

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KNOWLEDGE-GUIDED ASSIMILATION: BRIDGING THE GAP BETWEEN SENSING AND MODELING WITH INDI- RECT LABELS FOR GLOBAL CARBON MONITORING

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Advanced air-borne and in-situ sensing platforms have generated invaluable ob-
014 servations of the Earth systems and offer exciting opportunities in enhancing the
015 monitoring and forecasting capabilities to tackle challenges such as global warm-
016 ing. While process-based models have been developed for decades, they have
017 limited ability to incorporate real-world observations to further enhance the pre-
018 diction ability, especially to correct simplified sub-processes that tend to cause
019 deviations from the observations. In particular, many process-based models rely
020 on itemized lower-level processes, whereas the sensors very often can only col-
021 lect aggregated mixed-up information, constraining the use of these observations
022 to improve the modeling. Existing works on knowledge-guided learning mainly
023 focus on connecting process-based and data-driven methods via directly matched
024 variables, using physical rules and simulations to constrain the training process.
025 We propose a knowledge-guided assimilation approach to integrate process-based
026 and learning models to improve the utilization of large-scale simulations with ag-
027 gregated indirect observations. To evaluate approach, we carry out a global-scale
028 case study with ecosystem models that are widely used in carbon monitoring. The
029 results on global-scale benchmark data show that knowledge-guided integration
030 of indirect labels can significantly enhance prediction skills compared to existing
031 learning methods.

1 INTRODUCTION

034 Advanced air-borne systems such as remote sensing satellites and in-situ platforms such as networks
035 of monitoring stations have generated invaluable observations of the Earth systems and offer excit-
036 ing opportunities in enhancing the monitoring capabilities. Such abilities are essential to improve
037 the solutions for tackling grand challenges such as carbon neutralization, global warming, extreme
038 events, etc. In carbon monitoring, for example, Earth monitoring satellites provide global coverage
039 of forest ecosystems, providing critical information such as forest coverage, plant function types
040 (PFTs), and canopy heights. On the other hand, in-situ sites consisting networks of carbon flux
041 towers offer years of highly dynamic observations of key carbon variables. The increasing availabil-
042 ity of sensing-based observations has also led to major advances of process-based models to better
043 integrate these valuable information into the modeling to enhance the estimation. In forest ecosys-
044 tems, the Ecosystem Demography (ED) model is a new generation of models that has the ability to
045 incorporate many of the observations (e.g., billions of height measurements from NASA GEDI) at
046 the global scale, and is serving important roles in the Global Carbon Budget (Friedlingstein et al.,
047 2023; 2024), NASA Carbon Monitoring System (Hurt et al., 2019), etc.

048 Despite the promising potential, there are several challenges integrating sensing and process-based
049 modeling. First, most of the models follow rule-based processes. While the knowledge structure
050 does not require extensive training, it also significantly constrains the models' ability to refine the
051 fixed structure (e.g., structures with simplifying assumptions) using rich real observations. Second,
052 many process-based models rely on itemized lower-level processes, whereas the sensors very of-
053 ten can only collect aggregated mixed-up information. As a concrete example, in the ED model,
the overall ecosystem process is modeled as multiple sub-streams of processes corresponding to
different forest ages, where each experiences different competition between different PFTs such as

054 deciduous trees, evergreens, or grass/shrubs. Due to the complexity of the cross-PFT competition,
 055 PFT proportions generated by ED may deviate from the true values, propagating to errors in its
 056 estimates of carbon variables. In such cases, it will be ideal if the PFT observations from remote
 057 sensing satellites can be leveraged to correct the values dynamically. However, the satellite-based
 058 observations are aggregated results from all the sub-stream processes (e.g., often tens or hundreds
 059 of them depending on the granularity), making the observations not compatible with the lower-level
 060 modeling. Third, the inputs and outputs from the process-based models at large scale (e.g., global-
 061 scale) often come with large volume. As a result, domain scientists normally do not further save
 062 intermediate results from different sub-streams and it is highly expensive to regenerate the results,
 063 making it harder to learn for data-driven models. Finally, the in-situ observations are often con-
 064 strained by their temporal coverage compared to the multi-decade scope of Earth system modeling,
 065 due to sensor installation time, maintenance, etc.

066 Existing works on knowledge-guided machine learning (ML) mainly focus on connecting process-
 067 based and data-driven methods via directly matched variables, using physical rules and simulations
 068 to constrain the training process (Willard et al., 2022). Earlier approaches were typically trained
 069 to estimate the residual between observations and the outputs of physics-based simulations (Fors-
 070 sell & Lindskog, 1997; Xu & Valocchi, 2015; Wan et al., 2018), which was later extended into
 071 hybrid approaches that integrate results from both physics-based and ML models (Karpatne et al.,
 072 2017; Yao et al., 2018; Paolucci et al., 2018). However, in these cases the process-based and ML
 073 models still operate separately and do not exploit complementary benefits. More recently, studies
 074 have highlighted the promise of using physical knowledge to inform and guide the training of ML
 075 models. Such efforts include the design of loss functions that enforce compliance with known phys-
 076 ical laws (Li et al., 2024; Jia et al., 2020; Fioretto et al., 2020; Karpatne et al., 2017; Read et al.,
 077 2019; Stewart & Ermon, 2017; Yu et al., 2024a; Raissi et al., 2019), strategies for initializing mod-
 078 els through knowledge transferred from simulations (Jia et al., 2020; Read et al., 2019; Hurtado
 079 et al., 2018; Sultan et al., 2018; McCabe et al., 2023), and development of model architectures that
 080 explicitly encode physical symmetries (Satorras et al., 2021; Batzner et al., 2022) and general phys-
 081 ical relationships such as mass conservation (Shen et al., 2023; Daw et al., 2019; Muralidhar et al.,
 082 2020; Ling et al., 2016; Zhang et al., 2018; Schütt et al., 2017; Hettige et al., 2024). These models
 083 demonstrated that ML models can acquire more generalizable abilities with limited observations
 084 by using knowledge from process-based models. However, these models focus on training with
 085 matched variables and do not consider or address the utilization of satellite-based indirect labels.
 086 The models with knowledge-guided architecture also rely on intermediate outputs from smaller and
 087 less-expensive process-based models that are often unavailable in large scale problems due to the
 088 excessive storage cost as well as the expensive computation to re-run the middle outputs.

089 We propose a knowledge-guided assimilation learning framework to integrate process-based and
 090 learning models with the utilization of higher-level indirect observations from sensing platforms at
 091 large scale. Our contributions are:

- 092 • We propose a knowledge-guided assimilation framework with a learned decomposition-and-
 093 resembling (DERE) process: (1) Knowledge-aligned decomposition of end-to-end simulation data
 094 to represent intermediate, sub-stream processes of a process-based model, as a preparation for in-
 095 tegration of indirect higher-level labels. This is necessary as there is often no intermediate modeling
 096 results saved for large-scale process-based models, which are costly both in space and computa-
 097 tion. (2) Knowledge-aligned resembling of decomposed intermediate, sub-stream processes to
 098 enable supervision from indirect higher-level labels available at large-scale to constrain the sub-
 099 stream process. This data-driven sub-stream process calibration can significantly enhance model
 100 generalizability using limited in-situ flux tower observations of final carbon variables.
- 101 • We propose a probabilistic label expansion module to increase the temporal coverage of in-situ ob-
 102 servations for finetuning, with explicitly learned uncertainty-awareness to leverage the generated
 103 probabilistic labels.
- 104 • We carry out large-scale experiments with multiple carbon monitoring network datasets using the
 105 most recent ICLR CarbonSense benchmark data (Fortier et al., 2025). Extensive comparisons with
 106 time-series models and their knowledge-guided extensions demonstrated the effectiveness of our
 107 DERE-based knowledge-guided assimilation framework.

