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ABSTRACT

Advanced air-borne and in-situ sensing platforms have generated invaluable ob-
servations of the Earth systems and offer exciting opportunities in enhancing the
monitoring and forecasting capabilities to tackle challenges such as global warm-
ing. While process-based models have been developed for decades, they have
limited ability to incorporate real-world observations to further enhance the pre-
diction ability, especially to correct simplified sub-processes that tend to cause
deviations from the observations. In particular, many process-based models rely
on itemized lower-level processes, whereas the sensors very often can only col-
lect aggregated mixed-up information, constraining the use of these observations
to improve the modeling. Existing works on knowledge-guided learning mainly
focus on connecting process-based and data-driven methods via directly matched
variables, using physical rules and simulations to constrain the training process.
We propose a knowledge-guided assimilation approach to integrate process-based
and learning models to improve the utilization of large-scale simulations with ag-
gregated indirect observations. To evaluate approach, we carry out a global-scale
case study with ecosystem models that are widely used in carbon monitoring. The
results on global-scale benchmark data show that knowledge-guided integration
of indirect labels can significantly enhance prediction skills compared to existing
learning methods.

1 INTRODUCTION

Advanced air-borne systems such as remote sensing satellites and in-situ platforms such as networks
of monitoring stations have generated invaluable observations of the Earth systems and offer excit-
ing opportunities in enhancing the monitoring capabilities. Such abilities are essential to improve
the solutions for tackling grand challenges such as carbon neutralization, global warming, extreme
events, etc. In carbon monitoring, for example, Earth monitoring satellites provide global coverage
of forest ecosystems, providing critical information such as forest coverage, plant function types
(PFTs), and canopy heights. On the other hand, in-situ sites consisting networks of carbon flux
towers offer years of highly dynamic observations of key carbon variables. The increasing availabil-
ity of sensing-based observations has also led to major advances of process-based models to better
integrate these valuable information into the modeling to enhance the estimation. In forest ecosys-
tems, the Ecosystem Demography (ED) model is a new generation of models that has the ability to
incorporate many of the observations (e.g., billions of height measurements from NASA GEDI) at
the global scale, and is serving important roles in the Global Carbon Budget (Friedlingstein et al.,
2023; 2024), NASA Carbon Monitoring System (Hurtt et al., 2019), etc.

Despite the promising potential, there are several challenges integrating sensing and process-based
modeling. First, most of the models follow rule-based processes. While the knowledge structure
does not require extensive training, it also significantly constrains the models’ ability to refine the
fixed structure (e.g., structures with simplifying assumptions) using rich real observations. Second,
many process-based models rely on itemized lower-level processes, whereas the sensors very of-
ten can only collect aggregated mixed-up information. As a concrete example, in the ED model,
the overall ecosystem process is modeled as multiple sub-streams of processes corresponding to
different forest ages, where each experiences different competition between different PFTs such as
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deciduous trees, evergreens, or grass/shrubs. Due to the complexity of the cross-PFT competition,
PFT proportions generated by ED may deviate from the true values, propagating to errors in its
estimates of carbon variables. In such cases, it will be ideal if the PFT observations from remote
sensing satellites can be leveraged to correct the values dynamically. However, the satellite-based
observations are aggregated results from all the sub-stream processes (e.g., often tens or hundreds
of them depending on the granularity), making the observations not compatible with the lower-level
modeling. Third, the inputs and outputs from the process-based models at large scale (e.g., global-
scale) often come with large volume. As a result, domain scientists normally do not further save
intermediate results from different sub-streams and it is highly expensive to regenerate the results,
making it harder to learn for data-driven models. Finally, the in-situ observations are often con-
strained by their temporal coverage compared to the multi-decade scope of Earth system modeling,
due to sensor installation time, maintenance, etc.

