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ABSTRACT

Mobile devices are at a heightened risk for cybercrime due to the sensitive per-
sonal and financial data they handle. Biometric authentication provides a robust,
convenient, and secure way to protect smartphones by using unique user charac-
teristics like fingerprints, facial features, or voice patterns for access. Existing
mobile biometric technology often relies on RGB cameras to capture biometric
samples, such as face images or finger photos, making them vulnerable to spoof-
ing (e.g., 3D masks, display, or printout attacks).
The security of these systems is effectively addressed by integrating a Presenta-
tion Attack Detection (PAD) module. Existing PAD solutions do not account for
diverse physical characteristics like skin tone. As a result, marginalized groups
face higher misidentification rates or false rejections, reducing access to services
and increasing security risks.
This paper introduces a deep learning framework called ColorCubeNet designed
to process ColorCube, a multi-dimensional data representation by combining in-
formation from RGB, HSV, and YCbCr color spaces. This data cube leverages
the joint capabilities of RGB, HSV, and YCbCr color spaces to depict color more
sophisticatedly. By incorporating features from multiple complementary color
channels, this approach can effectively handle a variety of skin tones. We utilized
three EfficientNet-B0 models, each trained on ImageNet using RGB, HSV, and
YCbCr color spaces, and then fine-tuned them on the ColorCube representation
to fully exploit the combined information from all three color spaces. Addition-
ally, a channel-attention mechanism is integrated into the architecture, enabling
the extraction of key features from different input channels by exploiting their
combined performance. Results show that the proposed approach outperforms
traditional RGB methods by reducing skin tone disparities by 50%.

1 INTRODUCTION

Through our smartphones, we handle and transmit personal data, including financial records, in-
creasing the motivation for malicious individuals to launch attacks. As the use of these devices
becomes more widespread, it is crucial to comprehend their vulnerabilities and enhance their de-
fenses to uphold user trust and safeguard critical data Sta; Alrawili et al. (2024). Biometric-based
unlocking mechanisms are susceptible to Presentation Attacks (PAs), where malicious actors at-
tempt to circumvent security by presenting fake biometric samples, including photographs, masks,
fake silicone fingerprints, and video replays that undermine the security of the system Ramachandra
& Busch (2017); Marasco & Vurity (2022). Examples of bonafide and PA samples of face and finger
photos are shown in Fig. 1. To mitigate these threats, it is common practice to integrate a Presen-
tation Attack Detection (PAD) module into the biometric system to strengthen security Marasco &
Ross (2014); Turhal et al. (2024); Purnapatra et al. (2023); Priesnitz et al. (2024). PAD is a vital
component of mobile biometric authentication. Effective PAD technologies must be robust against
various spoofing techniques, ensuring that only biometric samples acquired by living individuals
physically present at the authentication point are accepted.
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Figure 1: Bonafide and Presentation At-
tacks (PAs) samples.

Mobile technology increasingly uses optical sensors, like
RGB cameras, to capture biometric data for verification
or identification via machine learning models Rattani &
Derakhshani (2018); Ramoly et al. (2024); Li, Hailin and
Ramachandra, Raghavendra and Ragab, Mohamed and
Mondal, Soumik and Tan, Yong Kiam and Aung, Khin
Mi Mi (2024). Technological discrimination arises when
optical sensors fail to capture features accurately, espe-
cially for individuals with highly pigmented skin. This
issue is prominent with RGB imaging and deep learning
models used for biometric recognition, reducing accuracy
and reliability for users with darker skin tones Linghu
et al. (2024); Kinyanjui et al. (2019); Schlessinger (2023);
Booysen & Theart (2024).

These differentials compromise security and expose marginalized groups to greater risks of being
unfairly denied access. Analyzing the impact of skin tone on these technologies is crucial for devel-
oping equitably secure mobile authentication systems Phelps (2021). Despite the critical role that
PAD systems play in mobile security, there is currently no systematic assessment of how skin tone
affects them. Furthermore, the existing PAD databases do not adequately provide skin tone data
to facilitate this research. These limitations make it difficult to fully understand how different skin
tones affect the accuracy and robustness of PAD systems, hindering the development of fair and
effective solutions for all demographic groups.

Smartphone companies have responded to concerns about skin tone bias by launching new camera
models with improved capabilities to capture and identify individuals with darker skin tones accu-
rately Koenigsberger (2021); Meg (2023). Nonetheless, significant challenges remain for all optical
sensors, particularly the less advanced ones. Technology must be developed considering people of
all skin tones, and diverse teams must be involved throughout development. Whether and how PAD
systems handle different skin tones can mitigate ethical and security concerns is understudied. To
address this gap, the proposed research evaluates whether existing PAD technologies are equally
effective for all users, regardless of skin tone. Furthermore, it investigates strategies to fine-tune the
AI models to enhance their performance across diverse skin types. The objective is to address and
rectify these vulnerabilities, ensuring that security technologies offer equitable protection to users
from all backgrounds.

The proposed research aims to investigate the effectiveness of current PAD technologies for all
users and their ability to recognize features across different skin tones accurately. This paper aims
to assess and improve inclusivity in cybersecurity by examining how skin tone affects the accuracy
and reliability of finger photo and face PAD systems. After assessing these disparities, we also
explore how these technologies can be enhanced. We explore mitigation strategies that improve the
inclusivity and accuracy of facial and finger photo technologies. This includes retraining AI models
with diverse datasets that better represent all skin tones. Additionally, enhancing PAD techniques to
be more effective across a broader range of conditions and skin types can help safeguard against PAs
while ensuring fair treatment for all users. By focusing on these areas, we aim to create more reliable
and equitable mobile biometric authentication systems that can be trusted in critical applications.

