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Abstract

To address the challenges of out-of-control gen-
eration in generative models for machine read-
ing comprehension (MRC), we introduce the
Question-Attended Span Extraction (QASE)
module. Integrated during the fine-tuning
of pre-trained generative language models
(PLMs), QASE enables these PLMs to match
SOTA extractive methods and outperform lead-
ing LLMs like GPT-4 in MRC tasks, without
significant increases in computational costs. !

1 Introduction

Machine Reading Comprehension (MRC) is a criti-
cal NLP challenge. Recent developments include
well-annotated benchmark datasets like such as
(Rajpurkar et al., 2016), Quoref (Dasigi et al.,
2019), and MultiSpanQA (Li et al., 2022a). Main-
stream approaches to MRC extract a relevant piece
of text from the context in response to a question
(Wang et al., 2018; Yan et al., 2019; Chen et al.,
2020), but in real-world application, the correct an-
swers often span multiple passages or are implicit
(Li et al., 2021). Exploring generative models, in
addition to extractive methods, is essential.
Generative models, however, underperform in
MRC due to out-of-control generation (Li et al.,
2021). This leads to two main challenges: (1) ill-
formed generated answers, containing incomplete
or redundant phrases, and (2) factual inconsistency
in the generated answers deviating from the cor-
rect response. In this paper, we address these by
introducing a lightweight Question-Attended Span
Extraction (QASE) module. We fine-tune multi-
ple open-source generative pre-trained language
models (PLMs) on various MRC datasets to assess
the module’s efficacy in guiding answer generation.
Our contributions include: (1) Developing QASE
to improve fine-tuned generative PLMs’ quality
and factual consistency on MRC tasks, matching

'Our code is available at this anonymous repo link.

SOTA extractive methods and surpassing GPT-
4; (2) QASE boosts performance without signif-
icantly increasing computational costs, benefiting
researchers with limited resources.

2 Related Work

Most current studies on MRC involve predict-
ing the start and end positions of the answer spans
from a given context (Ohsugi et al., 2019; Lan et al.,
2019; Bachina et al., 2021). To handle the multi-
span setting, some studies frame the problem as
a sequence tagging task (Segal et al., 2020), and
others explore ways to combine models with differ-
ent tasks (Hu et al., 2019; Lee et al., 2023; Zhang
et al., 2023). While these extractive-based methods
mainly utilize encoder-only models, such as BERT
and RoBERTa, there is also research focuses on us-
ing the power of generative-based language models
(Yang et al., 2020; Li et al., 2021; Su et al., 2022).

Retrieval-augmented text generation (RAG)
augments the input of PLMs with in-domain (Gu
et al., 2018; Weston et al., 2018; Saha and Srihari,
2023) or external knowledge (Su et al., 2021; Xiao
et al., 2021) to control the quality and factual con-
sistency of generated content. It has become a new
text generation paradigm in many NLP tasks (Li
et al., 2022b), such as dialogue response generation
(Wu et al., 2021; Liu et al., 2023b) and machine
translation (He et al., 2021; Zhu et al., 2023). How-
ever, not much work focuses on selective MRC.
Our approach diverges from RAG as it directly fine-
tunes the weights of the PLMs rather than altering
the input to the PLMs with additional information.

3 Method

Question-Attended Span Extraction To guide text
generation, we use QASE, a question-attended span
extraction module, during fine-tuning the gener-
ative PLMs. QASE focuses model attention on
potential answer spans within the original context.
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We cast span extraction as a sequence tagging prob-
lem and employ the Inside-Outside (I0) tagging
schema, where each sequence token is tagged as
“inside’ (1) if part of a relevant span, or ’outside’ (Q)
if not. This schema works well for both single- and
multi-span extraction settings, achieving compara-
ble or even better performance than the well-known
BIO tagging format (Huang et al., 2015), as shown
by Segal et al. (2020).
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Figure 1: QASE-enhanced model architecture

The architecture of our model is shown in Figure
1. An input context and question pair and an instruc-
tion are first tokenized and fed into the PLM. The
hidden states output from the PLM is then passed
through projection layers to produce embeddings
zi = ReLU(Wprojvi + bproj), where v; € R is
the PLM output hidden state of the it token.

