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Abstract

Combinatorial optimization problems are ubiquitous in science and engineering,1

yet learning-based approaches to accelerate their solution often require solving2

a large number of hard-to-solve optimization instances to collect training data,3

incurring significant computational overhead. Existing methods require training4

dedicated models for each problem distribution for each downstream task, limiting5

their scalability and generalization. In this work, we introduce FORGE, a method6

of pre-training a vector-quantized graph autoencoder on a large and diverse corpus7

of mixed-integer programming (MIP) instances in an unsupervised fashion without8

dependency on their solution. The vector quantization creates discrete code assign-9

ments that act as a vocabulary to represent MIP instances. We evaluate FORGE in10

both supervised and unsupervised settings. For the unsupervised setting, we show11

that FORGE embeddings effectively differentiate and cluster unseen instances. For12

the supervised setting, we fine-tune FORGE and show that a single model predicts13

both the variables for warm-starts and integrality gaps for cut-generation across14

multiple problem type distributions. Both predictions help improve performance15

of a SOTA, commercial optimization solver. Finally, we release our code and16

pre-trained FORGE weights to encourage further research and practical use of17

instance-level MIP embeddings.18

1 Introduction19

Combinatorial Optimization (CO) problems are fundamental in science and engineering with ap-20

plications in multiple domains, like logistics, energy systems, network design, and recommenda-21

tions [1, 2, 3]. Traditionally, CO problems have been addressed using carefully designed meta-22

heuristics and sophisticated solvers. These classical approaches often demand significant domain23

expertise and computational resources, especially as problem size and complexity scales.24

Recent advances in Machine Learning (ML) have introduced promising alternatives for solving CO25

problems. The approaches for ML-guided CO fall mainly under two categories: (1) end-to-end26

models that attempt to predict solutions (or objective) without depending on meta-heuristics or27

solvers, and (2) hybrid methods that (2a) replace computationally intensive components of traditional28

solvers with learned models, e.g., learning to predict strong branching heuristics [4], and (2b) guide29

meta-heuristics with learning from feedback [5]. For a comprehensive overview of ML-guided CO,30

we refer readers to our Related Works in Section A.6 and the survey by Bengio et. al. [6].31

Motivated by the successes of ML in other modalities like Natural Language Processing (NLP)32

and Computer Vision (CV), a natural question arises for CO: can we leverage the large number of33

publicly available MIP instances to develop a pre-trained, general-purpose, foundational model for34

MIP instances that is useful across multiple CO tasks across varying sizes and problem types? The35

current successes of ML for CO makes this direction imminent (see §A.6). However, many of these36
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ML-based methods face practical limitations - a significant drawback being their heavy dependency37

on computationally costly training that depends on carefully curating training datasets with desired38

properties and distributions of the underlying CO instances - leading to limited generalization.39

Moreover, training often depends on using optimization solvers in the first place to create labeled40

datasets, which defeats the purpose of improving solving for very hard instances that these solvers41

cannot deal with today. Adapting ML methods to new distributions and domains remains a challenge,42

hence, designing foundational optimization representations in an unsupervised fashion applicable to43

multiple CO tasks are a much-needed alternative. This is what we study in this paper.44

CO problems, while having a large amount of data, span highly heterogeneous problem types (e.g.,45

Set Cover vs. Combinatorial Auction) and present significant variability within each problem type.46

Most ML approaches to CO rely on Graph Neural Networks (GNN), as proposed in [4], which47

are effective at capturing local variable- and constraint-level information but struggle to capture48

meaningful global information at the instance level due to their inherent locality bias [7]-a critical49

limitation for CO problem solving. As such, while foundational models for other fields like NLP and50

CV exist, to date, there exists no general-purpose MIP embeddings at the instance-level.51

With this in mind, we propose FORGE: Foundational Optimization Representations from Graph52

Embeddings. FORGE is a foundational model to generate MIP embeddings through a pre-training53

framework that learns structural representations at the instance level from a broad distribution of MIP54

instances without requiring access to their solutions. To achieve this, we incorporate two key ideas,55

one from NLP and the other from CV. As in NLP, we build a vocabulary to represent the latent space56

of CO problems, enabling instance-level representations. As in CV, we leverage vector quantization57

to preserve global information, which overcomes the issue of GNNs used for CO in previous works.58

By extending these crucial insights into the CO context, we make the following contributions:59

• We propose FORGE, a foundational model to generate MIP embeddings. We show that60

FORGE effectively captures both local and global structures critical to CO. Unlike previous61

work, a single FORGE model, provides both instance-level representations, i.e., a single vec-62

tor representation per MIP instance, and fine-grained variable- and constraint-embeddings.63

