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Abstract001

Predicting drug-target interaction (DTI) is crit-002
ical in the drug discovery process. Despite003
remarkable advances in recent DTI models004
through the integration of representations from005
diverse drug and target encoders, such models006
often struggle to capture the fine-grained in-007
teractions between drugs and protein, i.e. the008
binding of specific drug atoms (or substruc-009
tures) and key amino acids of proteins, which010
is crucial for understanding the binding mecha-011
nisms and optimising drug design. To address012
this issue, this paper introduces a novel model,013
called FusionDTI, which uses a token-level Fu-014
sion module to effectively learn fine-grained in-015
formation for Drug-Target Interaction. In par-016
ticular, our FusionDTI model uses the SELF-017
IES representation of drugs to mitigate se-018
quence fragment invalidation and incorporates019
the structure-aware (SA) vocabulary of target020
proteins to address the limitation of amino acid021
sequences in structural information, addition-022
ally leveraging pre-trained language models023
extensively trained on large-scale biomedical024
datasets as encoders to capture the complex in-025
formation of drugs and targets. Experiments026
on three well-known benchmark datasets show027
that our proposed FusionDTI model achieves028
the best performance in DTI prediction com-029
pared with eight existing state-of-the-art base-030
lines. Furthermore, our case study indicates031
that FusionDTI could highlight the potential032
binding sites, enhancing the explainability of033
the DTI prediction.1034

1 Introduction035

The task of predicting drug-target interactions036

(DTI) plays a pivotal role in the drug discovery037

progress, as it helps identify potential therapeutic038

effects of drugs on biological targets facilitating the039

development of effective treatments (Askr et al.,040

2023). DTI fundamentally relies on the binding041

1The complete code and datasets are available in the soft-
ware section of the submission.

of specific drug atoms (or substructures) and key 042

amino acids of proteins (Schenone et al., 2013). In 043

particular, each binding site is an interaction be- 044

tween a single amino acid and a single drug atom, 045

which we refer to as a fine-grained interaction. For 046

instance, Figure 1 B demonstrates the interaction 047

between HIV-1 protease and the drug lopinavir. A 048

critical component of this interaction is the forma- 049

tion of a hydrogen bond between a ketone group 050

in lopinavir (represented in the SELFIES (Krenn 051

et al., 2022) notation as [C][=O]) and the side chain 052

of an aspartate residue Asp25 (i.e. Dd) within 053

the protease (Brik and Wong, 2003; Chandwani 054

and Shuter, 2008). Therefore, capturing such fine- 055

grained interaction information during the fusion 056

of drug and target representations is crucial for 057

building effective DTI prediction models (Wu et al., 058

2022; Peng et al., 2024; Zeng et al., 2024). 059

To obtain representations of drugs and targets 060

for the DTI task, some previous studies (Lee et al., 061

2019; Nguyen et al., 2021) have used graph neu- 062

ral networks (GNNs) or convolutional neural net- 063

works (CNNs) using a fixed-size window, poten- 064

tially leading to a loss of contextual information, 065

especially when drugs and targets are in a long- 066

term sequence. These models directly concate- 067

nate the representations together to make predic- 068

tions without considering fine-grained interactions. 069

More recently, some computational models (Huang 070

et al., 2021; Bai et al., 2023) employed the fusion 071

module (e.g. Deep Interactive Inference Network 072

(DIIN) (Gong et al., 2018) and Bilinear Attention 073

Network (BAN) (Kim et al., 2018)) to obtain fine- 074

grained interaction information and the 3-mer ap- 075

proach that binds three amino acids together as a 076

target binding site to address the lack of structural 077

information in the amino acid sequence. While 078

useful for highlighting possible regions of inter- 079

action, these models do not offer the sufficient 080

granularity needed to gauge the specifics of bind- 081

ing sites, as each binding site only contains one 082
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Figure 1: A. Illustration of the FusionDTI model: frozen encoder, fusion module and classifier. The token-level
fusion (TF) focuses on fine-grained interactions between tokens within and across sequences. B. This is a token-level
interaction instance of HIV-1 protease and lopinavir. Lopinavir forms a hydrogen bond with residue Dd (Asp25) in
the active site of the protease via its ketone molecule ([C][=O]). C. The attention map of TF visualises the weight
between tokens, indicating the contribution of each drug atom and residue to the final prediction result.

residue (Schenone et al., 2013). Therefore, obtain-083

ing contextual representations of drugs and targets084

and capturing fine-grained interaction information085

for DTI remains challenging.086

To address these challenges, we propose a novel087

model (called FusionDTI) with a Token-level Fu-088

sion (TF) module for an effective learning of089

fine-grained interactions between drugs and tar-090

gets. In particular, our FusionDTI model utilises091

two pre-trained language models (PLMs), namely092

Saport (Su et al., 2023) as the protein encoder that093

is able to integrate both residue tokens with struc-094

ture token; and SELFormer (Yüksel et al., 2023) as095

the drug encoder to ensure that each drug is valid096

and contains structural information. To effectively097

learn fine-grained information from these contex-098

tual representations of drugs and targets, we ex-099

plore two strategies for the TF module, i.e. Bilinear100

Attention Network (BAN) (Kim et al., 2018) and101

Cross Attention Network (CAN) (Li et al., 2021;102

Vaswani et al., 2017), to find the best approach103

for integrating the rich contextual embeddings de-104

rived from Saport and SELFormer. We conduct105

a comprehensive performance comparison against106

eight existing state-of-the-art DTI prediction mod-107

els. The results show that our proposed model108

achieves about 6% accuracy improvement over the109

best baseline on the BindingDB dataset. The main110

contributions of our study are as follows:111

• We propose FusionDTI, a novel model that112

leverages PLMs to encode drug SELFIES, as113

well as protein residues and structures for rich114

semantic representations and uses the token-115

level fusion to capture fine-grained interaction 116

between drugs and targets effectively. 117

• We compare two TF modules: CAN and BAN 118

and analyse the influence of fusion scales 119

based on FusionDTI, demonstrating that CAN 120

is superior for DTI prediction both in terms of 121

effectiveness and efficiency. 122

• We conduct a case study of three drug-target 123

pairs by FusionDTI to evaluate whether poten- 124

tial binding sites would be highlighted for the 125

DTI prediction explainability. 126

2 Related Work 127

2.1 Drug and Protein Representation 128

For drug molecules, most existing methods repre- 129

sent the input by the Simplified Molecular Input 130

Line Entry System (SMILES) (Weininger, 1988; 131

Weininger et al., 1989). However, SMILES suffers 132

from numerous problems in terms of validity and 133

robustness, and some valuable information about 134

the drug structure may be lost which may prevent 135

the model from efficiently mining the knowledge 136

hidden in the data (Krenn et al., 2022). To address 137

the limitations of SMILES, we apply SELFIES, a 138

string-based representation that circumvents the is- 139

sue of robustness and that always generates valid 140

molecular graphs for each character. 141

Regarding proteins, the conventional approach 142

uses amino acid sequences as model inputs (Huang 143

et al., 2021; Bai et al., 2023), overlooking the cru- 144

cial structural information of the protein. Inspired 145

by the SA vocabulary of SaProt (Su et al., 2023), 146
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the SaProt enhances inputs by amalgamating each147