To learn context tokens representations in re-
lation to specific questions, we employ a multi-
head attention mechanism (MHA). Each head in
MHA focuses to different aspects of the context
as it relates to the question, using question em-
beddings as the query and context embeddings as
key-value pairs. This mechanism aligns the con-
text token representations with the specifics of the
queried question. The projected embeddings z;
are passed through MHA, and subsequently chan-
neled through a linear layer and a softmax layer to
compute p; = softmax(Wi;, - M HA(z;) + bin),
which denotes the probability of the i*" token
being inside the answer spans. We then com-
pute the sequence tagging loss using the cross en-
tropy loss Loase = — 3 Yie1 j—o Yilog(pij),
where j € 0, 1 corresponds to class O and class 1,

and y;; is a binary value indicating whether the ith
token belongs to class j.

Fine-Tuning and Inference We fine-tune the
PLMs using multi-task learning, simultaneously
optimizing both the language modeling loss and
sequence tagging loss: L = Ly, + BLQaSE,
where [ is a hyper-parameter that controls the
weight of the span extraction task. This approach
enhances the PLMs’ ability to generate answers
well-founded in the context and relevant answer
spans. During inference, only the generation com-
ponent of the fine-tuned model is employed.

4 Experiments

Datasets and Metrics We utilize these 3 MRC
datasets. (1) SQuAD (Rajpurkar et al., 2016):
A benchmark reading comprehension dataset con-
sisting of 100K+ questions with single-span an-
swers. We use SQuAD vl1.1. Since the official
evaluation on vl1.1 has long been ended, we re-
port our results on the official v1.1 development
set. (2) MultiSpanQA (Li et al., 2022a): This
reading comprehension dataset consists of over
6.5k question-answer pairs. Unlike most existing
single-span answer MRC datasets, MultiSpanQA
focuses on multi-span answers. (3) Quoref (Dasigi
et al., 2019): A benchmark reading comprehen-
sion dataset containing more than 24K questions,
with most answers being single-span and ~10%
being multi-span. Following the conventions of the
datasets’ official leaderboards (information listed
in Appendix A.1), we employ exact match (EM)
and partial match (Overlap) F1 scores as metrics
on MultiSpanQA, and exact match percentage and
macro-averaged F1 score on SQuAD and Quoref.

Experimental Setup To evaluate the effective-
ness of QASE independent of any specific language
model, we experiment with multiple open-source
LLMs. These include both decoder-only LLMs,
such as Llama 2 (Touvron et al., 2023) and Alpaca
(Taori et al., 2023), and an encoder-decoder model,
Flan-T5 (Chung et al., 2022). For Llama 2 and Al-
paca, we fine-tune the pre-trained 7B version using
LoRA (Hu et al., 2021) and instruction-tuning (see
Appendix A.3 for instruction templates). For Flan-
TS5 family models, we fine-tune the small, the base,
and the large versions. The trainable parameters
for each model is provided in Table 2.

We train all our models on single GPUs, using a
batch size of 2-4 depending on the VRAM of the
respective GPUs. We use four types of GPUs: A40,



[ Llama2 [ Alpaca [ Flan-T5-Small | Flan-T5-Base | Flan-T5-Large
SQuAD no QASE || 36.68147.06 | 27.88143.95 77.33185.51 82.09189.56 83.16190.71
(EM I F1) QASE || 37.22147.69 | 37.31147.62 77.66 |1 85.90 82.20190.24 84.13191.70
MultiSpanQA no QASE || 50.93168.14 | 52.73169.10 59.13176.49 64.66 1 81.41 67.41183.09
(EM F1 | Overlap F1) QASE || 51.75170.39 | 52.20170.01 59.08177.10 64.87 | 81.50 66.92 | 84.22
Quoref no QASE || 45.52152.09 58.21163.30 72.77180.90 75.17180.49
(EMIFID) QASE || 54.28160.44 60.70 1 66.88 75.17 1 81.18 76.19 | 82.13

Table 1: Performance of fine-tuned PLMs with or without QASE on each dataset.