• For the unsupervised setting, we show that the instance level MIP embeddings clusters64

previously unseen instances across multiple problem types with high accuracy.65

• For the supervised setting, we show that pre-trained FORGE embeddings can be fine-tuned66

for various downstream tasks using a small number of labeled data. We evaluate FORGE on67

two radically different tasks to showcase its versatility: predicting variables for warm-starts68

and predicting integrality gap for cut-generation. Notably, a single pre-trained FORGE model69

is fine-tuned and used across diverse problem types like Combinatorial Auctions (CA), Set70

Covering (SC), Generalized Independent Set (GIS), and Minimum Vertex Cover (MVC).71

• To enhance traditional solvers, we integrate predictions from FORGE into Gurobi [8] and to72

enhance ML-based CO methods, we incorporate FORGE embeddings into PS-Gurobi [9].73

Across both, we show consistently lower primal gaps for a range of problem types and sizes.74

2 FORGE: Unsupervised Approach to Learn MIP Embeddings75

MIP instances are typically encoded as variable–constraint bipartite graphs with node features [4,76

10, 11, 12]. GNNs are then trained for a single downstream task on a specific problem type—for77

example, warm-start variable prediction on Set Cover and Independent Set [9], or integrality-gap78

estimation [13]. Numerous variants follow this template (see §A.6). However, all of these methods79

require supervision and do not yield a general-purpose MIP embedding at the instance level. Hence,80

our goal is to learn the structure of MIP instances in an unsupervised manner. Figure 1 presents our81

overall architecture, which is composed of these main building blocks:82

A) MIP-to-BP: Given a MIP instance, we generate its bipartite (BP) representation. Each node in the83

BP graph represents a constraint or a variable, with edges connecting variables to constraints they84

belong to. Each node is associated with node features and each edge is weighted by the coefficient85

of the variable in the constraint. FORGE uses only basic properties of the input instance - for each86

constraint node, it uses four features composed of its sense (i.e., >, < or =) and the RHS value. For87

each variable node, it uses six features composed of its type (integer, binary, continuous), upper/lower88

bound, and the coefficient in the objective function (Figure 1(A)).89
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Figure 1: FORGE: The overall unsupervised approach for learning MIP embeddings. FORGE uses a
vector quantized graph autoencoder (C-D) to reconstruct node features and edges and is pre-trained
across a diverse set of problem types and difficulty levels, enabling it to learn generalizable structural
representations without requiring access to optimal solutions.

B) BP-to-GNN: This bipartite graph is then passed into a GNN, to generate embeddings for each90

constraint and variable node. More specifically, FORGE uses two GRAPHSAGE [14] layers that91

project each input node into a d dimensional embedding space (Figure 1(B)).92

C) Vector Quantized Codebook: As discussed earlier, while GNNs are good at capturing local93

variable- and constraint-level information, they struggle to capture meaningful global information at94

the instance level due to their inherent locality bias [7]. Preserving global structure is important in CO95

problems, especially to generalize across problem types. To do so, we introduce a vector quantized96

codebook with k discrete codes. These discrete codes act as a “vocabulary”, akin to language models,97

across MIP instances of various domains and difficulties, thereby preserving global structure. The98

design follows the approaches developed in computer vision [15, 16, 17] and the structure-aware99

graph tokenizer extension as proposed in [18] (Figure 1(C)).100

D) GNN-to-CW: GNN embeddings are passed into a vector quantizer with a codebook with k discrete101

codes. The codebook maps each variable and constraint node to a discrete code. Each code is then102

mapped into a d dimensional codeword (CW), yielding constraint and variable CW representations.103

These representations are the same dimension as the hidden GNN layers (Figure 1(D)).104

E) CW-to-BP: We use the CW corresponding to each constraint and variable node to reconstruct the105

original bipartite representation of the MIP instance. These CW are passed into a linear node feature106

decoder and a linear edge decoder to reconstruct the input bipartite graph. By doing so, we obtain an107

unsupervised method that learns from the structure of MIP instances (Figure 1(E)).108

F) Loss Function: The overall loss function minimizes the edge reconstruction loss, the node feature109

reconstruction loss as well as losses related to the vector quantization as shown in Figure 1(F). A110

detailed description of this loss function is given in the Appendix in Section A.1.111

Once FORGE is trained in this unsupervised manner across a corpus of MIP instances, we obtain -112

(1) Local representations, where each node in the bipartite graph of the MIP instance is assigned113

a discrete code. Each code is further mapped to a codeword which becomes the variable and/or114

constraint embedding and (2) Global representations, where we leverage the distribution of codes115

for the given MIP instance. Each MIP instance can be represented with an embedding of size116

vocabulary = |codebook| where each value denotes the frequency of codes present in the instance.117