residue of the amino acid sequence with a 3D geo-148

metric feature that is obtained by encoding protein149

structure information using Foldseek (Van Kem-150

pen et al., 2024). This innovative combination151

offers richer protein representations through the152

SA vocabulary, contributing to the discovery of153

fine-grained interactions.154

2.2 Molecular and Protein Language Models155

Molecular language models trained on the large-156

scale molecular corpus capture the subtleties of157

chemical structures and their biological activities,158

setting new standards in the encoding of chem-159

ical compounds achieving meaningful represen-160

tations (Ying et al., 2021; Rong et al., 2020).161

For example, MoLFormer (Ross et al., 2022) fo-162

cused on leveraging the self-attention mechanism163

to interpret the complex, non-linear interactions164

within molecules, while SELFormer (Yüksel et al.,165

2023) employed SELFIES, ensuring valid and in-166

terpretable chemical structures.167

Protein language models have revolutionized168

the way we understand and represent protein se-169

quences, learning intricate patterns and features170

that define the protein functionality and interac-171

tions. ProtBERT (Elnaggar et al., 2021) and172

ESM (Lin et al., 2023) applied a transformer ar-173

chitecture to protein sequences, capturing the com-174

plex relationships between amino acids. Saport (Su175

et al., 2023, 2024) further enhanced this approach176

by integrating SA vocabularies to provide protein177

structure information.178

3 Methodology179

3.1 Model Architecture180

Given a sequence-based input drug-target pair, the181

DTI prediction task aims to predict an interaction182

probability score p ∈ [0, 1] between the given drug-183

target pair, which is typically achieved through184

learning a joint representation F space from the185

given sequence-based inputs. To address the DTI186

task and effectively capture fine-grained interac-187

tion, we proposed a novel model, called FusionDTI,188

which is a bi-encoder model (Liu et al., 2021) with189

a fusion module that fuses the representations of190

drugs and targets. The overall framework of Fu-191

sionDTI is illustrated in Figure 1 A. In general,192

FusionDTI takes sequence-based inputs of drugs193

and targets, which are encoded into token-level rep-194

resentation vectors by two frozen encoders. Then,195

a fusion module fuses the representations to cap- 196

ture fine-grained binding information for a final 197

prediction through a prediction head. 198

Input: The initial inputs of drugs and targets 199

are string-based representations. For protein P , the 200

SA vocabulary (Su et al., 2023; Van Kempen et al., 201

2024) is employed, where each residue is replaced 202

by one of 441 SA vocabularies that bind an amino 203

acid to a 3D geometric feature to address the lack 204

of structural information in amino acid sequences. 205

For drug D, as mentioned in the previous section, 206

we use the SELFIES, which is a formal syntax that 207

always generates valid molecular graphs (Krenn 208

et al., 2022). We provide the steps and code to 209

obtain SA and SELFIES in Appendix A.3. 210

Encoder: The proposed model contains two 211

frozen encoders: Saport (Su et al., 2023) and SELF- 212

ormer (Yüksel et al., 2023), which generate a drug 213

representation D and a protein representation P 214

separately. It is of note that FusionDTI is flexible 215

enough to easily replace encoders with other PLMs 216

or address SELFIES or SA representations that are 217

unavailable. Furthermore, D and P are stored in 218

memory for later-stage online training. 219

Fusion module: In developing FusionDTI, we 220

have investigated two options for the fusion mod- 221

ule: BAN and CAN to fuse representations, as indi- 222

cated in Figure 2. The CAN is utilised to fuse each 223

pair as D∗ and P∗, and then concatenate them into 224

one F for fine-grained binding information. For 225

BAN, we need to obtain bilinear attention maps 226

and generate F through the bilinear pooling layer. 227

Prediction head: Finally, we obtain the proba- 228

bility score p of the DTI prediction by a multilayer 229

perceptron (MLP) classifier trained with the binary 230

cross-entropy loss, i.e. p = MLP(F). 231

Since the encoders and the fusion module consti- 232

tute the key components of our FusionDTI model, 233

we will describe them in detail in the following. 234

3.2 Drug and Protein Encoders 235

Employing sequences with detailed biological func- 236

tions and structures is a critical step in exploring 237

the fine-grained binding of drugs and targets. For 238

drugs, SMILES is the most commonly used in- 239

put sequence but suffers from invalid sequence 240

segments and potential loss of structural informa- 241

tion (Krenn et al., 2022). To address the limitations, 242

we transform SMILES into SELFIES, a formal 243

grammar that generates a valid molecular graph 244

for each element (Krenn et al., 2022). Besides, to 245

address the lack of structural information in the 246
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Figure 2: BAN: In step 1, the bilinear attention map is obtained by a bilinear interaction modelling via transformation
matrices. In step 2, the joint representation F is generated using the attention map by bilinear pooling via the shared
transformation matrices U and V. CAN: It fuses protein and drug representations through multi-head, self-attention
and cross-attention. Then fused representations P∗ and D∗ are concatenated into F after mean pooling.

amino acid sequences, we utilise the SA sequence247

of targets to combine each amino acid with an SA248

vocabulary by Foldseek (Van Kempen et al., 2024).249

PLMs have shown promising achievements in250

the biomedical domain leveraging transformers251

since they pay attention to contextual informa-252

tion and are pre-trained on large-scale biomedi-253

cal databases. Therefore, we utilise Saport (Su254

et al., 2023) as a protein encoder to encode pro-255

tein input P of both the SA sequence and amino256

acid sequence. Meanwhile, SELFormer (Yüksel257

et al., 2023) is used as our drug encoder to encode258

the drug SELFIES input D. Then these encoded259

protein representation P and drug representation260

D are further used as inputs for the later fusion261

module (Subsection 3.3). These rich contextual262

representations ensure that we can explore the fine-263

grained binding information effectively. To further264

justify this, we also compare our encoders with265

other existing protein language models (such as266

ESM-2 (Lin et al., 2023)) and molecular language267

models (such as MoLFormer (Ross et al., 2022)268

and ChemBERTa-2 (Ahmad et al., 2022)), and the269

results can be found in Appendix A.6.270

3.3 Fusion Module271

In order to capture the fine-grained binding infor-272

mation between a drug and a target, our FusionDTI273

model applies a fusion module to learn token-level274

interactions between the token representations of275

drugs and targets encoded by their respective en-276

coders. As shown in Figure 2, two fusion modules277

are investigated to fuse representations: the Bilin-278

ear Attention Network (Kim et al., 2018) and the279

Cross Attention Network (Vaswani et al., 2017). 280

3.3.1 Bilinear Attention Network (BAN) 281

Motivated by DrugBAN (Bai et al., 2023), our 282

model considers BAN (Kim et al., 2018) as an 283

option to learn pairwise fine-grained interactions 284

between drug D ∈ RM×ϕ and target P ∈ RN×ρ, 285

denoted as FusionDTI-BAN. For BAN as indicated 286

in Figure 2, bilinear attention maps are obtained by 287

a bilinear interaction modelling to capture pairwise 288

weights in step 1, and then the bilinear pooling 289

layer to extract a joint representation F. The equa- 290

tion of BAN is shown below: 291

F = BAN(P,D;Att)

= SumPool(σ(P⊤U) ·Att · σ(D⊤V), s),
(1) 292

where U ∈ RN×K and V ∈ RM×K are trans- 293

formation matrices for representations. SumPool 294

is an operation that performs a one-dimensional and 295

non-overlapped sum pooling operation with stride 296

s and σ(·) denotes a non-linear activation function 297

with ReLU(·). Att ∈ Rρ×ϕ represents the bilinear 298

attention maps using the Hadamard product and 299

matrix-matrix multiplication and is defined as: 300

Att = ((1 · q⊤) ◦ σ(P⊤U)) · σ(V⊤D), (2) 301

Here, 1 ∈ Rρ is a fixed all-ones vector, q ∈ RK 302

is a learnable weight vector and ◦ denotes the 303

Hadamard product. In this way, pairwise interac- 304

tions contribute sub-structural pairs to predictions. 305

BAN captures the token-level interactions be- 306

tween the protein and drug representations without 307

considering the relationships within each sequence 308

itself, which may limit its ability to understand 309

deeper contextual dependencies. 310
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3.3.2 Cross Attention Network (CAN)311