Existing works on knowledge-guided machine learning (ML) mainly focus on connecting process-
based and data-driven methods via directly matched variables, using physical rules and simulations
to constrain the training process (Willard et al., 2022). Earlier approaches were typically trained
to estimate the residual between observations and the outputs of physics-based simulations (Fors-
sell & Lindskog, 1997; Xu & Valocchi, 2015; Wan et al., 2018), which was later extended into
hybrid approaches that integrate results from both physics-based and ML models (Karpatne et al.,
2017; Yao et al., 2018; Paolucci et al., 2018). However, in these cases the process-based and ML
models still operate separately and do not exploit complementary benefits. More recently, studies
have highlighted the promise of using physical knowledge to inform and guide the training of ML
models. Such efforts include the design of loss functions that enforce compliance with known phys-
ical laws (Li et al., 2024; Jia et al., 2020; Fioretto et al., 2020; Karpatne et al., 2017; Read et al.,
2019; Stewart & Ermon, 2017; Yu et al., 2024a; Raissi et al., 2019), strategies for initializing mod-
els through knowledge transferred from simulations (Jia et al., 2020; Read et al., 2019; Hurtado
et al., 2018; Sultan et al., 2018; McCabe et al., 2023), and development of model architectures that
explicitly encode physical symmetries (Satorras et al., 2021; Batzner et al., 2022) and general phys-
ical relationships such as mass conservation (Shen et al., 2023; Daw et al., 2019; Muralidhar et al.,
2020; Ling et al., 2016; Zhang et al., 2018; Schütt et al., 2017; Hettige et al., 2024). These models
demonstrated that ML models can acquire more generalizable abilities with limited observations
by using knowledge from process-based models. However, these models focus on training with
matched variables and do not consider or address the utilization of satellite-based indirect labels.
The models with knowledge-guided architecture also rely on intermediate outputs from smaller and
less-expensive process-based models that are often unavailable in large scale problems due to the
excessive storage cost as well as the expensive computation to re-run the middle outputs.

We propose a knowledge-guided assimilation learning framework to integrate process-based and
learning models with the utilization of higher-level indirect observations from sensing platforms at
large scale. Our contributions are:

• We propose a knowledge-guided assimilation framework with a learned decomposition-and-
resembling (DERE) process: (1) Knowledge-aligned decomposition of end-to-end simulation data
to represent intermediate, sub-stream processes of a process-based model, as a preparation for inte-
gration of indirect higher-level labels. This is necessary as there is often no intermediate modeling
results saved for large-scale process-based models, which are costly both in space and compu-
tation. (2) Knowledge-aligned resembling of decomposed intermediate, sub-stream processes to
enable supervision from indirect higher-level labels available at large-scale to constrain the sub-
stream process. This data-driven sub-stream process calibration can significantly enhance model
generalizability using limited in-situ flux tower observations of final carbon variables.

• We propose a probabilistic label expansion module to increase the temporal coverage of in-situ ob-
servations for finetuning, with explicitly learned uncertainty-awareness to leverage the generated
probabilistic labels.

• We carry out large-scale experiments with multiple carbon monitoring network datasets using the
most recent ICLR CarbonSense benchmark data (Fortier et al., 2025). Extensive comparisons with
time-series models and their knowledge-guided extensions demonstrated the effectiveness of our
DERE-based knowledge-guided assimilation framework.
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2 PROBLEM DEFINITION

2.1 GENERAL FORMULATION

Our problem is formulated with the following inputs and outputs:

Inputs: (1) Physical conditions xs,t that are needed to infer target output variables at each location s
in a spatial domain S (e.g., global) along each time step t in a time-series T = {1, ..., T}. (2) Initial
conditions/states ck (from a set of possible conditions {c1, ..., cK}) and their weights αk at the
beginning of T .

Outputs: Predicted target variables ŷs,t for the same set of locations and time-series. The ground
truth ys,t from in-situ data are available at a limited number of locations S ′ ⊂ S for a subset of
temporal periods T ′ ⊂ T .

In addition, there are the following auxiliary information related to process-based modeling:

• Estimates of target output variables, yP
s,t, from a process-based model MP based on the phys-

ical conditions xs,t in S and T . In the problem setting, yP
s,t represents end-results out of the

process-based model and does not contain intermediate results due to the excessive cost of space
and computation in large-scale applications. In other words, domain scientists often do not save
the intermediate results due to the storage cost and it is also too expensive to re-run the model to
generate them.

• Indirect higher-level observations, zs,t (e.g., from satellites), on outputs of the intermediate,
sub-stream processes as defined in Def. 1. These observations are indirect and cannot be used in
the process-based model because they are mixed at the aggregated level and are not compatible
with the sub-stream processes.