Previous studies have successfully integrated various color spaces, such as HSV, LAB, and YCbCr,
to enhance Presentation Attack Detection (PAD) performance Marasco & Vurity (2022). Further-
more, a Person’s based correlation analysis of these color spaces has demonstrated their complemen-
tarity (i.e., low correlation) Marasco & Vurity (2022). Each color space channel provides distinct
information that can improve the robustness and accuracy of neural networks in managing color vari-
ations and generalizing across different inputs Lengyel & et al. (2023). Building on this promising
direction, the proposed approach introduces a unified representation called ColorCube, combining
nine channels (RGB, HSV, and YCbCr) to minimize the impact of skin tone variations. This repre-
sentation captures data that is resistant to changes in skin tone.

This study introduces ColorCubeNet, which uses three EfficientNet-B0 models trained on differ-
ent color spaces (RGB, HSV, and YCbCr) from scratch. These models are fine-tuned on the pro-
posed ColorCube representation. We evaluated the performance of ColorCubeNet against traditional
RGB-based models, demonstrating its effectiveness in reducing skin tone disparities. An extensive
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evaluation is conducted using six different databases that cover face and finger photos and a variety
of PAIs.

The contributions of this paper are summarized as follows:

• Assessment of Skin Tone Impact on PAD. We analyze skin tone differentials for facial and
finger photo recognition systems in PAD. It is possible that the current PAD models are not
effectively optimized for different skin tones, leading to unequal performance and height-
ened vulnerability. This can potentially cause security issues for specific groups. It is
crucial to comprehend this impact to ensure consistent performance of PAD systems across
diverse populations, thereby promoting fairness.

• ColorCube Representation. The proposed three-dimensional representation combines spa-
tial information with nine color channels, including RGB, HSV, and YCbCr. This unified
representation can detect subtle variations and features that traditional RGB-based systems
miss, leading to improved and more accurate performance in PAD. The findings indicate
that ColorCube features effectively reduce skin tone differentials.

• Skin Tone Image Labeling. Since PAD databases lack existing skin tone analysis, we la-
beled skin tones on finger photos and the facial database. This labeling process will cat-
egorize biometric samples by skin tone, enabling training PAD systems and ultimately
improving generalization and fairness across diverse populations.

• Training Paradigm-Shift. We present ColorCubeNet, a new framework that retrains the
backbone CNNs ( EfficientNet-B0) from scratch using ImageNet data converted into the
ColorCube described earlier. ColorCubeNet also incorporates Channel Attention mecha-
nisms, crucial for identifying the most significant features among the multiple color spaces.
The channel attention mechanism extracts relevant channel-wise features that capture sub-
tle differences in skin tone. This technique has been successfully used for skin disease
detection in networks like Effi2Net Karthik et al. (2022).

• Pioneering Explainable AI (XAI) to Interpret Skin Tone. To the best of our knowledge, XAI
techniques are combined with a signal-to-noise ratio (SNR) approach for the first time to
analyze and identify the impact of skin tone on PAD systems. By applying XAI, we can
interpret and understand the model’s decision-making process, gaining valuable insights
into how skin tone affects PAD performance. This approach not only aids in fine-tuning
models for improved accuracy across different skin tones but also enhances transparency
in the model’s predictions, thereby increasing trust and fairness in the system.

2 LITERATURE REVIEW

2.1 IMPACT OF SKIN TONE IN BIOMETRICS

One of the most widely adopted skin tone measurements is the Fitzpatrick scale (FST), designed to
assess UV sensitivity Sommers et al. (2019); Hazirbas et al. (2021a). In computer vision, apparent
skin tone (AST) is commonly used to measure skin tone in images. The Individual Typology Angle
(ITA) is a crucial metric for quantifying skin tone based on the CIE Lab* color space using L*
(lightness) and B* (yellow/blue) values Krishnapriya et al. (2022). Additionally, the Monk Skin
Tone (MST) scale, proposed by Monk, offers another widely recognized method for categorizing
skin tones, which can provide further insights into the variability of skin tone representation Monk
(2019). Recent studies have explored how biometric systems perform across various demographic
groups Drozdowski et al. (2020), primarily focusing on covariants like gender, age, and ethnicity.
However, there has been limited research on the specific impact of skin tone on face recognition
Krishnapriya et al. (2022); Pangelinan et al. (2024). Krishnapriya et al. demonstrated that skin
tone, categorized using the Fitzpatrick (1988) scale, influences the False Match Rate (FMR) in face
recognition algorithms Krishnapriya et al. (2020).

More recent research has examined the role of gender, age, and ethnicity in PAD systems Yu et al.
(2020); Karkkainen & Joo (2021); Fang et al. (2024); Ramachandra et al. (2022); Trinh & Liu
(2021); Xu et al. (2022); Nadimpalli & Rattani (2022); Hazirbas et al. (2021b); Ju et al. (2024); Kot-
wal & Marcel (2024). Still, the impact of skin tone, distinct from ethnicity, remains underexplored.
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Our research aims to fill this gap by investigating how skin tone affects PAD systems, recognizing
that skin tone can vary within ethnic groups and impact the detection of PAs.

