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Abstract

To address the challenges of out-of-control gen-001
eration in generative models for machine read-002
ing comprehension (MRC), we introduce the003
Question-Attended Span Extraction (QASE)004
module. Integrated during the fine-tuning005
of pre-trained generative language models006
(PLMs), QASE enables these PLMs to match007
SOTA extractive methods and outperform lead-008
ing LLMs like GPT-4 in MRC tasks, without009
significant increases in computational costs. 1010

1 Introduction011

Machine Reading Comprehension (MRC) is a criti-012

cal NLP challenge. Recent developments include013

well-annotated benchmark datasets like such as014

(Rajpurkar et al., 2016), Quoref (Dasigi et al.,015

2019), and MultiSpanQA (Li et al., 2022a). Main-016

stream approaches to MRC extract a relevant piece017

of text from the context in response to a question018

(Wang et al., 2018; Yan et al., 2019; Chen et al.,019

2020), but in real-world application, the correct an-020

swers often span multiple passages or are implicit021

(Li et al., 2021). Exploring generative models, in022

addition to extractive methods, is essential.023

Generative models, however, underperform in024

MRC due to out-of-control generation (Li et al.,025

2021). This leads to two main challenges: (1) ill-026

formed generated answers, containing incomplete027

or redundant phrases, and (2) factual inconsistency028

in the generated answers deviating from the cor-029

rect response. In this paper, we address these by030

introducing a lightweight Question-Attended Span031

Extraction (QASE) module. We fine-tune multi-032

ple open-source generative pre-trained language033

models (PLMs) on various MRC datasets to assess034

the module’s efficacy in guiding answer generation.035

Our contributions include: (1) Developing QASE036

to improve fine-tuned generative PLMs’ quality037

and factual consistency on MRC tasks, matching038

1Our code is available at this anonymous repo link.

SOTA extractive methods and surpassing GPT- 039

4; (2) QASE boosts performance without signif- 040

icantly increasing computational costs, benefiting 041

researchers with limited resources. 042

2 Related Work 043

Most current studies on MRC involve predict- 044

ing the start and end positions of the answer spans 045

from a given context (Ohsugi et al., 2019; Lan et al., 046

2019; Bachina et al., 2021). To handle the multi- 047

span setting, some studies frame the problem as 048

a sequence tagging task (Segal et al., 2020), and 049

others explore ways to combine models with differ- 050

ent tasks (Hu et al., 2019; Lee et al., 2023; Zhang 051

et al., 2023). While these extractive-based methods 052

mainly utilize encoder-only models, such as BERT 053

and RoBERTa, there is also research focuses on us- 054

ing the power of generative-based language models 055

(Yang et al., 2020; Li et al., 2021; Su et al., 2022). 056

Retrieval-augmented text generation (RAG) 057

augments the input of PLMs with in-domain (Gu 058

et al., 2018; Weston et al., 2018; Saha and Srihari, 059

2023) or external knowledge (Su et al., 2021; Xiao 060

et al., 2021) to control the quality and factual con- 061

sistency of generated content. It has become a new 062

text generation paradigm in many NLP tasks (Li 063

et al., 2022b), such as dialogue response generation 064

(Wu et al., 2021; Liu et al., 2023b) and machine 065

translation (He et al., 2021; Zhu et al., 2023). How- 066

ever, not much work focuses on selective MRC. 067

Our approach diverges from RAG as it directly fine- 068

tunes the weights of the PLMs rather than altering 069

the input to the PLMs with additional information. 070

3 Method 071

Question-Attended Span Extraction To guide text 072

generation, we use QASE, a question-attended span 073

extraction module, during fine-tuning the gener- 074

ative PLMs. QASE focuses model attention on 075

potential answer spans within the original context. 076
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We cast span extraction as a sequence tagging prob-077

