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ABSTRACT

Learning from Label Proportion (LLP) is a weakly supervised learning paradigm
in which only aggregated label proportions over collections of instances (i.e.,
bags) are provided, rather than individual labels. This allows classification while
preserving privacy or reducing annotation costs. Existing LLP methods, however,
have been largely restricted to i.i.d. tabular or image data. No solution currently
addresses graphs, where instances are inherently interdependent through network
structure. In this paper, we generalize LLP to the graph domain and study the
problem of node classification with label proportions, where only distributional
supervision is available for node bags, and the goal is to infer labels for all nodes
in the graph. We argue that the lack of node-level supervision is the main chal-
lenge for LLP on graphs, and that existing methods based on i.i.d. assumptions fail
to exploit topological correlations. To overcome this, we propose GLLP (Graph
Learning from Label Proportions), a framework that leverages Optimal Trans-
port (OT) with a homophily-aware cost to generate soft pseudo-labels for individ-
ual nodes. These pseudo-labels provide stronger supervision signals for training
Graph Neural Networks. We further establish theoretical guarantees showing the
alignment of our cost function with the node classification objective. Extensive
experiments on six homophilic graph benchmarks demonstrate that GLLP con-
sistently outperforms existing LLP baselines and variants. Code and benchmark
datasets will be released for public access.

1 INTRODUCTION

Traditional graph learning problems typically assume access to node-level supervision. For exam-
ple, in node classification, a subset of nodes in the graph are explicitly labeled, and the goal is to
infer the labels of remaining nodes. Graph Neural Networks (GNNs) (Kipf & Welling}, [2017) have
emerged as powerful models in this setting, leveraging node features and graph structure to prop-
agate supervision across the network. Despite its successes in many applications, such as disease
networks (Jha et al.| 2022)), transportation (Rahmani et all |2023)), and social networks (Awasthi
et al.,[2023)), this paradigm fundamentally relies on explicit node-level labels.

Unfortunately, exposing such fine-grained labels in practice is either infeasible (due to high labeling
cost) or undesirable (due to privacy concerns). To wit, in online advertising, it is often prohibitive
to disclose personal information of individual users; in contrast, ad conversion reporting systems
provided by Apple, Google, and Android allow third-party services to access only aggregated con-
version statistics across multiple users (Busa-Fekete et al., [2023]).

This motivates our study of Graph Learning from Label Proportions (GLLP), where no individual
node label can be observed; instead, the learner observes only collections of unlabeled node feature
vectors (called bags), together with the proportion of positive examples within each bag. Figure|[I](a)
and (b) demonstrate the difference between traditional semi-supervised node classification and our
GLLP paradigm, where in our case only bag-level label proportions are available.

One may explore two intuitive methods to solve the GLLP problem. The first assigns pseudo-labels
to individual nodes in each bag by sampling according to the ground-truth label proportions. The
model is then trained using cross-entropy loss on these pseudo-labels, a method we denote as LLP-
PCE. The second employs a Kullback-Leibler (KL) divergence loss to directly align the aggregated
GNN predictions with the observed bag-level proportions |Ardehaly & Culottal (2017), which we
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denote as LLP-KL. Figure[T|c) presents preliminary
results comparing these two strategies against a tra-
ditional semi-supervised node classifier. Alas, the
semi-supervised baseline substantially outperforms : oo,
both LLP-PCE and LLP-KL, and notably, increas- ‘ g 4

ing the number of bags (and the availability of label  (a) Traditional Node Classification (b) Graph LLP
proportions) does not improve their performance. o nceuacy vs umber of sags

We hypothesize from this observation that the main o+ L

challenge in GLLP lies in the lack of a mechanism to g% _

translate coarse bag-level label proportions into reli- S e il

able node-level supervision compatible with graph 2| =
structure. Simply matching aggregate distributions “O -

fails because it ignores how individual nodes, con-
nected through homophily and higher-order struc-

tural dependencies, contribute to such aggregate dis- Figure 1: Comparison between (a) traditional

tributions. This necessitates a principled approach to  node classification and (b) graph learning from
generate surrogate node-level labels that are consis-  abel proportions (GLLP). In (c), preliminary ex-

tent with bag-level distributions while also respect- periments show that GNNs trained with bag-level
ing graph topology. In response, we propose to de- KL loss (LLP-KL) or pseudo-label cross-entropy
compose GLLP into two subproblems: (i) Optimal (LLP-PCE) perform significantly worse than su-
Transport (OT) assignment, namely, given a bag- pervised GNNs with node-level label.s,. highlight-
level label distribution and the node-level predic- Ing the weakness of bag-level supervision alone.
tions from GNN models, we solve an OT problem to derive soft pseudo-labels for each node. The
cost matrix in OT is constructed using graph homophily, ensuring that pseudo-label assignments
respect the structural similarity among neighboring nodes. (ii) Node classification, where GNNs are
trained on these pseudo-labels as surrogate supervision. Alternating between the OT-based pseudo-
label generation and GNN training enables to iteratively refine node-level predictions, while main-
taining global consistency with bag-level proportions.