Fang et al. (2024) introduced the Combined Attribute Annotated PAD Dataset (CAAD-PAD) to
evaluate fairness in face PAD systems Fang et al. (2024), highlighting the need for fairness-aware
models. Their findings revealed that certain demographic groups, like females and individuals with
occluding features, are less protected by existing PAD solutions. While fairness studies have focused
mainly on face recognition algorithms, the fairness of PAD systems has been largely overlooked,
with limited attention given to this aspect in face PAD systems. In recent studies, we see a growing
trend for balancing fairness, interpretability, and privacy in AI systems by emphasizing the impor-
tance of XAI to ensure ethical, transparent, and bias-free models, especially in sensitive domains
Longo et al. (2024); Zhou et al. (2020); Ferry et al. (2024)

2.2 LITERATURE ON FACE AND FINGER PHOTO PAD

Finger photo PAD: Finger photo presentation attack detection (PAD) systems have evolved from
traditional methods using handcrafted features such as texture patterns and gradients, often clas-
sified with machine learning algorithms like Support Vector Machines (SVMs) Guo et al. (2010);
Kannala & Rahtu (2012); Lowe (1999); Hearst et al. (1998). These approaches, however, strug-
gled to generalize across different devices and attack scenarios. Deep learning models, particularly
CNNs, have recently become more prominent due to their superior performance. Marasco et al.
proposed a framework that segments the finger region, converts it into multiple color spaces, and
analyzes local patches around minutiae points using an ensemble of pre-trained CNNs Marasco &
Vurity (2022), significantly improving PAD robustness against spoofing attacks. Li et al. Li & Ra-
machandra (2023) compared various deep learning architectures, such as DenseNet, ResNet, and
EfficientNet, highlighting the advantages of deep learning in improving detection accuracy. Addi-
tionally, Adami et al. developed an unsupervised finger photo PAD method using an autoencoder
and convolutional block attention, achieving a BPCER of 0.96% and an APCER of 1.6% Adami
& Karimian (2023). In 2024, researchers evaluated eight pre-trained deep neural network models
across different finger segmentation schemes on a public dataset featuring four presentation attack
instruments Li & Ramachandra (2024).

Face PAD: Face PAD has become essential in biometric security systems due to increasing spoofing
attacks. Early methods relied on handcrafted features like Local Binary Patterns (LBP), Histogram
of Oriented Gradients (HOG), and color texture analysis, combined with classifiers such as SVMs
Song & Liu (2018); Pereira et al. (2012); Chingovska et al. (2012); Maatta et al. (2011). While
effective in controlled settings, these methods struggled with varying conditions and attack types.
Deep learning, particularly CNNs, has provided more robust solutions by learning complex features
directly from raw data Yu et al. (2023); Maphisa & Coulter (2022); Xu et al. (2017); George &
Marcel (2019); Atoum et al. (2017); Zhao et al. (2017). Koshy et al. demonstrated the effectiveness
of ResNet-50 and Inception v4 for face PAD, improving spoof detection across datasets Koshy &
Mahmood (2019). Xu et al. showed that combining CNNs with LSTM enhances facial anti-spoofing
in videos Xu et al. (2015). Additionally, transformers have been employed to explore bonafide-PA
relationships among local face patches in the spatial domain et al. (2021); Wang et al. (2021); Chen
et al. (2022) and extract global features related to temporal abnormalities in the temporal domain
Liu & Pan (2024).

3 OVERVIEW OF THE PROPOSED FRAMEWORK

Conventional approaches often fail to capture the subtle chromatic variations in skin pigmentation
across diverse skin types, leading to inaccuracies. To address this limitation, we propose Color-
CubeNet, a framework that integrates information from multiple color spaces, specifically RGB,
HSV, and YCbCr called ColorCube. By processing nine-channel images derived from these color
spaces, the model leverages the EfficientNet-B0 backbone to extract robust and hierarchical features.
These features are further refined using a channel attention mechanism, which dynamically empha-
sizes the most relevant feature channels. Each color space contributes uniquely to the analysis by
highlighting different aspects of color information, enhancing the system’s ability to handle a wide
range of skin tones Prema & Manimegalai (2012). In this research, we are chosing RGB, HSV and
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Figure 2: ColorCubeNet Architecture

YCbCr in the analysis as previous PAD papers have proven these three colorspaces have greater
impact Marasco & Vurity (2022; 2021).

The EfficientNet-B0 backbone is a natural choice for this framework because of its efficiency and
scalability. Designed with a compound scaling method, EfficientNet-B0 achieves high performance
with minimal computational overhead, making it particularly suitable for resource-constrained en-
vironments Tan & Le (2019). The channel attention mechanism plays a crucial role in refining
the extracted features. By dynamically weighting the feature channels, it allows the network to
focus on the most informative aspects of the input, which is especially important when process-
ing nine-channel images. This selective focus helps to enhance the subtle differences in chromatic
information that are critical for distinguishing between bona fide and presentation attacks.

An overview of the proposed architecture is illustrated in Fig. 2. The model converts an input face
or finger photo RGB image of size 224×224×3 into a ColorCube size 224x224x9. The framework
is based on three parallel EfficientNet-B0 with channel attention. The outputs from the individual
channel-attention blocks are concatenated to obtain the features that are then processed through the
final layers to make predictions (bonafide or PA). The details of the computational complexity is
provided in Appendix A5.

3.1 COLORCUBE DERIVATION

This section discusses the mathematical derivation of the proposed ColorCube. Let capture device
C be defined by C : T → P , where T denotes triggering the smartphone camera and P indicates
the face or finger modality being captured. P (x, y) = [R(x, y), G(x, y), B(x, y)] represents the
resulting image pixels in the RGB color space, where (x, y) are coordinates of the pixels. Let
I(x, y) = [R(x, y), G(x, y), B(x, y)] be the image captured by the sensor S : T → I .

