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Abstract

We show that supervised neural information re-001
trieval (IR) models are prone to learning sparse002
attention patterns over passage tokens, which003
can result in key phrases including named enti-004
ties receiving low attention weights, eventually005
leading to model under-performance. Using a006
novel targeted synthetic data generation method007
that identifies poorly attended entities and con-008
ditions the generation episodes on those, we009
teach neural IR to attend more uniformly and010
robustly to all entities in a given passage. On011
three public IR benchmarks, we empirically012
show that the proposed method1 helps improve013
both the model’s attention patterns and retrieval014
performance, including in zero-shot settings.015

1 Introduction016

Neural information retrieval (IR) performs query-017

passage matching at a semantic level, often using a018

dual-encoder architecture that encodes the queries019

and the passages separately. Examples of such020

models include the Dense Passage Retriever (DPR)021

(Karpukhin et al., 2020) and ANCE (Xiong et al.,022

2020), which fine-tune transformer-based (Vaswani023

et al., 2017) pre-trained language models (Devlin024

et al., 2019) to compute contextualized representa-025

tions of queries and passages.026

In this paper, we first uncover a shortcoming027

in the passage encoder of such a dual-encoder IR028

model, namely DPR, which stems from its sparse029

attention pattern. To illustrate, in Figure 1 we show030

a heatmap of the attention weights of DPR’s pas-031

sage encoder over different tokens of an example032

passage (taken from the Natural Questions (NQ)033

dataset (Kwiatkowski et al., 2019)). We can see that034

the attention given to many potentially important035

words and phrases, e.g, academy of management036

and twentieth century, are rather low.037

1We will make our code, data and models publicly avail-
able in the final version.

Figure 1: Heatmap of attention given to each token in
DPR’s passage representation. Darker shading indicates
more attention.

Question Type Score
the american mechanical engineer who
sought to improve industrial efficiency G 85.9

who wrote the most influential manage-
ment book of the twentieth century S 78.0

who was considered the father of man-
agement during the progressive era S 82.2

who wrote the principles of scientific
management S 86.8

Table 1: Retrieval scores from DPR for the passage in
Figure 1, against both a gold-standard question (G) from
NQ and three synthetic questions (S). The important
terms in the question, that are also in the passage, are
shown in italic.

What is the effect of such attention, or lack 038

thereof, on retrieval performance? Table 1 shows 039

DPR’s retrieval scores for a gold-standard ques- 040

tion (from the NQ dataset) and three automatically 041

generated synthetic questions (details in Section 042

2) when paired with the passage of Figure 1. The 043

gold-standard question, which overlaps highly with 044

the well-attended first sentence of the passage, re- 045

ceives a relatively high retrieval score. Among 046

the synthetic questions, the one that refers to the 047

highest-attended entity (principles of scientific man- 048

agement) gets the highest score, whereas the ones 049

about less attended entities (twentieth century, pro- 050

gressive era) receive considerably lower scores. 051

As models trained on limited amounts of human- 052

labeled data are prone to biases such as these, here 053

we also propose to augment the training data for 054
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Figure 2: Entities automatically extracted from the passage of Figure 1.