This process is explained in Section A.2 in the Appendix.118

Note that this form of unsupervised pre-training aims at learning the structure of MIP instances and119

is different from methods which aim to cast the discrete objective function of a MIP instance as a120

differentiable one and learn the solution using gradient descent in an end to end manner [19, 20, 21].121

3 Initial Analysis of FORGE Embeddings122

Given the absence of methods in the literature that can provide general-purpose MIP embeddings at123

the instance level, with the exception of earlier works that depend on creating hand-crafted features124

to classify MIP instances (e.g., [22]), we begin our analysis with a comparison of FORGE against125

two (ablation) baselines when clustering unseen instances. We investigate both the accuracy of the126
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(A) Mean Readout 
NMI: 0.087  0.035± (B) Label Propagation 

NMI: 0.790  0.025± (C) FORGE Embedding 
NMI: 0.843  0.003±

Figure 2: 2-D PaCMAP visualization of D-MIPLIB instances using MIP instance embeddings from
(a) the mean readout of node embeddings from the GNN in FORGE, (b) the two-hop label propagation
of input node features, and (c) the distribution of discrete codes produced by FORGE. Normalized
Mutual Information (NMI), averaged over 10 runs of k-means clustering, is reported for each method.

clustering (quantitative) as well as visual inspection (qualitative). We train FORGE on a set of 600127

MIP instances from MIPLIB [23], and test it on 1,050 unseen instances from Distributional MIPLIB128

(D-MIPLIB) [24] split across 21 problem type-difficulty pairs as shown in Figure 2. While MIPLIB129

is a mixed dataset, D-MIPLIB is categorized into different problem types and difficulties that serves130

as ground truth labels where each problem type-difficulty pair is a cluster to evaluate our embeddings.131

Training: We use 600 instances from MIPLIB, sorted by size to ensure the resulting bipartite graphs132

fit on GPU memory. For additional training data, we generate two instances from each MIPLIB133

instance by randomly dropping 5% and 10% of constraints (note that dropping constraints does not134

impact feasibility). In total, we obtain 1,800 MIP instances to train FORGE. We use two GraphSage135

layers with d = 1024 dimensions and a codebook with k = 5000 codes (the size of the vocabulary)136

Testing: These 1,050 instances are passed through FORGE to generate one embedding vector per137

MIP instance (as shown in Section A.2). As a baseline approach, we use the Mean Readout utilizing138

the GNN embeddings of the trained FORGE model. The Mean Readout method generates the MIP139

embedding of an instance by averaging all node features from the GNN hidden layer representation140

from Figure 1(B). This baseline also behaves as an ablation for FORGE without vector quantization.141

Given the weakness of GNN embeddings in capturing global structure [7], we expect this method142

to perform poorly. Alternatively, starting from the input static node features of the bipartite graph143

(Fig. 1(A)), we perform two-hop label propagation [25] and average the resulting node features.144

Clustering Visualization and Accuracy: Figure 2 visualizes these embeddings, projected into two145

dimensions using PaCMAP [26]. Each dot represents an instance colored by its problem type. For146

quantitative evaluation, we run k-means clustering with 21 clusters, expecting one cluster for each147

problem type. We calculate the normalized mutual information score (NMI) between the ground truth148

problem type assignment and the k-means clusters generated by each method. The NMI scores are149

averaged over 10 runs of k-means clustering. As expected, Mean Readout over-smooths node features150

and loses global structure, yielding arbitrary clusters (NMI = 0.087). Label Propagation, working on151

sparse input node features only, separates domains better (NMI = 0.790) but still mixes some problem152

types. FORGE however, cleanly splits both problem type and difficulty (NMI = 0.843) despite zero153

exposure to D-MIPLIB instances, showing that it can successfully preserve global structure.154

4 Experiments and Results155

Given that FORGE embeddings reliably cluster unseen instances from diverse problem classes, we156

look at supervised settings directly aimed at improving MIP solving. We design experiments on157

downstream tasks that are (1) commonly applied in the literature to enable us with a fair comparison158

(2) radically different from each other, where we use the same FORGE model, to validate its general159

applicability across tasks, problems, and sizes and (3) are agnostic to the underlying MIP solver, i.e.,160

we do not depend on internal access to specific solver procedures (e.g., within the branch-and-bound161

tree). With this motivation, we study two different downstream tasks: predicting the integrality gap of162

a MIP instance, as used in [13], and predicting variables for warm-starts, as used in [9] (Sections § 4.1163

and § 4.2 respectively). Both tasks serve as primal heuristics to enhance MIP solving by obtaining164

better solutions faster. The integrality gap is used to generate a pseudo-cut added to the original165

problem formulation to tighten its bound. The warm-start variables are used to provide hints to the166
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Figure 3: Gurobi vs. Gurobi + Pseudo-Cuts generated by FORGE. Each subplot shows the primal gap
reduction averaged across 50 ‘very-hard’ instances per problem type (lower is better).