(c) Preliminary experiements over weak supervision

Specific contributions of this paper are summarized as follows.

* This is the first study that investigates and formalizes the problem of graph learning from
label proportions (GLLP), where only bag-level label proportions are available for super-
vision. We also demonstrate that naive proportion-matching strategies cannot solve GLLP.

* We propose a novel GLLP approach by solving OT with a homophily-aware cost matrix,
where soft pseudo-labels are generated as structurally consistent surrogate supervision at
node level. A training scheme that alternates between pseudo-label assignment and GNN
updates is devised, improving node-level prediction while preserving bag-level consistency.

* We provide a theoretical analysis showing that the proposed cost function aligns with the
node classification objective and derive its performance bound on homophilic graphs.

» Extensive experiments on 6 benchmark graph datasets are carried out, where our proposed
GLLP approach outperforms existing LLP competitors by 17% on average in node classi-
fication accuracy. Ablation studies confirm the necessity of each proposed component.

1.1 RELATED WORKS

Graph Neural Network (GNN) has been developed under the message-passing scheme, where
each node iteratively aggregates messages from its neighbors to update its own representation. Since
Kipf & Welling| (2017) proposed the spectral-based Graph Convolutional Network (GCN), which
propagates node features through the augmented graph Laplacian, numerous variants have been
proposed, including Graph Attention Network (GAT) (Velickovié et al., 2018)), GraphSAGE (Hamil-
ton et al., 2017)), and Graph Isomorphism Network (GIN) (Xu et al.| [2019), each distinguished by
different aggregation and update mechanisms. For homophilic graphs, |Abu-El-Haija et al.[(2019)
validated that even a shallow GCN can obtain strong classification performance. In this work, we
adopt a shallow GCN as the backbone due to its simplicity and effectiveness in homophilic graphs.

Learning From Label Proportion (LLP) dates back to classical machine learning like SVM and
logistic regression on i.i.d. tabular data (Kiick & de Freitas, [2005; Musicant et al., | 2007; |Quadrianto
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et al.,[2009). Early studies primarily focused on binary classification with label proportion match-
ing, and their solutions were often tightly coupled with specific algorithms (Havaldar et al., [2024).
More recently, with the advent of deep learning, attention has shifted to multi-class LLP on image
data, with a growing emphasis on individual-level classification performance under proportion-only
supervision (Busa-Fekete et al.,[2023}; |Dulac-Arnold et al., 2019). Several directions have emerged.
For example, [I'sa1 & Lin| (2020) proposed LLP-VAT by adding consistency regularization to the
cross-entropy loss;|Asanomi et al.|(2023)) introduced MixBag that mixes samples across bags to form
new bags with unbiased label proportion estimations; [Liu et al.| (2025)) devised progressive training
with knowledge distillation; and LLP-GAN augments real images with synthetic ones, leveraging
adversarial losses to provide additional unsupervised signals (Liu et al.l 2019).

To the best of our knowledge, no prior work has investigated LLP in the context of graph-structured
data. This paper addresses this gap by extending the LLP paradigm to graphs, where structural
dependencies among nodes impose unique challenges beyond those in the i.i.d. setting.

2 PRELIMINARIES

Problem Definition We formulate the graph learning from label proportions (GLLP) problem.
Denote an undirected graph G = (A4, V, X,Y") with n nodes where A € {0,1}"*™ is the adjacency
matrix, V is vertex set, v; is the node i, X € R™*/ is the node features with feature dimension f,and
Y is the corresponding labels for all nodes, and we have ¢ unique classes in total. Denote a set B =
{Bi, Ba, ..., Bi.} as the set of k bags, with each bag B; containing b; number of nodes. Those bags
are mutually exclusive. For any bag B;, a label proportion g; is provided, where its j-th entry g;;
indicates the proportion of nodes in this bag that belong to label class 7, and ||g; |1 = 25:1 gi; = 1.
For simplicity, we define a label proportion matrix of all bags as Q = [qu,...,qx]" € [0,1]°**.
We denote the subgraph adjacency matrix restricted to the nodes in bag B; as A* € {0,1}%*?:,
Nodes that do not belong to any bag are treated as the test set, with corresponding ground-truth
labels denoted by Yies;. Namely, |Yiest| < |Y| and |By|+ ...+ |Bg| + |Yiest| = n. The goal of GLLP
is to learn a predictive model fg(A, X, V, B, Q) that leverages the graph structure, node features,
and bag-level label proportions to predict labels Yi for the test nodes. The objective is to ensure
that the predictions Y.y approximate the ground-truth labels Y as closely as possible, despite the
absence of individual node-level supervision during training.