neural IR with synthetic questions that are condi-055

tioned on the sparsely-attended parts of the pas-056

sage. Concretely, we generate questions specifi-057

cally about entities that receive low attentions from058

the passage encoder of the neural IR model. Our ex-059

periments show that augmenting the training with060

such questions does indeed enable neural IR mod-061

els to attend more uniformly over passage tokens,062

resulting in performance improvements on multiple063

benchmark datasets.064

In contrast to existing work that unconditionally065

generate synthetic questions for tasks like question066

answering (Alberti et al., 2019; Sultan et al., 2020;067

Shakeri et al., 2020) and neural retrieval (Ma et al.,068

2021; Gangi et al., 2021; Reddy et al., 2021), our069

approach generates questions that are targeted to-070

wards the deficiencies of the neural IR model, by071

conditioning on the sparsely-attended entities in072

the passages.073

Our main contributions are as follows:074

• We show that a SOTA neural IR model is075

prone to learning sparse attention patterns076

over input passage tokens where key phrases077

(such as named entities) can receive low atten-078

tion, leading to poor retrieval performance.079

• We propose an entity-conditioned data aug-080

mentation strategy that generates questions081

about less attended entities in the passage.082

• We demonstrate that incorporating these con-083

ditionally generated questions into the syn-084

thetic pre-training helps improve both model085

attention patterns and retrieval performance,086

including in zero-shot settings.087

2 Method088

To help neural retrievers capture all entities in the089

passage, we propose to augment the training data090

with synthetic questions that are conditioned on the091

less attended entities in the passage. Our synthetic092

data generation process involves the following093

steps: (a) Identifying entities with low attention,094

(b) Generating questions that are conditioned on 095

these entities, and (c) Filtering out low-quality 096

synthetic questions. We describe each step in detail 097

098

Identifying entities with low attention. We use a 099

named entity recognition system to first identify 100

all the entities in a given passage (see Figure 2). 101

Then we compute attentions of the neural IR model 102

over the passage and aggregate the attentions over 103

the corresponding word-pieces to get the attention 104

for each of the entities in the passage. Finally, we 105

identify the entities with the lowest attentions. 106

Question Conditioned Entity
who was considered the father of
management during the progres-
sive era

Progressive Era

who wrote the principles of sci-
entific management

Principles of Scien-
tific Management

who is known as the father of ef-
ficiency movement Efficiency Movement

Table 2: Questions output by the synthetic generation
system for the passage in Figure 2, based on the entity
used for conditioning.

Entity-conditioned question generation. Given a 107

passage and an entity in that passage, we aim to 108

generate a synthetic question about that entity us- 109

ing the passage. Specifically, we train a synthetic 110

example generator to take a passage p, an entity 111

e and generate a question q and its corresponding 112

answer a. To achieve this, we fine-tune an encoder- 113

decoder language model (Lewis et al., 2020a) using 114

examples from existing machine reading compre- 115

hension (MRC) datasets, which take the form of 116

(q, p, a) triples. Given such a triple, we first iden- 117

tify entities in q that also appear in p. One such 118

entity e is passed as input along with p to condition 119

the question generation. Following Sultan et al. 120

(2020), we use top-p top-k sampling (Holtzman 121

et al., 2020) during generation to promote sample 122

diversity. Table 2 shows some generated questions 123

conditioned on entities in the passage of Figure 2. 124
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Question filtering. We employ a two-stage filter-125