solver to start the solving process from a promising initial assignment. The critical aspect of these167

sets of experiments is that we use the same pre-trained FORGE model to obtain general-purpose168

MIP embeddings that are then further fine-tuned on a small number of labeled data to learn prediction169

heads for completely different tasks. This is shown in Figure 7(A) in the Appendix.170

4.1 Integrality Gap Prediction171

The label collection, training and inference processes for integrality gap prediction are described in172

the Appendix in Section A.4. We summarize our results below.173

Test Instances & Setup: The pre-trained FORGE model is fine-tuned with a prediction head using174

450 labeled instances of ‘easy’, ‘medium’ and ‘hard’ difficulties for CA, SC and GIS problems, and175

predicts the integrality gap of 50 ‘very-hard’ instances. Note that MVC instances are not part of176

the train set. A pseudo-cut is generated by adjusting the initial LP relaxation objective, specifically,177

by increasing it for minimization problems (or decreasing it for maximization problems) by the178

predicted gap. This pseudo-cut is incorporated into the original formulation as an additional constraint,179

enforcing that the integral objective must exceed (or fall below) the computed pseudo-cut value.180

Comparison with the Commercial MIP Solver: We compare the default GUROBI solver on these181

‘very-hard’ instances with and without our predicted pseudo-cut. Figure 3 shows the primal gap182

averaged over 50 ‘very-hard’ instances each of CA, SC, GIS and MVC with a time limit of 3600183

seconds. Without an exception, across all problem types, the use of pseudo-cuts generated by FORGE184

embeddings consistently results in significantly lower primal gaps over time. The gains range from185

30% to 85%.186

Comparison with SOTA ML Methods: To further evaluate generalization across problem types and187

sizes, we compare against the setup described in [13], where a GNN is trained on 38,256 instances188

from 643 generated problem types and tested on 11,584 instances spanning 157 problem types. We189

use Forge as is, without any additional training instances, and test on 17,500 previously unseen190

instances spanning 400 generated problem types. FORGE achieves a mean deviation of 18.63% in191

integrality gap prediction, outperforming the reported 20.14% deviation by almost 10%.192

4.2 Warm-Start Prediction193

The label collection, training and inference processes are described in the Appendix in Section A.5.194

We summarize our results below.195

Test Instances & Setup: We start with the pre-trained FORGE model, fine-tuned with a prediction196

head using the labeled data, and then predict warm start variables of 50 ‘medium’ instances each of197

CA, SC, GIS, and MVC. Note that MVC instances are not part of the train set.198

Comparision with the Commercially MIP Solver: We compare GUROBI on these ‘medium‘199

instances with and without our predicted warm start variables. Figure 4 shows primal gaps averaged200

over 50 instances for each of CA, SC, GIS and MVC using Gurobi versus Gurobi warm started with201

predicted variables with a time limit of 3600 seconds. The warm-started variants consistently achieve202

lower primal gaps and converge to optimal solutions faster, demonstrating the practical utility of203

FORGE in accelerating MIP solving.204

Comparison with SOTA ML Methods: As an additional validation of FORGE embeddings, we205

augment PS-Gurobi [9], a SOTA ML-based method that demonstrates strong performance relative206
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Figure 4: Gurobi vs. Gurobi + Warm Starts generated by FORGE. Each subplot shows the primal gap
reduction averaged across 50 ‘medium’ instances per problem type (lower is better). Gurobi + Warm
Starts also converges to the optimal solution significantly faster.
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Figure 5: Performance comparison of three variants of PS-Gurobi: the original model, a version
augmented with 64-dimensional random vectors, and a version augmented with FORGE embeddings
(reduced to 64 dimensions via PCA). Evaluation is conducted on 50 ‘medium’ instances each of CA
and GIS problems. The FORGE-augmented PS-Gurobi consistently outperforms the baseline.

to other ML approaches. We concatenate the input node features for variables and constraints in207

PS-Gurobi with unsupervised embeddings generated by FORGE. We apply Principal Component208

Analysis (PCA) to reduce the dimensionality of FORGE embeddings from 1024 to 64 dimensions,209

thereby minimizing architectural modifications to the original model. To ensure that performance210

gains are attributed to the semantic content of the FORGE embeddings rather than increased model211

capacity, we also conduct a control experiment by augmenting PS-Gurobi with 64-dimensional212

random vectors. This comparison allows us to isolate the contribution of the learned embeddings to213

the overall performance. This is evaluated on the same 50 instances of the CA and GIS problems - two214

problem types that are common to both FORGE and PS-Gurobi. Results are shown in Figure 5 where215