108 **2 PROBLEM DEFINITION**109 **2.1 GENERAL FORMULATION**

110 Our problem is formulated with the following inputs and outputs:

111 **Inputs:** (1) Physical conditions $\mathbf{x}_{s,t}$ that are needed to infer target output variables at each location s in a spatial domain \mathcal{S} (e.g., global) along each time step t in a time-series $\mathcal{T} = \{1, \dots, T\}$. (2) Initial conditions/states \mathbf{c}_k (from a set of possible conditions $\{\mathbf{c}_1, \dots, \mathbf{c}_K\}$) and their weights α_k at the beginning of \mathcal{T} .112 **Outputs:** Predicted target variables $\hat{\mathbf{y}}_{s,t}$ for the same set of locations and time-series. The ground truth $\mathbf{y}_{s,t}$ from in-situ data are available at a limited number of locations $\mathcal{S}' \subset \mathcal{S}$ for a subset of temporal periods $\mathcal{T}' \subset \mathcal{T}$.

113 In addition, there are the following auxiliary information related to process-based modeling:

114

115 - **Estimates of target output variables**, $\mathbf{y}_{s,t}^P$, from a process-based model \mathcal{M}^P based on the physical conditions $\mathbf{x}_{s,t}$ in \mathcal{S} and \mathcal{T} . In the problem setting, $\mathbf{y}_{s,t}^P$ represents end-results out of the process-based model and does not contain intermediate results due to the excessive cost of space and computation in large-scale applications. In other words, domain scientists often do not save the intermediate results due to the storage cost and it is also too expensive to re-run the model to generate them.
116 - **Indirect higher-level observations**, $\mathbf{z}_{s,t}$ (e.g., from satellites), on outputs of the intermediate, sub-stream processes as defined in Def. 1. These observations are indirect and cannot be used in the process-based model because they are mixed at the aggregated level and are not compatible with the sub-stream processes.
117
118 **Definition 1 (Intermediate, sub-stream processes)** Denote \mathcal{M}^P as the entire set of functions from a process-based model, with $(\mathbf{y}_{s,t}^P)_k = \mathcal{M}^P(\mathbf{x}_{s,t}, \mathbf{c}_k)$. As a clarification, when we use subscript k on $\mathbf{y}_{s,t}^P$ (i.e., $(\mathbf{y}_{s,t}^P)_k$) it means the result simulated for the initial condition \mathbf{c}_k ; otherwise, it means final result aggregated over different initial conditions using α_k (observation $\mathbf{y}_{s,t}$ is always aggregated). In process-based modeling, \mathcal{M}^P often consists of a set of intermediate and sub-stream processes. An **intermediate process** generates intermediate results from part of the physical system, and the results are fed into other parts to complete the simulation. For example, we can have $\mathcal{M}^P(\cdot) = \mathcal{M}_1^P(\mathcal{M}_2^P(\cdot))$, where \mathcal{M}_1^P and \mathcal{M}_2^P are intermediate processes. In addition, an intermediate process can further contain **sub-stream processes**, which run in parallel and aggregate into the complete intermediate process. For example, we can have $\mathcal{M}_1^P(\mathcal{M}_2^P(\mathbf{x}_{s,t})) = \mathcal{M}_1^P(\mathcal{M}_2^P(\mathbf{x}_{s,t}, \mathbf{c}_1), \mathcal{M}_2^P(\mathbf{x}_{s,t}, \mathbf{c}_2), \mathcal{M}_2^P(\mathbf{x}_{s,t}, \mathbf{c}_3), \dots)$. Sub-stream processes often have the same function form, take the same set of input variables, and generate the same set of output variables. The difference between sub-streams is the initial condition or model state \mathbf{c}_k . For example, a forest often contains cohorts with different initial ages where each age corresponds to a different state for the simulation.119 **2.2 REAL-WORLD EXAMPLE: GLOBAL CARBON MONITORING**120 Here we provide a concrete and important real-world example in global forest carbon monitoring to better illustrate the problem. In carbon monitoring, the input physical conditions $\mathbf{x}_{s,t}$ include meteorological variables (e.g., temperature, precipitation), soil properties and more, where each time step may correspond to a month or shorter for monitoring over multiple decades at the global scale. The initial condition \mathbf{c}_k corresponds to the initial age of trees at the beginning of the process. The output carbon variables $\mathbf{y}_{s,t}$ include gross primary production (GPP), Net Ecosystem Exchange (NEE), Ecosystem Respiration (RECO), etc.121 The auxiliary information from process-based modeling include: (1) Carbon variables $\mathbf{y}_{s,t}^P$ estimated from the ED model (Hurtt et al., 1998; Moorcroft et al., 2001; Ma et al., 2022) on variables such as GPP, NEE and RECO, which do not contain intermediate results due to the excessive storage and re-computation cost. (2) Indirect observations $\mathbf{z}_{s,t}$ from remote sensing satellites, which provide observations of forest PFTs (e.g., deciduous, evergreen, shrubs) at large geographic scale that are important for cross-PFT competition modeling. However, in ecological modeling, such natural

162 competitions need to be modeled as multiple sub-streams of different forest processes (i.e., based
 163 on different initial ages c_k), whereas the sensing-based PFTs cannot distinguish between these sub-
 164 processes. As a result, existing efforts have not been able to leverage these indirect observations to
 165 enhance the prediction quality. We will also use this example later on to help illustrate components
 166 of the method section.

167 3 RELATED WORK

169 **Time-series forecasting.** Deep learning models for time-series forecasting are natural data-driven
 170 frameworks to model the input-output relationships in our problem setting. Transformer-based ar-
 171 chitectures have become widely adopted for tasks with long sequences thanks to their ability to
 172 capture long-range dependencies (Vaswani et al., 2017; Devlin et al., 2018; Dosovitskiy et al., 2021)
 173 compared to earlier models based on recurrent structures (Wang et al., 2023; Chen et al., 2023a; Xu
 174 et al., 2024; Lai et al., 2018). Numerous adaptations of transformers have been introduced for fur-
 175 ther improvements, including ProbSparse self-attention in Informer (Zhou et al., 2021), frequency-
 176 domain attention in FEDFormer (Zhou et al., 2022), cross-feature as well as cross-time dependency
 177 modeling in Crossformer (Zhang & Yan, 2023), exogenous feature integration in TimeXer (Wang
 178 et al., 2024a), time-variable inversion in iTransformer (Liu et al., 2023), and multivariate SimpleTM
 179 (Chen et al., 2025). While these models have shown promising performances in general forecasting
 180 tasks, they are by design data-driven methods that do not consider physical guidance from process-
 181 based models, limiting their performance when only limited in-situ observations are available for
 182 large-scale applications.