ColorCube Representation: The RGB pixel values at coordinates (x, y) are transformed into two
additional color spaces, HSV[H(x,y), S(x,y) and V(x,y)] and YCbCr[Y(x,y), Cb(x,y), Cr(x,y)] to
create a unified ColorCube representation. This results in a 9-channel vector for each pixel:

C(x, y) = [R(x, y), G(x, y), B(x, y),

H(x, y), S(x, y), V (x, y),

Y (x, y), Cb(x, y), Cr(x, y)]

(1)

This ColorCube combines the strengths of all three color spaces, enabling a richer representation
of color variations across different skin tones. The final representation is normalized and converted
into an input tensor for the model. Detailed color space math is shown in Appendix A2.
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Figure 3: Face and Finger Photo Skin Tone Detection Pipeline

3.2 SKIN TONE IMAGE LABELING

Skin tone classification is crucial in understanding the impact of skin color on PAD systems. One
of the most widely used methods for quantifying skin tone is the Individual Typology Angle (ITA),
derived from the Lab* color space Chardon et al. (1991). The ITA provides a continuous, objective
means of categorizing skin tones based on their lightness (L*) and blue-yellow chromaticity (b*)
components. The ITA, expressed in degrees, is calculated using the following equation:

ITA = arctan

(
L∗ − 50

b∗

)
× 180

π
(3)

ITA values are then categorized into predefined ranges, known as the Apparent Skin Tone (AST)
scaleKrishnapriya et al. (2022), which provides the basis for assessing model performance across
various skin tones (see Table 2 in Appendix (A1). The skin tones include Brown (B), Dark (D),
Intermediate (I), Tan (T), Light (L), and Very Light (VL).

We employed a dual-process approach for detecting skin tone in both face and finger photos, as
shown in Fig 3. For facial skin tone detection, we used the FaceNet architecture with Multi-task
Cascaded Convolutional Networks (MTCNN), including Proposal (P-Net), Regional (R-Net), and
Output (O-Net) networks, to detect faces and locate facial landmarks Schroff et al. (2015). After
identifying the face, a mask is applied to the mouth region to avoid interference with skin tone
estimation. Morphological operations are then applied in HSV and YCbCr color spaces to generate
masks. Otsu thresholding is used to separate skin from non-skin regions, and the average pixel
values from HSV and YCbCr are used to extract essential skin tone features. From these features,
the Individual Typology Angle (ITA) is computed.

For fingertip localization, we used a faster R-CNN model fine-tuned on finger photos Marasco &
Vurity (2021). This model includes a Region Proposal Network (RPN) and Region of Interest (ROI)
pooling to generate a bounding box around the fingertip. Like the facial detection pipeline, back-
ground removal is performed using morphological operations in HSV and YCbCr color spaces.
Otsu thresholding is again applied to refine the skin mask, and the extracted pixel values are used to
compute the ITA, allowing us to classify each sample into the Apparent Skin Tone (AST) categories.

3.3 CONVOLUTIONAL BACKBONE AND CHANNEL-ATTENTION

ColorCubeNet’s first layer is modified to accommodate ColorCube’s new input dimension, as illus-
trated in Fig. 2. Three EfficientNet B0 models are used as the backbone for feature extraction. Each

6
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EfficientNet-B0 is trained from scratch on the ImageNet Dataset Deng et al. (2009) using RGB,
HSV, and YCbCr color spaces. For each model Φi, the feature map Φi(Ctensor(x, y)) is computed
as:

Φi(Ctensor(x, y)) = EfficientNet-B0i(Ctensor(x, y)),

i ∈ {RGB,HSV,YCbCr}
(4)

Feature maps Φi(Ctensor(x, y)) extracted from the EfficientNet-B0 models are individually processed
through a single channel-attention block A to emphasize the most relevant features separately across
different RGB, HSV, and YCbCr color space models.

A(Φi(Ctensor(x, y))) = σ ((GlobalAvgPool(Φi(Ctensor(x, y)))

+ GlobalMaxPool(Φi(Ctensor(x, y)))) ·W + b)

⊙ Φi(Ctensor(x, y))

(5)

Here, σ is the sigmoid function, scaling values between 0 and 1. Learnable parameters W and
b adjust during training, while element-wise multiplication ⊙ applies the attention weights to the
feature map Φi(Ctensor(x, y)), prioritizing critical features across RGB, HSV, and YCbCr.

Feature Concatenation: As shown in Fig.2, the output feature maps from each attention block con-
catenated into a single combined feature map Fconcat the outputs from each channel attention block
are processed individually and then combined using element-wise summation.

Fconcat = A(Φ(Ctensor(x, y))) (6)

Subsequently, the refined features are passed through a series of operations, including batch nor-
malization, ReLU activation, and global average pooling. Finally, a fully connected layer makes the
final decision on whether to bonafide or PAs. To further analyze the model’s decision-making, we
applied Grad-CAM to visualize important input regions, and used Signal-to-Noise Ratio (SNR) to
quantify the clarity of these key features across different skin tones. In this work, we use Grad-CAM
Selvaraju et al. (2017) and SNR to isolate relevant features influencing PAD decisions (signal) from
background noise, enhancing interpretability and reliability. This method can also be extended to
other saliency map techniques. Quantifying these visualizations enables us to evaluate PAD perfor-
mance across different skin tones.

The SNR quantifies the clarity of the signal in saliency maps, where higher SNR values indicate
a more interpretable signal (greater than 1). This metric enables us to quantify the interpretability
of PAD decisions and compare performance across different skin tones. It is calculated using the
formula:

SNR =
1

N

N∑
i=1

fi

/√√√√ 1

M

M∑
j=1

(fj − µ)2 (7)

where fi and fj represent the pixel intensities in the key activation and less relevant regions, respec-
tively. N and M denote the number of pixels in these regions, and µ is the mean intensity of the less
relevant region. This metric highlights the most important image regions used in PAD decisions and
evaluates the model’s performance across different skin tones.

4 EXPERIMENTS AND DISCUSSIONS

To validate the effectiveness of our proposed ColorCubeNet architecture, we conduct experiments
across six different datasets, each representing either face or finger photo biometric modality and
presentation attacks.

4.1 DATASETS

CelebA-Spoof: This dataset has over 625,537 pictures and 10,177 subjects, showcasing various
spoofing attacks, including printouts, replayed videos, and 3D masks. To enhance the dataset’s diver-
sity, data was collected from five different angles and four distinct shapes using 24 popular devices,
including PCs, cameras, tablets, and phones, with resolutions ranging from 12 to 40 megapixels
Zhang et al. (2020).

