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Abstract

Accurate and efficient MRI generation is critical in various clinical settings, such as neurology
and radiology. The complex data collection procedures, privacy concerns, and lack of medical
experts present a bottleneck in the medical imaging data collection and annotation process.
In this paper, we adopt a method to unconditionally generate 2D axial brain MRI using a
combination of Vector-Quantized image representation and Inverse Heat Dissipation Model
(IHDM). We utilize Gaussian Blur as an alternative to order-agnostic masking in the forward
process and train a Transformer model to learn the reverse process. This approach allows
us to create a single-step sampling algorithm while maintaining high image fidelity. On the
ADNI dataset, our model has a FID score of 38.57, a KID score of 0.036, and an ISC score
of 1.84.

1 Introduction

Diffusion models have impacted the medical field significantly (Kazerouni et al., 2022) in Image-to-Image
translation (Lyu & Wang, 2022; Özbey et al., 2022), Reconstruction (Song et al., 2021; Peng et al., 2022),
and Image Generation (Moghadam et al., 2023; Pinaya et al., 2022). Diffusion models (Sohl-Dickstein et al.,
2015) are a powerful class of probabilistic generative models that are used to learn complex data distributions.
The forward diffusion process gradually adds noise to the data until it transforms to pure Gaussian noise
while the reverse diffusion process recovers the structure of the data from the perturbed noise. Additionally,
diffusion models can achieve superior image quality compared to GAN-based models (Dhariwal & Nichol,
2021). However, diffusion models tend to have high computational requirements and slow sampling speed.
Alternative approaches such as latent diffusion models (Rombach et al., 2021), vector-quantized models
(Bond-Taylor et al., 2022) have been developed to counter the high computational requirement of training
diffusion models. Conventionally, in the forward process of diffusion models Gaussian noise is added to the
samples (Sohl-Dickstein et al., 2015), without taking the structure of data into consideration. Rissanen et al.
(2022) show that by iteratively inverting the heat equation, it is possible to generate images with the scope
of disentanglement of color and shapes in images.

In this paper, we adopt a hybrid generative model called Discrete VQ-IHDM that is a combination of the
VQGAN model from Bond-Taylor et al. (2022) and the forward process of Rissanen et al. (2022) which is
known as inverse heat dissipation model or IHDM. Initially, we train our VQGAN model to obtain vector-
quantized latent codes. Afterward, we train a latent-diffusion-like model using the Gaussian blur as the
forward process from Rissanen et al. (2022). The sampler uses the diffusion model to generate 2D axial
brain MRIs with high fidelity and variety. We hope that our model will enable us to create a synthetic
dataset for education, learning algorithms, and a dataset for rare subtype diseases.

2 Related Works

2.1 Diffusion Models

Diffusion models are a class of generative models that define a Markov chain q(x1:T |x0) =
∏T

t=1 q(xt|xt−1)
of diffusion steps that slowly adds random noise to the data and then learn the reverse process pθ(x0:T ) =
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pθ(xT )
∏T

t=1 pθ(xt−1|xt) to generate desired samples from the noise (Sohl-Dickstein et al., 2015). Over
the last couple of years, diffusion models have seen an improvement in model performances due to ideas on
training on different levels of resolution and cascading the diffusion models together (Dhariwal & Nichol, 2021;
Ho et al., 2021; Saharia et al., 2021). Moreover, diffusion models have been used in conjunction with other
models to overcome high computational requirements and produce high-resolution imagery. In the unleashing
transformer paper (Bond-Taylor et al., 2022) the authors combined vector-quantized image models to learn
an information-rich codebook (Van Den Oord et al., 2017) with discrete diffusion models (Austin et al., 2021;
Hoogeboom et al., 2021) which enabled the unconditional generation of globally consistent high-resolution
images at of fraction of computational expenses required for diffusion models. To learn the distribution of
the information-rich codebook, absorbing state diffusion (Austin et al., 2021) was used where a Transformer
(Vaswani et al., 2017) model learned the representations of the information-rich codebook.

Some diffusion models have been developed to consider the inductive biases of the images. In Rissanen et al.
(2022) a new model was developed that iteratively generates images by inverting the heat equation. This
allows the diffusion model to show emergent qualitative properties such as disentanglement of overall color
and shape in images. In this work, the conventional forward step of the diffusion model which is to add
noise at each time step (Sohl-Dickstein et al., 2015) has been replaced with a partial differential equation
that describes heat dissipation.