Inspired by ProST (Xu et al., 2023), we also con-312

sider CAN as our fusion module to learn fine-313

grained interaction information of drugs and targets.314

We denote our FusionDTI model that uses a CAN315

fusion module as FusionDTI-CAN. By processing316

D ∈ Rm×h and P ∈ Rn×h separately, the fused317

drug D∗ ∈ Rm×h and target P∗ ∈ Rn×h represen-318

tations are obtained. To synthesise the fine-grained319

joint representation F, we employ a pooling aggre-320

gation strategy for both D∗ and P∗independently321

and then concatenate them as shown in Figure 2.322

The process is described by the following equation:323

F = Concat[MeanPool(D∗),MeanPool(P∗)], (3)324

325 where MeanPool calculates the element-wise326

mean of all tokens across the sequence dimension,327

and Concat denotes the concatenation of the result-328

ing mean vectors. In this context, the multi-head,329

self-attention and cross-attention mechanisms are330

used to refine the representations of each residue331

and atom as below:332

D∗ =
1

2
[MHA(Qd,Kd,Vd) + MHA(Qp,Kd,Vd)] , (4)333

P∗ =
1

2
[MHA(Qp,Kp,Vp) + MHA(Qd,Kp,Vp)] , (5)334

where Qd,Kd,Vd ∈ Rm×h and Qp,Kp,Vp ∈335

Rn×h are the queries, keys and values for drug and336

target protein, respectively. And MHA denotes the337

Multi-head Attention mechanism. To guide this338

process, two distinct sets of projection matrices339

guide the attention mechanism as follows:340

Qd = DWd
q , Kd = DWd

k, Vd = DWd
v, (6)341

342
Qp = PWp

q , Kp = PWp
k, Vp = PWp

v, (7)343

Here, the projection matrices Wd
q ,W

d
k,W

d
v ∈344

Rh×h and Wp
q ,W

p
k,W

p
v ∈ Rh×h are used to de-345

rive the queries, keys and values, respectively.346

In summary, our CAN module combines multi-347

head, self-attention and cross-attention mecha-348

nisms to capture dependencies within individual349

sequences and between different sequences for a350

more nuanced understanding of interactions. In the351

results of Sections 4.3 and 4.5, we analyse and352

compare these two fusion strategies and different353

fusion scales in detail.354

4 Experimental Setup and Results355

4.1 Datasets and Baselines356

Three public DTI datasets, namely Bind-357

ingDB (Gilson et al., 2016), BioSNAP (Zitnik358

et al., 2018) and Human (Liu et al., 2015; Chen 359

et al., 2020), are used for evaluation, where each 360

dataset is split into training, validation, and test 361

sets with a 7:1:2 ratio using two different splitting 362

strategies: in-domain and cross-domain. For the 363

in-domain split, the datasets are randomly divided. 364

For the cross-domain setting, the datasets are split 365

such that the drugs and targets in the test set do 366

not overlap with those in the training set, making 367

it a more challenging scenario where models 368

must generalise to novel drug-target interactions. 369

Since DTI is a binary classification task, we use 370

AUROC (Bai et al., 2023; Huang et al., 2021) 371

and AUPRC (Nguyen et al., 2021) as the major 372

metrics to evaluate models’ performance. In 373

Appendix A.10, we report other evaluation metrics, 374

including F1-score, Sensitivity, Specificity, and 375

Matthews Correlation Coefficient (MCC) to 376

provide a more comprehensive assessment. 377

We compare FusionDTI with eight baseline mod- 378

els in the DTI prediction task. These models in- 379

clude two traditional machine learning methods 380

such as SVM (Cortes and Vapnik, 1995) and Ran- 381

dom Forest (RF) (Ho, 1995), as well as five deep 382

learning methods including DeepConv-DTI (Lee 383

et al., 2019), GraphDTA (Nguyen et al., 2021), 384

MolTrans (Huang et al., 2021), DrugBAN (Bai 385

et al., 2023) and SiamDTI (Zhang et al., 2024). 386

In addition, we also include the BioT5 (Pei et al., 387

2023) model, which is a biomedical pre-trained 388

language model that could directly predict the DTI. 389

Furthermore, results on three additional bench- 390

mark datasets (DAVIS (Davis et al., 2011), 391

KIBA (Tang et al., 2014), and DUD-E (Mysinger 392

et al., 2012)) are reported, with comparisons to 8 393

task-specific baselines (Nga et al., 2025; Li et al., 394

2025). Further details regarding the datasets, base- 395

line models, and the methodology for generating 396

drug SELFIES and protein SA sequences are pro- 397

vided in Appendix A.3. 398

4.2 Evaluation of DTI Prediction 399

We start by comparing our FusionDTI model 400

(FusionDTI-CAN and FusionDTI-BAN) with eight 401

existing state-of-the-art baselines for DTI predic- 402

tion on three widely used datasets. Table 1 reports 403

the in-domain comparative results. In general, our 404

FusionDTI-CAN model performs the best on all 405

metrics across all three datasets. A key highlight 406

from these results is the exceptional performance of 407

FusionDTI-CAN on the BindingDB dataset, where 408

FusionDTI-CAN demonstrates superior metrics 409
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BindingDB Human BioSNAP
Method AUROC AUPRC Accuracy AUROC AUPRC AUROC AUPRC Accuracy
SVM .939±.001 .928±.002 .825±.004 .940±.006 .920±.009 .862±.007 .864±.004 .777±.011
RF .942±.011 .921±.016 .880±.012 .952±.011 .953±.010 .860±.005 .886±.005 .804±.005

DeepConv-DTI .945±.002 .925±.005 .882±.007 .980±.002 .981±.002 .886±.006 .890±.006 .805±.009
GraphDTA .951±.002 .934±.002 .888±.005 .981±.001 .982±.002 .887±.008 .890±.007 .800±.007
MolTrans .952±.002 .936±.001 .887±.006 .980±.002 .978±.003 .895±.004 .897±.005 .825±.010
DrugBAN .960±.001 .948±.002 .904±.004 .982±.002 .980±.003 .903±.005 .902±.004 .834±.008
SiamDTI .961±.002 .945±.002 .890±.006 .970±.002 .969±.003 .912±.005 .910±.003 .855±.004

BioT5 .963±.001 .952±.001 .907±.003 .989±.001 .985±.002 .937±.001 .937±.004 .874±.001
FusionDTI-BAN .975±.002 .976±.002 .933±.003 .984±.002 .984±.003 .923±.002 .921±.002 .856±.001
FusionDTI-CAN .989±.002 .990±.002 .961±.002 .991±.002 .989±.002 .951±.002 .952±.002 .889±.002

Table 1: In-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and
BioSNAP datasets (Best, Second Best).

BindingDB Human BioSNAP
Method AUROC AUPRC Accuracy AUROC AUPRC AUROC AUPRC Accuracy
SVM .490±.015 .460±.001 .531±.009 .621±.036 .637±.009 .602±.005 .528±.005 .513±.011
RF .493±.021 .468±.023 .535±.012 .642±.011 .663±.050 .590±.015 .568±.018 .499±.004

GraphDTA .536±.015 .496±.029 .472±.009 .822±.009 .759±.006 .618±.005 .618±.008 .535±.024
DeepConv-DTI .527±.038 .499±.035 .490±.027 .761±.016 .628±.022 .645±.022 .642±.032 .558±.025

MolTrans .554±.024 .511±.025 .470±.004 .810±.021 .745±.034 .621±.015 .608±.022 .546±.032
DrugBAN .604±.027 .570±.047 .509±.021 .833±.020 .760±.031 .685±.044 .713±.041 .565±.056
SiamDTI .627±.027 .571±.024 .563±.033 .863±.019 .807±.040 .718±.055 .725±.054 .623±.070

BioT5 .651±.002 .653±.003 .621±.005 .856±.003 .853±.003 .720±.008 .718±.004 .715±.009
FusionDTI-BAN .659±.002 .663±.002 .633±.003 .784±.002 .790±.003 .723±.002 .721±.002 .756±.001
FusionDTI-CAN .681±.005 .680±.012 .652±.005 .801±.037 .803±.032 .748±.021 .766±.017 .734±.012

Table 2: Cross-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and
BioSNAP datasets (Best, Second Best).

across the board: an AUROC of 0.989, an AUPRC410

of 0.990, and an accuracy of 96.1%. Note that411

the main difference between the FusionDTI-CAN412

model and others is the fusion strategy. Further-413

more, despite FusionDTI-BAN and DrugBAN both414

utilising the same BAN module, FusionDTI-BAN415

consistently outperforms DrugBAN on all datasets.416

However, in-domain classification using random417

splits holds limited practical significance. Thus, we418

also evaluate the more challenging cross-domain419

DTI prediction, where the training data and the420

test data contain distinct drugs and targets. This421

setting precludes the use of known drug or target422

features when making predictions on the test data.423

As shown in Table 2, the performance of all mod-424

els is diminished compared to the in-domain set-425

ting due to the reduced availability of information.426

Nevertheless, the FusionDTI-CAN model demon-427

strates outstanding performance in cross-domain428

DTI prediction on the BindingDB and BioSNAP429

datasets, highlighting its robustness in predicting430

novel drug-target interactions. For instance, on the431

BindingDB dataset, FusionDTI-CAN achieves the432

highest metrics with an AUROC of 0.675 and an 433

AUPRC of 0.676. This underscores the effective- 434

ness of the model’s fusion strategy in diverse and 435

challenging scenarios. Similarly, despite sharing 436

the BAN module, FusionDTI-BAN continues to 437

outperform DrugBAN, further confirming the effec- 438

tiveness of the FusionDTI framework in addressing 439

cross-domain prediction challenges. 440

These findings highlight not only the substan- 441

tial improvements of FusionDTI over existing ap- 442

proaches but also its effectiveness in capturing fine- 443

grained information on DTI. The key to this suc- 444

cess lies in FusionDTI’s token-level fusion module, 445

which enables the model to consider fine-grained 446

interactions for each drug-target pair. This fine- 447

grained interaction information aligns closely with 448

biomedical pathways, where binding events often 449

depend on the specific atoms or substructures in- 450

volved in interactions with residues. Therefore, 451

the model’s ability to capture such fine-grained 452

interactions significantly enhances its predictive 453

performance for DTI. 454
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Figure 3: Performance comparison of two fusion strate-
gies: BAN and CAN on the BindingDB.