Definition 1 (Intermediate, sub-stream processes) Denote MP as the entire set of functions from
a process-based model, with (yP

s,t)k = MP (xs,t, ck). As a clarification, when we use sub-
script k on yP

s,t (i.e., (yP
s,t)k) it means the result simulated for the initial condition ck; other-

wise, it means final result aggregated over different initial conditions using αk (observation ys,t

is always aggregated). In process-based modeling, MP often consists of a set of intermediate
and sub-stream processes. An intermediate process generates intermediate results from part of
the physical system, and the results are fed into other parts to complete the simulation. For
example, we can have MP (·) = MP

1 (MP
2 (·)), where MP

1 and MP
1 are intermediate pro-

cesses. In addition, an intermediate process can further contain sub-stream processes, which
run in parallel and aggregate into the complete intermediate process. For example, we can have
MP

1 (MP
2 (xs,t)) = MP

1

(
MP

2 (xs,t, c1),MP
2 (xs,t, c2),MP

2 (xs,t, c3), ...
)
. Sub-stream processes

often have the same function form, take the same set of input variables, and generate the same set of
output variables. The difference between sub-streams is the initial condition or model state ck. For
example, a forest often contains cohorts with different initial ages where each age corresponds to a
different state for the simulation.

2.2 REAL-WORLD EXAMPLE: GLOBAL CARBON MONITORING

Here we provide a concrete and important real-world example in global forest carbon monitoring
to better illustrate the problem. In carbon monitoring, the input physical conditions xs,t include
meteorological variables (e.g., temperature, precipitation), soil properties and more, where each
time step may correspond to a month or shorter for monitoring over multiple decades at the global
scale. The initial condition ck corresponds to the initial age of trees at the beginning of the process.
The output carbon variables ys,t include gross primary production (GPP), Net Ecosystem Exchange
(NEE), Ecosystem Respiration (RECO), etc.

The auxiliary information from process-based modeling include: (1) Carbon variables yP
s,t estimated

from the ED model (Hurtt et al., 1998; Moorcroft et al., 2001; Ma et al., 2022) on variables such as
GPP, NEE and RECO, which do not contain intermediate results due to the excessive storage and
re-computation cost. (2) Indirect observations zs,t from remote sensing satellites, which provide
observations of forest PFTs (e.g., deciduous, evergreen, shrubs) at large geographic scale that are
important for cross-PFT competition modeling. However, in ecological modeling, such natural
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competitions need to be modeled as multiple sub-streams of different forest processes (i.e., based
on different initial ages ck), whereas the sensing-based PFTs cannot distinguish between these sub-
processes. As a result, existing efforts have not been able to leverage these indirect observations to
enhance the prediction quality. We will also use this example later on to help illustrate components
of the method section.

3 RELATED WORK
Time-series forecasting. Deep learning models for time-series forecasting are natural data-driven
frameworks to model the input-output relationships in our problem setting. Transformer-based ar-
chitectures have become widely adopted for tasks with long sequences thanks to their ability to
capture long-range dependencies (Vaswani et al., 2017; Devlin et al., 2018; Dosovitskiy et al., 2021)
compared to earlier models based on recurrent structures (Wang et al., 2023; Chen et al., 2023a; Xu
et al., 2024; Lai et al., 2018). Numerous adaptations of transformers have been introduced for fur-
ther improvements, including ProbSparse self-attention in Informer (Zhou et al., 2021), frequency-
domain attention in FEDFormer (Zhou et al., 2022), cross-feature as well as cross-time dependency
modeling in Crossformer (Zhang & Yan, 2023), exogenous feature integration in TimeXer (Wang
et al., 2024a), time-variable inversion in iTransformer (Liu et al., 2023), and multivariate SimpleTM
(Chen et al., 2025). While these models have shown promising performances in general forecasting
tasks, they are by design data-driven methods that do not consider physical guidance from process-
based models, limiting their performance when only limited in-situ observations are available for
large-scale applications.

Data-driven emulation of process-based model. Recent studies have also explored variants of
forecasting models as learning-based emulators to approximate process-based models. For exam-
ple, these models have been developed to emulate climate models (Yu et al., 2024b; Rasp et al.,
2018; Mooers et al., 2021; Wang et al., 2022) and weather forecasting models (Lam et al., 2023;
Kurth et al., 2023; Bonev et al., 2023) to improve the scalability for higher resolution tasks. In ad-
dition, deep learning surrogates have been widely explored for process-based simulations involving
the solution of partial differential equations (Obiols-Sales et al., 2020; Sirignano et al., 2020; Karni-
adakis et al., 2021). However, these emulators mainly aim to enhance the computational efficiency
of process-based models instead of combining physical knowledge with real observations to further
improve the prediction quality.

