this section, we provide the tables with average returns across tasks from DMControl Suite (Table
2, 3 & 4) and per-environment training runs for our study with weak policy optimizers and base
feature functions ((Fig. 6 & 7).

Task BC IQ-Learn MM GAIfO SFM Expert
Cheetah Run 77.0 ± 11.1 1.4 ± 1.4 781.6 ± 30.7 777.2 ± 45.0 648.8 ± 35.9 878.7
Cheetah Walk 371.1 ± 163.3 5.7 ± 6.9 895.6 ± 128.2 885.2 ± 236.2 945.1 ± 33.9 981.13
Quadruped Jump 150.8 ± 29.7 260.7 ± 12.0 489.4 ± 104.6 505.8 ± 192.3 799.1 ± 47.8 900.51
Quadruped Run 52.1 ± 22.4 174.7 ± 7.7 433.9 ± 347.4 289.4 ± 227.3 671.7 ± 65.9 906.28
Quadruped Stand 351.6 ± 68.5 351.1 ± 25.7 752.2 ± 271.9 804.7 ± 211.5 941.6 ± 25.7 997.08
Quadruped Walk 119.0 ± 40.9 171.6 ± 11.2 844.7 ± 138.7 656.1 ± 321.2 759.9 ± 177.5 992.8
Walker Flip 39.6 ± 17.7 25.0 ± 2.2 249.1 ± 230.8 544.0 ± 313.1 856.9 ± 64.5 985.01
Walker Run 24.5 ± 6.1 22.4 ± 1.6 496.8 ± 264.3 690.7 ± 101.9 653.6 ± 26.7 782.15
Walker Stand 168.5 ± 48.9 181.1 ± 135.8 574.2 ± 209.3 810.4 ± 250.3 909.4 ± 96.9 994.77
Walker Walk 35.1 ± 29.6 25.3 ± 2.6 725.3 ± 234.8 792.8 ± 242.2 916.5 ± 43.4 988.08

Table 2: Returns achieved by BC, IQ-Learn, state-only MM, GAIfO and SFM across tasks on the
DMControl Suite. The average returns and standard deviation across 10 seeds are reported.

Environment MM (TD3) GAIfO (TD3) SFM (TD3)
Cheetah Run 439.6 ± 138.6 674.0 ± 27.7 514.7 ± 77.9
Cheetah Walk 859.6 ± 165.3 873.9 ± 58.2 829.7 ± 226.3
Quadruped Jump 308.8 ± 115.9 334.3 ± 159.8 821.6 ± 27.5
Quadruped Run 107.0 ± 22.8 94.4 ± 23.1 705.6 ± 57.3
Quadruped Stand 449.7 ± 206.1 381.8 ± 216.0 946.3 ± 20.5
Quadruped Walk 201.0 ± 175.8 347.3 ± 246.4 829.3 ± 86.9
Walker Flip 328.7 ± 287.8 774.4 ± 276.1 865.5 ± 37.7
Walker Run 530.2 ± 163.1 600.9 ± 105.0 606.5 ± 30.2
Walker Stand 575.8 ± 245.8 764.8 ± 220.7 934.0 ± 49.6
Walker Walk 395.1 ± 351.1 769.7 ± 258.1 880.1 ± 75.8

Table 3: Comparison of state-only IRL methods using the weaker TD3 policy optimizer. This table
presents returns achieved by state-only MM (TD3), GAIfO (TD3) and SFM (TD3) across tasks on
the DMControl Suite. The average returns and standard deviation across 10 seeds are reported.
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Figure 6: Comparison of state-only IRL methods using the weaker TD3 policy optimizer. Notably,
only SFM consistently maintains strong performance with the weaker policy optimizer.
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Figure 7: Effect of different base feature functions on the performance of the agent. Here, we com-
pare with Random, Inverse Dynamics Model (IDM) (Pathak et al., 2017), Hilbert Representations
(Hilp) (Park et al., 2024), Autoencoder (AE), Adversarial representations (Adv) and Forward Dy-
namics Models (FDM). FDM was found to work best across DMC tasks. Note that all base feature
functions were jointly learned during training.

E SFM WITH STOCHASTIC POLICY

To extend SFM to stochastic policies, we propose having an agent comprising of a stochastic actor
parameterized to predict the mean and standard deviation of a multi-variate gaussian distribution.
Here, for a given state s, the action is sampled using a ∼ πµ(.|s). The SF network architecture ψθ

is same as the SFM (TD3) variant, where the network estimates the SF for a state-action pair. The
SF-network can be updated using 1-step TD error using the base features of the current state similar
to equation 1. To update the actor, we first propose a modification of Proposition 1 to estimate the
expected features of the agent for the initial state distribution for a stochastic policy.