CAN AUC AUPRC Accuracy

× 0.954 0.963 0.894
✓ 0.989 0.990 0.961

Table 3: Ablation study of the CAN module on the
BindingDB dataset.

4.3 Comparison of the BAN and CAN455

There are two fusion strategies available: BAN and456

CAN, thus determining which one works better is457

a key step for establishing FusionDTI’s prediction458

effectiveness. We perform a fair comparison in-459

volving the same encoders, classifier and dataset.460

As shown in Figure 3, we compare BAN and CAN461

by employing two linear layers to adjust the feature462

dimensions of the drug and target representations.463

With the feature dimension increasing, the perfor-464

mance of FusionDTI-CAN continues to rise, while465

that of FusionDTI-BAN reaches a plateau. When466

the feature dimension is 512, both of the variants467

attain their peak positions with an AUC of 0.989468

and 0.967, respectively. These results indicate that469

the CAN module seems to be better suited to the470

DTI prediction tasks and in capturing fine-grained471

interaction information. In contrast, BAN may not472

be able to fully capture fine-grained binding infor-473

mation between proteins and drugs, such as the474

specific interactions between the drug atoms and475

residues. Therefore, these findings suggest that the476

CAN strategy is more effective and adaptable to the477

complexities involved in DTI prediction, provid-478

ing superior performance, especially as the feature479

dimension scales.480

4.4 Ablation Study481

The fine-grained interaction of drug and target rep-482

resentations is critical in DTI as it directly impacts483

1 64 128 256 512
Group Size

0.935

0.940

0.945

0.950

0.955

0.960

Ac
cu

ra
cy

CAN
BAN

Figure 4: Performance evaluation of fusion scales on
the BindingDB dataset.

the model’s ability to infer potential binding sites. 484

For FusionDTI, this interaction is facilitated by the 485

CAN module, which markedly enhances the pre- 486

dictive accuracy by capturing the fine-grained inter- 487

action information between the drugs and targets. 488

Table 3 demonstrates the impact of the CAN mod- 489

ule on the prediction performance. When the fusion 490

module is omitted, the model achieves an AUC of 491

0.954 and an accuracy of 0.894. Conversely, using 492

the CAN module, there is a significant improve- 493

ment, with the AUC increasing to 0.989 and the 494

accuracy reaching 0.961. This highlights the ef- 495

fectiveness of the CAN module in improving the 496

inference ability of FusionDTI. In Appendix A.7 497

and A.8, we further compare time-consuming and 498

time complexity with baselines. 499

4.5 Analysis of Fusion Scales 500

In assessing fusion representations, it is critical to 501

determine whether more fine-grained modelling en- 502

hances the predictive performance. Thus, we define 503

a grouping function with the parameter g (Group 504

size) for averaging tokens within each group be- 505

fore the CAN fusion module. The parameter g, 506

representing the number of tokens per group, con- 507

trols the granularity of the attention mechanism. 508

Specifically, when g is set to 1, the fusion operates 509

at the token level, where each token is considered 510

independently. In contrast, when g is set to 512, 511

the fusion occurs at a global level, considering the 512

entire embedding as a single unit. We have the 513

flexibility to control the fusion scale for the drug 514

and protein representations, but the token length 515

must be divisible by the group size. As shown in 516

Figure 4, as the number of tokens per group in- 517

creases from 1 to 512 (Maximum Token Length), 518

the performance of the FusionDTI model declines 519
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Drug-Target Interactions

EZL - 6QL2:
1. sulfonamide oxygen - Leu198, Thr199 and Trp209;
2. amino group - His94, His96, His119 and Thr199;
3. benzothiazole ring - Leu198, Thr200, Tyr131, Pro201
and Gln92;
4. ethoxy group - Gln135;

9YA - 5W8L:
1. amino group of sulfonamide - Asp140, Glu191;
2. sulfonamide oxygen - Asp140, Ile141 and Val139;
3. carboxylic acid oxygens - Arg168, His192, Asp194 and
Thr247;
4. biphenyl rings - Arg105, Asn137 and Pro138;
5. hydrophobic contact - Ala237, Tyr238 and Leu322;

EJ4 - 4N6H:
1. basic nitrogen of ligand - Asp128;
2. hydrophobic pocket - Tyr308, Ile304 and Tyr129;
3. water molecules - Tyr129, Met132, Trp274, Tyr308
and Lys214;

Table 4: FusionDTI predictions: Bold represents new
predictions versus DrugBAN.

accordingly. This also aligns with the biomedical520

rules governing drug-protein interactions, where521

the principal factor influencing the binding is the522

interplay between the key atoms or substructures523

in the drug and primary residues in the protein.524

Furthermore, the CAN module outperforms BAN525

consistently at various scale settings, indicating that526

CAN better accesses the information between the527

drug and target. Consequently, this supports that528

the more detailed the interaction information ob-529

tained between the drugs and targets by the fusion530

module, the more beneficial it is for the enhance-531

ment of the model’s prediction performance.532

4.6 Case Study533

A further strength of FusionDTI to enable explain-534

ability, which is critical for drug design efforts, is535

the visualisation of each token’s contribution to536

the final prediction through cross-attention maps.537

To compare with the DrugBAN model, we exam-538

ine three identical pairs of DTI from the Protein539

Data Bank (PDB) (Berman et al., 2007): (EZL -540

6QL2 (Kazokaitė et al., 2019), 9YA - 5W8L (Rai541

et al., 2017) and EJ4 - 4N6H (Fenalti et al., 2014)),542

which are excluded from the training data. As543

shown in Table 4, our proposed model predicts544

more binding sites existing in the PDB (Berman545

et al., 2007) (in bold) by ranking the binding sites546

shown in the attention map. For instance, to pre-547

dict the interaction of the drug EZL with the target548

6QL2, our proposed model using BertViz (Vig,549

2019) highlights potential binding sites as illus-550

 ...

 ...

Figure 5: EZL - 6QL2: Fine-grained interactions via
attention visualization.

trated in Figure 5. Specifically, our CAN module 551

is effective in capturing fine-grained binding infor- 552

mation at the token level, as we have successfully 553

predicted the novel binding between Gln92 and the 554

benzothiazole ring (Di Fiore et al., 2008). In partic- 555

ular, we address the lack of structural information 556

on protein sequences by employing the SA vocabu- 557

lary, which matches each residue to a correspond- 558

ing 3D feature via Foldseek (Van Kempen et al., 559

2024). This study highlights the effectiveness of 560

FusionDTI in enhancing performance on the DTI 561

task, thereby supporting more targeted and efficient 562

drug development efforts. In Appendix A.9, we fur- 563

ther investigate ten DTI pairs in non-small cell lung 564

cancer (NSCLC) from PDB (Waliany et al., 2025), 565

highlighting predicted binding residues. 566

5 Conclusions 567

With the rapid increase of new diseases and the 568

urgent need for innovative drugs, it is critical to 569

capture fine-grained interactions, since the binding 570

of specific drug atoms to the main amino acids is 571

key to the DTI task. Despite some achievements, 572

fine-grained interaction information is not effec- 573

tively captured. To address this challenge, we in- 574

troduce FusionDTI uses token-level fusion to ef- 575

fectively obtain fine-grained interaction informa- 576

tion. Through experiments on three well-known 577

datasets, we demonstrate that our proposed Fu- 578

sionDTI model outperforms eight state-of-the-art 579

baselines, particularly in the more realistic cross- 580

domain scenario. Additionally, we show that the 581

attention weights of the token-level fusion module 582

can highlight potential binding sites, providing a 583

certain level of explainability. 584

8



Limitations585

Even if our proposed model identifies potentially586

useful DTI, these predictions need to be validated587

by wet experiments, a time-consuming and expen-588

sive process. We have shown that FusionDTI is589

effective and efficient in screening for possible DTI590

in large-scale data as well as in locating potential591

binding sites in the process of drug design. How-592

ever, it is not directly applicable to human medical593

therapy and other biomedical interactions because594

it lacks clinical validation and regulatory approval595

for medical use.596
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A Appendix 924