Trainable Parameters
no QASE QASE  Aparams
Llama2/Alpaca
with LoRA 4.2M 7.3M 3.1M
Flan-T5-Small 77.0M 78.2M 1.3M
Flan-T5-Base 247.6M  248.9M 1.4M
Flan-T5-Large 783.2M  784.TM 1.5M

Table 2: Trainable parameters of experimented models.

A10, A5500, and A100. Models are trained for 3
epochs or until convergence. Notably, model vari-
ants derived from the same base PLM share identi-
cal configurations including learning rate, weight
decay, batch size, epoch number, and GPU type.
Experiment Results To evaluate the efficacy of
the QASE, we examine the performance of vari-
ous PLMs fine-tuned with and without QASE, as
shown in Table 1. Generally, models fine-tuned
with QASE outperform those fine-tuned without it.
In particular, for SQuAD, QASE-enhanced model
demonstrate an EM percentage increase of up to
33.8% and an F1 score upsurge of up to 8.4% over
vanilla fine-tuned models. For MultiSpanQA, there
is an improvement of up to 1.6% in the EM F1 and
up to 3.3% in the overlap F1. Likewise, on Quoref,
there is an improvement of up to 19.2% in the EM
percentage and up to 16.0% in the F1 score. These
results show that, by employing QASE, generative-
based PLMs can be fine-tuned to produce well-
formed, context-grounded, and better-quality an-
swers in MRC tasks compared to the vanilla fine-
tuning approach. For reference, we also compare
the fine-tuned PLMs to their corresponding PLMs
in zero-shot settings, as presented in Appendix A.2.

Computational Costs Table 2 shows that inte-
grating QASE slightly raises the number of train-
able parameters in PLMs, with the increase depen-
dent on the models’ hidden sizes. Significantly, for
the largest model, Flan-T5-Large, QASE adds just
0.2% more parameters, indicating that QASE en-
hances the capabilities of fine-tuned PLMs in MRC
without major increase in computational resources.

Model Comparisons Our top model, Flan-T5-
Largegask, is further benchmarked against lead-

ing models on each dataset’s official leaderboard,
alongside zero-shot GPT-3.5-Turbo and GPT-4.
GPT-3.5-Turbo stands as one of OpenAl’s most
efficient models in terms of capability and cost,
while GPT-4 shows superior reasoning abilities
(Liu et al., 2023c). Studies indicate their supe-
riority over traditional fine-tuning methods in most
logical reasoning benchmarks (Liu et al., 2023a).
The prompts used to query the GPT variants are
detailed in Appendix A.3.

On SQuAD, as illustrated in Table 3, Flan-T5-
Largeg sk surpasses human performance, equal-
ing the NLNet model from Microsoft Research
Asia and the original pre-trained BERT-Large from
Google (Devlin et al., 2019), which are ranked #11
and #13 on the v1.1 leaderboard respectively. Ad-
ditionally, it surpasses GPT-4 by 113.8% on the
exact match score and 32.6% on F1.

H EM F11
GPT-3.5-Turbo 36.944  65.637
GPT-4 39.347  69.158
Human Performance 82.304 91.221
BERT-Large (Devlin et al., 2019) 84.328 91.281
MSRA NLNet (ensemble) 85.954 91.677
Flan-T5-Largegasre 84.125 91.701

Table 3: Results of Flan-T5-Largeg s and baselines
on SQuAD.

On MultiSpanQA, Table 4 shows that Flan-
T5-Largegask outperforms LIQUID (Lee et al.,
2023), which currently ranks #1 on the leaderboard,
with respect to the overlap F1 score. Moreover, it
surpasses GPT-4 by 4.5% on the exact match F1
and 1.5% on the overlap F1.