Graph Convolution Network (GCN) A message-passing GNN learns node representations as
7 = fo(A, Z!), where Z! is the node embeddings at layer I. For a simple GCN layer, the
message passing function fg(-) is defined in the following form:

fo(A,Z") = o(AZ'©), A=D 5(A+1)D"%, (1)
which equates to a node-wise update Z/ ™! = o(Xjenii \/%dejl@), where N (i) and d; denote

the neighbors and degree of node v;, respectively. O is the learnable parameters that is shared across
all nodes, and o (-) is the non-linear activation function such as Relu(-).

As bag-level label proportion in GLLP is provided as distribution, we explore several loss functions
used to gauge distribution-wise similarity or distance.

Kullback-Leibler (KL) and Cross-Entropy Loss Functions For the commonly used KL loss,
we need to aggregate the soft label distributions for nodes within each bag and use KL divergence
over the ground truth label proportion (). For a bag B;, assume its ground-truth label distribution is
Qi € R®, and the predicted bag label distribution is denoted by prediction (); € R€. For graph LLP
learning with & labeled bags, the KL loss can be calculated as follows:

k
Lk (Q,Q) = ZQi log(%). 2
i=1 i

We observe the relationship between Lg;, and the cross entropy loss:

k k
Lar(@QQ) ==Y QilogQi = Lz — Y Qilog Q. 3)

=1 =1
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Figure 2: Overview of the proposed GLLP framework. The model integrates two complementary supervision
signals: (i) a bag-level KL loss (top orange branch), which enforces consistency between predicted and ground-
truth label proportions for each bag, and (ii) an instance-level cross-entropy (CE) loss (bottom blue branch),
which leverages soft pseudo-labels obtained via optimal transport. Purple components denote the inputs, in-
cluding the graph structure, node features, and bag-level label proportions. The overall joint loss in Eq.[T1]
combines both losses, where the KL loss is defined in Eq. E]and the instance-level CE loss in Eq. ['1;0}

Optimal Transport Loss Instead of measuring information difference between two distributions,
like KL-divergence does, Optimal Transport (OT) intends to find the minimum costs to transform
one probability distribution into another. We formulate the OT subproblem over a single bag B;.
Formally, define two distributions with a € R" the distribution over the nodes in the bag and
b € R the bag’s class distribution. Define a transport plan T € RZ_’;'XC with the constraints that
T1,, = a, 771, = b, denote U(a, b) the set that has matrix satisfies such conditions as the set of
admissible couplings for a and b. A cost matrix C' € R *¢ is equipped with the goal of OT for the
transport plan 7' to become a minimization problem:

'CC(av b) Terlrjlgll,b) <Ta C> Tellrjlzg,b) ~ le Cl]a 4)
which defines the original Kantorovich’s OT problem (Mongel 1781). Following the previous
work [Liu et al.| (2025)); |Cuturi (2013)), we leverage its entropic variant, defined as

Lo(ab) = min (T.C) = cH(T), where H(T):_;Ti,jlogm,j)). 5)

We initiate a as an unbiased uniform distribution. Note that the key of the OT problem is the cost
function design. In general, we would like to connect the cost function back to the final objective of
the node classification task and details are presented in our proposed method in the next section.

3 GLLP: GRAPH LEARNING FROM LABEL PROPORTIONS

The framework of the proposed GLLP algorithm is shown in Figure 2] The pseudo code of the
proposed algorithm are reported in Algorithm |I{in Appendix. The limitation of direct KL loss for
GLLP motivates our proposed design. The key idea is to employ an alternating training scheme that
extracts stronger instance-level supervision from bag-level proportions by leveraging graph topol-
ogy through optimal transport (OT). Specifically, the OT plan maps bag-level label distributions to
soft pseudo-labels for individual nodes, producing richer supervisory signals than raw proportion
matching. These pseudo-labels are then used in a soft cross-entropy (CE) loss to guide the training
of a GCN model. In turn, the GCN generates node-level logits for each bag, which are fed back into
the OT module, creating a closed loop between pseudo-label assignment and node classification.