lem and employ the Inside-Outside (IO) tagging078

schema, where each sequence token is tagged as079

’inside’ (I) if part of a relevant span, or ’outside’ (O)080

if not. This schema works well for both single- and081

multi-span extraction settings, achieving compara-082

ble or even better performance than the well-known083

BIO tagging format (Huang et al., 2015), as shown084

by Segal et al. (2020).085

Figure 1: QASE-enhanced model architecture

The architecture of our model is shown in Figure086

1. An input context and question pair and an instruc-087

tion are first tokenized and fed into the PLM. The088

hidden states output from the PLM is then passed089

through projection layers to produce embeddings090

zi = ReLU(Wprojvi + bproj), where vi ∈ Rd is091

the PLM output hidden state of the ith token.092

To learn context tokens representations in re-093

lation to specific questions, we employ a multi-094

head attention mechanism (MHA). Each head in095

MHA focuses to different aspects of the context096

as it relates to the question, using question em-097

beddings as the query and context embeddings as098

key-value pairs. This mechanism aligns the con-099

text token representations with the specifics of the100

queried question. The projected embeddings zi101

are passed through MHA, and subsequently chan-102

neled through a linear layer and a softmax layer to103

compute pi = softmax(Wlin ·MHA(zi)+ blin),104

which denotes the probability of the ith token105

being inside the answer spans. We then com-106

pute the sequence tagging loss using the cross en-107

tropy loss LQASE = − 1
N

∑N
i=1

∑1
j=0 yijlog(pij),108

where j ∈ 0, 1 corresponds to class O and class I,109

and yij is a binary value indicating whether the ith 110

token belongs to class j. 111

Fine-Tuning and Inference We fine-tune the 112

PLMs using multi-task learning, simultaneously 113

optimizing both the language modeling loss and 114

sequence tagging loss: L = LLML + βLQASE , 115

where β is a hyper-parameter that controls the 116

weight of the span extraction task. This approach 117

enhances the PLMs’ ability to generate answers 118

well-founded in the context and relevant answer 119

spans. During inference, only the generation com- 120

ponent of the fine-tuned model is employed. 121

4 Experiments 122

Datasets and Metrics We utilize these 3 MRC 123

datasets. (1) SQuAD (Rajpurkar et al., 2016): 124

A benchmark reading comprehension dataset con- 125

sisting of 100K+ questions with single-span an- 126

swers. We use SQuAD v1.1. Since the official 127

evaluation on v1.1 has long been ended, we re- 128

port our results on the official v1.1 development 129

set. (2) MultiSpanQA (Li et al., 2022a): This 130

reading comprehension dataset consists of over 131

6.5k question-answer pairs. Unlike most existing 132

single-span answer MRC datasets, MultiSpanQA 133

focuses on multi-span answers. (3) Quoref (Dasigi 134

et al., 2019): A benchmark reading comprehen- 135

sion dataset containing more than 24K questions, 136

with most answers being single-span and ∼10% 137

being multi-span. Following the conventions of the 138

datasets’ official leaderboards (information listed 139

in Appendix A.1), we employ exact match (EM) 140

and partial match (Overlap) F1 scores as metrics 141

on MultiSpanQA, and exact match percentage and 142

macro-averaged F1 score on SQuAD and Quoref. 143

Experimental Setup To evaluate the effective- 144

ness of QASE independent of any specific language 145

model, we experiment with multiple open-source 146

LLMs. These include both decoder-only LLMs, 147

such as Llama 2 (Touvron et al., 2023) and Alpaca 148

(Taori et al., 2023), and an encoder-decoder model, 149

Flan-T5 (Chung et al., 2022). For Llama 2 and Al- 150

paca, we fine-tune the pre-trained 7B version using 151

LoRA (Hu et al., 2021) and instruction-tuning (see 152

Appendix A.3 for instruction templates). For Flan- 153

T5 family models, we fine-tune the small, the base, 154

and the large versions. The trainable parameters 155

for each model is provided in Table 2. 156

We train all our models on single GPUs, using a 157

batch size of 2-4 depending on the VRAM of the 158

respective GPUs. We use four types of GPUs: A40, 159
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Llama2 Alpaca Flan-T5-Small Flan-T5-Base Flan-T5-Large
SQuAD no QASE 36.68 | 47.06 27.88 | 43.95 77.33 | 85.51 82.09 | 89.56 83.16 | 90.71

(EM | F1) QASE 37.22 | 47.69 37.31 | 47.62 77.66 | 85.90 82.20 | 90.24 84.13 | 91.70
MultiSpanQA no QASE 50.93 | 68.14 52.73 | 69.10 59.13 | 76.49 64.66 | 81.41 67.41 | 83.09

(EM F1 | Overlap F1) QASE 51.75 | 70.39 52.20 | 70.01 59.08 | 77.10 64.87 | 81.50 66.92 | 84.22
Quoref no QASE 45.52 | 52.09 - 58.21 | 63.30 72.77 | 80.90 75.17 | 80.49

(EM | F1) QASE 54.28 | 60.44 - 60.70 | 66.88 75.17 | 81.18 76.19 | 82.13

Table 1: Performance of fine-tuned PLMs with or without QASE on each dataset.