[ EMF1 Overlap F1 T
GPT-3.5-Turbo 59.766 81.866
GPT-4 64.027 82.731
LIQUID (Lee et al., 2023) 73.130 83.360
Flan-T5-Largegask 66.918 84.221

Table 4: Performance of Flan-T5-Largeg 45 and base-
lines on MultiSpanQA.

On Quoref, Table 5 shows that Flan-T5-
Largegask is comparable to CorefRoberta-Large



(Ye et al., 2020), which ranks #9 on the leaderboard,
with a 0.5% higher exact match. Furthermore, it
outperforms GPT-4 by 11.9% on the exact match
and 4.8% on F1.

H EM F11
GPT-3.5-Turbo 50.22 59.51
GPT4 68.07 78.34
CorefRoberta-Large (Ye et al., 2020) || 75.80 82.81
Flan-T5-Largegase 76.19 82.13

Table 5: Performance of Flan-T5-Largeg 45 g and base-
lines on Quoref.

All top-performing models on these datasets’
leaderboards, equaling or exceeding Flan-T5-
Largegask, are encoder-only extractive models.
Therefore, these results demonstrate that QASE-
enhanced generative PLMs can be fine-tuned to
match or exceed the capabilities of SOTA extrac-
tive models and outperform leading LLMs in MRC.

Ablation Studies To demonstrate the superior-
ity of the QASE architecture, we compared Flan-
T5-Largegase with vanilla fine-tuned Flan-TF-
Largr7 and Flan-T5-Largey,seiine- The baseline
span extraction module lacks the MHA component,
making it a standard architecture for fine-tuning
pre-trained encoders for downstream sequence tag-
ging tasks. We also explored both question-first
(gf) and context-first prompting strategies, with fur-
ther details and analysis provided in Appendix A.4,
where the model architecture is also illustrated.

Table 6 shows that the baseline-embedded model
performs better with a question-first prompting
strategy, as Flan-T5-Largepqseline,, surpasses Flan-
T5-Largepgserine and Flan—TS—LargeFTq ;- Con-
versely, the baseline span extraction module de-
creases performance in context-first prompting,
where Flan-T5-Largeyqseiine underperforms com-
pared to Flan-T5-Largerr. This suggests that
adding an auxiliary span extraction module with-
out careful design can negatively affect instruc-
tion fine-tuning. Meanwhile, the QASE-enhanced
model excels over both vanilla fine-tuned and
baseline-embedded models in both prompting sce-
narios, demonstrating its architectural superior-
ity. Specifically, in context-first setting, Flan-
T5-Largeg sk significantly outperforms Flan-T5-
Largepgserine With a 4.3% higher F1.

Factual Consistency While token-based EM
and F1 scores measure the structural quality of
generated text, they do not reflect factual accuracy
relative to the context. For this we used Q2 (Hon-
ovich et al., 2021), an automatic metric for assess-

[ EM F11
Flan-T5-Largepgseiine 79.877 87.918
Flan-T5-Largerr, 80.378  88.176
Flan-T5-Largevasetine,, s 81.125  89.043
Flan-TS-LargeQAsqu 81.485 89.077
Flan-T5-Large rr 83.159 90.712
Flan-T5-Largegase 84.125 91.701

Table 6: Performance of vanilla, baseline-, and QASE-
enhanced fine-tuned Flan-T5-Large on SQuAD.

ing factual consistency in generated text, which
uses question generation and answering methods
over token-based matching. We compared fine-
tuned Flan-T5-Large with and without QASE in
both single-span (SQuAD) and multi-span (Mul-
tiSpanQA) answer settings. Table 7 shows that
QASE-enhanced models consistently outperform
the vanilla fine-tuned model. On SQuAD, % NLI
score is improved by 1.0%, and on MultiSpanQA,
it is improved by 16.0%.

Flan-T5-Large H Q2 F1 Q2 NLI

no QASE || 42.927  44.983

SQuAD QASE || 43.624  45.419

- no QASE || 32.889  31.433
MultiSpanQA QASE || 34732  36.452

Table 7: Q? scores of fine-tuned Flan-T5-Large with or
without QASFE on each dataset.