∂

∂t
u(x, y, t) = ∆u(x, y, t) (1)

where u : R2 ×R+ → R is the continuous 2D plane of one channel of the image, and ∆ = ∇2 is the Laplace
operator. In this paper, the PDE equation was solved using the eigenbasis of the Laplace operator. Since
Neumann boundary conditions are used, the eigenbasis is a cosine basis. As a result, the Laplace operator
can be written in terms of finite eigendecomposition ∆ △= VΛVT , where VT is the cosine basis projection
matrix, and Λ is a diagonal matrix with negative squared frequencies on the diagonal.

The initial state is projected onto the basis with discrete cosine transform (ũ = VT u = DCT(u)) in
O(N log N) time. The solution is given by the finite-dimensional evolution model, describing the decay of
frequencies.

u(t) = F (t)u(0) = exp(V ΛV T t)u(0) = V exp(Λt)V T u(0)⇐⇒ ũ(t) = exp(Λt)ũ(0) (2)

where F (t) ∈ RN×N is the transition model and u(0) is the initial state. The diagonal terms of Λ are the
negative squared frequencies −λn,m = −π( n2

W 2 + m2

H2 ), where W and H are the width and height of the image
in the pixels n = 0, ...., W − 1 and m = 0, ...., H − 1. Since Λ is diagonal, the solution is fast to evaluate and
implement with a few lines of code (a code snippet is provided below).

import numpy as np
from scipy.fftpack import dct, idct
def heat_eq_forward(u, t):

# Assuming the image u is a (K x K) numpy array
K = u.shape[-1]
freqs = np.pi*np.linspace(0,K-1,K)/K
frequencies_squared = freqs[:,None]**2 + freqs[None,:]**2
u_proj = dct(u, axis=0, norm=’ortho’)
u_proj = dct(u_proj, axis=1, norm=’ortho’)
u_proj = np.exp( - frequencies_squared * t) * u_proj
u_reconstucted = idct(u_proj, axis=0, norm=’ortho’)
u_reconstucted = idct(u_reconstucted, axis=1, norm=’ortho’)
return u_reconstucted
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2.2 Diffusion Models in Medical Image Generation

Diffusion models have extensive applications in the medical domain such as image-to-image translation, recon-
struction, registration, segmentation, denoising, 2/3D generation, anomaly detection, and other medically-
related challenges (Kazerouni et al., 2022). In this section, we are going to cover diffusion model applications
in 2/3D generation along with their practical use cases.

In Pinaya et al. (2022) Latent Diffusion Models (LDMs) were trained on T1w MRI images from the UK
Biobank dataset (Sudlow et al., 2015). The models were trained to learn the probabilistic distribution of
brain images, conditioned on covariables such as age, sex, and brain structure volume. LDMs were used
which combined autoencoders to compress the data into a lower-dimensional representation with diffusion
models. The autoencoder was trained with a combination of L1 loss, perceptual loss (Zhang et al., 2018), and
a patch-based adversarial objective (Esser et al., 2021). After training the compression model, a diffusion
model was used to train on the latent (Sohl-Dickstein et al., 2015; Song et al., 2020). A hybrid approach was
used by combining the conditions with the input data and using cross-attention mechanisms, for conditioning
on covariables based on the approach in Rombach et al. (2021). This approach is able to create realistic
data and capable of generating data based on conditioning variables. A synthetic dataset with 100,000 brain
images was released along with conditioning information and the link to the dataset can be found in the
paper (Pinaya et al., 2022).

Diffusion models have played an important role in the synthesis of histopathology images (Moghadam et al.,
2023). Microscopic study of diseased tissue is crucial for cancer diagnosis and prognostication. The generated
synthetic histopathology images can be utilized in education, proficiency testing, privacy, and data sharing.
In Moghadam et al. (2023), they use DDPMs Ho et al. (2020) with genotype guidance to synthesize images
with morphological and genomic information. A color normalization module (Vahadane et al., 2016) was
fed with input images to unify the domain of all images which enforces the model to place emphasis on
morphological patterns and tackle data consistency problems. Additionally, a morphology levels prioritization
module (Choi et al., 2022) was adopted that designates higher weight values to earlier level losses emphasizing
perceptual information, resulting in higher fidelity samples. Experiments on the Cancer Genome Atlas
(TCGA)(Grossman et al., 2016) dataset exhibit superior performance in contrast to GAN-based approaches
(Karras et al., 2017).