Trainable Parameters
no QASE QASE ∆params

Llama2/Alpaca
with LoRA 4.2M 7.3M 3.1M

Flan-T5-Small 77.0M 78.2M 1.3M
Flan-T5-Base 247.6M 248.9M 1.4M

Flan-T5-Large 783.2M 784.7M 1.5M

Table 2: Trainable parameters of experimented models.

A10, A5500, and A100. Models are trained for 3160

epochs or until convergence. Notably, model vari-161

ants derived from the same base PLM share identi-162

cal configurations including learning rate, weight163

decay, batch size, epoch number, and GPU type.164

Experiment Results To evaluate the efficacy of165

the QASE, we examine the performance of vari-166

ous PLMs fine-tuned with and without QASE, as167

shown in Table 1. Generally, models fine-tuned168

with QASE outperform those fine-tuned without it.169

In particular, for SQuAD, QASE-enhanced model170

demonstrate an EM percentage increase of up to171

33.8% and an F1 score upsurge of up to 8.4% over172

vanilla fine-tuned models. For MultiSpanQA, there173

is an improvement of up to 1.6% in the EM F1 and174

up to 3.3% in the overlap F1. Likewise, on Quoref,175

there is an improvement of up to 19.2% in the EM176

percentage and up to 16.0% in the F1 score. These177

results show that, by employing QASE, generative-178

based PLMs can be fine-tuned to produce well-179

formed, context-grounded, and better-quality an-180

swers in MRC tasks compared to the vanilla fine-181

tuning approach. For reference, we also compare182

the fine-tuned PLMs to their corresponding PLMs183

in zero-shot settings, as presented in Appendix A.2.184

Computational Costs Table 2 shows that inte-185

grating QASE slightly raises the number of train-186

able parameters in PLMs, with the increase depen-187

dent on the models’ hidden sizes. Significantly, for188

the largest model, Flan-T5-Large, QASE adds just189

0.2% more parameters, indicating that QASE en-190

hances the capabilities of fine-tuned PLMs in MRC191

without major increase in computational resources.192

Model Comparisons Our top model, Flan-T5-193

LargeQASE , is further benchmarked against lead-194

ing models on each dataset’s official leaderboard, 195

alongside zero-shot GPT-3.5-Turbo and GPT-4. 196

GPT-3.5-Turbo stands as one of OpenAI’s most 197

efficient models in terms of capability and cost, 198

while GPT-4 shows superior reasoning abilities 199

(Liu et al., 2023c). Studies indicate their supe- 200

riority over traditional fine-tuning methods in most 201

logical reasoning benchmarks (Liu et al., 2023a). 202

The prompts used to query the GPT variants are 203

detailed in Appendix A.3. 204

On SQuAD, as illustrated in Table 3, Flan-T5- 205

LargeQASE surpasses human performance, equal- 206

ing the NLNet model from Microsoft Research 207

Asia and the original pre-trained BERT-Large from 208

Google (Devlin et al., 2019), which are ranked #11 209

and #13 on the v1.1 leaderboard respectively. Ad- 210

ditionally, it surpasses GPT-4 by 113.8% on the 211

exact match score and 32.6% on F1.

EM F1 ↑
GPT-3.5-Turbo 36.944 65.637
GPT-4 39.347 69.158
Human Performance 82.304 91.221
BERT-Large (Devlin et al., 2019) 84.328 91.281
MSRA NLNet (ensemble) 85.954 91.677
Flan-T5-LargeQASE 84.125 91.701

Table 3: Results of Flan-T5-LargeQASE and baselines
on SQuAD.