Knowledge-guided machine learning. There has been growing efforts on incorporating physics
into ML models to enhance both predictive performance and generalizability for solving scientific
problems (Willard et al., 2022). Early studies mainly consider residual modeling, where simple
regression models (Forssell & Lindskog, 1997; Xu & Valocchi, 2015) or recurrent networks (Wan
et al., 2018) are used to infer differences between process-based models and ground truth. However,
these methods are unable to enforce physics-based constraints and can only make use of the simu-
lation results when corresponding observations are simultaneously available. More recent strategies
start focusing on deeper integration of knowledge, and common strategies include modifying layer
architectures based on process-based models (Anderson et al., 2019; Muralidhar et al., 2018; Feng
et al., 2022), pretraining with simulation data (Read et al., 2019; Ham et al., 2019; Sultan et al.,
2018; Hurtado et al., 2018; Yu et al., 2025), and adding physics-constrained loss functions (Jia et al.,
2020; Read et al., 2019; Li et al., 2024; Yu et al., 2024a; Raissi et al., 2019). Variants have also
been developed to learn from multiple process-based models (Chen et al., 2023b; Jia et al., 2021),
performing model selection (Chen et al., 2023a), integrating simulation data to reduce bias (Wang
et al., 2024b; He et al., 2023), etc. However, these models focus on training with matched variables
and do not consider indirect labels that are not directly usable with process-based models but are
often available at large scale. The models with knowledge-guided architecture also rely on inter-
mediate outputs from smaller and less-expensive process-based models that are often unavailable in
large scale problems due to the expensive storage and re-generation cost.

4 KNOWLEDGE-GUIDED ASSIMILATION WITH INDIRECT LABELS
The knowledge-guided framework has a decomposition-and-resembling structure to allow integra-
tion of indirect labels at large scale to provide guidance to intermediate, sub-stream processes. Sec.
4.1 and 4.2 discuss details of the designs, and Sec. 4.3 presents a probabilistic label expansion
module to increase the temporal coverage of in-situ labels and uncertainty-aware finetuning. Fig. 1
shows the overall framework.
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Figure 1: Overview of the decomposition and resembling framework.

4.1 KNOWLEDGE-ALIGNED DATA DECOMPOSITION

As explained in Def. 1, the entire physical process MP contains intermediate, sub-stream processes.
These are often not readily available for data-driven models to learn right off the simulation data,
as the intermediate results are often not saved due to the excessive size at large scale and high cost
of re-generation. Thus, a necessary initial step is to separate out the intermediate process of interest
as a preparation to incorporate the indirect labels (Sec. 2.1) in the later resembling step. This is
the goal of knowledge-aligned decomposition. For clarity: (1) the decomposition only separates out
an intermediate process and does not consider sub-stream processes that will be addressed in the
resembling step; and (2) the decomposition step uses only the simulation data yP

s,t from MP and
does not use observations.

Specifically, As shown in Fig. 1(a), the decomposition step splits out an intermediate process, ap-
proximated by a learned function Fz(xs,t, ck) to generate ((x̂z

s,t)k, (ẑs,t)k) before reaching (ŷs,t)k.
Most importantly, the key objective is to explicitly represent (ẑs,t)k so later on it can be connected
to the indirect labels during resembling. As the decomposition only concerns simulation data, here
ck can be any condition available from the simulation data. The functional relationship between
((x̂z

s,t)k, (ẑs,t)k) and (ŷs,t)k, denoted by “⊗”, can be defined either using a pre-defined, differen-
tiable function based on the physical process (when such functions are direct and simple) or using
another learned function, or a combination of the two. Using ecosystem carbon monitoring as an
example (Fig. 1(a), bottom), (x̂z

s,t)k represents outputs of carbon variables from groups of trees
with different PFTs (e.g., deciduous) and (ẑs,t)k is a vector containing the proportions of different
PFTs. They can then be combined into final carbon variables by linear combination (i.e., a pre-
defined weighted sum based on proportions) plus non-linear competition (a learned function). All
the learned functions will be pre-trained using the simulation data, which will be finetuned later with
stronger constraints.

4.2 KNOWLEDGE-ALIGNED RESEMBLING OF INTERMEDIATE, SUB-STREAM PROCESSES

The resembling process will build on the separated intermediate process and integrate it with dif-
ferent types of real observations. As shown in Fig. 1(b), the resembling process will first explicitly
integrate all sub-stream processes, governed by different initial conditions/states ck (each location
or spatial unit can have multiple different states such as different tree ages). Here the function
Fz(xs,t, ck) is responsible for generating all pairs of ((x̂z

s,t)k, (ẑs,t)k) corresponding to different
initial conditions, and these sub-stream results are then combined into the final prediction ŷs,t (no
longer subscripted by k as all sub-streams have been combined), either by prefixed physical rela-
tionships or another learned function.