One of the earliest works on 3D MRI generation using diffusion models is from (Dorjsembe et al., 2022).
They have created a 3D-DDPM by using Ho et al. (2020) as the base model and adopting the cosine noise
schedule from Nichol & Dhariwal (2021). All 2D operations, layers, and noise inputs were replaced by their
3D counterparts. The model was trained on the National Taiwan University Hospital’s Intracranial Tumor
Segmentation (ICTS) dataset (Lu et al., 2021) which contains 1500 contrast-enhanced anonymized T1 images
with only 250 steps. Their method outperforms CCE-GAN (Xing et al., 2021) and 3D-α-GAN (Kwon et al.,
2019) in terms of capturing real data distribution and generating diverse samples.

3 Discrete VQ-IHDM

We describe our 2-stage approach for generating 2D axial brain MRI using an Inverse Heat Dissipation Model
to represent Vector-Quantized images. In the first stage, we train a VQGAN model to learn the discrete
code representation of the images. In the second stage, we use IHDM to train a discrete diffusion model on
the discrete code representations. For sampling, we use our discrete diffusion model to generate the discrete
code representations which are passed to the generator of VQGAN. Our method is shown in figure 1

3.1 Discrete Code

In this stage, we train a VQGAN model to capture the discrete code representations (Van Den Oord et al.,
2017) by adopting the hybrid generative model from Bond-Taylor et al. (2022). Given an image our encoder
downsamples image x to a smaller spatial resolution, E(x) = e1, e2, ..., eL ∈ RL×D. Similar to (Bond-Taylor
et al., 2022) as a quantization approach an argmax operation maps the encodings to the closest elements
in the codebook of vectors (Van Den Oord et al., 2017). Given a codebook C ∈ RK×D, where K is the
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Figure 1: Discrete VQ-IHDM

number of discrete codes in the codebook and D is the dimension of each code, each encoding is mapped via
a nearest neighbor lookup to a discrete codebook value, cj ∈ C:

zq = q1, q2, ..., qL, where qi = min
cj∈C
∥ei − cj∥ (3)

The gradients are carried over from the decoder to the encoder by using a straight-through gradient estimator
(Bengio, 2013) since this is a non-differentiable operation. The process is trained by using the loss function
LV Q

LV Q = Lrec + ∥sg[E(x)]− zq∥2
2 + β∥sg[zq]− E(x)∥2

2 (4)

Where Lrec stands for perceptual reconstruction loss (Esser et al., 2021; Zhang et al., 2018), sg stands for
stop gradient, E(x) for the encoder values, and zq is the quantized latent. The generated latents are passed
through the decoder to generate input samples x̂ = G(zq).

3.2 Discrete Diffusion Model

In the unleashing transformer paper (Bond-Taylor et al., 2022), at each forward time step t, the values of the
latent are either kept the same or masked out entirely with probability 1

t and the reverse process gradually
unveils the values. The reverse process predicts pθ(z0|zt), reducing the stochastic nature of the training (Ho
et al., 2020). The model was trained on the re-weighted ELBO that mimics the parameterized ELBO of
continuous diffusion models.

Eq(z0)

 T∑
t=1

T − t + 1
T

Eq(zt|z0

 ∑
[zt]i=m

log pθ([z0]i|zt)

 (5)

Our approach adopts the same framework as Bond-Taylor et al. (2022). However, we adopt the Gaussian
Blur as the forward diffusion process and directly predict pθ(z0|zT ). This enables us to create a single
sampling step algorithm. In the following section, we will discuss how we adopted IHDM (Rissanen et al.,
2022) and subsequently make a single-step sampling algorithm.
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3.3 Inverse Heat Dissipation Model

In the second stage, we are training the latents obtained from the Vector-Quantized image model. IHDM
applies Gaussian blur to a given data sample. This allows color entanglement and smooth interpolation of
images (Rissanen et al., 2022). We adopt this forward diffusion process as part of our two-stage process.
The difference between our approach and Rissanen et al. (2022) is how we utilize the Gaussian blur. Instead
of calculating the Gaussian blur for each timestep t, we calculate the value for the final timestep T directly.
Then we train our diffusion model to predict pθ(z0|zT ). By restructuring the forward process we can now
generate samples on a single step. For sampling, a blurry prior is created and stored during the initialization
process. So whenever a sample needs to be produced the model takes the blurry prior and predicts pθ(z0|zT ).