A.1 Hyperparameter of FusionDTI 925

FusionDTI is implemented in Python 3.8 and the 926

PyTorch framework (1.12.1)2. The computing de- 927

vice we use is the NVIDIA GeForce RTX 3090. 928

In the "Experimental Setup and Results" section, 929

we only present experiment results based on the 930

BindingDB dataset, as the performance trends are 931

identical to the BioSNAP dataset and the Human 932

dataset. Table 6 shows the parameters of the Fu- 933

sionDTI model and Table 7 lists the notations used 934

in this paper with descriptions. 935

A.2 Dataset Sources 936

All the data used in this paper are from public 937

sources. The statistics of the experimental datasets 938

are presented in Table 5. 939

2https://pytorch.org/
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Module Hyperparameter Value

Mini-batch Batch size 64 (options: 64, 128)
Drug Encoder PLM HUBioDataLab/SELFormer
Protein Encoder PLM westlake-repl/SaProt_650M_AF2
BAN Heads of bilinear attention 3

Bilinear embedding size 512 (options: 32, 64, 128, 256, 512, 768)
Sum pooling window size 2

CAN Attention heads 8
Hidden dimension 512 (options: 32, 64, 128, 256, 512, 768)
Integration strategies Mean pooling (options: Mean pooling, CLS)
Group size 1 (options: from 1 to 512)

MLP Hidden layer sizes (1024, 512, 256)
Activation Relu (options: Tanh, Relu)
Solver AdamW

(options: AdamW, Adam, RMSprop, Adadelta, LBFGS)
Learning rate scheduler CosineAnnealingLR

(options: CosineAnnealingLR, StepLR, ExponentialLR)
Initial learning rate 1e-4 (options: from 1e-3 to 1e-6)
Maximum epoch 200

Table 6: Configuration Parameters

Notations Description

D Drug feature
P Target feature
q ∈ RK weight vector for bilinear transformation
Att ∈ Rρ×ϕ Bilinear attention maps in BAN
U ∈ RN×K Transformation matrix for drug features
V ∈ RM×K Transformation matrix for target features
g The number of tokens per group
D∗ ∈ Rm×h Fused drug representations in token-level interaction
P∗ ∈ Rn×h Fused target representations in token-level interaction
Qd,Kd,Vd ∈ Rm×h Queries, keys, and values for the drug in token-level interaction
Qp,Kp,Vp ∈ Rn×h Queries, keys, and values for target in token-level interaction
Wd

q ,W
d
k,W

d
v ∈ RH×h Projection matrices for drug queries, keys, and values

Wp
q ,W

p
k,W

p
v ∈ Rh×h Projection matrices for target queries, keys, and values

F drug-target joint representation
p ∈ [0, 1] output interaction probability
H Number of attention heads in token-level interaction
m,n Sequence lengths for drug and protein respectively
h Hidden dimension in token-level interaction

Table 7: Notations and Descriptions

1. The BindingDB (Gilson et al., 2016) dataset940

is a web-accessible database of experimen-941

tally validated binding affinities, focusing942

primarily on the interactions of small drug-943

like molecules and proteins. The BindingDB944

source is found at https://www.bindingdb.945

org/bind/index.jsp. 946

2. The BioSNAP (Zitnik et al., 2018) dataset is 947

created from the DrugBank database (Wishart 948

et al., 2008). It is a balanced dataset with 949

validated positive interactions and an equal 950

number of negative samples randomly ob- 951
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tained from unseen pairs. The BioSNAP952

source is found at https://github.com/953

kexinhuang12345/MolTrans.954

3. The Human (Liu et al., 2015; Chen et al.,955

2020) dataset includes highly credible neg-956

ative samples. The balanced version of the957

Human dataset contains the same number of958

positive and negative samples. The Human959

source is found at https://github.com/960

lifanchen-simm/transformerCPI.961

4. The DAVIS (Davis et al., 2011) dataset962

provides continuous binding affinity mea-963

surements (Kd values) between kinase in-964

hibitors and proteins. It is commonly965

used for regression-based drug–target inter-966

action (DTI) prediction tasks. The DAVIS967

source is available at https://tdcommons.968

ai/multi_pred_tasks/dti/.969

5. The KIBA (Tang et al., 2014) dataset inte-970

grates multiple bioactivity measures to pro-971

vide a unified KIBA score for kinase–inhibitor972

pairs. It is widely adopted in benchmark973

studies for affinity prediction. The KIBA974

source is available at https://tdcommons.975

ai/multi_pred_tasks/dti/.976

6. The DUD-E (Mysinger et al., 2012) (Direc-977

tory of Useful Decoys, Enhanced) dataset978

is a large-scale benchmark set for virtual979

screening, containing active compounds and980

challenging decoys for various protein tar-981

gets. The DUD-E source is found at http:982

//dude.docking.org/.983

A.3 How to Obtain the Structure-aware (SA)984

Sequence of a Protein and the SELFIES985

of a Drug?986

To obtain the SA sequence of a protein, the first step987

is to obtain Uniprot IDs from the UniProt website988

using information such as the amino acid sequences989

or protein names, and then save these IDs in a990

comma-delimited text file. Subsequently, we use991

the UniProt IDs to fetch the relevant 3D structure992

file (.cif) from AlphafoldDB (Varadi et al., 2022)993

using Foldseek. The SA vocabulary of the protein994

can then be generated from this 3D structure file.995

For drugs, the SELFIES could be derived from996

SMILES strings. This conversion requires specific997

Python packages, and upon installation, the SELF-998

IES strings can be generated through appropriate999

scripts. Please refer to our submission file for de- 1000

tailed procedures, including the necessary code. 1001

Notably, our submission of supplementary mate- 1002

rial contains step-by-step descriptions and code for 1003

generating the SA sequences and SELFIES. 1004

A.4 Baselines 1005

We compare the performance of FusionDTI with 1006

the following eight models on the DTI task. 1007

Baselines on BindingDB, BioSNAP, and Human. 1008

1. Support Vector Machine (Cortes and Vap- 1009

nik, 1995) on the concatenated fingerprint 1010

ECFP4 (Rogers and Hahn, 2010) (extended 1011

connectivity fingerprint, up to four bonds) and 1012

PSC (Cao et al., 2013) (pseudo-amino acid 1013

composition) features. 1014

2. Random Forest (Ho, 1995) on the concate- 1015

nated fingerprint ECFP4 and PSC features. 1016

3. DeepConv-DTI (Lee et al., 2019) uses a 1017

fully connected neural network to encode the 1018

ECFP4 drug fingerprint and a CNN along with 1019

a global max-pooling layer to extract features 1020

from the protein sequences. Then the drug 1021

and protein features are concatenated and fed 1022

into a fully connected neural network for the 1023

final prediction. 1024

4. GraphDTA (Nguyen et al., 2021) uses GNN 1025

for the encoding of drug molecular graphs, 1026

and a CNN is used for the encoding of the 1027

protein sequences. The derived vectors of the 1028

drug and protein representations are directly 1029

concatenated for interaction prediction. 1030

5. MolTrans (Huang et al., 2021) uses a trans- 1031

former architecture to encode the drugs and 1032

proteins. Then a CNN-based fusion module is 1033

adapted to capture DTI interactions. 1034

6. DrugBAN (Bai et al., 2023) use a Graph Con- 1035

volution Network and 1D CNN to encode 1036

the drug and protein sequences. Then a bi- 1037

linear attention network (Kim et al., 2018) is 1038

adopted to learn pairwise interactions between 1039

the drug and protein. The resulting joint rep- 1040

resentation is decoded by a fully connected 1041

neural network. 1042

7. BioT5 (Pei et al., 2023) is a cross-modeling 1043

model in biology with chemical knowledge 1044

and natural language associations. 1045
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8. SiamDTI (Zhang et al., 2024) is a double-1046