The most important part of the resembling is the integration of direct labels ys,t (e.g., observations
from in-situ flux towers on carbon variables) and indirect labels zs,t (e.g., mixed PFTs across ages
from satellite observations). In particular, the key is to enable the use of indirect labels zs,t that are
often available at much larger scales compared to direct labels ys,t as shown by the illustrative maps
in Fig. 1(b); for example, satellite-based zs,t tends to have global coverage. With the decomposition
of intermediate processes and the resembling of sub-stream processes, the indirect labels zs,t can
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be compared with the integrated FΣ({(ẑs,t)k}k=1...K) from all the sub-stream processes. Here it
will be best if FΣ can be determined by prefixed aggregation functions when applicable, and can
be learned when necessary. In the carbon monitoring example, FΣ is prefixed by a simple sum,∑K

i ((ẑs,t)k · αk), where αk is the weight of an initial condition that is used to aggregate the PFT
proportions across the conditions.

Furthermore, the final predictions ŷs,t are constrained by the direct labels ys,t as a regular part of a
training process, which are often available at a more limited number of locations (e.g., carbon flux
towers that are expensive to build). We also enhance it with a probabilistic label tuning method in
the next section. During training, each batch contains samples intended both for the indirect label
comparison and direct label comparison.

4.3 PROBABILISTIC LABEL EXPANSION AND UNCERTAINTY-AWARE FINETUNING
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30° S

180°  120° W 60° W 0°  60° E 120° E 180°  
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AmeriFlux

FLUXNET
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Figure 2: Distribution of in-situ sites.

As direct labels ys,t tend to be limited in the temporal
domain in many Earth monitoring tasks (e.g., carbon flux
towers at many sites are recent and only provides a few
years of coverage), we further develop a probabilistic la-
bel expansion strategy and uncertainty-aware tuning to
enrich the usable labels. For example, Fig. 2 shows sev-
eral examples of observations at carbon flux tower sites,
where the measurements are only available for a subset
of years. To address this, we propose a simpler predic-
tion task to expand the labels, where the goal is to predict the missing labels at each site leveraging
existing labels as additional inputs. Comparing to the original task that aims to predict ys,t using
xs,t and ck, this task has significantly reduced difficulty as it only aims to make predictions at sites
where a set of labels is already known in a time window, and those labels are given as part of the
inputs. This makes it feasible to leverage these predictions to facilitate the model tuning in our orig-
inal task. Furthermore, we make the predictions probabilistic so the finetuning step can explicitly
utilize the uncertainty to determine whether or not a prediction should be used. Specifically, we
adopt conditional diffusion (Tashiro et al., 2021) to generate the missing measurements, where the
existing observations from the same time-series can be added as conditions, and the variance can be
obtained. During training, we set a subset of observations as part of the given conditions while using
the remaining observations for loss evaluations. Denote ym

s,t as the masked observations for predic-
tion, ym′

s,t as those given as conditions, and j as the position in the denoising sequence, we have

pθ((y
m
s,t)j−1 | (ym

s,t)j ,y
m′

s,t ) = N
(
(ym

s,t)j−1;µθ

(
(ym

s,t)j ,y
m′

s,t

)
, σ2

j I
)

. Once trained, we generate
100 samples per site to estimate the variance and confidence interval.

Given the predictions with variance, we include an uncertainty-aware tuning module as part of the
resembling process, where a learned sub-network is used to adaptively determine the weight of each
predicted label based on its value and variance. Overall, our DERE model is trained with direct
labels, probabilistic labels, and indirect labels.

5 EXPERIMENTS

5.1 DATA

We conducted extensive experiments at the global scale using the collection of datasets from the
most recent ICLR CarbonSense benchmark data (Fortier et al., 2025) developed for the important
carbon monitoring problem. Specifically, CarbonSense includes various datasets representing dif-
ferent in-situ carbon flux observation networks under different conditions, including AmeriFlux,
FLUXNET, the ICOS-2023, ICOS-WW, and a mixed set. Through data inspection, we found that
ICOS-2023 only have a few sites with one year of data. This leaves very few data points for testing
that can cause highly instable results. Thus, we replaced it (ICOS-WW still contains data from the
network) with the recent ABoVE dataset covering the broad Arctic region (Bill et al., 2023). Fig. 2
shows the geographic distribution of the sites from different datasets. We used 3 key variables GPP,
RECO, and NEE for the evaluation, which are available across all the datasets. For model training
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Table 1: GPP result comparison (top results in bold; runner-ups with underlines).