PS-Gurobi + FORGE consistently outperforms the standalone PS-Gurobi with the gain in primal gaps216

being 41.07% and 50.51% for CA and GIS respectively. PS-Gurobi with random vectors occasionally217

surpasses the original model, likely due to the significant increase in input dimensionality - from 4218

and 6 features for constraints and variables, respectively, to 68 and 70 - resulting in a larger model219

capacity that can yield marginal performance gains.220

5 Conclusion & Future Work221

We introduce FORGE, an unsupervised framework for learning structural representations of MIP222

instances without requiring access to their solutions. By using a vector-quantized graph autoencoder,223

FORGE effectively captures both local and global structural properties - an essential capability for224

addressing CO problems. The discrete codes produced by the vector quantization process behaves225

as a vocabulary of MIP instances. We demonstrate that these codes can meaningfully cluster226

previously unseen MIP instances and can be fine-tuned for diverse downstream tasks, including227

pseudo-cut generation via integrality gap prediction and warm-start variable prediction. Remarkably,228

a single model with only 3.25 million parameters is used across both tasks and multiple problem229

types and difficulty levels. We further show that the embeddings produced by FORGE can be230

seamlessly integrated into existing machine learning pipelines for CO, yielding improvements in231

solver performance. Looking ahead, the instance-level embeddings generated by FORGE offer232

promising opportunities for reinforcement learning approaches, such as guiding subproblem selection233

in Large Neighborhood Search frameworks. Exploring such integrations represents a compelling234

direction for future work. To support reproducibility and encourage further research, we release all235

code and pre-trained models at https://anonymous.4open.science/r/forge-56FD.236
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A Appendix369

A.1 Loss Function370

The overall loss function minimizes the edge reconstruction loss, the node feature reconstruction loss371

as well as losses related to the vector quantization. Specifically, the loss function is given by:372

L = LRec + LCodebook + LCommitment (1)

where given N nodes, input node feature vi ∀i ∈ N , the adjacency matrix A and a matrix X̂ composed373

of reconstructed input features vi, the reconstruction loss, LRec, the codebook loss, LCodebook, and374

commitment loss, LCommitment are given by:375
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Figure 6: (A) Each node in the bipartite graph representation of the MIP instance is assigned a
discrete code. (B) The distribution of these assigned codes yields the embedding of the MIP instance.
The embedding dimension is the size of the codebook, i.e., vocabulary = |codebook|. This example
uses 5 codes leading to the MIP embedding ⃗emb = [3, 2, 3, 2, 0].

LRec = (A− X̂X̂T )2 +
1

N

N∑
i=1

(v̂i − vi)
2 (2)

LCodebook =
1

N

N∑
i=1

∥sg[hi]− cwi∥22 (3)

376

LCommitment =
α

N

N∑
i=1

∥sg[cwi]− hi∥22 (4)

Here, sg[.] is the stop-gradient operator, hi is the hidden layer representation of node i after the GNN377

forward pass and cwi is the codeword corresponding to the code that node i has been assigned.378

Intuitively, the codebook loss in Eq. 3 can be interpreted as k-means clustering, where the codewords379

cwi (akin to cluster centroids) are updated to move closer to the node embeddings hi and the node380

embeddings hi are fixed in place due to the stop-gradient operator. Conversely, the commitment381

loss in Eq. 4 fixes the codewords cwi using the stop-gradient operator, and instead, updates the382

embeddings hi to move towards the codewords. The hyperparameter α weighs the importance of the383

commitment loss.384

A.2 Generating MIP Instance Level Embeddings385

To generate MIP instance level embeddings, we feed the input bipartite graph into FORGE, record386

the discrete codes assigned to every node, and treat the resulting code-frequency distribution as the387

instance embedding. This process is shown in Figure 6 with a codebook of size 5 (for brevity) and388

the resulting MIP embedding ⃗emb = [3, 2, 3, 2, 0] from the bipartite graph.389

A.3 Supervised Fine Tuning Setup for the FORGE Model390

The setup for training FORGE is identical to the setting in the initial clustering analysis, with two391

GraphSage layers with d = 1, 024 dimensions and k = 5000 codes. The only difference is that we392

pre-train on the structure of the 1,800 MIPLIB instances as well as the 1,050 D-MIPLIB instances. In393

total, FORGE is trained on a corpus of 2,850 MIP instances.394

For these experiments, we train on the ml.g5.xlarge AWS instance with a GPU with 24 GB of395

memory. Inference experiments were run on the ml.c5.12xlarge instance with 48 cores and 96396