183 **Data-driven emulation of process-based model.** Recent studies have also explored variants of
 184 forecasting models as learning-based emulators to approximate process-based models. For exam-
 185 ple, these models have been developed to emulate climate models (Yu et al., 2024b; Rasp et al.,
 186 2018; Mooers et al., 2021; Wang et al., 2022) and weather forecasting models (Lam et al., 2023;
 187 Kurth et al., 2023; Bonev et al., 2023) to improve the scalability for higher resolution tasks. In ad-
 188 dition, deep learning surrogates have been widely explored for process-based simulations involving
 189 the solution of partial differential equations (Obiols-Sales et al., 2020; Sirignano et al., 2020; Karni-
 190 adakis et al., 2021). However, these emulators mainly aim to enhance the computational efficiency
 191 of process-based models instead of combining physical knowledge with real observations to further
 192 improve the prediction quality.

193 **Knowledge-guided machine learning.** There has been growing efforts on incorporating physics
 194 into ML models to enhance both predictive performance and generalizability for solving scientific
 195 problems (Willard et al., 2022). Early studies mainly consider residual modeling, where simple
 196 regression models (Forssell & Lindskog, 1997; Xu & Valocchi, 2015) or recurrent networks (Wan
 197 et al., 2018) are used to infer differences between process-based models and ground truth. However,
 198 these methods are unable to enforce physics-based constraints and can only make use of the sim-
 199 ulation results when corresponding observations are simultaneously available. More recent strategies
 200 start focusing on deeper integration of knowledge, and common strategies include modifying layer
 201 architectures based on process-based models (Anderson et al., 2019; Muralidhar et al., 2018; Feng
 202 et al., 2022), pretraining with simulation data (Read et al., 2019; Ham et al., 2019; Sultan et al.,
 203 2018; Hurtado et al., 2018; Yu et al., 2025), and adding physics-constrained loss functions (Jia et al.,
 204 2020; Read et al., 2019; Li et al., 2024; Yu et al., 2024a; Raissi et al., 2019). Variants have also
 205 been developed to learn from multiple process-based models (Chen et al., 2023b; Jia et al., 2021),
 206 performing model selection (Chen et al., 2023a), integrating simulation data to reduce bias (Wang
 207 et al., 2024b; He et al., 2023), etc. However, these models focus on training with matched variables
 208 and do not consider indirect labels that are not directly usable with process-based models but are
 209 often available at large scale. The models with knowledge-guided architecture also rely on inter-
 210 mediate outputs from smaller and less-expensive process-based models that are often unavailable in
 211 large scale problems due to the expensive storage and re-generation cost.

212 4 KNOWLEDGE-GUIDED ASSIMILATION WITH INDIRECT LABELS

213 The knowledge-guided framework has a decomposition-and-resembling structure to allow integra-
 214 tion of indirect labels at large scale to provide guidance to intermediate, sub-stream processes. Sec.
 215 4.1 and 4.2 discuss details of the designs, and Sec. 4.3 presents a probabilistic label expansion
 216 module to increase the temporal coverage of in-situ labels and uncertainty-aware finetuning. Fig. 1
 217 shows the overall framework.

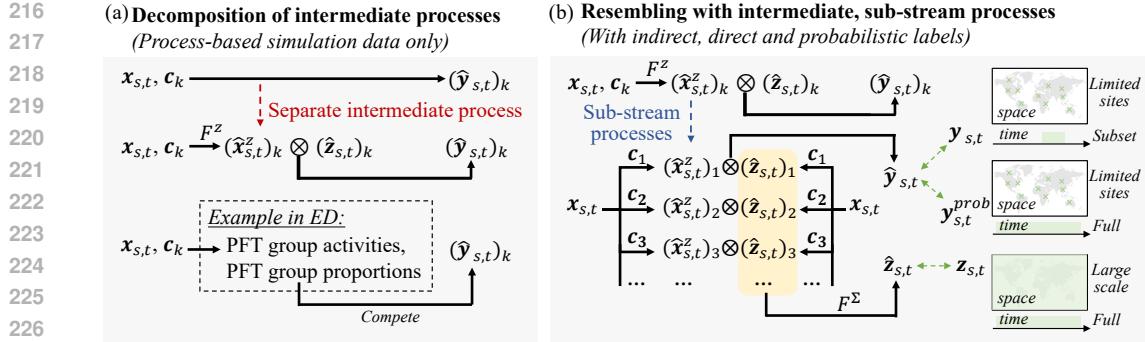


Figure 1: Overview of the decomposition and resembling framework.

4.1 KNOWLEDGE-ALIGNED DATA DECOMPOSITION

As explained in Def. 1, the entire physical process \mathcal{M}^P contains intermediate, sub-stream processes. These are often not readily available for data-driven models to learn right off the simulation data, as the intermediate results are often not saved due to the excessive size at large scale and high cost of re-generation. Thus, a necessary initial step is to separate out the intermediate process of interest as a preparation to incorporate the indirect labels (Sec. 2.1) in the later resembling step. This is the goal of knowledge-aligned decomposition. For clarity: (1) the decomposition only separates out an intermediate process and does not consider sub-stream processes that will be addressed in the resembling step; and (2) the decomposition step uses only the simulation data $\mathbf{y}_{s,t}^P$ from \mathcal{M}^P and does not use observations.

Specifically, As shown in Fig. 1(a), the decomposition step splits out an intermediate process, approximated by a learned function $\mathcal{F}^z(\mathbf{x}_{s,t}, \mathbf{c}_k)$ to generate $((\hat{\mathbf{x}}_{s,t}^z)_k, (\hat{\mathbf{z}}_{s,t})_k)$ before reaching $(\hat{\mathbf{y}}_{s,t})_k$. Most importantly, the key objective is to explicitly represent $(\hat{\mathbf{z}}_{s,t})_k$ so later on it can be connected to the indirect labels during resembling. As the decomposition only concerns simulation data, here \mathbf{c}_k can be any condition available from the simulation data. The functional relationship between $((\hat{\mathbf{x}}_{s,t}^z)_k, (\hat{\mathbf{z}}_{s,t})_k)$ and $(\hat{\mathbf{y}}_{s,t})_k$, denoted by “ \otimes ”, can be defined either using a pre-defined, differentiable function based on the physical process (when such functions are direct and simple) or using another learned function, or a combination of the two. Using ecosystem carbon monitoring as an example (Fig. 1(a), bottom), $(\hat{\mathbf{x}}_{s,t}^z)_k$ represents outputs of carbon variables from groups of trees with different PFTs (e.g., deciduous) and $(\hat{\mathbf{z}}_{s,t})_k$ is a vector containing the proportions of different PFTs. They can then be combined into final carbon variables by linear combination (i.e., a pre-defined weighted sum based on proportions) plus non-linear competition (a learned function). All the learned functions will be pre-trained using the simulation data, which will be finetuned later with stronger constraints.

4.2 KNOWLEDGE-ALIGNED RESEMBLING OF INTERMEDIATE, SUB-STREAM PROCESSES

The resembling process will build on the separated intermediate process and integrate it with different types of real observations. As shown in Fig. 1(b), the resembling process will first explicitly integrate all sub-stream processes, governed by different initial conditions/states \mathbf{c}_k (each location or spatial unit can have multiple different states such as different tree ages). Here the function $\mathcal{F}^z(\mathbf{x}_{s,t}, \mathbf{c}_k)$ is responsible for generating all pairs of $((\hat{\mathbf{x}}_{s,t}^z)_k, (\hat{\mathbf{z}}_{s,t})_k)$ corresponding to different initial conditions, and these sub-stream results are then combined into the final prediction $\hat{\mathbf{y}}_{s,t}$ (no longer subscripted by k as all sub-streams have been combined), either by prefixed physical relationships or another learned function.