3.1 NODE-LEVEL SUPERVISION SIGNAL DERIVATION

In order to minimize the label ambiguity and derive strong supervision signal, we propose to use
optimal transport equipped with a cost matrix consists of a graph penalty cost and a negative log
probability cost based on current model output and subgraph topology within a bag.
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Figure 3: Optimal Transport outputs soft pseudo label that minimize in terms of a cost matrix C and
satisfies marginal condition.

Bag Label Distribution Prediction In general, a L layer GCN is leveraged as a backbone model.
After the final GCN layer, a linear decoder layer projects the embedding Z* to the output dimension
¢ as raw logits for all nodes P = ZL'W with T the projection learnable parameters that projects
embedding dimension to output dimension c. Note that since our learning setting is transductive, all
the node features including test nodes will be involved in the information exchanging stage Eq. [I]
but the final loss guided will be training nodes (in our case, nodes in the bag) only.

For one bag B;, when no confusion arises, we will use the same symbol B; as its nodes indices
within the bag for simplicity and we can define a bag-level logits as PP: = P[B;] where PBi ¢

RY:¢. For a bag B;, We use the simple mean aggregation to obtain bag-level prediction Q; =
= 25:1 softmax(PjB ') where PJB * is the soft label distribution for node j in the bag B; and Q); is
the predicted bag label proportion.

Cost Matrix of entropic OT for soft pseudo-label generation To fully exploit the graph topology
and utilize the graph smoothness assumption in homophily graph to produce a more accurate node-
level pseudo-labels from ground-truth bag-level label proportion. A linear graph neighbor averaging
cost is added in addition to the negative log probability term for the basic cost function used related
to the model output. Specifically, for one bag B; with node logits output as P within the bag, we
first compute its 7 normalized probability as:

QT = softmax, (PP), (6)

where Q7 is the normalized probability for each node in the bag with temperature 7 controlled the
smoothness of the distribution. Define the base cost function C*(Q7) as:

b;

ChQT) =) —log(Q), (7)

=1

where C? leverage the negative log probability of nodes in the bag as the base cost measure.Next,
the graph penalty cost function CY takes the node’s probability and its topology relation within bags
as the graph measure for the cost matrix:

CIQT,A") = DTTA'QT, (8)

where A is the subgraph induced from nodes within bag B; and D~ A? is its row normalized form.
Finally, we obtain the cost matrix C' thorough the cost function C* and control the graph penalty
cost through the coefficient A as a hyperparameter, defined as

C=C(Q,A) = Ch(Q) — ACU(QT, AY). )

After obtaining the cost matrix C', we can plug it into the minimization problem as defined in Eq.[5
Solving the problem is equivalent to search for an optimal transport plan 7' that satisfies all con-
straints and minimize its distance with the cost matrix C. In Fig[3] we show how to compute the
cost matrix C given the original graph data and an example bag and outputs the optimal transport T.
We show the constraints that transport matrix 7" satisfies with its row and column margin equals to
1 and bag distribution q.
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3.2 BAG-LEVEL LOSS ASSESSMENT

Equipped with the pseudo-label output by OT process, we can compute instance-level supervision
loss for bag B; as:

bi
T; = softmax(PP?), ECE Z (10)

where T = Q7= is the predicted instance-level supervision and T is the pseudo-label we obtained

from OT. In practice, we row normalized 7" with the uniform distribution over number of nodes per
bag to ensure the pseudo-label is row-stochastic.

Loss Functions of GCN model for node classification task Two types of losses are jointly
optimized over the GCN model with the joint loss defined as follows:

Lows(Q,Q,T,T) = (1 — B)Lxi(Q, Q) + BLcx(T, T), (11)

where L, follows Eq.[2|and Lcg follows Eq. We obtain a joint loss over the bag-level supervi-
sion and the node-level supervision with T* computed from OT. While 7™ provide strong node-level
supervision, it might distort the ground truth bag-level distribution if not sufficiently converged. To
maintain an efficient OT problem solver and also respect the ground-truth distribution signal, we
therefore use a 3 coefficient to jointly regularize each other to achieve a more robust result. We treat
the § as a hyperparameter and provide an ablation study to show its effect in the empirical study.