GB of RAM. To ensure consistency and fairness, all experiments were executed with GUROBI, a397

state-of-the-art commercial MIP solver [8], restricted to a single thread and a time limit of 3600398

seconds. Unsupervised pre-training and integrality gap fine-tuning are run for 10 epochs with a399

learning rate of 10−4, while the warm-start prediction task is trained for 25 epochs using a learning400

rate of 10−5.401
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A.4 Integrality Gap Prediction & Pseudo-Cut Generation402

Integrality Gap Prediction: The integrality gap measures the ratio between the optimal solution403

of the LP relaxation and the optimal solution of the original integer program. Intuitively, this gap404

quantifies the quality of the approximation offered by the LP relaxation. A smaller gap means the405

LP relaxation is a good approximation and is close to value of the best integral solution. Here, we406

are interested in predicting the integrality gap of a given MIP instance, without having access to or407

solving for its best integral solution value, as also studied in [13].408

Pseudo-Cut Generation: If we can predict the integrality gap, then we can generate a pseudo-cut409

and add it as an additional constraint to the model to immediately bound the optimal objective value410

from the initial LP relaxation. Note that, this cut is not guaranteed to be a valid cut at all times, hence411

it is a pseudo-cut. If the integrality gap prediction is incorrect, it risks over (or under) estimating the412

best objective value. This makes integrality gap prediction a challenging problem.413

Training Instances: We do not expect this task to generalize between problem classes and/or sets414

of varying complexities of a given problem class. For instance, there is no reason for an LP gap of415

70% to be the same between easy vs. hard Set Cover instances. Figure 7(B) shows the distribution of416

integrality gap across different problem types and difficulties. As we can see, the integrality gap can417

be anywhere from 5% to 95% with wide distributions in between. As such, there is no magic constant418

that one could use at all times heuristically, which makes integrality gap prediction a deliberate419

learning task. For training, we consider Combinatorial Auction (very-easy, easy, medium), Set Cover420

(easy, medium, hard), and Generalized Independent Set (easy, medium, hard) with 50 instances for421

each. In total, we obtain a total of 450 training instances. Note that this is a considerably smaller422

training set than initially used for training FORGE embeddings.423

Label Collection: To generate training labels, each training instance is solved using Gurobi with424

a time limit of 120 seconds. Notice that, when creating this supervised dataset, we do not require425

solving the instance to optimality which can be computationally challenging. The numeric label426

is defined as the ratio (or gap) between the integer program solution at the time-out value and the427

LP relaxation solution. As mentioned, overestimating the integrality gap (or underestimating for428

maximization problems) can lead to suboptimal solutions, as the solver may terminate prematurely.429

In contrast, underestimating the gap is generally acceptable, as it still facilitates faster solve times430

without compromising solution quality. To account for this asymmetry, we adopt a conservative431

labeling strategy by setting a 120-second timeout when collecting labels. This often results in an432

underestimation of the true integrality gap, particularly for more challenging instances. By doing433

so, we reduce the risk of the model overestimating the gap during inference, thereby improving the434

reliability of the predicted cuts.435

Supervised Fine-Tuning: Given the labeled data, to predict the integrality gap, a dense prediction436

head is added to pre-trained FORGE that takes as input the codewords assigned to each node and437

outputs a real number (Figure 7(A)). The mean readout across all nodes is used as the predicted438
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integrality gap. As a regression task, this is trained with the mean absolute error loss in an end-to-end439

manner.440

Additional Results - Prediction Accuracy: We start with the accuracy of our predictions on the441

test instances. We measure the deviation in terms of mean absolute error between the true integrality442

gap and the gap predicted by FORGE. On the ‘very-hard’ instances, FORGE achieves a deviation of443

15.42%, 13.55%, 12.03% and 19.077% for CA, SC, GIS and MVC instances respectively. Note that444

MVC instances were not part of the train set.445

While predicting integrality gaps may appear straightforward, training FORGE from scratch for this446

task led to a ≈ 33% increase on average in mean absolute error across all problem types compared447

to fine-tuning a pre-trained model. This highlights the importance of unsupervised pre-training in448

capturing transferable structural patterns across diverse MIP instances.449

A.5 Warm-Start Prediction & Guiding The Search450

Warm Start Prediction: Recall that FORGE generates embedding vectors per instance and per451

variable/constraint. We fine tune the variable embeddings to predict which variables are likely to452

be in the optimal solution. These predictions are then passed into GUROBI as variable hints. A453

straightforward method of predicting which variables are likely to be part of the solution is to treat454

it as a binary classification problem and use binary cross entropy (BCE) loss. However, this poses455

challenges due to the large class imbalance where most variables are not part of the solution.456