Methods ABoVE AmeriFlux FLUXNET ICOS-WW Multiple Top-2
countMAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Physical ED 0.427 0.703 0.883 1.419 0.822 1.110 0.713 0.968 0.678 1.010 0/10

Baseline

Transformer 0.502 0.684 1.030 1.405 0.850 1.147 0.955 1.235 0.736 0.997 0/10
Informer 0.523 0.729 1.093 1.465 0.882 1.180 0.859 1.096 0.817 1.065 0/10

FEDformer 0.451 0.626 0.917 1.347 0.768 1.025 1.154 1.524 0.790 1.080 0/10
iTransformer 0.561 0.662 1.007 1.480 0.887 1.162 1.009 1.340 0.851 1.149 0/10

TimeXer 0.685 1.001 1.250 1.939 1.156 1.602 1.451 1.860 1.100 1.547 0/10
SimpleTM 0.631 0.782 1.057 1.549 0.972 1.251 1.132 1.434 1.007 1.346 0/10

KGML

Transformer 0.352 0.541 0.651 1.033 0.699 0.951 0.711 1.014 0.636 0.919 2/10
Informer 0.373 0.555 0.604 0.947 0.756 1.011 0.839 1.141 0.618 0.888 4/10

FEDformer 0.369 0.531 0.769 1.115 0.726 0.926 0.830 1.121 0.701 1.003 0/10
iTransformer 0.363 0.508 0.678 1.027 0.654 0.885 0.641 0.919 0.621 0.909 3/10

TimeXer 0.375 0.566 0.657 1.036 0.649 0.879 0.791 1.050 0.678 0.990 1/10
SimpleTM 0.406 0.587 0.737 1.102 0.669 0.855 0.651 0.916 0.680 0.976 3/10

Proposed DERE 0.302 0.485 0.663 1.068 0.598 0.863 0.682 0.888 0.585 0.890 7/10

Table 2: RECO result comparison (top results in bold; runner-ups with underlines).

Methods ABoVE AmeriFlux FLUXNET ICOS-WW Multiple Top-2
countMAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Physical ED 0.431 0.657 0.603 0.855 0.603 0.833 0.464 0.620 0.457 0.649 3/10

Baseline

Transformer 0.602 0.857 0.804 1.040 0.559 0.743 0.698 0.886 0.488 0.709 0/10
Informer 0.498 0.719 0.720 0.941 0.546 0.749 0.697 0.927 0.530 0.740 0/10

FEDformer 0.431 0.611 0.616 0.867 0.482 0.638 0.832 1.054 0.574 0.804 0/10
iTransformer 0.412 0.526 0.543 0.774 0.510 0.662 0.679 0.969 0.535 0.752 0/10

TimeXer 0.607 0.854 0.946 1.279 0.713 0.960 1.386 1.770 0.784 1.031 0/10
SimpleTM 0.503 0.660 0.620 0.865 0.561 0.709 0.862 1.126 0.626 0.859 0/10

KGML

Transformer 0.328 0.467 0.526 0.705 0.438 0.583 0.586 0.756 0.466 0.655 3/10
Informer 0.354 0.495 0.448 0.614 0.475 0.626 0.559 0.716 0.463 0.638 3/10

FEDformer 0.319 0.443 0.533 0.736 0.506 0.645 0.582 0.781 0.541 0.727 2/10
iTransformer 0.348 0.492 0.439 0.650 0.445 0.585 0.595 0.796 0.537 0.733 2/10

TimeXer 0.388 0.543 0.591 0.769 0.512 0.640 0.739 0.914 0.555 0.744 0/10
SimpleTM 0.385 0.555 0.492 0.694 0.487 0.643 0.519 0.707 0.545 0.733 0/10

Proposed DERE 0.320 0.472 0.465 0.671 0.393 0.557 0.502 0.639 0.442 0.627 7/10

and testing, we spatially split each dataset with 80% for training and 20% for testing. The spatial
split ensures that there is no site-overlap between training and test sets.
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Figure 3: Comparison of GPP over time steps.
Both the baseline and the KGML model here are
from the Transformer.

For data on the process-based model side, we
used the simulations from the ED model (Hurtt
et al., 1998; Moorcroft et al., 2001; Ma et al.,
2022), which has global coverage and the sim-
ulation results fully covered the temporal range
of the in-situ observations. For the indirect la-
bels, we used the satellite-derived PFT informa-
tion from the ESA CCI PFT dataset (Harper et al.,
2023), which also has global coverage for the
temporal range.

Table 3: NEE result comparison (top results in bold; runner-ups with underlines).