Proposition 4. Let B denote a buffer of trajectories sampled from arbitrary stationary Markovian
policies in the given MDP with initial state distribution P0. For any stochastic policy π,

ψ̂̂ψ̂ψπ := (1− γ)−1E(st,st+1)∼B
[
Eat∼π(st)[ψψψ

π(st, at)]− γEat+1∼π(st+1)[ψψψ
π(st+1, at+1)]

]
. (28)
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Environment Random AE Hilp IDM FDM Adv
Cheetah Run 484.4 ± 45.4 585.7 ± 93.6 417.8 ± 118.8 622.0 ± 69.5 648.8 ± 35.9 374.1 ± 113.7
Cheetah Walk 823.8 ± 107.6 938.4 ± 18.8 944.5 ± 18.6 908.2 ± 88.4 945.1 ± 33.9 812.5 ± 244.5
Quadruped Jump 744.4 ± 79.0 678.0 ± 126.6 101.5 ± 78.5 151.3 ± 59.0 799.1 ± 47.8 679.7 ± 144.1
Quadruped Run 356.8 ± 92.7 493.4 ± 57.6 311.8 ± 94.5 118.0 ± 86.1 671.7 ± 65.9 737.0 ± 196.8
Quadruped Stand 914.0 ± 33.1 895.3 ± 94.2 259.1 ± 102.0 222.0 ± 63.3 941.6 ± 25.7 858.4 ± 140.3
Quadruped Walk 402.8 ± 68.7 489.7 ± 68.4 166.0 ± 138.8 129.0 ± 145.6 759.9 ± 177.5 849.1 ± 140.8
Walker Flip 341.8 ± 204.4 765.5 ± 101.8 771.9 ± 197.0 912.8 ± 36.9 856.9 ± 64.5 565.1 ± 439.9
Walker Run 506.6 ± 181.8 632.2 ± 41.7 615.7 ± 53.8 589.5 ± 139.0 653.6 ± 26.7 620.5 ± 158.2
Walker Stand 715.9 ± 160.9 836.2 ± 140.0 934.8 ± 42.8 960.6 ± 22.9 909.4 ± 96.9 964.2 ± 31.8
Walker Walk 243.8 ± 189.7 752.5 ± 164.9 821.8 ± 242.5 936.3 ± 48.8 916.5 ± 43.4 849.6 ± 289.8

Table 4: Effect of different base feature functions on the performance of the agent. Here, we com-
pare with Random, Inverse Dynamics Model (IDM) (Pathak et al., 2017), Hilbert Representations
(Hilp) (Park et al., 2024), Autoencoder (AE), Adversarial representations (Adv), and Forward Dy-
namics Models (FDM). The table reports the returns achieved by each base feature function when
trained with SFM across tasks on the DMControl Suite. The average returns and standard deviation
across 10 seeds are reported. FDM was found to work best across DMC tasks. Note that all base
feature functions were jointly learned during training.

Proof. In the proof of Proposition 1, we saw that

E(st,st+1)∼B[f(st)− γf(st+1)] = (1− γ)Es∼P0
[f(s)] (29)

for any f : S → Rd. Substituting f : s 7→ Ea∼π(s)[ψψψ
π(s, a)], we have

(1− γ)−1E(st,st+1)∼B
[
Eat∼π(st)[ψψψ

π(st, at)]− γEat+1∼π(st+1)[ψψψ
π(st+1, at+1)]

]
= Es∼P0Ea∼π(s)[ψψψ

π(s, a)] Equation 29

≡ ψ̂̂ψ̂ψπ,

completing the proof.

Notably, in light of Proposition 4, Proposition 2 can again be used to update the policy parameters,
defining

∇µLG(µ) =

d∑
i=1

zi(1− γ)−1Es,s′∼BEa∼πµ(s) [∇µπµ(s)∇aψψψθ,i(s, a)]

z := (1− γ)−1Es,s′∼B [ψψψθ(s, πµ(s))− γψψψθ̄(s
′, πµ(s

′))]− ψ̂̂ψ̂ψE .