The most important part of the resembling is the integration of direct labels $\mathbf{y}_{s,t}$ (e.g., observations from in-situ flux towers on carbon variables) and indirect labels $\mathbf{z}_{s,t}$ (e.g., mixed PFTs across ages from satellite observations). In particular, the key is to enable the use of indirect labels $\mathbf{z}_{s,t}$ that are often available at much larger scales compared to direct labels $\mathbf{y}_{s,t}$ as shown by the illustrative maps in Fig. 1(b); for example, satellite-based $\mathbf{z}_{s,t}$ tends to have global coverage. With the decomposition of intermediate processes and the resembling of sub-stream processes, the indirect labels $\mathbf{z}_{s,t}$ can

be compared with the integrated $\mathcal{F}^\Sigma(\{(\hat{z}_{s,t})_k\}_{k=1\dots K})$ from all the sub-stream processes. Here it will be best if \mathcal{F}^Σ can be determined by prefixed aggregation functions when applicable, and can be learned when necessary. In the carbon monitoring example, \mathcal{F}^Σ is prefixed by a simple sum, $\sum_i^K ((\hat{z}_{s,t})_k \cdot \alpha_k)$, where α_k is the weight of an initial condition that is used to aggregate the PFT proportions across the conditions.

Furthermore, the final predictions $\hat{y}_{s,t}$ are constrained by the direct labels $y_{s,t}$ as a regular part of a training process, which are often available at a more limited number of locations (e.g., carbon flux towers that are expensive to build). We also enhance it with a probabilistic label tuning method in the next section. During training, each batch contains samples intended both for the indirect label comparison and direct label comparison.

4.3 PROBABILISTIC LABEL EXPANSION AND UNCERTAINTY-AWARE FINETUNING

As direct labels $y_{s,t}$ tend to be limited in the temporal domain in many Earth monitoring tasks (e.g., carbon flux towers at many sites are recent and only provides a few years of coverage), we further develop a probabilistic label expansion strategy and uncertainty-aware tuning to enrich the usable labels. For example, Fig. 2 shows several examples of observations at carbon flux tower sites, where the measurements are only available for a subset of years. To address this, we propose a simpler prediction task to expand the labels, where the goal is to predict the missing labels at each site leveraging existing labels as additional inputs. Comparing to the original task that aims to predict $y_{s,t}$ using $x_{s,t}$ and c_k , this task has significantly reduced difficulty as it only aims to make predictions at sites where a set of labels is already known in a time window, and those labels are given as part of the inputs. This makes it feasible to leverage these predictions to facilitate the model tuning in our original task. Furthermore, we make the predictions probabilistic so the finetuning step can explicitly utilize the uncertainty to determine whether or not a prediction should be used. Specifically, we adopt conditional diffusion (Tashiro et al., 2021) to generate the missing measurements, where the existing observations from the same time-series can be added as conditions, and the variance can be obtained. During training, we set a subset of observations as part of the given conditions while using the remaining observations for loss evaluations. Denote $y_{s,t}^m$ as the masked observations for prediction, $y_{s,t}^{m'}$ as those given as conditions, and j as the position in the denoising sequence, we have

$$p_\theta((y_{s,t}^m)_{j-1} \mid (y_{s,t}^m)_j, y_{s,t}^{m'}) = \mathcal{N}((y_{s,t}^m)_{j-1}; \mu_\theta((y_{s,t}^m)_j, y_{s,t}^{m'}), \sigma_j^2 I).$$

Once trained, we generate 100 samples per site to estimate the variance and confidence interval.

Given the predictions with variance, we include an uncertainty-aware tuning module as part of the resampling process, where a learned sub-network is used to adaptively determine the weight of each predicted label based on its value and variance. Overall, our DERE model is trained with direct labels, probabilistic labels, and indirect labels.

5 EXPERIMENTS

5.1 DATA

We conducted extensive experiments at the global scale using the collection of datasets from the most recent ICLR CarbonSense benchmark data (Fortier et al., 2025) developed for the important carbon monitoring problem. Specifically, CarbonSense includes various datasets representing different in-situ carbon flux observation networks under different conditions, including AmeriFlux, FLUXNET, the ICOS-2023, ICOS-WW, and a mixed set. Through data inspection, we found that ICOS-2023 only have a few sites with one year of data. This leaves very few data points for testing that can cause highly instable results. Thus, we replaced it (ICOS-WW still contains data from the network) with the recent ABoVE dataset covering the broad Arctic region (Bill et al., 2023). Fig. 2 shows the geographic distribution of the sites from different datasets. We used 3 key variables GPP, RECO, and NEE for the evaluation, which are available across all the datasets. For model training

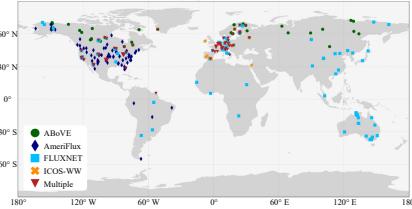


Figure 2: Distribution of in-situ sites.

324 Table 1: GPP result comparison (top results in bold; runner-ups with underlines).
325

	Methods	ABoVE		AmeriFlux		FLUXNET		ICOS-WW		Multiple		Top-2 count
		MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	
Physical	ED	0.427	0.703	0.883	1.419	0.822	1.110	0.713	0.968	0.678	1.010	0/10
	Transformer	0.502	0.684	1.030	1.405	0.850	1.147	0.955	1.235	0.736	0.997	0/10
	Informer	0.523	0.729	1.093	1.465	0.882	1.180	0.859	1.096	0.817	1.065	0/10
	FEDformer	0.451	0.626	0.917	1.347	0.768	1.025	1.154	1.524	0.790	1.080	0/10
	iTransformer	0.561	0.662	1.007	1.480	0.887	1.162	1.009	1.340	0.851	1.149	0/10
	TimeXer	0.685	1.001	1.250	1.939	1.156	1.602	1.451	1.860	1.100	1.547	0/10
	SimpleTM	0.631	0.782	1.057	1.549	0.972	1.251	1.132	1.434	1.007	1.346	0/10
KGML	Transformer	<u>0.352</u>	0.541	<u>0.651</u>	1.033	0.699	0.951	0.711	1.014	0.636	0.919	2/10
	Informer	0.373	0.555	<u>0.604</u>	<u>0.947</u>	0.756	1.011	0.839	1.141	<u>0.618</u>	0.888	4/10
	FEDformer	0.369	0.531	0.769	1.115	0.726	0.926	0.830	1.121	0.701	1.003	0/10
	iTransformer	0.363	<u>0.508</u>	0.678	<u>1.027</u>	0.654	0.885	<u>0.641</u>	0.919	0.621	0.909	3/10
	TimeXer	0.375	0.566	0.657	1.036	0.649	0.879	0.791	1.050	0.678	0.990	1/10
	SimpleTM	0.406	0.587	0.737	1.102	0.669	<u>0.855</u>	<u>0.651</u>	0.916	0.680	0.976	3/10
	Proposed	DERE	0.302	0.485	0.663	1.068	<u>0.598</u>	0.863	0.682	0.888	0.585	0.890