ing process to promote high quality in the synthetic126

data. In the first stage, a generated question q is127

considered to be consistent with the input passage128

p if a separately trained MRC model can find an129

answer to q in p with high confidence. All other130

questions are filtered out. Among the remaining131

questions and their corresponding passages, we ex-132

pect those to provide the best complementary signal133

(relative to existing gold-standard data) for which134

the baseline neural IR model has a low retrieval135

score. Hence, we only include such low scoring136

(harder) pairs in the synthetic pre-training set.137

3 Experiments138

3.1 Datasets139

We use three public IR datasets in our experiments.140

141

Natural Questions: We train all systems on142

Natural Questions (NQ) (Kwiatkowski et al.,143

2019), a dataset with questions derived from144

Google’s search log and their human-annotated145

answers coming from Wikipedia articles. Lewis146

et al. (2020b) report that 30% of the NQ test set147

questions have near-duplicate paraphrases in the148

training set and 60–70% of the test answers are149

also present in the training set. For this reason, in150

addition to the original 3,610 test questions, we151

also report evaluation on the non-overlapping sub-152

sets (1,313 no-answer overlap and 672 no-question153

overlap) released by Lewis et al. (2020b).154

155

TriviaQA: This dataset contains questions created156

by trivia enthusiasts from trivia and quiz league157

websites (Joshi et al., 2017). We use its 11,313 test158

questions for zero-shot evaluation.159

160

WebQuestions: The dataset consists of questions161

obtained using the Google Suggest API, with an-162

swers selected from entities in Freebase by AMT163

workers (Berant et al., 2013). We use the 2,032 test164

questions in this dataset for zero-shot evaluation.165

3.2 Setup166

We use the 21M Wikipedia passages from167

Karpukhin et al. (2020) as the retrieval corpus for168

all our experiments.169

170

Synthetic Data Generation. To create our syn-171

thetic pre-training corpus, first we derive a random172

sample of passages from the above collection. We173

identify the named entities in these passages using 174

a publicly available NER system2 trained on the 175

OntoNotes corpus (Weischedel et al., 2011). We 176

then fine-tune BART (Lewis et al., 2020a) for con- 177

ditioned generation, which takes a (passage, entity) 178

pair as input and generates an entity-conditioned 179

question and its answer as output. This model is 180

trained with examples from the NQ dataset. To 181

obtain the conditioning entities used in training, we 182

identify entities from noun chunks (obtained using 183

spaCy (Honnibal et al., 2020)) in the question that 184

also occur in the corresponding passage. 185

To compare our approach with a generation strat- 186

egy that does not use any conditioning, we also 187

train an unconditioned generation system, similar 188

to Reddy et al. (2021), that generates (question, an- 189

swer) pairs using just the passage as input. We use 190

this generator to generate 1M synthetic examples, 191

which we call unconditioned synthetic data. 192

We use the conditioned generation system to 193

obtain 500k examples after filtering, and mix them 194

with 500k unconditioned examples to obtain our 195

final dataset of size 1M, which we call mixed 196

synthetic data. Since the conditioned data contains 197

questions primarily about less attended entities, 198

this combination with unconditioned examples 199

helps maintain adequate diversity in the final 200

mixed dataset. We follow the same process as in 201

Karpukhin et al. (2020) and use term matching to 202

sample hard negatives for the questions. 203

204

Baselines. As a traditional term matching baseline, 205

we evaluate the TF-IDF system3 from Chen et al. 206

(2017). We also evaluate DPR4 as our neural IR 207

baseline5. Karpukhin et al. (2020) report that the 208

performance of DPR is affected by the number of 209

in-batch negatives used in training, which in turn is 210

dependent on the number of GPUs available. They 211

use 128 in-batch negatives with eight 32GB V100s. 212

Since we only had access to four 32GB V100s, 213

we use 64 in-batch negatives. We call this model 214

DPR (ours), which we train on NQ for 40 epochs 215

following Karpukhin et al. (2020). 216

217

Training. We pre-train both of our synthetically 218

augmented DPR models for 10 epochs. We name 219

2https://demo.deeppavlov.ai
3https://github.com/efficientqa/retrieval-based-

baselines#tfidf-retrieval
4https://github.com/facebookresearch/DPR
5We note that our approach can be similarly applied to

other dual-encoder IR models like ANCE (Xiong et al., 2020).
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Model Natural Questions (NQ) TriviaQA WebQuestions
Full test No ans. ovlp. No ques. ovlp. Test Test

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
TF-IDF 14.2 32.0 13.6 28.6 14.6 31.8 31.7 51.2 14.5 32.1
DPR (ours) 44.3 67.1 32.2 53.2 37.2 60.1 37.2 55.7 29.4 51.6
UnCon-DPR 45.8 68.4 32.7 54.4 36.9 60.6 37.6 57.2 31.5 53.2
Mixed-DPR 45.9 69.0 33.8 55.7 37.9 62.0 38.3 57.5 32.2 53.9

Table 3: Top-k retrieval results (in %) on test sets of Natural Questions (including the non-overlapping subsets of
Lewis et al. (2020b)), TriviaQA and WebQuestions. Numbers on TriviaQA and WebQuestions are in zero-shot
settings, since models have been trained on NQ.