5 Conclusion and Future Work

In this study, we address out-of-control text gener-
ation of generative PLMs in MRC using QASE, a
lightweight question-attended span extraction mod-
ule, during the fine-tuning of PLMs. Our experi-
ments show that QASE-enhanced PLMs generate
better-quality responses with improved formality
and factual consistency, matching SOTA extrac-
tive models and outperforming GPT-4 by a signif-
icant margin on all three MRC datasets. Impor-
tantly, QASE improves performance without a sig-
nificant increase in computational costs, benefiting
researchers with limited resources.

In the future, we plan to test our model on gen-
erative MRC datasets (Nguyen et al., 2016) to fur-
ther assess its efficacy in more complex scenarios.
Another key focus will be evaluating the model’s
general ability in answer generation, particularly
from the perspective of human perception. This
will involve incorporating human annotators in ad-
dition to automatic metrics. For a long-term goal,
we are looking to expand our work to explore solu-
tions for addressing input- and context-conflicting
hallucinations in LLMs.



Limitations

Due to our limited computational resources, we
have been able to perform our experiments on mod-
els no larger than Flan-T5-Large. This same con-
straint led us to only fine-tuning of Llama 2 and
Alpaca with LoRA. We note that models based on
Llama 2 and Alpaca generally underperform those
based on Flan-T5. Apart from the inherent distinc-
tions between decoder-only and encoder-decoder
models, and their suitability for different tasks (as
seen from the models’ zero-shot performance), a
possible factor could be the number of trainable
parameters during fine-tuning. Specifically, fine-
tuning Llama 2 and Alpaca with LoRA results in
only 4.2M trainable parameters, while even the
smallest Flan-T5 model provides 77.0M trainable
parameters, as shown in Table 2. We acknowl-
edge that many researchers face similar computa-
tional resource limitations. Therefore, our research
should be very useful, proposing this lightweight
module capable of enhancing smaller PLMs to out-
perform leading LLMs on MRC tasks like these,
achieving a balance of effectiveness and affordabil-
ity.

One foreseeable limitation of our work is the de-
pendency of the fine-tuning process on answer span
annotations, since QASE works as an auxiliary su-
pervised span extraction module. This reliance on
annotated data could potentially limit the model’s
broader applicability. A prospective exciting fu-
ture direction to address this limitation is to de-
velop a semi- or unsupervised module that focuses
on selecting relevant spans or rationales within a
given context. By integrating this module with
our current model, we could significantly improve
its generalization capabilities, thereby making it
more adaptable and effective across a wider range
of scenarios.

One popular method to enhance the formality of
answers generated by LLMs is through prompt en-
gineering, paired with few-shot or in-context learn-
ing techniques. While these strategies offer great
advantages, our ultimate goal is to create a system
with broad domain generalization, one that mini-
mizes the need for extensive, calibrated prompt en-
gineering and sample selections for task adaptation.
Although developing a robust prompt engineering
framework or paradigm is an appealing direction,
our current focus diverges from this path. As a
long-term goal, we aim for a solution that handles
diverse tasks with minimal task-specific tuning.
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A Appendix
A.1 Dataset Leaderboard

Below are the official leaderboards all the datasets
we refer to:

SQuAD https://rajpurkar.github.io/
SQuAD-explorer/

MultiSpanQA  https://multi-span.github.io/

Quoref https://leaderboard.allenai.org/
quoref/submissions/public

Table 8: Dataset official leaderboards.

A.2 Full Experiment Results

In addition to the highlighted results presented in
Section 4, we also compare the fine-tuned PLMs to
their corresponding base PLMs in zero-shot set-
tings. The results, presented in Table 9, show
that fine-tuning with QASE improves performance
across all datasets. Specifically, on the SQuAD
dataset, models using QASE perform up to 5.6
times better in exact match and 3.0 times better in
F1 score compared to the original models. On the
MultiSpanQA dataset, the exact match improves
by up to 124.4 times, and F1 score by up to 3.4
times. Similarly, on the Quoref dataset, the exact
match improves by up to 38.4 times, and F1 score
by up to 11.2 times with QASE.