337

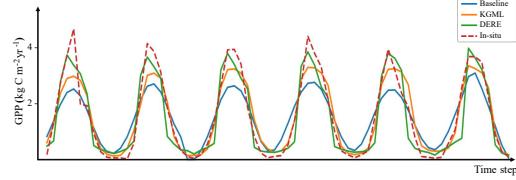
338 Table 2: RECO result comparison (top results in bold; runner-ups with underlines).
339

	Methods	ABoVE		AmeriFlux		FLUXNET		ICOS-WW		Multiple		Top-2 count
		MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	
Physical	ED	0.431	0.657	0.603	0.855	0.603	0.833	0.464	0.620	0.457	0.649	3/10
	Transformer	0.602	0.857	0.804	1.040	0.559	0.743	0.698	0.886	0.488	0.709	0/10
	Informer	0.498	0.719	0.720	0.941	0.546	0.749	0.697	0.927	0.530	0.740	0/10
	FEDformer	0.431	0.611	0.616	0.867	0.482	0.638	0.832	1.054	0.574	0.804	0/10
	iTransformer	0.412	0.526	0.543	0.774	0.510	0.662	0.679	0.969	0.535	0.752	0/10
	TimeXer	0.607	0.854	0.946	1.279	0.713	0.960	1.386	1.770	0.784	1.031	0/10
	SimpleTM	0.503	0.660	0.620	0.865	0.561	0.709	0.862	1.126	0.626	0.859	0/10
KGML	Transformer	0.328	<u>0.467</u>	0.526	0.705	<u>0.438</u>	<u>0.583</u>	0.586	0.756	0.466	0.655	3/10
	Informer	0.354	0.495	<u>0.448</u>	0.614	0.475	0.626	0.559	0.716	0.463	<u>0.638</u>	3/10
	FEDformer	0.319	0.443	0.533	0.736	0.506	0.645	0.582	0.781	0.541	0.727	2/10
	iTransformer	0.348	0.492	<u>0.439</u>	<u>0.650</u>	0.445	0.585	0.595	0.796	0.537	0.733	2/10
	TimeXer	0.388	0.543	0.591	0.769	0.512	0.640	0.739	0.914	0.555	0.744	0/10
	SimpleTM	0.385	0.555	0.492	0.694	0.487	0.643	0.519	0.707	0.545	0.733	0/10
	Proposed	DERE	<u>0.320</u>	0.472	0.465	0.671	<u>0.393</u>	<u>0.557</u>	<u>0.502</u>	0.639	0.442	0.627

351

352 and testing, we spatially split each dataset with 80% for training and 20% for testing. The spatial
353 split ensures that there is no site-overlap between training and test sets.
354

355 For data on the process-based model side, we
356 used the simulations from the ED model (Hurt
357 et al., 1998; Moorcroft et al., 2001; Ma et al.,
358 2022), which has global coverage and the sim-
359 ulation results fully covered the temporal range
360 of the in-situ observations. For the indirect la-
361 bels, we used the satellite-derived PFT infor-
362 mation from the ESA CCI PFT dataset (Harper et al.,
363 2023), which also has global coverage for the
364 temporal range.

365 Figure 3: Comparison of GPP over time steps.
366 Both the baseline and the KGML model here are
367 from the Transformer.
368369 Table 3: NEE result comparison (top results in bold; runner-ups with underlines).
370

	Methods	ABoVE		AmeriFlux		FLUXNET		ICOS-WW		Multiple		Top-2 count
		MAE	RMSE									
Physical	ED	0.276	0.386	0.599	0.920	0.613	0.889	0.530	0.691	0.537	0.770	0/10
	Transformer	0.413	0.500	0.615	0.875	0.575	0.790	0.489	0.665	0.532	0.726	0/10
	Informer	0.217	0.287	0.626	0.860	0.561	<u>0.787</u>	0.466	0.589	0.554	0.741	2/10
	FEDformer	0.201	0.266	0.546	0.805	0.548	0.769	0.535	0.680	0.529	0.735	0/10
	iTransformer	0.365	0.427	0.711	1.026	0.697	0.940	0.585	0.762	0.625	0.855	0/10
	TimeXer	1.288	2.209	0.714	1.129	0.770	1.126	1.340	1.644	0.843	1.474	0/10
	SimpleTM	0.334	0.415	0.692	0.997	0.664	0.912	0.640	0.827	0.655	0.894	0/10
KGML	Transformer	<u>0.177</u>	0.244	0.507	0.733	<u>0.504</u>	0.722	0.511	0.721	<u>0.489</u>	0.691	4/10
	Informer	0.186	0.252	<u>0.456</u>	0.700	0.509	<u>0.721</u>	0.519	0.730	0.501	0.699	3/10
	FEDformer	0.197	0.268	0.506	0.741	0.522	0.735	<u>0.475</u>	<u>0.627</u>	0.492	0.698	2/10
	iTransformer	0.179	0.239	0.540	0.770	0.600	0.834	0.485	0.641	0.534	0.737	1/10
	TimeXer	0.192	0.264	0.529	0.800	0.532	0.760	0.563	0.735	0.505	0.714	0/10
	SimpleTM	0.187	0.255	0.582	0.842	0.588	0.790	0.527	0.709	0.492	0.698	0/10
	Proposed	DERE	0.175	0.244	0.496	<u>0.713</u>	0.478	0.683	0.505	0.696	0.476	0.692

378
379

5.2 CANDIDATE METHODS

380
381
382
383
384

We consider four different categories of candidate methods: (1) The process-based model ED; (2) Learning-based time-series models as listed below; (3) Knowledge-guided extensions of the time-series models (more details later); (4) Our proposed method DERE. For the training, we used the recommended settings from the papers, and trained till convergence via patience checks on validation data (10% of training data; independent from test data).

385
386
387

- **Transformer** (Vaswani et al., 2017): The vanilla Transformer serves as the fundamental sequence modeling framework with self-attention to help capture long-range temporal dependencies.
- **Informer** (Zhou et al., 2021): A Transformer variant that employs sparse attention and generative-style decoding to enhance long-sequence prediction efficiency.
- **FEDFormer** (Zhou et al., 2022): A Transformer variant using frequency-domain attention to strengthen series decomposition and boost forecasting accuracy.
- **iTransformer** (Liu et al., 2023): A Transformer variant that adopts an inverted design, emphasizing feature dimensions over time steps and helping to exploit correlations among input variables.
- **Timexer** (Wang et al., 2024a): A Transformer variant that refines attention by integrating inter-target and input-target relations to better capture temporal dependencies.
- **SimpleTM** (Chen et al., 2025): A lightweight time series forecasting model that streamlines architecture and improves computational efficiency while maintaining strong predictive performance.

390
391
392
393
394
395
396
397
398
399

For each forecasting method, we consider two variants: a default data-driven version (baseline) and an extension with knowledge-guided machine learning (KGML). The baseline models were trained directly on in-situ observations as target values, whereas the KGML variants include two generally used strategies: (1) They are pretrained on simulation data from ED and then finetuned with in-situ observations; and (2) The training included physics-constrained loss functions based on the carbon mass balance (e.g., $NEE = RECO - GPP$). Both are used in our DERE model as well. Finally, the DERE model is implemented with the Transformer baseline as the backbone.