To address this issue, we produce 5 feasible solutions for a given instance. Variables from the instance457

are grouped based on how many of the 5 solutions each variable was repeated in. A variable is458

considered a “negative” variable if and only if it appears in none of the 5 solutions. Next, we use459

triplet loss [27] to fine tune the embeddings of the variables, where the triplet loss is given by460

L(a, p, n) = max{d(ai, pi)− d(ai, ni) +margin, 0} (5)

Here, a is the ‘anchor’ node, p is the ‘positive’ node, n is the ‘negative’ node and d is a distance461

function (euclidean distance in our case). The goal of triplet loss is to minimize the distance between462

the ‘anchor’ and ‘positive’ nodes while ensuring that the ‘negative’ node is at least ‘margin’ distance463

away from the ‘anchor’ node (margin is set to 2 in our case). This is shown in Figure 7(C).464

In our setting, all variables appearing in the same number of solutions are treated as ‘positive’ and465

‘anchor’ pairs. A key challenge in using triplet loss is to find good negative nodes, as picking nodes466

that are trivially negative does not aid learning. To pick negative nodes, we pick variables that have467

not appeared in any solution but are closest to the positive node in the unsupervised embedding468

space. Finally, the FORGE model is fine-tuned to predict warm start variables using a combination of469

triplet loss and BCE loss.470

Training Instances: We collect 100 instances each from Combinatorial Auction (easy, medium),471

Set Cover (easy, medium, hard) and Generalized Independent Set (easy, medium) for a total of 700472

training instances.473

Label Collection: To generate training labels, we solve a given instance using Gurobi and a solution474

pool of 5. Here, we set a larger time limit of 300 seconds since we would like to get closer to the475

optimal solution.476

Supervised Fine Tuning: The triplet loss is used to fine tune the GNN within FORGE to encourage477

meaningful separation in the embedding space. In parallel, a dense prediction head is added to FORGE478

that takes as input the codewords assigned to each node (Figure 7(C)). The model is trained using479

both the triplet loss and binary cross entropy loss on the prediction head.480

To predict the warm start variables, we begin by generating a feasible solution using Gurobi with481

a 1-second timeout. The variables included in this solution are designated as seed variables. Since482

fine-tuning with triplet loss encourages nodes corresponding to solution variables to cluster in the483

embedding space, we identify additional variables whose embeddings lie within a fixed radius (set to484

0.1) of the seed variables. Simultaneously, we select variables ranked in the top 5th percentile and485

bottom 10th percentile by the prediction head as positive and negative candidates, respectively. The486

intersection of variables identified by the embedding-based proximity search and the prediction head487

are then passed to Gurobi as solution hints.488
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A.6 Related Works489

Recent advances in applying machine learning to combinatorial optimization, particularly Mixed490

Integer Linear Programming (MILP or MIP), have led to a diverse set of approaches. These methods491

can be broadly categorized based on their focus areas, such as solver configuration, branching492

strategies, heuristic design, and generalization across problem types.493

Learning-Based Enhancements to MILP Solvers Several works have explored integrating super-494

vised and reinforcement learning into traditional MILP solving pipelines. The survey by Zhang et.495

al. [28] categorizes these methods into two main groups: those enhancing the Branch-and-Bound pro-496

cess (e.g., branching variable prediction, cutting plane selection, node selection), and those improving497

heuristic algorithms like Large Neighborhood Search (LNS), Feasibility Pump, and Predict-and-Pick.498

These models are typically trained end-to-end, with reinforcement learning often relying on imitation499

learning.500

In the context of solver configuration, Hosny et. al. [29] propose predicting solver parameters by501

leveraging similarities between problem instances. Their key assumption is that instances with502

similar costs under one configuration will behave similarly under others. Features include pre-solve503

statistics and tree-based metrics, with a triplet loss guiding the learning process using solved instance504

objectives. Kadiogluet. al. [22] propose the ISAC framework that takes a clustering-based approach505

to instance-specific algorithm configuration. It uses G-means to cluster problem instances and assigns506

configurations based on cluster membership. The method considers domain-specific features like507

cost-density ratios and root cost metrics for problems like SCP, MIP, and SAT.508

To improve generalization, Boisvert et. al. [30] propose a generic representation for combinatorial509

problems using abstract syntax trees with 5 node types - variables, constraints, values, operators and510

a model node. While expressive, this approach results in large, computationally expensive graphs.511

Multi-Task and Generalist Models Efforts to unify learning across tasks and problem types have also512

emerged. Cai et. al. [31] introduce a multi-task representation learning framework for MILP, training513

a shared backbone across tasks such as backdoor prediction and solver configuration prediction,514

followed by fine-tuning for specific problem types. Their method uses a similar bipartite graph515

representation, Graph Attention Networks (GAT), and contrastive loss, and is evaluated on problems516

like Combinatorial Auctions, Minimum Vertex Cover (MVC), and Maximum Independent Set (MIS).517