A.3 Instruction Templates and Model
Prompts

Table 10 provides the instruction and prompt tem-
plates used for fine-tuning the PLMs and for zero-
shot querying of PLMs and GPT variants across
both single- and multi-span answer datasets.

A.4 Ablation Studies Details

Figure 2 depicts the architecture of the model we
use for the ablation studies, with a baseline span
extraction module. The baseline span extraction
module omits the MHA component, typifying a
standard architecture for fine-tuning pre-trained
encoders for downstream sequence tagging tasks.
The baseline-embedded Flan-T5-Large models are
fine-tuned with the same configurations as Flan-T5-
Largeg sk including learning rate, weight decay,
batch size, epoch number, and GPU type.

We experiment with 2 prompting strategies for
ablation studies:

e Context-first prompting: The default
prompting strategy we utilize for fine-tuning

Promplq/ Instruction Question <SEP> Context
or
Prompt Instruction Context Question
Pre-Trained Language Model
O v O V,,.0F V.,
. 1 oc co
Representations [T 771 RRRRERRRRR
\
P —— . ‘ ,
i Projection i Bascline
; i
i
Linear
Softmax
!
LM Loss ‘\ Seq Tagging Loss

Total Loss

Figure 2: Baseline-embedded model architecture

PLMs, both with and without QASE. In this
setting, the prompt is ordered as "<instruction
tokens> <context tokens> <question tokens>".

* Question-first prompting (gf): Following
BERT’s standard fine-tuning procedures. In
this setting, the prompt is ordered as "<instruc-
tion tokens> <question tokens> <SEP> <con-
text tokens>". <SEP> is a special separator
token.


https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
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MultiSpanQA SQuAD Quoref
EMF1 Overlap F1 EM F1 EM F1

Llama2 7.354 34.031 13.443  28.931 5.02 28091
Llama2 pr 50.934 68.140 36.679 47.055 | 45.52 52.09
Llama2gaske 51.748 70.389 37.219 47.686 | 54.28 60.44
Alpaca 15.201 42.759 18.259  33.871 - -

Alpacapr 52.730 69.099 27.881  43.950 - -

Alpacagask 52.196 70.008 37.313 47.622 - -

Flan-T5-Small 0.475 22.539 13.878  28.710 | 1.58 5.96
Flan-T5-Small g 59.128 76.494 77.332  85.513 | 58.21 63.30
Flan-T5-Smallgasre 59.080 77.103 77.663 85.901 | 60.70 66.88
Flan-T5-Base 4.113 37.694 37.596 51.747 | 27.08 34.38
Flan-T5-Base pr 64.659 81.408 82.090 89.558 | 72.77 80.90
Flan-T5-Basegask 64.874 81.498 82.204 90.240 | 75.17 81.18
Flan-T5-Large 13.907 51.501 16.149  37.691 | 1596 24.10
Flan-T5-Large 7 67.408 83.094 83.159 90.712 | 75.17 80.49
Flan-T5-Largegask 66.918 84.221 84.125 91.701 | 76.19 82.13

Table 9: Performance of zero-shot PLMs and fined-tuned PLMs with and without QASE.

Fine-tuning PLMs Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations.

Context: <context>

Question: <question>

Answer:

Zero-shot prompting PLMs and | Instruction: Using the provided context, answer the question with exact phrases and
GPT variants on single-span answer | avoid explanations.

dataset, SQuUAD ---

Context: <context>

Question: <question>

Answer:

Zero-shot prompting PLMs and | Instruction: Using the provided context, answer the question with exact phrases and
GPT variants on multi-span answer | avoid explanations. Format the response as follows: ["answerl", "answer2", ...].
datasets, MultiSpanQA and Quoref | ---

Context: <context>

Question: <question>

Answer:

Table 10: Templates for fine-tuning instructions and zero-shot query prompts
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