(30)

For certain policy parameterizations (e.g., Gaussian policies), the reparameterization trick Kingma
& Welling (2013); Haarnoja et al. (2018) can be used to directly estimate the gradient ∇µπµ(s) in
Equation 30. We note that, to compute an unbiased gradient from samples, minibatches of (s, s′)
pairs must be sampled independently for the computation of z. That is, we estimate the gradient as
follows,

∇µLG(µ) ≈
d∑

i=1

ẑi(1− γ)−1 1

N1

N1∑
j=1

∇µπµ(s1,j)∇aψψψ
π
θ,i(s1,j , a)

∣∣
a=a1,j

ẑ = (1− γ)−1 1

N2

N2∑
j=1

[
ψψψπ

θ (s2,j , a2,j)− γψψψπ
θ̄ (s

′
2,j , a

′
2,j)

]
− ψ̂̂ψ̂ψE

{s1,j}N1
j=1

iid∼ B, a1,j ∼ πµ(s1,j)

{(s2,j , s′2,j)}
N2
j=1

iid∼ B, a2,j ∼ πµ(s2,j), a′2,j ∼ πµ(s′2,j).

(31)

Finally, to prevent the policy from quickly collapsing to a nearly-deterministic one, we also include
a policy entropy bonus in our actor updates. The pseudocode is given in Algorithm 2.

We conduct experiments over the tasks from DMControl suite and present environment plots in
Figure 8 and returns achieved in Table 5. Here, we observe that SFM can learn with a stochastic
policy optimizer and achieve comparable performance with the deterministic subroutines.
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Figure 8: Comparison of variants of SFM with TD7, TD3 and an entropy regularized stochastic
policy. We observe that SFM can be trained with stochastic polices. However, the variants with
deterministic policy optimizers work better on some tasks than the stochastic policy.

Algorithm 2 Successor Feature Matching (SFM) (Stochastic)
Require: Expert demonstrations τE = {si0, ai0, . . . , siT−1, a

i
T−1}Mi=1

Require: Base feature loss Lfeat and initialized parameters θfeat = (ϕ, f)
Require: Initialized actor πµ, SF network with targets ψψψθ,ψψψθ̄

, replay buffer B
1: while Training do
2: Observe state s and execute action a = πµ(s) to get next state s′
3: Add transition to replay buffer B ← B ∪ (s, a, s′)

4: Compute expected features of expert ψ̂̂ψ̂ψE = 1
M

∑M
i=1

∑T−1
t=0 γtϕ(sit)

5: Sample minibatch D = {(s, a, s′)} ∼ B
6: Sample action at state s’ using a′ ∼ πµ(.|s′)
7: Update SF network using∇θE(s,a,s′)∼D∥ϕ(s)+ψψψθ̄(s

′, a′)−ψψψθ(s, a)∥22, where a′ ∼ πµ(s′)
8: Compute ψ̂̂ψ̂ψπ = (1− γ)−1Es,s′∼D[Ea∼π(s)[ψψψθ(s, a)]− γEa′∼π(s′)[ψψψθ̄(s

′, a′)]]

9: Update actor with∇µ
1
2∥ψ̂̂ψ̂ψ

π − ψ̂̂ψ̂ψE∥22 + αEs∼D,a∼πµ(s)[log πµ(a|s)]—see Equation 31
10: Update base feature parameters using∇θfeatLfeat(θfeat)
11: end while

Environment SFM (TD7) SFM (TD3) SFM (Stochastic)
Cheetah Run 648.8 ± 35.9 514.7 ± 77.9 500.9 ± 136.3
Cheetah Walk 945.1 ± 33.9 829.7 ± 226.3 918.8 ± 21.7
Quadruped Jump 799.1 ± 47.8 821.6 ± 27.5 764.0 ± 84.8
Quadruped Run 671.7 ± 65.9 705.6 ± 57.3 614.9 ± 113.4
Quadruped Stand 941.6 ± 25.7 946.3 ± 20.5 829.5 ± 224.1
Quadruped Walk 759.9 ± 177.5 829.3 ± 86.9 821.9 ± 56.3
Walker Flip 856.9 ± 64.5 865.5 ± 37.7 830.4 ± 45.4
Walker Run 653.6 ± 26.7 606.5 ± 30.2 630.6 ± 17.5
Walker Stand 909.4 ± 96.9 934.0 ± 49.6 925.7 ± 38.9
Walker Walk 916.5 ± 43.4 880.1 ± 75.8 916.3 ± 43.9

Table 5: Comparison of SFM with a stochastic policy and variants based on deterministic policy
optimizers (TD3 & TD7). The table reports the returns achieved by each base feature function when
trained with SFM across tasks on the DMControl Suite. The average returns and standard deviation
across 10 seeds are reported.
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