3.3 THEORETICAL ANALYSIS

To incorporate graph topology into the OT learning and obtain stronger node-level pseudo labels,
we introduce a linear graph penalty term. To justify the merit of this graph-regularized cost function
over the vanilla base cost (negative log-probability), we establish Theorem |1} which guarantees that
under homophilic graphs, the graph-penalized cost yields pseudo-labels that are closer in expectation
to the ground-truth labels than those obtained using the base cost alone.p

Theorem 1. Consider one bag of n nodes with subgraph adjacency A. Let R = D~1A denote
the row normalized adjacency matrix, c the number of unique classes, and q the normalized label
proportion of the bag. The graph-regularized entropic OT problem can be defined as:

mm(C T) + GZ Z T;;l09(T;5) (12)
i=1 j=1
subject to Z;zl Ti; =1, ZL 1 T; = q. With Lagrangian multipliers o and k, the solution is:
elog(Ti;)(A) = a; + K — CF + A(RQ7) 35, (13)

which, in compact matrix form, becomes

« , ok A
T(\) = Diag(«) exp (—?) eXp(;RQ )Diag(k), (14)

where Diag(-) denotes a diagonal matrix. Given the true label Q¥ for node i in the bag, r =

softmax(yRQT) for some v, and Y;(\ = 0) the normalized pseudo label of T()\ = 0). Under the
homophily assumption, we have

E[KL(Q;|Ir] < E[KL(Q;||Yi(A = 0)]. (15)

Consequently, for fﬁ()\) denoting the normalized pseudo-label with \ > 0, we obtain

E[KL(Q;||Y:(A > 0)] < E[KL(Q}||Y;(\ = 0)]. (16)
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Remark The theoretical benefit arises from the interaction between graph topology and the en-
tropic OT solution, as indicated by the structure of Eq. The linear graph penalty A(RQ7) in the
cost matrix C* induces exponential reweighting in the transport plan 7% (\). When the pseudo-label
Y;()) is obtained from 7*(\), the logarithmic form of the KL divergence converts this reweighting
into a convex inequality. This bounds the result in Eq. which establishes that, under homophilic
assumption, Y;(A > 0) provides a strictly better approximation to the true label distribution Q}
than }71()\ = 0) obtained from the vanilla base cost C®. As a result, the alternating training scheme
(Figure [2)) can exploit these higher-quality pseudo-labels to achieve strong node classification per-
formance, even in the absence of individual-level labels. Proof of Theorem [l|is provided in the
Appendix. Our empirical results across 6 benchmark graphs corroborate these theoretical findings.

4 EXPERIMENTS

To verify the effectiveness of our proposed method, we conduct empirical studies over 6 ho-
mophilic graph datasets including Cora, CiteSeer, PubMed from Planetoid Dataset |Yang et al.
(2016), Amazon-Photos, Amazon-Computers from Amazon Dataset Shchur et al.| (2019) (we de-
note them as Photos and Computers in the latter work for simplicity), and WikiCS Datset Mernyei
& Cangea (2020). All datasets are originally node classification task and in the graph LLP setting,
we sample the bag of nodes with random iid sampling strategy and produce data splits with different
number of bags in the range of [3, 5,7, 10] and different number of nodes within bags ranging from
[10, 20, 30, 40, 50, 60, 70, 80]. All experiments are conducted over 5 random seeds and we report its
5-times average results with standard deviation.

LLP Baselines. As this is the first study working on LLP learning on graph, we select several re-
cent baselines from existing LLP settings on image and tabular dataset to compare with our proposed
methods, including LLP-MixBag |Asanomi et al. (2023)), PT-LLP|Liu et al.| (2025),LLP-VAT [Tsai &
Lin| (2020), and LLP-KL |Ardehaly & Culotta (2017)) which directly leverages KL loss as supervi-
sion signals. For all baseline models, we use the simple 2-layer graph convolution network training
model as it has been shown to be effective in terms of homophilic graphs.

* LLP-KL: For each bag, we aggregate the predictions for nodes within the bag and use KL
loss over the ground-truth distribution to guide the GCN training.

* LLP-VAT: For each node in the bag, following [Tsai & Lin| (2020), we generate the noisy
embeddings thorough Virtual Adversarial Training (VAT) Miyato et al.|(2019) and compare
it with the original embeddings with a distance measure, which computes the consistency
loss, together with KL loss, the total consistency regularized KL loss acts as the loss func-
tion for GCN training.