OULU-NPU: The OULU-NPU dataset is a widely used benchmark of PAD. It consists of data from
55 subjects and includes 5,950 video clips captured using mobile devices. It contains both bonafide
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and PAs, including printouts and video attacks. For our experiments, we used four frames per video
that were extracted at specific intervals (10th, 30th, 80th, 140th) Boulkenafet et al. (2017).

SynthASpoof: The dataset supports face anti-spoofing research by providing computer-generated
spoofing samples. This dataset consists of 25,000 bonafide subjects. There are 3,800 printout attacks
and 75,000 images of replay attacks using a Webcam, Samsung phone, and iPad Fang et al. (2023).

IIITD Smartphone Finger photo: The dataset includes 64 subjects and 12,288 images, encompassing
bonafide and PAs (spoofs) samples captured using smartphone cameras. The dataset features finger
photos taken under various lighting conditions and backgrounds, with spoofing methods such as
printout and display attacks using different devices Taneja et al. (2016).

Finger Photo Presentation Attack Detection iPhone 13 Pro 2022 (FPAD-i-22): This dataset con-
sists of 14,336 images in total, collected from 112 subjects. It has both bonafide and PA samples,
with 2,688 Bonafide images and 11,648 PAs. The bonafide images were captured under various
conditions, including indoor and outdoor environments, with variations in lighting and backgrounds
(natural and white). The spoof samples were generated using display devices such as the Samsung
Tab 7+, iPad Pro, and MacBook Pro and printout attacks using an HP Color-LaserJet MFP printer
Vurity & Marasco (2023).

Finger Photo Presentation Attack Detection Google pixel 3 2023 (FPAD-g-23): This dataset com-
prises 25,559 images in total, collected from 100 subjects. It includes bonafide and PAs with 4,000
bonafide images and 21,559 PA samples. The bonafide images were captured across various con-
ditions, covering indoor and outdoor settings, with different lighting conditions and background
variations Vurity & Marasco (2023).

4.2 EVALUATION PROTOCOL

To effectively adapt the baseline models to the PAD task, we utilized models pre-trained on the
ImageNet dataset. These baseline models are fine-tuned using transfer learning by freezing the
parameters and adjusting them to two classes (bonafide and PAs). The training protocol involved a
batch size of 32, running for 30 epochs, with early stopping triggered after five consecutive epochs
of no improvement. We applied data augmentation techniques such as horizontal flipping to enhance
the training process further. Additionally, the datasets used are mutually exclusive subject-wise.

Performance Metrics: Attack Presentation Classification Error Rate (APCER), Bona Fide Presenta-
tion Classification Error Rate (BPCER) as defined by the International Organization for Standard-
ization (ISO/IEC SC 37), and the Equal Error Rate (EER). APCER assesses the proportion of attack
attempts mistakenly classified as Bona Fide, while BPCER measures the proportion of Bona Fide
attempts incorrectly identified as attacks. In our results, we present the BPCER% when APCER%
is set at 5% and 10%, respectively, to provide a detailed analysis of the model’s performance. The
receiver operating characteristic (ROC) curve allows us to visualize the trade-off between APCER
and 1-BPCER at varying classification thresholds.

4.3 RESULTS

Figure 4: PCA on FPAD-i-22. (a) RGB (b) Colorcube

Fig 3 was applied to compute the ITA
values for each dataset. We then pro-
ceeded with Principal Component Analy-
sis (PCA) to reduce the dimensionality of
the feature space. Here, the PCA is ap-
plied on the colorcube features. This ap-
proach allowed us to visualize the vari-
ability across different skin tones and ana-
lyze how the features extracted by Color-
CubeNet are distributed along the princi-
pal components. Fig. 4 compares PCA
results for RGB and ColorCube features
applied to the FPAD-i22. The remaining
PCA results are shown in Appendix (A4)
Fig.6. In the RGB domain, the first prin-
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cipal component (PC1) shows high variability for Brown and Dark skin tones, while the Color-
Cube features exhibit reduced variability, leading to more focused and consistent distributions. This
pattern holds across the dataset. In the second principal component (PC2), RGB features display
significant variability across skin tones, particularly for Dark tones. At the same time, the Color-
Cube representation reduces this variability by centralizing the distributions and minimizing noise.
This comparison demonstrates that the ColorCube representation offers a more stable and reduced-
diversity feature space, making it the optimal choice for handling diverse skin tones in our proposed
architecture.

4.3.1 EFFECTIVENESS OF COLORCUBENET AS PAD

Table 1: Performance comparison across different datasets at 5% and 10% BPCER. Baselines are
ResNet 18 Marasco & Vurity (2021), ResNet 34Marasco & Vurity (2021), Resnet 101 Abdullakutty
et al. (2022); Raja et al. (2023), EfficientNet-B0,B5,B7 Li & Ramachandra (2023), VIT-B-Patch16
Raja et al. (2023), DeiT Raja et al. (2023),George & Marcel (2019)

Baseline Celeb-A OULU NPU Synth-A-Spoof FPAD-i-2022 FPAD-g-2023 IIIT-D
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

ResNet 18 6.98 3.75 22.08 12.98 1.13 0.36 3.11 1.77 12.48 5.87 1.39 0.51
ResNet 34 6.49 3.91 19.78 10.90 0.57 0.17 1.45 0.61 8.51 3.77 1.27 0.56

ResNet 101 9.13 4.83 20.00 10.98 0.31 0.08 3.20 1.45 7.26 2.43 1.46 0.39
EfficientNet-B0 49.36 35.16 23.25 11.83 0.11 0.03 3.03 1.28 15.12 7.72 1.54 0.51
EfficientNet-B5 61.52 47.35 33.88 21.27 19.64 11.10 4.69 2.26 13.80 8.05 1.11 0.44
EfficientNet-B7 51.76 38.98 26.54 14.99 13.18 6.95 5.76 3.46 16.83 7.07 5.83 2.64
VIT-B-Patch16 79.03 64.99 39.03 29.51 0.87 0.32 29.69 17.72 8.88 5.25 34.99 16.46