channel network structure to acquire local and1047

global protein information for cross-field su-1048

pervised learning.1049

Baselines on DAVIS and KIBA.1050

9. ML-DTI (Yang et al., 2021) combines molec-1051

ular fingerprints with physicochemical de-1052

scriptors and applies MLPs for regression.1053

10. DGraphDTA (Alphafold2) (Wu et al., 2022)1054

integrates protein 3D structural data (from Al-1055

phaFold2) with drug graphs through a dual-1056

graph encoding strategy.1057

11. iNGNN-DTI (Sun et al., 2024) intro-1058

duces an interpretable graph neural network1059

with attention-based gating mechanisms for1060

drug–target regression tasks.1061

12. MIN (Li et al., 2025) uses a hierarchical multi-1062

channel network that combines structure-1063

aware and structure-agnostic representations1064

with interpretable attention mechanisms.1065

Baselines on DUD-E.1066

13. DrugVQA (Zheng et al., 2020) formulates1067

DTI prediction as a visual question answer-1068

ing task over molecular structures and protein1069

sequences.1070

14. DrugClip (Gao et al., 2023) adapts a con-1071

trastive pretraining framework, aligning drug1072

molecules and protein embeddings using a1073

CLIP-style architecture.1074

15. HyperPCM (Svensson et al., 2024) utilises1075

hyperbolic protein–compound matching for1076

robust generalisation in few-shot virtual1077

screening scenarios.1078

16. MIN (Li et al., 2025) introduces multi-1079

instance networks to model DTI at the binding1080

site level using hierarchical attention.1081

A.5 Ablation Study1082

In Table 8, we compare the performance of two ag-1083

gregation strategies within the CAN module. The1084

pooling strategy outperforms the CLS-based aggre-1085

gation, achieving an AUC and AUPRC of 0.9891086

and 0.990, respectively. This comparison high-1087

lights the superior effectiveness of the pooling in1088

aggregating contextual information. Thus, the inte-1089

gration of a CAN module, particularly employing a1090

pooling aggregation strategy, is shown to be essen-1091

tial for making confident and accurate predictions.1092
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Figure 6: Time comparison on the BindingDB, Human
and BioSNAP datasets.

Aggregation AUC AUPRC Accuracy

CLS 0.982 0.983 0.956
Pooling 0.989 0.990 0.961

Table 8: Comparison of aggregation strategies for
FusionDTI-CAN on the BindingDB dataset.

A.6 Evaluation of PLMs Encoding 1093

The protein encoder and drug encoder are funda- 1094

mental for the token-level fusion of representa- 1095

tions, as these encoders are responsible for gen- 1096

erating fine-grained representations to better ex- 1097

plore interaction information. Our proposed model 1098

employs two PLMs encoding two biomedical en- 1099

tities: the drug and protein, respectively. In 1100

terms of the protein encoders, Figure 7 com- 1101

pares the the performance of the two protein en- 1102

coders (SaProt (Su et al., 2023) and ESM-2 (Lin 1103

et al., 2023)) in combination with three differ- 1104

ent drug encoders: ChemBERTa-2 (Ahmad et al., 1105

2022), SELFormer (Yüksel et al., 2023) and MoL- 1106

Former (Ross et al., 2022). From the figure, we find 1107

that SaProt consistently outperforms ESM-2 when 1108

combined with all three drug encoders. As can be 1109

seen in Figure 8, SELFormer achieves the best per- 1110

formance in encoding the drug sequences among 1111

the three advanced drug encoders. Notably, the top- 1112

performing combination is SaProt and SELFormer, 1113

hence our proposed FusionDTI uses them as drug 1114

and protein encoders. 1115

A.7 Efficiency Analysis 1116

Efficiency in computational models is crucial, par- 1117

ticularly when handling large-scale and exten- 1118

sive datasets in drug discovery. Our proposed 1119

model stores drug representations and target rep- 1120

resentations in memory for later online training. 1121
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Figure 7: Performance comparison of protein encoders
on the BindingDB dataset.
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Figure 8: Performance comparison of drug encoders on
the BindingDB dataset.

As evidenced by Figure 6, FusionDTI-CAN and1122

FusionDTI-BAN with pre-encoded representations1123

process the BindingDB dataset much faster than the1124

non-pre-coded models, approximately 45 minutes1125

and 220 minutes, respectively. This stark difference1126

highlights the advantage of pre-encoded, which1127

eliminates the need for real-time data processing1128

and accelerates the overall throughput. While1129

FusionDTI-BAN and DrugBAN have the same1130

fusion module, the pre-encoded FusionDTI-BAN1131

runs faster and predicts more accurately, as shown1132

in Table 1. In addition, FusionDTI-BAN runs1133

faster than FusionDTI-CAN, indicating that the1134

BAN fusion module is more efficient. Ultimately,1135

FusionDTI-BAN with pre-encoded data stands out1136

as a highly efficient approach, offering substantial1137

benefits in scenarios where exists large-scale data.1138

A.8 Time Complexity Analysis1139

Fusion module Complexity (O) Parameters

BAN O(ρ · ϕ ·K) 790k
CAN O(m · n · h) 1572k

Table 9: Time complexity and parameters comparison
of BAN and CAN.

The feature dimensions of the representations1140

generated by different PLM encoders are fixed, but1141

the size of the feature dimensions may not be the1142

same. Therefore, in order to fuse protein and drug1143

representations, we use two linear layers to keep1144

the representations’ feature dimension equal to the1145

token length (512).1146

The time complexity of BAN depends on the1147

computation of bilinear interaction maps. The1148

bilinear attention involves a Hadamard product 1149

and further matrix operations as given in Equa- 1150

tion (2). The computation of UTP and V TD re- 1151

quires O(N · ρ ·K) and O(M · ϕ ·K) operations, 1152

respectively. Here, K denotes the dimensionality 1153

of the transformation, which is the rank of the fea- 1154

ture space to which the protein and drug features 1155

are projected. When the token length is equal to 1156

the feature dimension and the dimensions of trans- 1157

formation are two times either, the overall time 1158

complexity is O(ρ · ϕ ·K). 1159

For the token-level interaction in the DTI task, 1160

the time complexity is also markedly influenced by 1161

the attention mechanisms. It also satisfies the con- 1162

dition that the token length is equal to the feature 1163

dimension of the drug and protein. With multi-head 1164

attention heads (H = 8), the complexity for com- 1165

puting the queries, keys, and values in the Equa- 1166

tion (6) and (7), as well as the softmax attention 1167

weights, is given by O(H ·n ·m ·h), where mandn 1168

represents the token lengths for the drug and pro- 1169

tein, respectively, and h is the hidden dimension. 1170

Since each head contributes its own set of compu- 1171

tations and the attention mechanism operates over 1172

all tokens, the m · n term (stemming from the soft- 1173

max operation across the token length) becomes 1174

significant. This leads to a total time complexity of 1175

O(m ·n · h) per batch for the attention mechanism. 1176

From the above analysis of the time complexity 1177

of the two fusion strategies, the time complexity of 1178

CAN is lower than BAN in the case of the same 1179

input protein and drug features. BAN is markedly 1180

affected by the transformation dimension K. When 1181

the K is larger than the token and feature dimen- 1182

sion, the time complexity of BAN is higher than 1183

CAN. However, we observe that the number of pa- 1184

rameters in BAN is smaller than that of CAN via 1185
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Drug-Target (Ligand -
PDB ID)

Predicted Binding Residues

VGH - 2YFX Glu113, Val46, Gly117, Met115, Asp186, Arg125, Lys225, Gln50, Ala190, Pro319

C6F - 6JQR Tyr126, Asp209, Ala72, Glu208, Glu197, Leu219, Pro163, Gln97, Val225, His151

5P8 - 4CLI GLu113, Leu172, Gly118, Ala64, Asp186, Ala150, Ile99, Pro290, Ala312, Glu316

0WM - 4G5J His296, Pro102, Pro156, Met295, Asn116, Ser92, Thr217, Lys237, His143, Trp188