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

5.3 RESULTS

417
418
419
420
421
422
423
424
425
426
427
428

Overall Evaluation. Tables 1 to 3 present the overall testing performance using in-situ GPP, RECO, and NEE data, evaluated with MAE and RMSE. We provide the top-2 counts (i.e., number of times a method ranked in top-2 across all columns) for convenience. The proposed DERE method show the best performance compared to the others. The pure data-driven baselines did not outperform the process-based ED model, potentially due to the generalization challenge with limited observations. As a reference, ED is a fairly strong model that has been used in major systems including NASA Carbon Monitoring System. In contrast, KGML-based methods and the proposed approach outperform the baseline, underscoring the importance of incorporating physics knowledge. The enhanced performance of the proposed DERE model can be attributed to its integration of direct, indirect and probabilistic labels in addition to the simulation data. Details of the ablation study will be provided later. This shows the promising potential of integrating indirect labels that are available at large scale.

429
430
431

Visualization. Figure 3 shows the temporal dynamics of GPP using the baseline Transformer, KGML Transformer, the proposed DERE method and in-situ data, as examples to visualize the qualitative performance. The proposed method aligns more closely with in-situ observations than the other models. Both the KGML and proposed methods demonstrate more stable and consistent

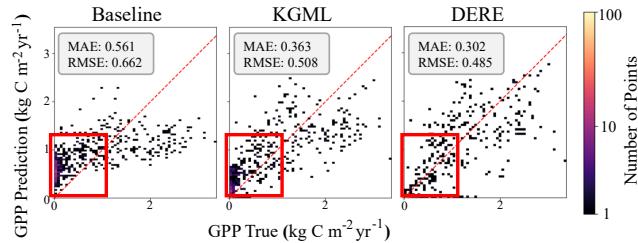


Figure 4: Scatter plots of GPP true / prediction for the ABoVE data. Both the baseline and KGML model here are from the iTransformer.

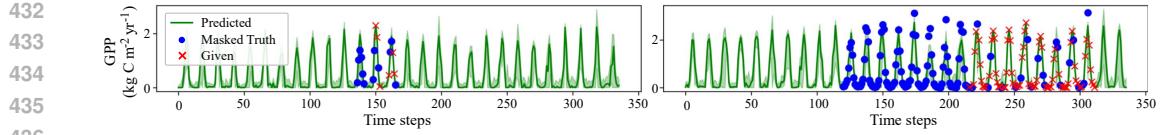


Figure 5: Probabilistic label expansion examples. The green shaded regions represent the 5%-95% confidence interval based on sampled time series.

Table 4: Ablation study (top results in bold; runner-ups with underlines).

Methods	ABoVE		AmeriFlux		FLUXNET		ICOS-WW		Multiple		Top-2 Count
	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	
GPP	Baseline	0.502	0.684	1.030	1.405	0.850	1.147	0.955	1.235	0.736	0.997 /0/10
	KGML	0.352	0.541	0.651	1.033	0.699	0.951	0.711	1.014	0.636	0.919 /2/10
	KGML + indirect labels	<u>0.321</u>	<u>0.536</u>	0.677	1.084	<u>0.619</u>	0.850	0.685	0.888	0.573	0.888 /8/10
RECO	DERE	0.302	0.485	<u>0.663</u>	<u>1.068</u>	0.598	<u>0.863</u>	0.682	<u>0.888</u>	<u>0.585</u>	0.890 /10/10
	Baseline	0.602	0.857	0.804	1.040	0.559	0.743	0.698	0.886	0.488	0.709 /0/10
	KGML	0.328	0.467	0.526	<u>0.705</u>	0.438	0.583	0.586	0.756	0.466	0.655 /3/10
NEE	KGML + indirect labels	0.334	0.526	<u>0.526</u>	0.721	0.409	<u>0.567</u>	0.508	<u>0.639</u>	0.402	0.596 /7/10
	DERE	0.320	<u>0.472</u>	0.465	0.671	<u>0.393</u>	0.557	0.502	0.639	<u>0.442</u>	<u>0.627</u> /10/10
	Baseline	0.413	0.500	0.615	0.875	0.575	0.790	0.489	0.665	0.532	0.726 /2/10
	KGML	0.177	0.244	0.507	0.733	0.504	0.722	0.511	0.721	0.489	0.691 /2/10
	KGML + indirect labels	0.179	0.242	0.475	0.723	0.471	0.677	<u>0.505</u>	0.696	0.482	0.698 /7/10
	DERE	0.175	0.244	0.496	0.713	0.478	0.683	0.505	0.696	0.476	<u>0.692</u> /9/10

temporal patterns than the baseline model. Figure 4 presents more detailed scatter plots of GPP predictions versus ground-truth observations across Above, FLUXNET, and Multiple networks. The proposed DERE method is able to correct large number of deviations highlighted by the red boxes, leading to improved performance.

Probabilistic Label Expansion. Figure 5 visualizes examples of label expansion on the in-situ data with conditional diffusion, where the effect on final predictions are included in the ablation study. The green line indicates the mean of the sampled predictions. In masked regions, the predicted series closely match the hidden in-situ data, demonstrating accurate and reliable GPP imputation. The green shaded region represents the 5%-95% confidence interval across the imputed time series. The variance from the predictions can be leveraged by the uncertainty-aware tuning module to improve the usability of the probabilistic labels. The patterns remain fairly stable with varying proportions of missing data, potentially benefiting from auxiliary environment inputs.

Ablation Study Table 4 provides the ablation study results. The proposed DERE model achieves the best top-2 count across all variables, with stepwise improvements from the baseline to KGML, then KGML with PFT, and finally DERE. Extending KGML with indirect labels helps significantly reduce the errors. The full DERE with probabilistic labels and uncertainty-aware tuning yielded the best overall performance.

6 CONCLUSION

We presented a knowledge-guided assimilation framework with a decomposition-and-resembling approach that bridges process-based models and learning models to leverage indirect labels from advanced sensing platforms that are available at large scale. We further developed a probabilistic label expansion module to extend the temporal coverage of sparse limited observations with explicit uncertainty awareness. Extensive experiments on global carbon monitoring datasets, including the ICLR CarbonSense benchmark, demonstrate that our proposed DERE-based knowledge-guided assimilation framework can effectively improve prediction quality compared with existing methods. Future work will explore extensions to further consider more challenging scenarios with anomalous or rare conditions.

REFERENCES

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural networks. In *Advances in Neural Information Processing Systems*, pp. 14510–14519, 2019.

486 Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Ko-
 487 rnbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
 488 networks for data-efficient and accurate interatomic potentials. *Nature communications*, 13(1):
 489 2453, 2022.

490 KE Bill, C Dieleman, JL Baltzer, GE Degre-timmons, MC Mack, SG Cumming, XJ Walker, and
 491 MR Turetsky. Arctic-boreal vulnerability experiment (above). *ORNL Distributed Active Archive
 492 Center (DAAC) dataset 10.3334/ORNLDAA/2235* (2023, pp. 2235, 2023).

493 Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
 494 Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
 495 namics on the sphere. In *International conference on machine learning*, pp. 2806–2823. PMLR,
 496 2023.

497 Hui Chen, Viet Luong, Lopamudra Mukherjee, and Vikas Singh. Simpletm: A simple baseline
 498 for multivariate time series forecasting. In *The Thirteenth International Conference on Learning
 499 Representations*, 2025.