* LLP-MixBag: For two randomly sampled bag, we sample nodes within each bag to form
a new augmented bags and compute the proportion according to |Asanomi et al.|(2023),
finally, the original bag KL loss together with the augmented bag unbiased KL loss acts as
supervision for GCN training.

e PT-LLP: following |[Liu et al.| (2025), a GCN with KL loss is trained to output its soft
pseudo label. Then, the soft pseudo label is transferred as the starting point for OT training
and a new GCN model is trained using the OT’s output pseudo label with CE loss. The
knowledge distillation in the middle stage is ignored as we observe that the knowledge
distillation process significantly degrades the model performance, leading to poor pseudo-
label quality.

As an ablation test to show that the graph signal should be inserted in the OT stage but not directly
jointly optimized with KL loss, we showed an LLP-KLG variant which explicitly adds a graph
penalty cost jointly optimized with the bag-level KL loss to train the GCN model.

Datasets & Experiment Setup Table[I] shows the statistics of each dataset. Our setting is multi-
class node classification and we have a variety of different class number ranging from 3 classes to
10 classes. For hyperparameter searching, we have A, 3, 7 as the primary hyperparameters. We
fixed the temperature 7 = 2 thorough the experiments and search A in the range [0.5,1] and § in
the range [0.05,0.5, 1]. Note that due to the lack of validation dataset, we choose the combination
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Figure 4: Test Accuracy versus number of bags for six datasets. X axis shows the number of bags
labeled and Y axis shows the average final test acc over 5 seeds. Each method is plotted with mean
and standard deviation bar.

GLLP: Avg selected A vs Number of bags GLLP: Avg selected B vs Number of bags

—e— CiteSeer 0.6
0.9 »— Computers
\/\ —+ Cora 05
—e— Photos

—e— PubMed
—e— WikiCS

—e— CiteSeer
o Computers
—e— Cora
—e— Photos

o PubMed
—e— WikiCS

Number of bags Number of bags

(a) A versus number of bags (b) B versus number of bags

Figure 5: Best hyperparameter value OT coefficient 5 and graph penalty cost coefficient A on aver-
age over different number of bags for GLLP.

that achieves the highest accuracy. It is noticed that the accuracy is sufficiently stable for a specific
groups of combinations and other combinations show clearly low acc results. Therefore, in practice,
only a few sample labels could suffice to select the proper hyperparameter. In our experiments, we
early stop the model training if the training loss doesn’t decrease for a fixed number of epochs.

Results Table [2] shows the averaged test accuracy for each baseline methods and our proposed
methods over 5 random seeds and across various number of nodes per bag and various number of
bags. For all datasets, GLLP shows significant performance boost compared with the second best
results, verifying the effectiveness of our proposed method and our theoretical analysis.

Except our method, we notice that LLP-MixBag consistently shows some improvements compared
with other methods, suggesting its general effectiveness. However, due to the lack of graph signals,
the improvements is marginal compared with GLLP.

Table 1: Dataset Statistics with number of nodes, edges, features and unique classes.

Cora  CiteSeer PubMed Computers Photos WikiCS

# of Nodes 2,708 3,327 19,717 13,752 7,650 11,701
# of Edges 5,429 4,732 44,338 491,722 238,162 216,123
# of Features 1,433 3,703 500 767 745 300
# of Classes 7 6 3 10 8 10
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Table 2: Our proposed method compared with different baseline methods over six datasets averaged
across all combinations of bag size and nodes per bag.

Methods Cora CiteSeer PubMed Computers Photos WikiCS
LLP-KL 0.416 £0.088 0.369 +0.078 0.507 £0.080 0.455+0.071 0.449 +0.138  0.455 £0.105
LLP-VAT 0.307 £0.037 0.276 +0.068 0.403 £0.019 0.433 +0.062 0.430+0.143 0.460 +£0.103
LLP-MixBag 0.420x0.086 0.376 0079 0.508 £0.080 0.476 +0.072 0.528 +0.118  0.457 £0.106
PT-LLP 0.416 £0.088 0.369 +0.078 0.507 £0.083  0.466 £0.086 0.526 +0.160  0.398 +0.085
LLP-KLG 0.400 £0.081  0.359 +0.075 0.507 £0080 0.434 +0.072 0.414 +0.137  0.282 +0.056
GLLP 0.513 £0.109  0.405 +0.083 0.591 +0.086 0.561 +0.102 0.666 +0.147 0.514 +0.138

For PT-LLP, although it has a similar OT component as we proposed, we observe that its perfor-
mance gain is unstable thorough six datasets with several performance maintained to be the same
as direct LLP-KL training and with Computers and Photos improved performance but degraded in
WikiCS. Compared with alternative training scheme as proposed in GLLP, we argue that PT-LLP is
not flexible and stable across various datasets.