YY3 - 6LUD Phe102, Leu151, Met1100, Lys52, Glu111, Ile22, Pro60, Ala129, Val141, Gly42

AQ4 - 1M17 Leu155, Leu99, Met104, Phe106, Thr165, Asp111, Lys171, Trp209, Ala61, Asp280

YMX - 5FTO Asn162, Gly110, Phe35, Glu118, Val38, His155, ALa197, Met46, Leu112, Asp280

1C9 - 4I23 Ala50, Leu95, Met100, Pro101, Glu69, Thr247, Tyr120, His177, Pro221, Val49

VGH - 2XP2 Leu172, Gly185, Ala116, Lys66, Asp119, Pro58, Met82, Pro131, Ala167, Val27

EMH - 3AOX Glu143, Leu55, Gly56, Val113, Met132, Glu91, Leu157, Val44, Ala59, Ile166

Table 10: Predicted binding sites for DTI in NSCLC. Bold residues are supported by the PDB database, while others
remain unverified.

the Pytroch package, as shown in Table 9.1186

A.9 Case Study1187

The top three predictions (PDB ID: 6QL2 (Ka-1188

zokaitė et al., 2019), 5W8L (Rai et al., 2017)1189

and 4N6H (Fenalti et al., 2014)) of the co-1190

crystalized ligands are derived from Protein Data1191

Bank (PDB) (Berman et al., 2007). Following the1192

setup of the DrugBAN case study, we only choose1193

X-ray structures with a resolution greater than 2.5 Å1194

corresponding to human proteins. In addition, the1195

co-crystalized ligands are required to have pIC501196

≤ 100 nM and are not part of the training dataset.1197

To further DTI in non-small cell lung cancer1198

(NSCLC), we identify ten additional drug-protein1199

pairs from PDB. The selected targets—Epidermal1200

Growth Factor Receptor (EGFR), Anaplastic Lym-1201

phoma Kinase (ALK), and ROS1—are well-1202

established oncogenic drivers in NSCLC (Waliany1203

et al., 2025). The corresponding inhibitors, in-1204

cluding Erlotinib, Gefitinib, Osimertinib, Crizo-1205

tinib, and Lorlatinib, exhibit high binding affini-1206

ties (Herrera-Juárez et al., 2023). Table 10 presents1207

the predicted binding residues for these interac-1208

tions, with bolded residues supported by experi-1209

mental PDB data, while others remain unverified.1210

A.10 Performance Comparison1211

Tables 11 and 12 provide a detailed performance1212

evaluation of FusionDTI and baseline models1213

across both in-domain and cross-domain settings.1214

To ensure a comprehensive assessment, we report1215

multiple evaluation metrics, including AUROC and1216

AUPRC as primary indicators, alongside F1-score,1217

Sensitivity, Specificity, and Matthews Correlation 1218

Coefficient (MCC). These additional metrics of- 1219

fer deeper insights into model performance across 1220

different classification aspects. 1221

In addition, Tables 13, 14, and 15 present re- 1222

sults on three benchmark datasets: DAVIS (Davis 1223

et al., 2011), KIBA (Tang et al., 2014), and DUD- 1224

E (Mysinger et al., 2012). Each table compares 1225

FusionDTI with strong task-specific baselines un- 1226

der standard evaluation metrics for their respec- 1227

tive tasks, further demonstrating the robustness and 1228

adaptability of our model. 1229
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Model AUC AUPR Accuracy F1 Sensitivity Specificity MCC
BindingDB

SVM 0.939±0.001 0.928±0.002 0.825±0.004 0.821±0.004 0.810±0.010 0.840±0.007 0.700±0.012
RF 0.942±0.011 0.921±0.016 0.880±0.012 0.875±0.012 0.870±0.015 0.890±0.010 0.815±0.009

DeepConv-DTI 0.945±0.002 0.925±0.005 0.882±0.007 0.878±0.008 0.870±0.011 0.885±0.010 0.818±0.013
GraphDTA 0.951±0.002 0.934±0.002 0.888±0.005 0.884±0.005 0.880±0.006 0.890±0.004 0.825±0.008
MolTrans 0.952±0.002 0.936±0.001 0.887±0.006 0.882±0.006 0.875±0.009 0.890±0.007 0.820±0.010
DrugBAN 0.960±0.001 0.948±0.002 0.906±0.004 0.901±0.004 0.900±0.008 0.908±0.004 0.872±0.005
SiamDTI 0.961±0.002 0.945±0.002 0.890±0.006 0.886±0.006 0.880±0.007 0.895±0.005 0.830±0.006

BioT5 0.963±0.001 0.952±0.001 0.907±0.003 0.905±0.003 0.900±0.004 0.910±0.003 0.850±0.005
FusionDTI-BAN 0.975±0.002 0.976±0.002 0.933±0.003 0.934±0.002 0.932±0.004 0.935±0.003 0.900±0.003
FusionDTI-CAN 0.989±0.002 0.990±0.002 0.961±0.002 0.963±0.012 0.954±0.003 0.955±0.012 0.925±0.023

BioSNAP
SVM 0.862±0.007 0.864±0.004 0.777±0.011 0.773±0.011 0.760±0.015 0.780±0.008 0.690±0.013
RF 0.860±0.005 0.886±0.005 0.804±0.005 0.800±0.005 0.795±0.008 0.810±0.007 0.715±0.006

DeepConv-DTI 0.886±0.006 0.890±0.006 0.805±0.009 0.801±0.009 0.800±0.013 0.810±0.010 0.718±0.012
GraphDTA 0.887±0.008 0.890±0.007 0.800±0.007 0.796±0.007 0.790±0.010 0.810±0.009 0.712±0.009
MolTrans 0.895±0.004 0.897±0.005 0.825±0.010 0.820±0.010 0.815±0.013 0.830±0.012 0.730±0.011
DrugBAN 0.903±0.005 0.902±0.004 0.834±0.008 0.830±0.009 0.820±0.021 0.847±0.010 0.719±0.007
SiamDTI 0.912±0.005 0.910±0.003 0.855±0.004 0.852±0.004 0.850±0.006 0.860±0.004 0.740±0.006

BioT5 0.937±0.001 0.937±0.004 0.874±0.001 0.870±0.001 0.865±0.002 0.880±0.003 0.765±0.004
FusionDTI-BAN 0.923±0.002 0.921±0.002 0.856±0.001 0.857±0.001 0.854±0.002 0.858±0.002 0.724±0.001
FusionDTI-CAN 0.951±0.002 0.951±0.002 0.889±0.002 0.890±0.002 0.888±0.003 0.891±0.002 0.778±0.002

Human
SVM 0.940±0.006 0.920±0.009 0.895±0.010 0.892±0.011 0.880±0.015 0.910±0.009 0.800±0.012
RF 0.952±0.011 0.953±0.010 0.920±0.012 0.915±0.013 0.910±0.017 0.930±0.014 0.820±0.009

DeepConv-DTI 0.980±0.002 0.981±0.002 0.927±0.007 0.923±0.006 0.920±0.009 0.930±0.008 0.860±0.010
GraphDTA 0.981±0.001 0.982±0.002 0.930±0.008 0.925±0.008 0.920±0.011 0.935±0.009 0.870±0.009
MolTrans 0.980±0.002 0.978±0.003 0.925±0.011 0.920±0.012 0.915±0.016 0.930±0.013 0.855±0.010
DrugBAN 0.982±0.002 0.980±0.003 0.930±0.004 0.903±0.003 0.900±0.005 0.908±0.004 0.810±0.004
SiamDTI 0.970±0.002 0.969±0.003 0.920±0.006 0.915±0.006 0.910±0.008 0.925±0.007 0.840±0.009

BioT5 0.989±0.001 0.985±0.002 0.939±0.008 0.937±0.004 0.929±0.010 0.941±0.004 0.892±0.006
FusionDTI-BAN 0.984±0.002 0.984±0.003 0.938±0.003 0.934±0.002 0.927±0.004 0.931±0.003 0.870±0.003
FusionDTI-CAN 0.991±0.002 0.989±0.002 0.947±0.002 0.948±0.002 0.955±0.033 0.950±0.031 0.905±0.045

Table 11: In-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and
BioSNAP datasets (Best, Second Best).
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Model AUC AUPR Accuracy F1 Sensitivity Specificity MCC
BindingDB