500 Shengyu Chen, Nasrin Kalanat, Simon Topp, Jeffrey Sadler, Yiqun Xie, Zhe Jiang, and Xiaowei
 501 Jia. Meta-transfer-learning for time series data with extreme events: An application to water
 502 temperature prediction. In *Proceedings of the 32nd ACM International Conference on Information
 503 and Knowledge Management*, pp. 266–275, 2023a.

504 Shengyu Chen, Yiqun Xie, Xiang Li, Xu Liang, and Xiaowei Jia. Physics-guided meta-learning
 505 method in baseflow prediction over large regions. In *Proceedings of the 2023 SIAM International
 506 Conference on Data Mining (SDM)*, pp. 217–225. SIAM, 2023b.

507 A Daw, RQ Thomas, CC Carey, JS Read, AP Appling, and A Karpatne. Physics-guided ar-
 508 chitecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling.
 509 *arXiv:1911.02682*, 2019.

510 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 511 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

512 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 513 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 514 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 515 scale. *ICLR*, 2021.

516 Dapeng Feng, Jiangtao Liu, Kathryn Lawson, and Chaopeng Shen. Differentiable, learnable, region-
 517 alized process-based models with multiphysical outputs can approach state-of-the-art hydrologic
 518 prediction accuracy. *Water Resources Research*, 58(10):e2022WR032404, 2022.

519 Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. Predicting ac optimal power
 520 flows: Combining deep learning and lagrangian dual methods. In *Proceedings of the AAAI Con-
 521 ference on Artificial Intelligence*, volume 34, pp. 630–637, 2020.

522 Urban Forssell and Peter Lindskog. Combining semi-physical and neural network modeling: An
 523 example of its usefulness. *IFAC Proceedings Volumes*, 30(11):767–770, 1997.

524 Matthew Fortier, Mats Leon Richter, Oliver Sonnentag, and Christopher Pal. Carbonsense: A multi-
 525 modal dataset and baseline for carbon flux modelling. In *The Thirteenth International Conference
 526 on Learning Representations*, 2025.

527 Pierre Friedlingstein, Michael O’sullivan, Matthew W Jones, Robbie M Andrew, Dorothee CE
 528 Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T Luijkx, Glen P Peters,
 529 et al. Global carbon budget 2023. *Earth System Science Data*, 15(12):5301–5369, 2023.

530 Pierre Friedlingstein, Michael O’sullivan, Matthew W Jones, Robbie M Andrew, Judith Hauck, Peter
 531 Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T Luijkx, Are Olsen, et al. Global carbon
 532 budget 2024. *Earth System Science Data Discussions*, 2024:1–133, 2024.

533 Yoo-Geun Ham, Jeong-Hwan Kim, and Jing-Jia Luo. Deep learning for multi-year enso forecasts.
 534 *Nature*, 573(7775):568–572, 2019.

540 K. L. Harper, C. Lamarche, A. Hartley, et al. A 29-year time series of annual 300 m reso-
 541 lution plant-functional-type maps for climate models. *Earth System Science Data*, 15:1465–
 542 1499, 2023. doi: 10.5194/essd-15-1465-2023. URL <https://doi.org/10.5194/essd-15-1465-2023>.

543

544 Erhu He, Yiqun Xie, Licheng Liu, Weiyi Chen, Zhenong Jin, and Xiaowei Jia. Physics guided
 545 neural networks for time-aware fairness: an application in crop yield prediction. In *Proceedings
 546 of the AAAI conference on artificial intelligence*, volume 37, pp. 14223–14231, 2023.

547

548 Kethmi Hirushini Hettige, Jiahao Ji, Shili Xiang, Cheng Long, Gao Cong, and Jingyuan Wang.
 549 Airphynet: Harnessing physics-guided neural networks for air quality prediction. *arXiv preprint
 550 arXiv:2402.03784*, 2024.

551

552 David Menéndez Hurtado, Karolis Uziela, and Arne Elofsson. Deep transfer learning in the assess-
 553 ment of the quality of protein models. *arXiv preprint arXiv:1804.06281*, 2018.

554

555 G Hurttt, M Zhao, R Sahajpal, A Armstrong, R Birdsey, E Campbell, Katelyn Dolan, R Dubayah,
 556 JP Fisk, S Flanagan, et al. Beyond mrv: high-resolution forest carbon modeling for climate
 557 mitigation planning over maryland, usa. *Environmental Research Letters*, 14(4):045013, 2019.

558

559 George C Hurttt, Paul R Moorcroft, Stephen W Pacala And, and Simon A Levin. Terrestrial models
 560 and global change: challenges for the future. *Global Change Biology*, 4(5):581–590, 1998.

561

562 Xiaowei Jia, Jared Willard, Anuj Karpatne, Jordan S Read, Jacob A Zwart, Michael Steinbach,
 563 and Vipin Kumar. Physics-guided machine learning for scientific discovery: An application in
 564 simulating lake temperature profiles. *arXiv preprint arXiv:2001.11086*, 2020.

565

566 Xiaowei Jia, Yiqun Xie, Sheng Li, Shengyu Chen, Jacob Zwart, Jeffrey Sadler, Alison Appling,
 567 Samantha Oliver, and Jordan Read. Physics-guided machine learning from simulation data: An
 568 application in modeling lake and river systems. In *2021 IEEE International Conference on Data
 569 Mining (ICDM)*, pp. 270–279. IEEE, 2021.

570

571 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 572 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

573

574 A Karpatne, W Watkins, J Read, and V Kumar. Physics-guided neural networks (pgnn): An appli-
 575 cation in lake temperature modeling. *arXiv:1710.11431*, 2017.

576

577 Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani, David
 578 Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. Fourcastnet: Accelerating
 579 global high-resolution weather forecasting using adaptive fourier neural operators. In *Proceedings
 580 of the platform for advanced scientific computing conference*, pp. 1–11, 2023.

581

582 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
 583 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference
 584 on research & development in information retrieval*, pp. 95–104, 2018.

585

586 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirsberger, Meire Fortunato, Fer-
 587 ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
 588 medium-range global weather forecasting. *Science*, 382(6677):1416–1421, 2023.

589

590 Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
 591 Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
 592 differential equations. *ACM/IMS Journal of Data Science*, 1(3):1–27, 2024.

593

594 J Ling, A Kurzawski, and J Templeton. Reynolds averaged turbulence modelling using deep neural
 595 networks with embedded invariance. *J. Fluid Mech*, 2016.

596

597 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 598 itrtransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint
 599 arXiv:2310.06625*, 2023.

594 Lei Ma, George Hurt, Lesley Ott, Ritvik Sahajpal, Justin Fisk, Rachel Lamb, Hao Tang, Steve
 595 Flanagan, Louise Chini, Abhishek Chatterjee, et al. Global evaluation of the ecosystem demog-
 596 raphy model (ed v3. 0). *Geoscientific Model Development*, 15(5):1971–1994, 2022.
 597

598 Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
 599 Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
 600 Lanusse, et al. Multiple physics pretraining for physical surrogate models. *arXiv preprint*
 601 *arXiv:2310.02994*, 2023.

602 Griffin Mooers, Michael Pritchard, Tom Beucler, Jordan Ott, Galen Yacalis, Pierre Baldi, and Pierre
 603 Gentine. Assessing the potential of deep learning for emulating cloud superparameterization in
 604 climate models with real-geography boundary conditions. *Journal of Advances in Modeling Earth*
 605 *Systems*, 13(5):e2020MS002385, 2021.