Methods ABoVE AmeriFlux FLUXNET ICOS-WW Multiple Top-2
countMAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Physical ED 0.276 0.386 0.599 0.920 0.613 0.889 0.530 0.691 0.537 0.770 0/10

Baseline

Transformer 0.413 0.500 0.615 0.875 0.575 0.790 0.489 0.665 0.532 0.726 0/10
Informer 0.217 0.287 0.626 0.860 0.561 0.787 0.466 0.589 0.554 0.741 2/10

FEDformer 0.201 0.266 0.546 0.805 0.548 0.769 0.535 0.680 0.529 0.735 0/10
iTransformer 0.365 0.427 0.711 1.026 0.697 0.940 0.585 0.762 0.625 0.855 0/10

TimeXer 1.288 2.209 0.714 1.129 0.770 1.126 1.340 1.644 0.843 1.474 0/10
SimpleTM 0.334 0.415 0.692 0.997 0.664 0.912 0.640 0.827 0.655 0.894 0/10

KGML

Transformer 0.177 0.244 0.507 0.733 0.504 0.722 0.511 0.721 0.489 0.691 4/10
Informer 0.186 0.252 0.456 0.700 0.509 0.721 0.519 0.730 0.501 0.699 3/10

FEDformer 0.197 0.268 0.506 0.741 0.522 0.735 0.475 0.627 0.492 0.698 2/10
iTransformer 0.179 0.239 0.540 0.770 0.600 0.834 0.485 0.641 0.534 0.737 1/10

TimeXer 0.192 0.264 0.529 0.800 0.532 0.760 0.563 0.735 0.505 0.714 0/10
SimpleTM 0.187 0.255 0.582 0.842 0.588 0.790 0.527 0.709 0.492 0.698 0/10

Proposed DERE 0.175 0.244 0.496 0.713 0.478 0.683 0.505 0.696 0.476 0.692 8/10
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5.2 CANDIDATE METHODS

We consider four different categories of candidate methods: (1) The process-based model ED; (2)
Learning-based time-series models as listed below; (3) Knowledge-guided extensions of the time-
series models (more details later); (4) Our proposed method DERE. For the training, we used the
recommended settings from the papers, and trained till convergence via patience checks on valida-
tion data (10% of training data; independent from test data).

• Transformer (Vaswani et al., 2017): The vanilla Transformer serves as the fundamental sequence
modeling framework with self-attention to help capture long-range temporal dependencies.

• Informer (Zhou et al., 2021): A Transformer variant that employs sparse attention and generative-
style decoding to enhance long-sequence prediction efficiency.

• FEDFormer (Zhou et al., 2022): A Transformer variant using frequency-domain attention to
strengthen series decomposition and boost forecasting accuracy.

• iTransformer (Liu et al., 2023): A Transformer variant that adopts an inverted design, emphasiz-
ing feature dimensions over time steps and helping to exploit correlations among input variables.

• Timexer (Wang et al., 2024a): A Transformer variant that refines attention by integrating inter-
target and input-target relations to better capture temporal dependencies.

• SimpleTM (Chen et al., 2025): A lightweight time series forecasting model that streamlines archi-
tecture and improves computational efficiency while maintaining strong predictive performance.

3

2

1

0

10

100

0 2 0 2 0 2

G
P

P
 P

re
d

ic
ti

o
n

 (
k

g
 C

 m
  

 y
r 
)

N
u

m
b

er
 o

f 
P

o
in

ts

MAE: 0.561

RMSE: 0.662

MAE: 0.363
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Figure 4: Scatter plots of GPP true / prediction for the
ABoVE data. Both the baseline and KGML model here are
from the iTransformer.

For each forecasting method, we con-
sider two variants: a default data-
driven version (baseline) and an ex-
tension with knowledge-guided ma-
chine learning (KGML). The base-
line models were trained directly on
in-situ observations as target values,
whereas the KGML variants include
two generally used strategies: (1)
They are pretrained on simulation
data from ED and then finetuned
with in-situ observations; and (2) The
training included physics-constrained
loss functions based on the carbon
mass balance (e.g., NEE = RECO − GPP). Both are used in our DERE model as well. Finally,
the DERE model is implemented with the Transformer baseline as the backbone.