SVM 0.490±0.015 0.460±0.001 0.531±0.009 0.521±0.010 0.508±0.015 0.548±0.011 0.150±0.012
RF 0.493±0.021 0.468±0.023 0.535±0.012 0.525±0.013 0.512±0.020 0.550±0.014 0.162±0.015

GraphDTA 0.536±0.015 0.496±0.029 0.472±0.009 0.462±0.008 0.460±0.014 0.478±0.011 0.100±0.012
DeepConv-DTI 0.527±0.038 0.499±0.035 0.490±0.027 0.480±0.026 0.475±0.030 0.495±0.023 0.115±0.020

MolTrans 0.554±0.024 0.511±0.025 0.470±0.004 0.460±0.005 0.455±0.008 0.478±0.007 0.105±0.008
DrugBAN 0.604±0.027 0.570±0.047 0.509±0.021 0.582±0.030 0.565±0.022 0.580±0.025 0.187±0.031
SiamDTI 0.627±0.027 0.571±0.024 0.563±0.033 0.550±0.032 0.540±0.036 0.580±0.028 0.190±0.030

BioT5 0.651±0.002 0.653±0.003 0.621±0.005 0.608±0.004 0.600±0.006 0.635±0.005 0.220±0.007
FusionDTI-BAN 0.659±0.002 0.663±0.002 0.633±0.003 0.587±0.002 0.603±0.003 0.589±0.002 0.276±0.003
FusionDTI-CAN 0.681±0.005 0.680±0.012 0.652±0.005 0.601±0.005 0.628±0.006 0.692±0.005 0.302±0.005

BioSNAP
SVM 0.602±0.005 0.528±0.005 0.513±0.011 0.502±0.012 0.490±0.014 0.523±0.013 0.150±0.010
RF 0.590±0.015 0.568±0.018 0.499±0.004 0.488±0.005 0.478±0.008 0.513±0.007 0.135±0.008

GraphDTA 0.618±0.005 0.618±0.008 0.535±0.024 0.528±0.023 0.520±0.027 0.550±0.020 0.170±0.025
DeepConv-DTI 0.645±0.022 0.642±0.032 0.558±0.025 0.550±0.024 0.543±0.030 0.573±0.027 0.200±0.028

MolTrans 0.621±0.015 0.608±0.022 0.546±0.032 0.538±0.031 0.530±0.035 0.563±0.033 0.185±0.034
DrugBAN 0.685±0.004 0.713±0.005 0.692±0.006 0.587±0.005 0.522±0.011 0.690±0.012 0.219±0.017
SiamDTI 0.718±0.005 0.725±0.005 0.623±0.007 0.610±0.006 0.600±0.007 0.675±0.006 0.240±0.008

BioT5 0.720±0.008 0.718±0.004 0.715±0.009 0.590±0.010 0.510±0.012 0.710±0.010 0.250±0.011
FusionDTI-BAN 0.723±0.002 0.721±0.002 0.726±0.001 0.597±0.001 0.504±0.012 0.713±0.011 0.254±0.010
FusionDTI-CAN 0.748±0.021 0.766±0.017 0.734±0.012 0.602±0.012 0.531±0.013 0.736±0.012 0.268±0.011

Human
SVM 0.621±0.036 0.637±0.009 0.533±0.011 0.525±0.012 0.520±0.015 0.546±0.010 0.175±0.011
RF 0.642±0.011 0.663±0.050 0.543±0.014 0.535±0.015 0.530±0.018 0.556±0.013 0.184±0.012

GraphDTA 0.822±0.009 0.759±0.006 0.709±0.016 0.705±0.017 0.702±0.020 0.713±0.015 0.198±0.017
DeepConv-DTI 0.761±0.016 0.628±0.022 0.711±0.030 0.704±0.031 0.704±0.035 0.728±0.027 0.203±0.030

MolTrans 0.810±0.021 0.745±0.034 0.713±0.032 0.725±0.033 0.720±0.037 0.740±0.031 0.215±0.032
DrugBAN 0.833±0.020 0.760±0.031 0.709±0.005 0.713±0.030 0.706±0.022 0.720±0.015 0.242±0.010
SiamDTI 0.863±0.019 0.807±0.040 0.720±0.010 0.729±0.015 0.712±0.020 0.736±0.013 0.250±0.015

BioT5 0.856±0.003 0.853±0.003 0.715±0.002 0.741±0.010 0.738±0.009 0.739±0.013 0.258±0.013
FusionDTI-BAN 0.784±0.002 0.790±0.003 0.733±0.003 0.725±0.002 0.713±0.004 0.698±0.013 0.212±0.011
FusionDTI-CAN 0.801±0.037 0.803±0.032 0.738±0.002 0.736±0.010 0.732±0.013 0.737±0.010 0.261±0.010

Table 12: Cross-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and
BioSNAP datasets (Best, Second Best).
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Method AUROC AUPRC Sensitivity Specificity

DeepDTA 0.892 ± 0.0066 0.378 ± 0.0231 0.854 ± 0.0066 0.792 ± 0.0291
MolTrans 0.898 ± 0.0050 0.371 ± 0.0067 0.865 ± 0.0050 0.783 ± 0.0387
ML-DTI 0.910 ± 0.0034 0.381 ± 0.0247 0.895 ± 0.0034 0.795 ± 0.0183
DGraphGTA (Alphafold2) 0.885 ± 0.0099 0.316 ± 0.0447 0.894 ± 0.0034 0.724 ± 0.0467
iNGNN-DTI 0.931 ± 0.0027 0.473 ± 0.0167 0.922 ± 0.0155 0.802 ± 0.0240
LANTERN 0.995 ± 0.0037 0.905 ± 0.0238 0.976 ± 0.0159 0.964 ± 0.0207
FusionDTI-BAN 0.973 ± 0.0045 0.969 ± 0.0121 0.962 ± 0.0122 0.952 ± 0.0134
FusionDTI-CAN 0.987 ± 0.0032 0.978 ± 0.0103 0.979 ± 0.0102 0.972 ± 0.0116

Table 13: Performance comparison on the DAVIS dataset (Best, Second Best).

Method AUROC AUPRC Sensitivity Specificity

DeepDTA 0.912 ± 0.0037 0.743 ± 0.0127 0.881 ± 0.0056 0.780 ± 0.0127
MolTrans 0.899 ± 0.0022 0.691 ± 0.0142 0.872 ± 0.0116 0.760 ± 0.0160
ML-DTI 0.909 ± 0.0020 0.727 ± 0.0108 0.878 ± 0.0111 0.779 ± 0.0113
DGraphGTA (Alphafold2) 0.911 ± 0.0004 0.739 ± 0.0043 0.881 ± 0.0183 0.784 ± 0.0277
iNGNN-DTI 0.915 ± 0.0016 0.753 ± 0.0071 0.888 ± 0.0183 0.779 ± 0.0146
LANTERN 0.976 ± 0.0154 0.977 ± 0.0088 0.959 ± 0.0268 0.965 ± 0.0074
FusionDTI-BAN 0.974 ± 0.0081 0.976 ± 0.0054 0.952 ± 0.0162 0.947 ± 0.0138
FusionDTI-CAN 0.981 ± 0.0064 0.981 ± 0.0045 0.969 ± 0.0124 0.967 ± 0.0156

Table 14: Performance comparison on the KIBA dataset (Best, Second Best).

Model AUC 0.5% RE 1% RE 2% RE 5% RE

DrugVQA 0.972 ± 0.003 88.170 ± 4.88 58.710 ± 2.74 35.060 ± 1.91 17.390 ± 0.94
DrugClip 0.966 118.10 67.17 37.17 16.59
HyperPCM 0.982 ± 0.006 183.04 ± 4.53 91.28 ± 3.35 45.62 ± 2.15 17.13 ± 1.17
MIN 0.983 ± 0.002 197.741 ± 4.73 99.563 ± 2.49 49.926 ± 1.87 19.965 ± 0.91
FusionDTI-BAN 0.9769 ± 0.015 176.8525 ± 2.71 89.2656 ± 2.36 45.9098 ± 1.38 18.5168 ± 0.33
FusionDTI-CAN 0.986 ± 0.012 186.7469 ± 6.26 97.8801 ± 3.50 52.6352 ± 2.05 21.5439 ± 0.26

Table 15: Performance comparison on the DUD-E dataset (Best, Second Best).
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