DeIT 43.13 29.15 15.82 8.82 0.06 0.02 11.18 3.67 13.89 7.88 18.70 5.30
DeePixBiS 11.01 5.09 2.83 1.25 0.1 0.04 0.94 0.47 4.88 1.51 0.17 0.05

ColorCubeNet (Our) 3.28 1.19 1.88 0.50 0 0 0.34 0.13 4.75 1.38 0.05 0.02

Table 1 provides a comprehensive performance comparison of different baseline models across var-
ious datasets at 5% and 10% APCER. Our proposed ColorCubeNet model consistently outperforms
the baseline models, achieving notably low BPCER values across most datasets. Specifically, on the
Synth-A-Spoof dataset, ColorCubeNet achieves a BPCER of just 0.0% at 5% APCER and 0% at
10% APCER. The model also performs exceptionally well on FPAD-i-2022, Celeb-A, and IIIT-D
datasets, maintaining BPCER values as low as 0.34%, 3.28%, and 0.05% respectively.

Figure 5: Signal to Noise Ratio (SNR) of ColorCubeNet on different datasets

In contrast, other models like EfficientNet-B5 and VIT-B-Patch16 show considerable variability
across datasets, with EfficientNet-B5 recording higher BPCER on OULU-NPU (33.88% at 5%
APCER) and VIT-B-Patch16 struggling with high BPCER values across most datasets (e.g., 39.03%
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at 5% APCER on OULU-NPU). ResNet models and DeePixBiS also demonstrate mixed perfor-
mance, with ResNet 34 performing relatively well on the Synth-A-Spoof dataset (0.57% at 5%
APCER) but underperforming on OULU-NPU. DeePixBiS, though strong on Synth-A-Spoof, also
shows higher BPCER values on other datasets. Overall, ColorCubeNet is consistent and has superior
performance across all the datasets. To understand skin tone’s impact on PAD systems, we analyzed
mismatch rate and SNR on all six datasets. Our analysis clearly shows the effects of skin tone on
PAD performance.

Mismatch Rates Across Skin Tones: This analysis highlights how skin tone disparities manifest in
PAD systems. Fig. 7 in Appendix (A4) shows that traditional RGB models are more biased with
darker skin tones. Fig. 8 demonstrates a significant reduction in mismatch rates (more than 50%)
across all skin tones when using ColorCubeNet compared to traditional RGB models. This shows the
effectiveness of the ColorCube representation in enhancing model generalization while maintaining
inclusiveness across diverse skin tones. We focus on SNR scores derived from saliency maps using
Grad-CAM to support this point further.

Signal-to-Noise Ratio (SNR) Analysis: In addition to mismatch rates, we evaluated SNR that quan-
titatively measures how well the model distinguishes between bonafide and attack features for dif-
ferent skin tones. Fig. 5 shows the distribution of SNR values for six datasets using ColorCubeNet.
SNR values above 1 indicate that the model effectively captures distinct features, while values below
1 suggest difficulty in feature identification. The SNR results show that ColorCubeNet maintains
balanced performance across various skin tones. For lighter tones (Light, Very Light), the SNR val-
ues remain consistently close to 1, indicating reliable performance in feature extraction. However,
the analysis also reveals a slight dominance toward darker skin tones. In datasets like OULU-NPU
and FPAD-g-23, the Brown and Dark skin tones exhibit slightly higher SNR values, suggesting that
the model can effectively capture critical features for these tones. This dominance, while subtle,
indicates that ColorCubeNet not only reduces disparities for lighter tones but also offers enhanced
feature separation for darker tones. Thus, ColorCubeNet achieves a balance across the skin tone
spectrum, which was previously underserved by traditional PAD models. While some variability
still exists, particularly for very light and intermediate tones in specific datasets, the model demon-
strates a clear improvement in reducing bias and enhancing fairness across skin tones.

Ablation study: Table 4 in Appendix (A5) presents the results of an ablation study on FPAD-g-23,
evaluating backbone feature extractor trained on RGB, HSV, and YCbCr color spaces, channel-
attention mechanisms, and feature concatenation blocks. The study shows that the ColorCubeNet
model utilizes all the blocks to achieve the best performance with an accuracy of 97.34% and the
lowest EER of 4.41%. Models using a single backbone or two backbones in parallel (e.g., RGB or
RGB+HSV) or not utilizing feature concatenation or Channel Attention had higher EERs, ranging
from 5.26% to 5.63%, indicating the benefits of incorporating all three backbones and attention
mechanisms. Fig.9 illustrates various 1-BPCER values across various thresholds of APCER.

5 CONCLUSIONS

This paper highlights the importance of designing inclusive mobile PAD systems by addressing skin
tone disparities. The proposed solution combines multiple color spaces to provide a more compre-
hensive skin tone representation. Results show that our framework consistently outperforms tradi-
tional RGB baseline approaches across six datasets—Celeb-A-Spoof, OULU-NPU, Synth-A-Spoof,
FPAD-i-22, and FPAD-g-23 with BPCERs of 3.28%, 1.88%, 0%, 0.34%, 4.75%, and 0.05%, at 5%
APCER, respectively. This performance shows that ColorCubeNet mitigates skin tone disparities
better than traditional models.

Further analysis using Signal-to-Noise Ratio (SNR) confirmed the robustness of our model. SNR
analysis showed stable values for lighter skin tones and improved feature separation for darker skin
tones indicates a better handling of underrepresented skin tones. Despite these improvements, vari-
ability in SNR for very light and intermediate tones suggests, some challenges remain in achieving
uniform performance across all skin tones.