606 Paul R Moorcroft, George C Hurt, and Stephen W Pacala. A method for scaling vegetation dynam-
 607 ics: the ecosystem demography model (ed). *Ecological monographs*, 71(4):557–586, 2001.

608 N Muralidhar, MR Islam, M Marwah, A Karpatne, and N Ramakrishnan. Incorporating prior domain
 609 knowledge into deep neural networks. In *IEEE Big Data*. IEEE, 2018.

610 Nikhil Muralidhar, Jie Bu, Ze Cao, Long He, Naren Ramakrishnan, Danesh Tafti, and Anuj
 611 Karpatne. Phynet: Physics guided neural networks for particle drag force prediction in assembly.
 612 In *Proceedings of the 2020 SIAM International Conference on Data Mining*, pp. 559–567. SIAM,
 613 2020.

614 Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chandramowliswaran. Cfd-
 615 net: A deep learning-based accelerator for fluid simulations. In *Proceedings of the 34th ACM*
 616 *international conference on supercomputing*, pp. 1–12, 2020.

617 Roberto Paolucci, Filippo Gatti, Maria Infantino, Chiara Smerzini, Ali Güney Özcebe, and Marco
 618 Stupazzini. Broadband ground motions from 3d physics-based numerical simulations using arti-
 619 ficial neural networksbroadband ground motions from 3d pbss using anns. *Bulletin of the Seis-
 620 mological Society of America*, 108(3A):1272–1286, 2018.

621 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 622 deep learning framework for solving forward and inverse problems involving nonlinear partial
 623 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

624 Stephan Rasp, Michael S Pritchard, and Pierre Gentine. Deep learning to represent subgrid processes
 625 in climate models. *Proceedings of the National Academy of Sciences*, 115(39):9684–9689, 2018.

626 Jordan S Read, Xiaowei Jia, Jared Willard, Alison P Appling, Jacob A Zwart, Samantha K Oliver,
 627 Anuj Karpatne, Gretchen JA Hansen, Paul C Hanson, William Watkins, et al. Process-guided
 628 deep learning predictions of lake water temperature. *Water Resources Research*, 55(11):9173–
 629 9190, 2019.

630 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
 631 works. In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021.

632 Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
 633 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
 634 for modeling quantum interactions. In *Advances in neural information processing systems*, pp.
 635 991–1001, 2017.

636 Chaopeng Shen, Alison P Appling, Pierre Gentine, Toshiyuki Bandai, Hoshin Gupta, Alexandre
 637 Tartakovsky, Marco Baity-Jesi, Fabrizio Fenicia, Daniel Kifer, Li Li, et al. Differentiable mod-
 638 elling to unify machine learning and physical models for geosciences. *Nature Reviews Earth &*
 639 *Environment*, 4(8):552–567, 2023.

640 Justin Sirignano, Jonathan F MacArt, and Jonathan B Freund. Dpm: A deep learning pde augmen-
 641 tation method with application to large-eddy simulation. *Journal of Computational Physics*, 423:
 642 109811, 2020.

648 Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and
 649 domain knowledge. In *Thirty-First AAAI Conference on Artificial Intelligence*, 2017.

650

651 Mohammad M Sultan, Hannah K Wayment-Steele, and Vijay S Pande. Transferable neural networks
 652 for enhanced sampling of protein dynamics. *Journal of chemical theory and computation*, 14(4):
 653 1887–1894, 2018.

654 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based dif-
 655 fusion models for probabilistic time series imputation. *Advances in neural information processing*
 656 *systems*, 34:24804–24816, 2021.

657

658 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 659 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 660 tion processing systems*, 30, 2017.

661 ZY Wan, P Vlachas, P Koumoutsakos, and T Sapsis. Data-assisted reduced-order modeling of
 662 extreme events in complex dynamical systems. *PLoS one*, 2018.

663

664 Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J Zhang. Stable climate simula-
 665 tions using a realistic general circulation model with neural network parameterizations for atmo-
 666 spheric moist physics and radiation processes. *Geoscientific Model Development*, 15(9):3923–
 667 3940, 2022.

668 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 669 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 670 with exogenous variables. *Advances in Neural Information Processing Systems*, 37:469–498,
 671 2024a.

672 Zhihao Wang, Yiqun Xie, Xiaowei Jia, Lei Ma, and George Hurt. High-fidelity deep approxi-
 673 mation of ecosystem simulation over long-term at large scale. In *Proceedings of the 31st ACM*
 674 *International Conference on Advances in Geographic Information Systems*, pp. 1–10, 2023.

675

676 Zhihao Wang, Yiqun Xie, Zhili Li, Xiaowei Jia, Zhe Jiang, Aolin Jia, and Shuo Xu. Simfair:
 677 Physics-guided fairness-aware learning with simulation models. In *Proceedings of the AAAI Con-
 678 ference on Artificial Intelligence*, volume 38, pp. 22420–22428, 2024b.

679 Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating sci-
 680 entific knowledge with machine learning for engineering and environmental systems. *ACM Com-
 681 puting Surveys*, 55(4):1–37, 2022.

682

683 Lei Xu, Xihao Zhang, Hongchu Yu, Zeqiang Chen, Wenyi Du, and Nengcheng Chen. Incorpor-
 684 ating spatial autocorrelation into deformable convlstm for hourly precipitation forecasting.
 685 *Computers & Geosciences*, 184:105536, 2024.

686 Tianfang Xu and Albert J Valocchi. Data-driven methods to improve baseflow prediction of a re-
 687 gional groundwater model. *Computers & Geosciences*, 85:124–136, 2015.

688

689 Kun Yao, John E Herr, David W Toth, Ryker Mckintyre, and John Parkhill. The tensormol-0.1
 690 model chemistry: a neural network augmented with long-range physics. *Chemical science*, 9(8):
 691 2261–2269, 2018.

692 Runlong Yu, Chonghao Qiu, Robert Ladwig, Paul C Hanson, Yiqun Xie, Yanhua Li, and Xiaowei
 693 Jia. Adaptive process-guided learning: An application in predicting lake do concentrations. In
 694 *2024 IEEE International Conference on Data Mining (ICDM)*, pp. 580–589. IEEE, 2024a.

695

696 Runlong Yu, Chonghao Qiu, Robert Ladwig, Paul Hanson, Yiqun Xie, and Xiaowei Jia. Physics-
 697 guided foundation model for scientific discovery: An application to aquatic science. In *Pro-
 698 ceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 28548–28556, 2025.

699 Sungduk Yu, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn
 700 Lütjens, Justus C Will, Gunnar Behrens, Julius Busecke, et al. Climsim: A large multi-scale
 701 dataset for hybrid physics-ml climate emulation. *Advances in Neural Information Processing*
Systems, 36, 2024b.

702 Linfeng Zhang, Jiequn Han, Han Wang, Wissam Saidi, Roberto Car, and E Weinan. End-to-end
703 symmetry preserving inter-atomic potential energy model for finite and extended systems. In
704 *Advances in Neural Information Processing Systems*, pp. 4436–4446, 2018.

705
706 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
707 multivariate time series forecasting. In *International Conference on Learning Representations*,
708 2023.

709 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
710 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
711 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

712 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
713 enhanced decomposed transformer for long-term series forecasting. In *International conference*
714 *on machine learning*, pp. 27268–27286. PMLR, 2022.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755