212

On MultiSpanQA, Table 4 shows that Flan- 213

T5-LargeQASE outperforms LIQUID (Lee et al., 214

2023), which currently ranks #1 on the leaderboard, 215

with respect to the overlap F1 score. Moreover, it 216

surpasses GPT-4 by 4.5% on the exact match F1 217

and 1.5% on the overlap F1.

EM F1 Overlap F1 ↑
GPT-3.5-Turbo 59.766 81.866
GPT-4 64.027 82.731
LIQUID (Lee et al., 2023) 73.130 83.360
Flan-T5-LargeQASE 66.918 84.221

Table 4: Performance of Flan-T5-LargeQASE and base-
lines on MultiSpanQA.

218
On Quoref, Table 5 shows that Flan-T5- 219

LargeQASE is comparable to CorefRoberta-Large 220

3



(Ye et al., 2020), which ranks #9 on the leaderboard,221

with a 0.5% higher exact match. Furthermore, it222

outperforms GPT-4 by 11.9% on the exact match223

and 4.8% on F1.

EM F1 ↑
GPT-3.5-Turbo 50.22 59.51
GPT-4 68.07 78.34
CorefRoberta-Large (Ye et al., 2020) 75.80 82.81
Flan-T5-LargeQASE 76.19 82.13

Table 5: Performance of Flan-T5-LargeQASE and base-
lines on Quoref.

224

All top-performing models on these datasets’225

leaderboards, equaling or exceeding Flan-T5-226

LargeQASE , are encoder-only extractive models.227

Therefore, these results demonstrate that QASE-228

enhanced generative PLMs can be fine-tuned to229

match or exceed the capabilities of SOTA extrac-230

tive models and outperform leading LLMs in MRC.231

Ablation Studies To demonstrate the superior-232

ity of the QASE architecture, we compared Flan-233

T5-LargeQASE with vanilla fine-tuned Flan-TF-234

LargFT and Flan-T5-Largebaseline. The baseline235

span extraction module lacks the MHA component,236

making it a standard architecture for fine-tuning237

pre-trained encoders for downstream sequence tag-238

ging tasks. We also explored both question-first239

(qf ) and context-first prompting strategies, with fur-240

ther details and analysis provided in Appendix A.4,241

where the model architecture is also illustrated.242

Table 6 shows that the baseline-embedded model243

performs better with a question-first prompting244

strategy, as Flan-T5-Largebaselineqf surpasses Flan-245

T5-Largebaseline and Flan-T5-LargeFTqf
. Con-246

versely, the baseline span extraction module de-247

creases performance in context-first prompting,248

where Flan-T5-Largebaseline underperforms com-249

pared to Flan-T5-LargeFT . This suggests that250

adding an auxiliary span extraction module with-251

out careful design can negatively affect instruc-252

tion fine-tuning. Meanwhile, the QASE-enhanced253

model excels over both vanilla fine-tuned and254

baseline-embedded models in both prompting sce-255

narios, demonstrating its architectural superior-256

ity. Specifically, in context-first setting, Flan-257

T5-LargeQASE significantly outperforms Flan-T5-258

Largebaseline with a 4.3% higher F1.259

Factual Consistency While token-based EM260

and F1 scores measure the structural quality of261

generated text, they do not reflect factual accuracy262

relative to the context. For this we used Q2 (Hon-263

ovich et al., 2021), an automatic metric for assess-264

EM F1 ↑
Flan-T5-Largebaseline 79.877 87.918

Flan-T5-LargeFTqf 80.378 88.176
Flan-T5-Largebaselineqf 81.125 89.043
Flan-T5-LargeQASEqf 81.485 89.077

Flan-T5-LargeFT 83.159 90.712
Flan-T5-LargeQASE 84.125 91.701

Table 6: Performance of vanilla, baseline-, and QASE-
enhanced fine-tuned Flan-T5-Large on SQuAD.

ing factual consistency in generated text, which 265

uses question generation and answering methods 266

over token-based matching. We compared fine- 267

tuned Flan-T5-Large with and without QASE in 268

both single-span (SQuAD) and multi-span (Mul- 269

tiSpanQA) answer settings. Table 7 shows that 270

QASE-enhanced models consistently outperform 271

the vanilla fine-tuned model. On SQuAD, Q2 NLI 272

score is improved by 1.0%, and on MultiSpanQA, 273

it is improved by 16.0%.