We plan to explore additional color spaces to improve feature capture across all skin tones. We
also aim to investigate further how variations in lighting conditions and capture devices influence
the appearance of skin tones, which can significantly impact model performance. Additionally, we
intend to incorporate other skin tone classification methods, such as the Monk and Fitzpatrick scales,
to complement the Apparent Skin Tone (AST) method used in this study.
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6 ETHICAL STATEMENT

Our study uses publicly available datasets with biometric data, and where applicable, we have en-
sured compliance with all necessary data privacy and ethical standards. Datasets used in this study
may require prior approval or permission from the respective data owners for access. In such cases,
we have signed license agreements or obtained Institutional Review Board (IRB) approval to ensure
data privacy and compliance with ethical standards. No sensitive or personally identifiable infor-
mation is publicly shared in this research, and we only provide irreversible extracted features that
preserve privacy.

This study aims to mitigate biases in AI systems by leveraging the ColorCubeNet architecture, de-
signed to improve PAD performance across various skin tones. No conflicts of interest or external
sponsorships have influenced the results of this work, and all experiments were conducted in accor-
dance with the highest standards of research integrity.

7 REPRODUCIBILITY STATEMENT

The datasets used in this study contain biometric images, which are sensitive in nature. To uphold
data privacy and ethical guidelines, we are only sharing the code for our framework. Researchers
interested in training the code on the original datasets must request access from the respective dataset
authors, as cited in this paper.

We provide the full implementation of the ColorCubeNet architecture, the SkinTone pipeline, and
the PCA analysis in the supplementary material to ensure complete transparency of the methods and
processes. While the code for Signal-to-Noise Ratio (SNR) analysis is included, it requires subject-
specific IDs and skin tone information, which may compromise privacy. To address this, we are
offering a sample SNR code to illustrate its functionality without risking data exposure.

In addition, we have provided thorough documentation to guide users through reproducing our work.
We are also sharing the models trained on the respective datasets, which can be evaluated by those
who have been granted access to the datasets.

REFERENCES

Global: number of smartphone users 2014-2029. https://www.statista.com/
forecasts/1143723/smartphone-users-in-the-world. Accessed: 2024-20-11.

Faseela Abdullakutty, Pamela Johnston, and Eyad Elyan. Fusion Methods for Face Presentation
Attack Detection. Sensors, 22(14), 2022. ISSN 1424-8220. doi: 10.3390/s22145196. URL
https://www.mdpi.com/1424-8220/22/14/5196.

Banafsheh Adami and Nima Karimian. Contactless Fingerprint Biometric Anti-Spoofing: An Un-
supervised Deep Learning Approach. 2024 IEEE International Joint Conference on Biomet-
rics (IJCB), pp. 1–10, 2023. URL https://api.semanticscholar.org/CorpusID:
265043294.

Reem Alrawili, Ali S. AlQahtani, and Muhammad Khurram Khan. Comprehensive Survey:
Biometric User Authentication Application, Evaluation, and Discussion. Computers and
Electrical Engineering, 119:109485, 2024. ISSN 0045-7906. doi: 10.1016/j.compeleceng.
2024.109485. URL https://www.sciencedirect.com/science/article/pii/
S0045790624004129.

Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Face Anti-Spoofing Using Patch
and Depth-based CNNs. In 2017 IEEE International Joint Conference on Biometrics (IJCB), pp.
319–328, 2017. doi: 10.1109/BTAS.2017.8272713.

Marthinus J. Booysen and Rensu P. Theart. Skin Tone Estimation under Diverse Lighting Condi-
tions. J. Imaging, 10(5):109, 2024. doi: 10.3390/jimaging10050109. URL https://www.
mdpi.com/2313-433X/10/5/109. Accessed: 2024-11-20.

11

https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://www.mdpi.com/1424-8220/22/14/5196
https://api.semanticscholar.org/CorpusID:265043294
https://api.semanticscholar.org/CorpusID:265043294
https://www.sciencedirect.com/science/article/pii/S0045790624004129
https://www.sciencedirect.com/science/article/pii/S0045790624004129
https://www.mdpi.com/2313-433X/10/5/109
https://www.mdpi.com/2313-433X/10/5/109


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zinelabinde Boulkenafet, Jukka Komulainen, Lei Li, Xiaoyi Feng, and Abdenour Hadid. OULU-
NPU: A Mobile Face Presentation Attack Database with Real-World Variations. In 12th IEEE
International Conference on Automatic Face Gesture Recognition (FG 2017), pp. 612–618, 2017.
doi: 10.1109/FG.2017.77.

Alain Chardon, Isabelle Cretois, and Colette Hourseau. Skin Colour Typology and Suntanning
Pathways. International Journal of Cosmetic Science, 13, 1991. URL https://api.
semanticscholar.org/CorpusID:25650931.

Wanchao Chen, Hao Guo, and Xiaogang Wang. TransFAS: Exploring Transformer for Face Anti-
Spoofing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4568–4577, 2022.
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A APPENDIX

A.1 APPARENT SKIN TONE

Table 2: Skin Tone Classification based on ITA values within the AST method.