For LLP-VAT, we observe that its performance degrades on five out of six datasets and we hypothe-
size that this could be due to the lack of graph information when generating adversarial examples as
VAT only consider node features as input.

As an ablation comparison of whether direct graph regularization cost along with KL loss can be
useful for GCN model training, we observe that LLP-KL.G shows no improvements or even degrades
significantly on several datasets, suggesting that direct graph regularization is not sufficient for the
Graph Label Proportion Learning setting and the task is non-trivial to investigate.

Ablation Study To compare the effect of the number of bags and node size per bags on GLLP and
baseline methods, we show in Figure[d]that our methods consistently outperforms the other baselines
across all datasets, suggesting the robustness of our method in terms of different resources settings.
For all datasets in terms of the increase of the number of bags, GLLP shows a consistent performance
increase similar to learning from direct node label signal while other methods show inconsistent
performance despite the supervision resources increase. This implies that our method can convert
bag signal to stronger node-level supervision and utilize the signal effectively and scalably.

In Figure 5] we collect best hyperparameter configuration for GLLP with its main hyperparameters
A and 3 and compute the average results of their values in terms of number of bags. Specifically,
for number of bags, we compute the average results across all numbers of nodes per bag and all
seeds. It can be observed that both hyperparameters show more consistent patterns in terms of
the number of bags. As the number of bags directly identify the amount of information provided
directly, the consistent patterns suggests that our hyperparameters and our proposed supervision is
correctly leveraging the resources as much as possible.

5 CONCLUSIONS AND LIMITATIONS

This study explores a new learning problem by generalizing label proportion learning onto graphs.
Our preliminary studies reveal that directly relying on weak bag-level supervision is insufficient,
and that converting such coarse signals into stronger node-level supervision is essential for effective
GLLP. To address this, we propose an alternating training scheme that decomposes the task into
two coupled subproblems: pseudo-label generation and node classification. Guided by theoretical
analysis, we design a homophily-aware cost function that incorporates graph topology into the op-
timal transport process, yielding high-quality soft pseudo-labels that substantially enhance model
performance. Extensive experiments on six benchmark graphs with varying numbers of classes and
supervision conditions validate the scalability and effectiveness of the proposed approach.

While our framework demonstrates strong performance, it mainly relies on the homophilic graph
assumption and has not been extended to heterophilic graphs with more complex relational patterns.
Future work will explore designing cost matrices tailored to diverse graph topologies and integrating
GNN architectures specifically developed for heterophilic settings, which can broaden the applica-
bility of GLLP to real-world networks with richer graph structural dynamics.
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A APPENDIX

A.1 THEOREM PROOF

Theorem. For one bag of n nodes, with a subgraph A built upon n nodes in the bag. Denote
R = D' A as row normalized adjacency matrix. c is the number of unique class. Denote q as the
normalized label proportion for the bag. A graph regularized entropic Optimal Transport problem

can be defined as:
b;

Ir%n(CA,T> +eY ) Tijlog(Tyj) (17)
i=1 j=1
subject to 25:1 T, = 1, %Z:’L:l T; = q. With a, k, the Lagrangian multiplier, the solution for
Eq.[12)is:
elog(T;;)(A) = o + K — Cyy + MBQ); (18)

rearranging with matrix compact form, the solution T can be shown as:
« ok A
T'(A) = Diag() exp (——) exp (- RQ") Diag(x) (19)
€ €
where Diag(-) is the diagonal matrix with - as the diagonal values. Given the true label Q} for node
i in the bag, denote r = softmax(yRQT) for some 7, Q" and Y;(A = 0) the normalized pseudo
label of T(A = 0). Under the Homophily graph, we assume the following:

E[KL(Q;||r] < E[KL(Q||Y;(A = 0)] (20)
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Remark We justify the assumption as following: if the graph is homophilic, neighbors of the node
v; tend to share same labels as v;, As a result, aggregation over the average of the neighbor soft
label distribution could better represent its true distribution information compared with its own raw
prediction.