5.3 RESULTS

Overall Evaluation. Tables 1 to 3 present the overall testing performance using in-situ GPP, RECO,
and NEE data, evaluated with MAE and RMSE. We provide the top-2 counts (i.e., number of times
a method ranked in top-2 across all columns) for convenience. The proposed DERE method show
the best performance compared to the others. The pure data-driven baselines did not outperform the
process-based ED model, potentially due to the generalization challenge with limited observations.
As a reference, ED is a fairly strong model that has been used in major systems including NASA
Carbon Monitoring System. In contrast, KGML-based methods and the proposed approach outper-
form the baseline, underscoring the importance of incorporating physics knowledge. The enhanced
performance of the proposed DERE model can be attributed to its integration of direct, indirect and
probabilistic labels in addition to the simulation data. Details of the ablation study will be provided
later. This shows the promising potential of integrating indirect labels that are available at large
scale.

Visualization. Figure 3 shows the temporal dynamics of GPP using the baseline Transformer,
KGML Transformer, the proposed DERE method and in-situ data, as examples to visualize the
qualitative performance. The proposed method aligns more closely with in-situ observations than
the other models. Both the KGML and proposed methods demonstrate more stable and consistent
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Figure 5: Probabilistic label expansion examples. The green shaded regions represent the 5%-95%
confidence interval based on sampled time series.

Table 4: Ablation study (top results in bold; runner-ups with underlines).

Methods ABoVE AmeriFlux FLUXNET ICOS-WW Multiple Top-2
CountMAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GPP

Baseline 0.502 0.684 1.030 1.405 0.850 1.147 0.955 1.235 0.736 0.997 0/10
KGML 0.352 0.541 0.651 1.033 0.699 0.951 0.711 1.014 0.636 0.919 2/10

KGML + indirect labels 0.321 0.536 0.677 1.084 0.619 0.850 0.685 0.888 0.573 0.888 8/10
DERE 0.302 0.485 0.663 1.068 0.598 0.863 0.682 0.888 0.585 0.890 10/10

RECO

Baseline 0.602 0.857 0.804 1.040 0.559 0.743 0.698 0.886 0.488 0.709 0/10
KGML 0.328 0.467 0.526 0.705 0.438 0.583 0.586 0.756 0.466 0.655 3/10

KGML + indirect labels 0.334 0.526 0.526 0.721 0.409 0.567 0.508 0.639 0.402 0.596 7/10
DERE 0.320 0.472 0.465 0.671 0.393 0.557 0.502 0.639 0.442 0.627 10/10

NEE

Baseline 0.413 0.500 0.615 0.875 0.575 0.790 0.489 0.665 0.532 0.726 2/10
KGML 0.177 0.244 0.507 0.733 0.504 0.722 0.511 0.721 0.489 0.691 2/10

KGML + indirect labels 0.179 0.242 0.475 0.723 0.471 0.677 0.505 0.696 0.482 0.698 7/10
DERE 0.175 0.244 0.496 0.713 0.478 0.683 0.505 0.696 0.476 0.692 9/10

temporal patterns than the baseline model. Figure 4 presents more detailed scatter plots of GPP pre-
dictions versus ground-truth observations across Above, FLUXNET, and Multiple networks. The
proposed DERE method is able to correct large number of deviations highlighted by the red boxes,
leading to improved performance.

Probabilistic Label Expansion. Figure 5 visualizes examples of label expansion on the in-situ data
with conditional diffusion, where the effect on final predictions are included in the ablation study.
The green line indicates the mean of the sampled predictions. In masked regions, the predicted series
closely match the hidden in-situ data, demonstrating accurate and reliable GPP imputation. The
green shaded region represents the 5%-95% confidence interval across the imputed time series. The
variance from the predictions can be leveraged by the uncertainty-aware tuning module to improve
the usability of the probabilistic labels. The patterns remain fairly stable with varying proportions
of missing data, potentially benefiting from auxiliary environment inputs.

Ablation Study Table 4 provides the ablation study results. The proposed DERE model achieves
the best top-2 count across all variables, with stepwise improvements from the baseline to KGML,
then KGML with PFT, and finally DERE. Extending KGML with indirect labels helps significantly
reduce the errors. The full DERE with probabilistic labels and uncertainty-aware tuning yielded the
best overall performance.

6 CONCLUSION

We presented a knowledge-guided assimilation framework with a decomposition-and-resembling
approach that bridges process-based models and learning models to leverage indirect labels from
advanced sensing platforms that are available at large scale. We further developed a probabilistic
label expansion module to extend the temporal coverage of sparse limited observations with explicit
uncertainty awareness. Extensive experiments on global carbon monitoring datasets, including the
ICLR CarbonSense benchmark, demonstrate that our proposed DERE-based knowledge-guided as-
similation framework can effectively improve prediction quality compared with existing methods.
Future work will explore extensions to further consider more challenging scenarios with anomalous
or rare conditions.
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