ITA Range (°) Skin Tone Classification
>55 Very Light

41 to 55 Light
28 to 41 Intermediate
10 to 28 Tan
-30 to 10 Brown
<-30 Dark
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A.2 ColorSpace DERIVATION

The transformation of the image from its original RGB color space into a combined RGB, HSV, and
YCbCr representation begins with the derivation of the individual components. The V channel in
the HSV color space is computed as the maximum of the RGB values at each pixel (x, y):

V (x, y) = max(R(x, y), G(x, y), B(x, y)) (1)

The S (saturation) channel depends on the value of V (x, y):

S(x, y) =

{
0 if V (x, y) = 0
∆(x,y)
V (x,y) otherwise

(2)

where ∆(x, y) = V (x, y) − min(R(x, y), G(x, y), B(x, y)). The H (hue) channel is calculated
using the angle between the RGB components, and depends on the saturation S(x, y):

H(x, y) =

{
0 if S(x, y) = 0
Angle(R,G,B)

∆(x,y) otherwise
(3)

For the YCbCr color space conversion, the RGB values are transformed into Y (luminance), Cb
(blue chrominance), and Cr (red chrominance) components:

Y (x, y) = 0.299R(x, y) + 0.587G(x, y) + 0.114B(x, y) (4)

Cb(x, y) =
B(x, y)− Y (x, y)

2
+ 0.5 (5)

Cr(x, y) =
R(x, y)− Y (x, y)

2
+ 0.5 (6)

These RGB, HSV, and YCbCr components are concatenated into a 9-dimensional vector for each
pixel, which is normalized as follows:

Cnorm(x, y) =
1

255
×[R(x, y), G(x, y), B(x, y),

H(x, y), S(x, y), V (x, y),

Y (x, y), Cb(x, y), Cr(x, y)] (7)

Finally, the normalized ColorCube representation is transformed into a tensor that is compatible
with neural network input:

Ctensor(x, y) = permute(Cnorm(x, y), order = [2, 0, 1]) (8)

A.3 CROSS DATABASE ANALYSIS

Baseline
Train

Celeb-A OULU NPU Synth-Spoof
Train

FPAD-i-22 FPAD-g-23 IIIT-D

Our

EER% HTER% EER% HTER% EER% HTER% EER% HTER% EER% HTER% EER% HTER%

Celeb-A 4.24 9.14 26.24 33.72 36.24 41.19 FPAD-i-22 2.94 6.62 18.36 27.03 49.02 55.41

OULU NPU 30.26 38.29 3.44 11.01 33.58 37.48 FPAD-g-23 11.31 18.9 6.6 11.2 44.51 49.49

Synth-Spoof 47.06 52.15 34.025 38.82 0 0 IIIT-D 36.79 43.61 27.01 35.89 0.95 2.77

Deepixbis

Celeb-A 18.21 27.17 31.76 38.45 47.61 52.29 FPAD-i-22 7.11 18.79 31.54 38.49 56.25 60.02

OULU NPU 40.16 48.47 27.59 35.21 39.59 45.65 FPAD-g-23 26.11 32.47 8.78 17.48 35.63 43.37

Synth-Spoof 53.24 64.51 46.25 50.01 0.95 13.07 IIIT-D 47.52 49.57 32.75 39.63 7.25 21.89

Table 3: Results show cross dataset analysis for both fingerphoto and face datasets.

Table 3 illustrates the cross-scenario evaluation, where a model trained on one face dataset is tested
on other datasets. The results are reported in terms of EER% (Equal Error Rate) and HTER%
(Half Total Error Rate). We compare the performance of ColorCubeNet against the best-performing
baseline model.
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A.4 SKINTONE ANALYSIS

Figure 6: Distribution plots show Colorcube mitigating the skin tone impact.

Figure 7: Mismatch rate of skin tones on OULU- NPU(Face) and FPAD-g-23 (Finger) datasets.
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Figure 8: Mismatch rate of skin tones of the top performing models.

Fig. 7, illustrates the mismatc rate on OULU-NPU and FPAD-g-23 datasets. Fig. 8 illustrates the
mismatch rates (y-axis), reflecting the proportion of incorrect predictions for skin tone categories
(x-axis) such as Brown (B), Light (L),Tan (T), Intermediate (I), Dark (D), and Very Light (VL).
Both the figures suggests that baselines struggle to generalize across a diverse range of skin tones,
leading to unequal performance on various skintones. However, ColorCubeNet substantially reduces
this disparity, achieving more than a 50% reduction in mismatch rates across all skin tones when
compared to traditional RGB-based models.
A.5 ABLATION STUDY RESULTS

Figure 9: Receiver Operating Characteristic curve illustrating the performance of different ablation
study configurations.

Backbone Channel
Attention Concatnation ACC% EER%RGB HSV YCbCr

✓ x x ✓ ✓ 96.52 5.33
✓ ✓ x ✓ ✓ 96.41 5.63
x ✓ ✓ ✓ ✓ 96.10 5.26
✓ ✓ ✓ x ✓ 94.89 6.60
✓ ✓ ✓ ✓ x 95.42 5.45
✓ ✓ ✓ ✓ ✓ 97.34 4.41

Table 4: Ablation study using FPAD-G-23, This table shows Equal Error Rate% and Accuracy%
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Impact of Channel Attention on various datasets.

Attention
Datasets Self Channel Spatial
Celeb-A 4.68 4.15 4.84

OULU NPU 4.35 3.49 4.57
Synth-Spoof 0 0 0
FPAD-i-22 3.29 2.29 3.27
FPAD-g-23 6.43 3.96 4.9

IIIT-D 2.39 0.78 1.25

Table 5: Table shows EER% of Self, Channel and spatial attetnion mechanisms on ColorCubeNet

The channel-attention blocks focus on the most informative features within each color channel.
It first applies global average pooling and global max pooling to the feature map, reducing each
channel to two distinct values representing the average and maximum activations across the spatial
dimensions.

A.6 GRADCAM

Figure 10: Grad-Cam samples

Grad-CAM, or Gradient-weighted Class Activation Mapping, comes up with a ”class activation
map” showing those important image regions contributing most to a target prediction. Let’s compute
the weights αc

k for neuron k and target class c: the global average of the gradients coming back from
the output unit belonging to class c onto the featre maps A of convolution layers.

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(9)

Where ∂yc

∂Ak
ij

is the gradient of the score for class c, yc, concerning the feature map Ak at spatial

location (i, j), and Z is the total number of pixels in the feature map. This process helps identify
the parts of the image that are most influential in making the classification decision, giving a clear
visual interpretation of how this model’s focus may vary across skin tones. In the model we used
final residual layer after batch normalization for Grad-Cam.
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