Finally, denote }7()\) as the normalized soft pseudo-label, we can conclude following the assumption
in Eq.[I5as: . )
EIKL(Q;[|Yi(A > 0)] < E[KL(Q7]|Y;(A = 0)] 2D

Proof. We first show that the solution of the minimization problem as defined in Eq.[12]has the form
shown in Eq. [I4]

Denote «, « the Langrangian multipliers for the constraint 25:1 T;; = 1 and % Yo T, =q. We
can obtain the equation as:

O(((CAT) + €37, o5, Tiylog(Tiy) + a1 = 325, Ty) + wlg — & S0, )

e =0 (22)

By substituting C* with Eq. E] and Solve the partial derivative over T;;, and we can obtain the Eq.
which suggests that 7*“(/\) is exponentially reweighted by the graph linear penalty term with Diag(a)
and Diag(r) ensures the solution preserves the constraints. Denote ¢ = % €1[0,1] fory > 2, we
can reorganize the the solution as:

Ty(\) = T;(0) * exp(YRQ")" (23)

Using softmax normalization, we can obtain a softmax normalized neighbor average label for node

v; as r(k) = Softmaz((y(RQT):x)) Substitute (k) back to Tl()\)) and renormalize the distribu-
tion up to 1, we can obtain the normalized soft pseudo-label in terms of ¢ as:

. T,(0)" " r(h)’

Yie(t) = 24
22 T (0)=rr(5)
K L(al|b) follows the form as:
KL(al[b) = alog(5)
= alog(a) — alog(b) (25)

For K L(q;| \T (A > 0), we can expand and rearrange the normalized solution following Eq. |25|to
obtain:

KL(Q;[[¥i(1)) = Q}log(Q;) — Q;log(i(1)) (26)

= Qilog(Q7) — (1 = 1)Q7log(T;(0)) — tQilog(r) +logZ(t)  (27)

where Z(t) is the normalized term. It can be observed in Eq.[27} the first term is a constant indepen-

dent of t, the second and third term are linear in t and the last term is log sum exponential function
of t which is convex in terms of t. Therefore, K L(Q;||Y;(t) is convex function in terms of ¢. Since

we can obtain the relation of log(Y (t)) in terms of T;(0)) and r(k) as:

~ *

log(Y (1)) = (1 — t)log(T;(0)) + tlog(r) (28)
Substitute Eq. [28|into Eq[27|and using convex inequality we can obtain:
KL(Qi||Yi(t) < (1 = ) KL(Q]|Yi(0)) + tK L(Q;Ir) (29)
Leveraging the assumption in Eq.[I5] we can therefore obtain the final conclusion:
KL(Q;|[Yi(t)) < KL(Q;[¥i(0)) (30)
O
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A.2 DETAILED IMPLEMENTATIONS

We provide the pseudo code in Algorithm [I] to show the full pipeline of GLLP.
Algorithm 1: GLLP
Input: An undirected graph G = (A, V, X),3,0Q, hyperparameters: A, 3,7, Epochs
Output: The suitably trained model GNNg (A4, X,V, B, Q)
Initialize the GNN model GNNg(+) ;
Initialize a Encoder layer with matrix W' ;
for epoch < 0 to Epochs do
70— XW
for/[ < 0to L —1do
L ZM f@(Aa Zl);
for i < 1to k do
//

Obtain P5¢ by softmax normalization over raw logits;

Obtain Q° with P5: using mean aggregation;

Compute Lk 1.(Q;, QZ) following Eq. ;

// Compute node-level loss as following

Obtain subgraph A; based on A and nodes index within the bag B; ;

Compute T with PP with 7 softmax normalized logits ;

Compute Q" with PB: following Eq. |§|;

Compute base cost C®(Q7) with Q7 following Eq;

Compute graph penalty cost C9(Q™) with A;, Q™ following Eq. [§]

Compute the total cost C*(QT) with A, C9(QT), C*(QT) following Eq.[0}

Apply OT optimization with cost C*(Q7) following entropic sinkhorn iterative
optimization and obtain pseudo label T ;

Compute L¢ (T}, T;) following Eq.|10];

// Compute joint loss

Compute L,yrs With Lx1,,LoE, and §;

Average loss over all bags and backward propagation;
| GNNg(-) + Update GNN model’s parameters.

return GNNg(+);
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Figure 6: Test Accuracy versus number of nodes per bag for six datasets. X axis shows the number

of nodes per labeled bag and Y axis shows the average final test acc over 5 seeds. Each method is
plotted with mean and standard deviation bar.
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GLLP: Avg selected A vs Number of nodes

GLLP: Avg selected B vs Number of nodes
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Figure 7: Ablation results over different number of Nodes in terms of A and 3.

A.3 ADDITIONAL RESULTS

In Figure[6] we provide our results in terms of the number of nodes per bag with the average results
across over different number of bags and seeds. It can be observed that our method GLLP still out-
performs other baselines by a large margin, suggesting the robustness of our method under different
settings. In Figure [/] we show the hyperparameter A andf shows various patterns in terms of the
number of nodes per bags, suggesting that the number of nodes per bag is not a proper supervision

indicator reflecting model performance.
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