Similarly, Drakulic et. al. [32] present GOAL, a generalist agent for combinatorial optimization.518

It avoids GNNs, instead using mixed attention over edge and node matrices derived from bipartite519

graphs. Li et. al. [13] propose an LLM-based evolutionary framework that can generate a large set of520

diverse MILP classes and can be fine tuned to predict integrality gaps and branching nodes.521

Graph Neural Networks for Branching and Heuristics Graph-based representations have become522

standard for encoding MILP instances. One of the earliest work by Gasse et. al. [4] uses GCNs to523

learn strong branching policies, introducing a bipartite graph structure and dual half-convolutions to524

facilitate message passing between constraints and variables. Chen et. al. [33] revisit GNN for MIPs525

and show that higher-order GNNs can overcome limitations identified via the 1-Weisfeiler-Lehman526

test, making all instances tractable for message passing. Canturk et. al. [34] introduce improvements527

to the standard GNN workflow for CO problems so that they generalize on instances of a larger scale528

than those used in training and proposes a two-stage primal heuristic strategy based on uncertainty529

quantification to automatically configure how solution search relies on the predicted decision values.530

Along the lines of Backdoor learning, Cai et. al. [35] use Monte Carlo Tree Search to identify531

effective backdoors, training a GAT to score variables. Ferber et. al. [10] propose pseudo-backdoors,532

using one model that characterizes if a subset of variables is a good backdoor and another model to533

predict whether prioritizing this subset would lead to a smaller run time.534

Learning Heuristics and Large Neighborhood Search (LNS) Policies A growing body of work535

focuses on learning heuristics, particularly for LNS. Huang et. al. [36] use expert hueuristics to536

create training data followed by random perturbations to create ‘negative’ samples. Then contrastive537

learning is used to train GATs to predict node probabilities. Other works by Wu et. al. [37] and538

Song et. al. [38] use deep reinforcement learning to learn destroy operators or decompositions, with539

rewards based on objective improvements. Khalil et. al. [39] model the success of heuristics at540

specific nodes by examining instance based characteristics and use logistic regression over a rich541

feature set, including LP relaxation and scoring metrics. Concretely, they learn a binary classifier to542

answer whether some heuristic H will find an incumbent solution at a given node N.543
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Problem Specific Solutions The vehicle routing problem (VRP) has garnered special attention544

from the community. Zhou et. al.[40] introduce a meta-learning framework for VRPs, enabling545

generalization across problem sizes and distributions. Berto et. al. [41] explore ML solutions for546

different kinds of VRPs like those including backhauls, multi-depots, duration limits, mixed backhaul,547

line hauls etc.. They use a common encoder for all VRP types with global attributes for problem type548

and local node attributes to capture customer specific attributes like location and demands.549

Another problem that has garnered attention is the constraint satisfaction problem. Tonshoff et.550

al. [42] use GNNs to predict soft assignments, with reinforcement learning rewards based on con-551

straint satisfaction improvements. Duan et. al. [43] propose a contrastive learning framework that552

generates label-preserving augmentations for SAT problems. These include techniques like unit553

clause propagation, pure literal elimination, and clause resolution, ensuring that the satisfiability554

of the instance remains unchanged while enhancing the model’s robustness. Shafi et. al. [44] in-555

troduce Graph-SCP, a method that leverages features extracted from both bipartite and hypergraph556

representations of SCP instances. A GNN is then trained with these features to predict a promising557

subproblem where the optimal solution is likely to reside. This predicted subproblem is passed to a558

solver, effectively accelerating the overall solution process.559

Unsupervised Approaches Unsupervised learning has also been explored in various forms. Karalias560

et. al. [20] introduce a framework that learns a probability distribution over nodes, optimizing a loss561

that bounds the probability of finding a solution. These are then decoded using a derandomization562

process. Bu et. al. [21] build on the work in [20] by formalizing objective construction and563

derandomization strategies. They derive explicit formulations tailored to a range of combinatorial564

problems, including facility location, maximum coverage, and robust graph coloring. Sanokowski et.565

al. [19] provide an approach for solving combinatorial optimization problems without labeled data by566

leveraging diffusion models to sample from complex discrete distributions. Their method avoids the567

need for exact likelihoods by optimizing a loss that upper bounds the reverse KL divergence. While568

FORGE falls in the domain of unsupervised approaches, we differ in that our goal is to not solve a569

given instance in an unsupervised manner, but rather to learn the graphical structure of various MIP570

instances in an unsupervised manner followed by supervised fine-tuning to aid in finding the solution.571
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