Algorithm 1 Sampling algorithm
x ∼ p(xT ) ▷ Sample from blurry prior during initialization
x← noise ∗ σ + x
x0 ← Transformer(x, labels) ▷ Pass x to Transformer, where labels are T
Return x0

4 Experiment

4.1 VQGAN training

We used the ADNI dataset (Jack Jr et al., 2008) to train our VQGAN model. We preprocessed the MRI
into 176 by 176. We used a codebook of size 1024, a latent dimension of 121, and a batch size of 3. We
trained the model for 575000 steps. We used an adam (Kingma & Ba, 2014) optimizer with a learning rate
of 0.0001 (warmup for 30000 steps).

4.2 VQ-IHDM training

Initially, from the VQGAN training we have a latent shape 120,121 where 120 is the number of slices and
121 is the dimension of each slice. We have taken the middle 40 slices and used them to train our VQ-IHDM
model. For training, we have created a blur schedule with a maximum value of 24 and a minimum value of
0.5 for 200 timesteps. This blur schedule returns us an array of 200 values in descending order where the
initial value is 24 and the final value is 0.5. This enables us to calculate how much Gaussian blur to apply
for each timestep. We have taken a single slice from our training slices to create a blurry prior for sampling.
We use Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001 (warmup for 30000 steps) and
trained the model for 75000 steps with a batch size of 20. We have used a PC with NVIDIA GTX 1660
TI super GPU and 32 GB RAM to train our model. A BERT-style transformer (Devlin et al., 2018) model
was used to learn the reverse diffusion process where the number of embeddings is 512, with 8 heads and 24
layers.

5 Evaluation

We have compared our approach to several GAN models and the diffusion model from the unleashing
transformer. We have used the 3D code from CCEGAN (Xing et al., 2021), WGAN (Weng, 2019), VAEGAN
(Yu et al., 2019), AlphaWGAN (Kwon et al., 2019) and converted all the layers and operations to 2D for
training on the dataset. We calculated Frechet inception distance (FID), Kernel inception distance (KID),
and Inception score (ISC) scores using the torch-fidelity package (Obukhov et al., 2020). Our results are
given in the table 1, and our generated samples are provided in the figures 2, 3, 4, 5, 6. Additionally, we
provide a step-by-step comparison with our approach and Bond-Taylor et al. (2022) to demonstrate what a
single sample looks like at different time steps in the table 2. Since Discrete VQ-IHDM generates the sample
in a single step we have provided the sample for only the first step.
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Table 1: FID, KID, and ISC scores
Model FID(↓) KID(↓) ISC(↑)

Absorbing Diffusion (Bond-Taylor et al., 2022) 28.46 0.025 1.77
VQ-IHDM (ours) 38.57 0.036 1.84

VAEGAN (Yu et al., 2019) 281.48 0.44 1.01
CCEGAN (Xing et al., 2021) 340.94 0.5 1.84

AlphaWGAN (Kwon et al., 2019) 146.93 0.18 1.66
WGAN (Weng, 2019) 212.91 0.25 1.42

Model 1 10 50 100 200 256

Absorbing Diffusion

Discrete VQ-IHDM (Ours)

Table 2: Sinlge sample generation at different timestep.

Figure 2: WGAN samples

Figure 3: AlphaWGAN samples

Figure 4: VAEGAN samples
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Figure 5: CCEGAN samples

6 Conclusion

We have created Discrete VQ-IHDM which is a hybrid generative model that combines VQGANs with
IHDM. Our approach exploits the partial heat differential equation by using discrete cosine transformation,
to directly calculate the output for the final timestep bypassing the Markov chain of forward steps in diffusion
models. This allows us to learn directly from the final timestep to the initial state, and produce high-quality
outputs. This work can be further extended by training on covariables such as age, sex, and subtype of
diseases just like Pinaya et al. (2022) and by looking for mechanisms to generate higher resolution images.
We hope that our model can serve the medical community in terms of producing synthetic datasets and
creating educational content while preserving the privacy of patients.
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