Flan-T5-Large Q2 F1 Q2 NLI

SQuAD no QASE 42.927 44.983
QASE 43.624 45.419

MultiSpanQA no QASE 32.889 31.433
QASE 34.732 36.452

Table 7: Q2 scores of fine-tuned Flan-T5-Large with or
without QASE on each dataset. 274

5 Conclusion and Future Work 275

In this study, we address out-of-control text gener- 276

ation of generative PLMs in MRC using QASE, a 277

lightweight question-attended span extraction mod- 278

ule, during the fine-tuning of PLMs. Our experi- 279

ments show that QASE-enhanced PLMs generate 280

better-quality responses with improved formality 281

and factual consistency, matching SOTA extrac- 282

tive models and outperforming GPT-4 by a signif- 283

icant margin on all three MRC datasets. Impor- 284

tantly, QASE improves performance without a sig- 285

nificant increase in computational costs, benefiting 286

researchers with limited resources. 287

In the future, we plan to test our model on gen- 288

erative MRC datasets (Nguyen et al., 2016) to fur- 289

ther assess its efficacy in more complex scenarios. 290

Another key focus will be evaluating the model’s 291

general ability in answer generation, particularly 292

from the perspective of human perception. This 293

will involve incorporating human annotators in ad- 294

dition to automatic metrics. For a long-term goal, 295

we are looking to expand our work to explore solu- 296

tions for addressing input- and context-conflicting 297

hallucinations in LLMs. 298
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Limitations299

Due to our limited computational resources, we300

have been able to perform our experiments on mod-301

els no larger than Flan-T5-Large. This same con-302

straint led us to only fine-tuning of Llama 2 and303

Alpaca with LoRA. We note that models based on304

Llama 2 and Alpaca generally underperform those305

based on Flan-T5. Apart from the inherent distinc-306

tions between decoder-only and encoder-decoder307

models, and their suitability for different tasks (as308

seen from the models’ zero-shot performance), a309

possible factor could be the number of trainable310

parameters during fine-tuning. Specifically, fine-311

tuning Llama 2 and Alpaca with LoRA results in312

only 4.2M trainable parameters, while even the313

smallest Flan-T5 model provides 77.0M trainable314

parameters, as shown in Table 2. We acknowl-315

edge that many researchers face similar computa-316

tional resource limitations. Therefore, our research317

should be very useful, proposing this lightweight318

module capable of enhancing smaller PLMs to out-319

perform leading LLMs on MRC tasks like these,320

achieving a balance of effectiveness and affordabil-321

ity.322

One foreseeable limitation of our work is the de-323

pendency of the fine-tuning process on answer span324

annotations, since QASE works as an auxiliary su-325

pervised span extraction module. This reliance on326

annotated data could potentially limit the model’s327

broader applicability. A prospective exciting fu-328

ture direction to address this limitation is to de-329

velop a semi- or unsupervised module that focuses330

on selecting relevant spans or rationales within a331

given context. By integrating this module with332

our current model, we could significantly improve333

its generalization capabilities, thereby making it334

more adaptable and effective across a wider range335

of scenarios.336

One popular method to enhance the formality of337

answers generated by LLMs is through prompt en-338

gineering, paired with few-shot or in-context learn-339

ing techniques. While these strategies offer great340

advantages, our ultimate goal is to create a system341

with broad domain generalization, one that mini-342

mizes the need for extensive, calibrated prompt en-343

gineering and sample selections for task adaptation.344

Although developing a robust prompt engineering345

framework or paradigm is an appealing direction,346

our current focus diverges from this path. As a347

long-term goal, we aim for a solution that handles348

diverse tasks with minimal task-specific tuning.349
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A Appendix577

A.1 Dataset Leaderboard578

Below are the official leaderboards all the datasets579

we refer to:580

SQuAD https://rajpurkar.github.io/
SQuAD-explorer/

MultiSpanQA https://multi-span.github.io/
Quoref https://leaderboard.allenai.org/

quoref/submissions/public

Table 8: Dataset official leaderboards.