the model pre-trained on the unconditioned syn-220

thetic data as UnCon-DPR and the one pre-trained221

on the mixed synthetic data as Mixed-DPR. After222

pre-training, both models are fine-tuned on NQ for223

40 epochs. We refer the reader to the appendix for224

more details on hyper-parameters.225

3.3 Results226

Similar to Karpukhin et al. (2020), we evaluate all227

systems using top-k retrieval accuracy, which is the228

percentage of questions with at least one answer229

in the top k retrieved passages. Table 3 shows the230

results for the term matching and neural models.231

Firstly, we can see that the two DPR models with232

synthetic pre-training improve over the baseline233

DPR system. Our Mixed-DPR model, which234

employs entity-conditioned synthetic questions235

for pre-training, consistently outperforms all236

other models including UnCon-DPR, which is237

pre-trained only on unconditioned questions. Cru-238

cially, on NQ, we observe greater improvements239

with Mixed-DPR on the non-overlapping and thus240

harder subsets of NQ, which indicates that the241

robustness of DPR improves with our proposed242

data augmentation strategy.243

244

Analysis. To investigate the effect of the entity-245

conditioned questions used in synthetic pre-246

training, we examine how their application changes247

the attention distribution of DPR. First we observe248

that the gold-only DPR model tends to attend more249

to the earlier sentences of a given passage. We250

therefore compare attention on the first sentence251

(computed as the average attention over its tokens)252

with average attention on the rest of the sentences253

in the passage. We sample 10k passages from the254

retrieval corpus and compute attentions for the base-255

line DPR, UnCon-DPR and Mixed-DPR models.256

We observe that Mixed-DPR pays 1.8% higher at-257

tention to the later sentences of the passage com-258

pared to the baseline DPR model. When compared 259

to UnCon-DPR, this difference is 1.1%. These re- 260

sults show that Mixed-DPR learns to attend more to 261

the latter sentences of the passage which, as shown 262

in Figure 1, is typically where most of the weakly 263

attended entities of the baseline model occur. 264

Next, we look at the entropy of token-level at- 265

tentions in a given passage for the above models. 266

Entropy here is a measure of the uniformity of a 267

model’s attention over the tokens in the passage, 268

with a higher entropy indicating a more uniform 269

distribution. For the 10k passages previously sam- 270

pled, we see that the baseline DPR, UnCon-DPR 271

and Mixed-DPR models have attention entropies of 272

3.97, 3.80 and 4.10 respectively, with Mixed-DPR 273

being the highest. This suggests that the improve- 274

ments in top-k retrieval accuracy stem (at least 275

partly) from a more scattered and potentially more 276

robust attention pattern learned by Mixed-DPR. 277

4 Conclusion 278

We discover a specific issue in neural IR systems 279

that stem from sparse attention patterns learned 280

over input passage tokens, which can lead to sub- 281

optimal performance on queries about less attended 282

areas of the passage. With targeted synthetic data 283

augmentation, we address this issue for DPR—a 284

state-of-the-art neural IR model—and enable it to 285

attend more uniformly over passage tokens. Our 286

proposed method improves the performance of 287

DPR on three different benchmarks. While our 288

work is an important first step towards solving this 289

problem, one of our primary goals in this paper is to 290

draw attention of the community to this important 291

limitation of supervised neural IR and inspire fu- 292

ture research on the topic. One potential direction 293

is to incorporate additional objectives, e.g. mul- 294

titask learning, to help models learn more robust 295

attention patterns without requiring synthetic data. 296
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1 Appendix001

1.1 Hyperparameters002

In this section, we share the hyperparameters de-003

tails for our experiments. Table 1 gives the hyperpa-004

rameters for training the synthetic generator. These005

are the same for both the entity-conditioned and006

unconditioned synthetic generator.007

Hyperparameter Value
Learning rate 3e-5

Epochs 3
Batch size 24

Max Sequence length 1024

Table 1: Hyperparameter settings during training the
synthetic question generator (BART) using data from
Natural Questions.

Table 2 lists the hyperparameters for pre-training008

and finetuning the neural IR model.009

Hyperparameter Pre-training Finetuning
Learning rate 1e-5 2e-5

Epochs 10 40
Batch size 1024 128

Gradient accumulation steps 8 1
Max Sequence length 256 256

Table 2: Hyperparameter settings for the neural IR
model during pre-training on synthetic data and fine-
tuning on NQ.

The MRC model used in the first-stage of ques-010

tion filtering is trained sequentially on SQuAD2.0011

and Natural Questions, with hyperparameters012

shown in Table 3.013

Hyperparameter SQuAD2.0 Natural Questions
Learning rate 3e-5 2e-5

Epochs 3 1
Batch size 32 32

Max Sequence length 384 512

Table 3: Hyperparameter settings for training the MRC
model on SQuAD2.0 and Natural Questions.
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