A.2 Full Experiment Results581

In addition to the highlighted results presented in582

Section 4, we also compare the fine-tuned PLMs to583

their corresponding base PLMs in zero-shot set-584

tings. The results, presented in Table 9, show585

that fine-tuning with QASE improves performance586

across all datasets. Specifically, on the SQuAD587

dataset, models using QASE perform up to 5.6588

times better in exact match and 3.0 times better in589

F1 score compared to the original models. On the590

MultiSpanQA dataset, the exact match improves591

by up to 124.4 times, and F1 score by up to 3.4592

times. Similarly, on the Quoref dataset, the exact593

match improves by up to 38.4 times, and F1 score594

by up to 11.2 times with QASE.595

A.3 Instruction Templates and Model596

Prompts597

Table 10 provides the instruction and prompt tem-598

plates used for fine-tuning the PLMs and for zero-599

shot querying of PLMs and GPT variants across600

both single- and multi-span answer datasets.601

A.4 Ablation Studies Details602

Figure 2 depicts the architecture of the model we603

use for the ablation studies, with a baseline span604

extraction module. The baseline span extraction605

module omits the MHA component, typifying a606

standard architecture for fine-tuning pre-trained607

encoders for downstream sequence tagging tasks.608

The baseline-embedded Flan-T5-Large models are609

fine-tuned with the same configurations as Flan-T5-610

LargeQASE including learning rate, weight decay,611

batch size, epoch number, and GPU type.612

We experiment with 2 prompting strategies for613

ablation studies:614

• Context-first prompting: The default615

prompting strategy we utilize for fine-tuning616

Figure 2: Baseline-embedded model architecture

PLMs, both with and without QASE. In this 617

setting, the prompt is ordered as "<instruction 618

tokens> <context tokens> <question tokens>". 619

• Question-first prompting (qf ): Following 620

BERT’s standard fine-tuning procedures. In 621

this setting, the prompt is ordered as "<instruc- 622

tion tokens> <question tokens> <SEP> <con- 623

text tokens>". <SEP> is a special separator 624

token. 625
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MultiSpanQA SQuAD Quoref
EM F1 Overlap F1 EM F1 EM F1

Llama2 7.354 34.031 13.443 28.931 5.02 28.91
Llama2FT 50.934 68.140 36.679 47.055 45.52 52.09
Llama2QASE 51.748 70.389 37.219 47.686 54.28 60.44
Alpaca 15.201 42.759 18.259 33.871 - -
AlpacaFT 52.730 69.099 27.881 43.950 - -
AlpacaQASE 52.196 70.008 37.313 47.622 - -
Flan-T5-Small 0.475 22.539 13.878 28.710 1.58 5.96
Flan-T5-SmallFT 59.128 76.494 77.332 85.513 58.21 63.30
Flan-T5-SmallQASE 59.080 77.103 77.663 85.901 60.70 66.88
Flan-T5-Base 4.113 37.694 37.596 51.747 27.08 34.38
Flan-T5-BaseFT 64.659 81.408 82.090 89.558 72.77 80.90
Flan-T5-BaseQASE 64.874 81.498 82.204 90.240 75.17 81.18
Flan-T5-Large 13.907 51.501 16.149 37.691 15.96 24.10
Flan-T5-LargeFT 67.408 83.094 83.159 90.712 75.17 80.49
Flan-T5-LargeQASE 66.918 84.221 84.125 91.701 76.19 82.13

Table 9: Performance of zero-shot PLMs and fined-tuned PLMs with and without QASE.

Fine-tuning PLMs Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations.
- - -
Context: <context>
- - -
Question: <question>
- - -
Answer:

Zero-shot prompting PLMs and
GPT variants on single-span answer
dataset, SQuAD

Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations.
- - -
Context: <context>
- - -
Question: <question>
- - -
Answer:

Zero-shot prompting PLMs and
GPT variants on multi-span answer
datasets, MultiSpanQA and Quoref

Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations. Format the response as follows: ["answer1", "answer2", ...].
- - -
Context: <context>
- - -
Question: <question>
- - -
Answer:

Table 10: Templates for fine-tuning instructions and zero-shot query prompts
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